
Efficient Motion Planning using Generalized

Penetration Depth Computation

Liangjun Zhang

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2009

Approved by:

Dinesh Manocha, Advisor

Young J. Kim, Reader

Ming C. Lin, Reader

Steven M. LaValle, Reader

Mark Foskey, Reader

c© 2009

Liangjun Zhang

ALL RIGHTS RESERVED

ii

Abstract
Liangjun Zhang: Efficient Motion Planning using Generalized Penetration

Depth Computation.
(Under the direction of Dinesh Manocha.)

Motion planning is a fundamental problem in robotics and also arises in other applications

including virtual prototyping, navigation, animation and computational structural biology. It

has been extensively studied for more than three decades, though most practical algorithms

are based on randomized sampling. In this dissertation, we address two main issues that

arise with respect to these algorithms: (1) there are no good practical approaches to check

for path non-existence even for low degree-of-freedom (DOF) robots; (2) the performance of

sampling-based planners can degrade if the free space of a robot has narrow passages.

In order to develop effective algorithms to deal with these problems, we use the concept of

penetration depth (PD) computation. By quantifying the extent of the intersection between

overlapping models (e.g. a robot and an obstacle), PD can provide a distance measure for

the configuration space obstacle (C-obstacle). We extend the prior notion of translational

PD to generalized PD, which takes into account translational as well as rotational motion

to separate two overlapping models. Moreover, we formulate generalized PD computation

based on appropriate model-dependent metrics and present two algorithms based on convex

decomposition and local optimization. We highlight the efficiency and robustness of our PD

algorithms on many complex 3D models. Based on generalized PD computation, we present

the first set of practical algorithms for low DOF complete motion planning. Moreover, we

use generalized PD computation to develop a retraction-based planner to effectively generate

samples in narrow passages for rigid robots. The effectiveness of the resulting planner is shown

by alpha puzzle benchmark and part disassembly benchmarks in virtual prototyping.

iii

To my wife, Feiqi Su

iv

Acknowledgments

First and foremost I am deeply grateful to my advisor Dinesh Manocha for his excellent

guidance and support not only on my research but also on all professional aspects. His patience

and tolerance have allowed me to learn from lessons. His quick and constructive feedbacks on

my papers and presentations always amaze me. I would also like to thank all of my committee

members. I thank Young J. Kim for being a coauthor and a guide of my research. I thank

Ming C. Lin for her support and feedbacks. I thank Steven M. LaValle for his thoughtful

discussions, inspiration, and hosting my visit in his department. I thank Mark Foskey for his

suggestions.

Many of my work were done jointly with other collaborators. I thank Gokul Varadhan,

Avneesh Sud, Xin Huang, Jia Pan, and Shankar Krishnan for their contributions. Many

thanks to all the members of the GAMMA group for their feedbacks and comments in the

weekly meetings.

I would like to thank the faculty and staff in the computer science department. They have

made the department such a pleasant place to study and work at. In particular, I thank Jack

Snoeyink for his advices. I thank Janet Jones, Linda Houseman, and Dawn Andres for their

administrative support, and Whitney Vaughan for proofreading my papers. I also thank the

funding agencies of my work: ARO, DARPA, Intel Corporation, NSF, and ONR.

I thank David Xianfeng Gu for his help and guidance in my first year study in the United

States. I thank Will Alexander for proofreading and regular lunch meetings. I also thank

many friends - Xueyi Wang, Lei Wei, Anish Chandak, Hua Yang, Leo Yuanxin Liu, Xiang

Zhang, Qi Zhang, Feng Pan, Li Guan, and Hao Xu. Without them, the life in Chapel Hill

would not have been fun.

I thank my parents, sister, brother, and parents-in-law in China for their care. Most of all,

my wife Feiqi Su for her endless love and support.

v

Table of Contents

List of Figures . 7

List of Tables . 11

1 Introduction . 1

1.1 Motion Planning . 1

1.1.1 Configuration Space . 2

1.1.2 Exact and Approximate Decomposition Approaches 4

1.1.3 Sampling-based Approaches . 5

1.1.4 Application to Virtual Prototyping 6

1.2 Challenges and Goals . 6

1.2.1 Path Non-existence Problem . 7

1.2.2 Narrow Passage Problem . 9

1.3 Relevance of Proximity Queries to Motion Planning 10

1.3.1 Penetration Depth Computation 12

1.4 Thesis Statement . 13

1.5 Main Results . 14

1.5.1 Generalized Penetration Depth Computation 14

1.5.2 Complete Motion Planning . 16

1.5.3 An Efficient Retraction-based Sampling Planner 17

1.6 Thesis Organization . 18

2 Notion and Formulation of Generalized Penetration Depth 19

1

2.1 Penetration Depth: A Measure of Interpenetration between Intersecting
Objects . 20

2.2 Previous Work on Penetration Depth Computation 22

2.2.1 Translational Penetration Depth 23

2.2.2 Considering both Translational and Rotational Motion 24

2.3 Generalized Penetration Depth . 25

2.3.1 Notation . 25

2.3.2 Definition . 25

2.4 Distance Metrics in Configuration Space 27

2.4.1 Distance Metrics in SE(3) . 28

2.4.2 Model-dependent Distance Metrics: DISP, OBNO and TRAJ . . 29

2.4.3 Metric Properties . 33

2.5 Formulation of Generalized Penetration Depth 35

2.5.1 Contact Space Realization . 36

2.5.2 Complexity of Generalized PD Computation 38

3 Efficient C-Space Distance Computation 40

3.1 C-DIST Computation for Rigid Models 41

3.1.1 Convexity in C-DIST Computation 42

3.1.2 C-DIST Computation Algorithm 44

3.1.3 Accelerating C-DIST Computation by Incremental Walking . . . 45

3.1.4 Accelerating C-DIST Computation using a Bounding Volume Hi-
erarchy (BVH) . 47

3.2 C-DIST Computation for Articulated Models 49

3.3 Implementation and Performance . 50

3.3.1 Rigid Models . 51

3.3.2 Articulated Models . 52

2

3.3.3 Comparison . 53

4 Generalized Penetration Depth Computation 55

4.1 A Convexity-based Generalized PD Algorithm 56

4.1.1 Convex Objects . 56

4.1.2 A Convex Object and a Convex Complement 59

4.1.3 Lower Bound for Non-Convex Objects 64

4.1.4 Upper Bound for Non-convex Objects 66

4.1.5 Complexity . 70

4.1.6 Implementation and Performance 70

4.2 A Fast and Practical Generalized PD Algorithm using Constrained Op-
timization . 77

4.2.1 Algorithm Overview . 77

4.2.2 Local Contact Space Approximation 78

4.2.3 Searching over Local Contact Space 80

4.2.4 Refinement . 83

4.2.5 Initial Guess . 84

4.2.6 Implementation and Performance 85

4.3 Summary . 88

5 Complete Motion Planning . 91

5.1 Previous Work . 93

5.1.1 Exact Motion Planning . 94

5.1.2 Approximate Cell Decomposition 94

5.1.3 Sampling-based Approaches . 95

5.1.4 Checking for Path Non-Existence 95

5.1.5 Feedback Motion Planning . 96

3

5.2 Path Non-existence Computation using Approximate Cell Decomposition 96

5.2.1 Connectivity Graphs . 97

5.2.2 Guided Subdivision . 98

5.3 Cell Labelling for Path Non-existence Computation 99

5.3.1 Motion Bound Calculation . 100

5.3.2 Generalized Penetration Depth Computation 101

5.3.3 C-obstacle Cell Query Criterion 102

5.3.4 Extension to Articulated Robots 103

5.3.5 Experimental Results . 106

5.4 A Hybrid Approach for Complete Motion Planning 110

5.4.1 Overview . 111

5.4.2 Hybrid Planning Algorithm . 115

5.4.3 Implementation and Performance 119

5.5 Analysis and Comparison . 124

5.5.1 Completeness . 124

5.5.2 Analysis of C-obstacle Query Algorithm 126

5.5.3 Comparison . 126

5.5.4 Limitations . 127

5.6 Extension: Global Vector Field Computation for Feedback Motion Planning128

5.6.1 Problem Definition . 130

5.6.2 Vector Field Computation Algorithm 131

5.6.3 Analysis . 136

5.6.4 Experimental Results . 138

5.7 Summary . 141

6 A Retraction-based Planner for Cluttered Environments 142

4

6.1 Introduction . 143

6.2 Related Work . 146

6.2.1 Sampling-based Planning . 146

6.2.2 Retraction-based Motion Planning 147

6.2.3 Contact Space Planning . 148

6.2.4 Applications to Part Disassembly Simulation 148

6.3 Optimization-based Retraction . 148

6.3.1 The Retraction Step . 149

6.4 Retraction-based RRT Planner . 151

6.4.1 RRT Planner . 152

6.4.2 Retraction-based RRT . 152

6.5 Analysis . 154

6.5.1 Voronoi Diagrams . 154

6.5.2 Analysis of Retraction-based RRT 155

6.6 D-Plan: Efficient Collision-Free Path Computation for Part Removal and
Disassembly . 157

6.6.1 Contact Query on Polygon Soup Models 158

6.6.2 Localized Collision Detection . 159

6.7 Implementation and Results . 161

6.7.1 Implementation . 162

6.7.2 Results . 164

6.7.3 Comparison . 166

6.8 Limitations . 170

6.9 Summary . 171

7 Conclusion and Future Works . 174

5

7.1 Generalized PD Computation . 175

7.1.1 Limitations . 176

7.2 Efficient Motion Planning . 177

7.2.1 Limitations . 177

7.3 Future Work . 178

Bibliography . 181

6

List of Figures

1.1 Motion planning and configuration space 3

1.2 Disassembly of a seat outside a car body 7

1.3 Complete motion planning . 8

1.4 Narrow passage problem in alpha puzzle benchmark 10

1.5 Two formulations of motion planning . 11

1.6 Quantifying the intersection . 13

1.7 C-space queries . 15

2.1 Different measures for quantifying the extent of intersection 21

2.2 Translational penetration depth . 22

2.3 Separating two intersecting models by translation and rotation 23

2.4 Generalized penetration depth . 26

2.5 DISP: a C-Space distance metric . 30

2.6 TRAJ Distance Metric . 31

2.7 Contact Space Realization of Generalized PD 36

3.1 Chasles theorem in screw theory . 41

3.2 Maximum distance between a polyhedra and a line 43

3.3 A walking algorithm for computing extremal vertex 46

3.4 C-DIST computation for the ‘alpha’ model 48

3.5 C-DIST computation for the ‘bunny’ model 50

3.6 C-DIST computation for the ‘dragon’ model 52

3.7 C-DIST computation for other rigid models 54

7

3.8 C-DIST computation for an articulated model - ‘puma’ 54

3.9 C-DIST computation for an articulated model - ‘IRB2400’ 54

4.1 Convexity of generalized PD computation 57

4.2 Generalized PD computation between a convex object and a convex com-
plement . 60

4.3 Separating plane, convex separator and non-convex separator 67

4.4 The ‘hammer’ example . 68

4.5 The ‘cup’ example . 71

4.6 The ‘hammer in narrow notch’ example 72

4.7 The ‘pawn’ example . 74

4.8 Comparison of lower and upper bounds on generalized PD computation . 76

4.9 A generalized PD algorithm using constrained optimization 78

4.10 Local contact space approximation . 80

4.11 Sampling in local contact space . 81

4.12 Local refinement . 83

4.13 The ‘CAD part’ example . 85

4.14 The ‘torus knot’ example . 87

4.15 The ‘bumpy sphere ’ example . 88

5.1 Basic idea of path non-existence computation 92

5.2 Path non-existence computation using approximate cell decomposition . 97

5.3 Illustration of path non-existence computation for ‘gear’ example 104

5.4 ‘Five-gear’ example for path non-existence 105

5.5 ‘Five-gear’ example with narrow passage 105

5.6 ‘2D puzzle’ example . 106

5.7 4-DOF ‘star’ example . 108

8

5.8 A 3-DOF articulated robot . 108

5.9 Benefits of the hybrid planner . 111

5.10 Pseudo-free edges and connectivity graph 113

5.11 Flowchart of the hybrid planner . 116

5.12 Critical cell computation . 119

5.13 ‘Five-gear’ example with narrow passage 120

5.14 4-DOF ‘star’ example with narrow passage 122

5.15 4-DOF ‘star’ example for path non-existence 122

5.16 4-DOF ‘notch’ example . 122

5.17 Discrete plan . 131

5.18 Face and cell vector fields . 132

5.19 GVD over a cell . 134

5.20 Illustration of vector field computation for ‘gear’ example 135

5.21 Vector field computation for 3-DOF robots 139

5.22 Vector field computations for an articulated robot and a multiple robot
system . 140

6.1 Retraction-based sampling for narrow passages 144

6.2 Optimization-based retraction . 149

6.3 Difference of tree extension between RRT and RRRT 151

6.4 Analyzing RRT using Voronoi diagrams 155

6.5 Analysis of retraction-based RRT planner 156

6.6 Contact query for polygon soup models 158

6.7 Localized collision detection . 160

6.8 ‘Notch’ example . 162

6.9 ‘Torus’ example . 163

9

6.10 ‘Flange’ example . 164

6.11 Alpha puzzle benchmark . 170

6.12 Maintainability test of a pipe motion . 171

6.13 Maintainability of the windscreen wiper motion 172

6.14 Disassembly of a seat outside a car body 173

10

List of Tables

2.1 Comparison of C-space distance metrics for rigid models 33

3.1 Performance of C-DIST for rigid models 51

3.2 Performance of C-DIST for articulated models 53

4.1 Performance of convexity-based generalized PD computation 75

4.2 Performance of generalized PD computation using constrained optimization 88

5.1 Performance of the complete planner . 108

5.2 Statistical information of the complete planner 109

5.3 Performance of C-obstacle cell query . 109

5.4 Performance of the hybrid planner . 121

5.5 Statistical information of the hybrid planner 123

5.6 Comparison of the complete planner and hybrid planner 123

5.7 Performance of the global vector field computation algorithm 138

6.1 Performance of the retraction-based RRT 165

6.2 Model complexity . 165

6.3 Breakdown of running time of RRRT . 165

6.4 Performance comparison of RRRT and RRT 167

6.5 Model complexity of part disassembly benchmarks 168

6.6 Performance of D-Plan . 168

6.7 Breakdown of running time of D-Plan . 169

11

Chapter 1

Introduction

Motion is ubiquitous in both the real world and the virtual world. The area of motion

planning deals with design of computational tools to enable robots to automatically

compute their motion in order to perform high level tasks, e.g. go safely from point A

to B. Besides robotics, motion planning algorithms have also been successfully used in

many other fields, such as computer animation, computational biology and CAD/CAM.

This thesis focuses on developing efficient motion planning algorithms. In this chap-

ter, we first give an overview of the problem and review prior approaches. Next, we

discuss some of the issues and challenges in designing efficient algorithms. Finally, we

present an overview of our algorithms and summarize the new results of this thesis.

1.1 Motion Planning

In this thesis we mainly focus on the basic problem in robot motion planning, which is

also known as path planning and defined as follows. Let A be a robot. We assume that its

kinematics (i.e. degree of freedom or DOF of the robot) and geometric representation

(i.e. shape of the robot) are known. The robot operates in a 2D or 3D Euclidean

space, called the workspace, and let B = {B1, B2, ..., Bn} be the collection of obstacles

distributed in the workspace. We assume the obstacles are static and their geometric

representation is also known. Given an initial configuration and a goal configuration of

A, the basic motion planning problem is to compute a collision-free path so that A can

move from the initial configuration to the goal configuration without colliding with any

obstacle Bi in the workspace, or to report failure if no such path exists. Fig. 1.1(a)

shows an example of path computed for a triangle-shaped robot in the environment with

one static obstacle.

The basic motion planning problem can be extended in different ways. For instance,

there can be multiple robots in the environment, or the robot’s motion needs to satisfy

not only the collision-free constraint but also other dynamic constraints. Furthermore

the obstacles may not be static; or the robot is navigating in an unknown environment

and an exact geometric representation of obstacles is not known in advance. In this

thesis, we mainly focus on the basic motion planning problem for two reasons: first even

the basic motion planning problem is computationally challenging and there are still

many important and unsolved issues with respect to that problem; second the techniques

developed for the basic problem are also applicable to solve the more complex motion

planning problems.

1.1.1 Configuration Space

Configuration space is an important notion used in motion planning (Lozano-Pérez, 1983;

Latombe, 1991; Choset et al., 2005; LaValle, 2006). For a rigid model, the configuration

space (often shortened as C-space) C is defined as the set of all possible positions and

orientations of the model. For example, Fig. 1.1 shows a 2D triangle-shaped robot which

can only translate in the 2D plane. For this robot, its C-space is 2-dimensional and each

configuration q ∈ C is defined by the x and y coordinates of the robot, i.e. q = (x, y).

Therefore, every configuration maps to a point in the 2-dimensional C-space. For a rigid

free-flying robot in 3D, its C-space is 6-dimensional and corresponds to SE(3), the group

of the spatial rigid body transformations. For an articulated robot, the dimensionality

of its C-space is determined by the number of links of the robot as well as its kinematic

2

Workspace Configuration space

Robot

Obstacle

x
y

F

O
C-obstacle

Free space

Initial

Goal

Initial

Goal

(a) (b)

Figure 1.1: Motion planning and configuration space. The problem of planning a
collision-free motion for a robot (e.g. a 2D triangle-shaped robot translating in plane)
between its initial configuration and goal configuration is reduced to finding a path con-
necting the initial and goal in the free space of the robot’s configuration space, which is
2-dimensional for this robot.

structures (e.g. chains or loops).

The configuration space of a robot is decomposed into free space - F , contact space -

Ccontact and configuration space obstacle (often shortened as C-obstacle) - O. Free space

in C-space is defined as the set of configurations at which the robot does not intersect

with any obstacle; contact space is defined as the set of configurations at which the

robot barely touches one or more obstacles without any penetration. The complement

of F ∪Ccontact in C is C-obstacle. In another way, if a configuration is in C-obstacle, the

robot collides with one or more obstacles in the environment with penetration. Such

configurations should be avoided when the robot moves.

Based on the notion of configuration space, the basic motion planning problem is

reduced to finding a path in robot’s free space connecting the given initial and goal

configurations. In practice, the robot is often allowed to touch the obstacles. In this

case, the path can lie in free space as well as contact space.

In general, the motion planning problem is computationally challenging due to the

underlying high dimensionality of C-space as well as the combinatorial complexity and

3

the robustness issues of geometric computation of free space. The boundary (closure) of

free space is equivalent to the contact space and is determined by a set of contact surfaces.

Each contact surface is the locus of configurations of a robot at which a specific boundary

feature of the robot (i.e. vertex, face, or edge of a rigid robot represented as polyhedra)

is in contact with a boundary feature of the obstacles. For a robot with rotational DOF,

the resulting contact surfaces can be non-planar or high degree hypersurfaces. The

computation of the boundary of free space reduces to an arrangement problem (Latombe,

1991; Halperin, 2002). Given a finite set of hypersurfaces in Rd, their arrangement is

the decomposition of Rd into cells of dimensions 0, 1, . . . , d. It is known that in the

worst case, the combinatorial complexity of an arrangement of n hypersurfaces in Rd

is O(nd) (Halperin, 2004). For a rigid robot represented as polyhedra with both of

translational and rotational DOF, in general, there are O(n2) contact surfaces where

n is the number of features (e.g. vertices, edges and faces) of the robot and obstacles.

The combinatorial complexity of the boundary of free space arrangement of n2 contact

surfaces in 6-dimensional C-space can be O(n12) in the worst case. In addition, the

arrangement of contact surfaces involves the intersection computation which is difficult

due to robustness issues such as floating point errors and degeneracies (Raab, 1999).

Therefore, it is very challenging to compute the boundary of the free space precisely,

robustly and efficiently in high dimensional C-space.

Motion planning has been intensively studied for three decades. Prior motion plan-

ning approaches can be classified according to how they represent and capture the con-

nectivity of the robot’s free space. Now we briefly overview some of these approaches.

1.1.2 Exact and Approximate Decomposition Approaches

Some of the earlier motion planning algorithms relies on an exact representation of free

space. These include criticality-based algorithms for a class of robots (Lozano-Pérez and

Wesley, 1979; Donald, 1987; Kedem and Sharir, 1988; Avnaim and Boissonnat, 1989b),

4

roadmap methods (Canny, 1988), and exact cell decomposition methods (Schwartz and

Sharir, 1983). The exact cell decomposition algorithms compute an exact representation

of the boundary of free space. These algorithms partition the free space into a collection

of simpler geometric regions and compute a connectivity graph representing the adja-

cency between the regions. Recently, a star-shaped roadmap representation of F has

been proposed and applied to low-DOF robots (Varadhan and Manocha, 2005). It has

been shown that the complexity of the exact boundary computation of free space is ex-

ponential in the number of robot’s degrees of freedom (e.g. O(n12) for a free-flying rigid

robot) (Reif, 1979; Halperin, 2002). Furthermore, exact free space space computation is

also prone to robustness issues. Therefore, most implementations of exact approaches

are limited to low DOF (e.g. 2-3) robots or special shapes (e.g. spheres or ladders)

(Avnaim and Boissonnat, 1989b).

A number of motion planning algorithms are based on approximate cell decompo-

sition (ACD) (Brooks and Lozano-Pérez, 1985; Paden et al., 1989; Zhu and Latombe,

1990). ACD algorithms attempt to subdivide C into a collection of cells similar to

exact cell decomposition. Unlike exact cell decomposition, the cells in ACD have a sim-

ple shape (e.g. rectangoloids). ACD algorithms compute a collision-free path within

the cells in the free space or check for path non-existence using the cells that lie in

C-obstacle. ACD algorithms are much simpler to implement as compared to exact ap-

proaches. However, since it is difficulty to check whether a cell lies entirely in the free

space and the number of cells grows exponentially with the level of subdivision, most

prior ACD algorithms have been limited to 2-3 DOF robots in simple environments.

1.1.3 Sampling-based Approaches

The sampling-based approaches such as probabilistic roadmaps (PRM) (Kavraki et al.,

1996), rapidly-exploring random trees (RRT) (LaValle, 1998) and their variants are

most widely used motion planning algorithms for many practical applications. These

5

sampling-based approaches attempt to capture the connectivity of F by sampling in the

free space and connecting the samples to form a roadmap or a tree. These approaches

are very simple to implement and have been successfully applied to high-DOF robots.

However, the performance of sampling-based planners can degrade if the robot’s free

space has narrow passages. We address this issue in more detail in Section 1.2.

1.1.4 Application to Virtual Prototyping

Besides robotics, motion planning techniques have also been used for many other ap-

plications. In this thesis, we also focus on virtual prototyping applications. Simulation

technologies are increasingly used for virtual prototyping and PLM (product lifecycle

management), where the goal is to provide efficient software solutions to problems that

were traditionally solved using costly physical mockups. For instance, the simulation

of assembly maintainability and mechanical part disassembly frequently arises in de-

sign and manufacturing applications. The manual generation of detailed disassembly or

maintainability paths can be tedious and time consuming, particularly in environments

prone to frequent design changes. The recent trend has been towards developing auto-

mated algorithmic solutions for such design problems that can automatically compute

a collision-free, global path. Assembly maintainability and part disassembly can be re-

duced to motion planning of robots, where collision-free paths need to be computed for

rigid objects with 6 DOF among static obstacles. Fig. 1.2 shows a scenario of disassem-

bly of a seat outside of car body which arises in industry design (Ferr and Laumond,

2004).

1.2 Challenges and Goals

The major challenge in motion planning lies in capturing the connectivity of the robot’s

free space, which can be rather complex and high dimensional. Over the last decade

6

Figure 1.2: Disassembly of a seat outside a car body. This disassembly scenario arises
in industrial product design. Motion planning techniques can be applied to automatically
compute a collision-free path for the seat (treated as a rigid robot) in the environment
(the car body is treated as an obstacle). The major difficulties using sampling-based
planners for such disassembly scenarios are due to the cluttered environment and complex
geometric representation of the models, e.g. 30K triangles for the seat model and 214K
triangles for the car body model.

sampling-based planning approaches have been widely used for high dimensional motion

planning problems. In this thesis, we focus on two important and unsolved problems in

motion planning.

1.2.1 Path Non-existence Problem

Given the robot’s initial and goal configurations, a complete motion planning algorithm

computes a collision-free path if one exists; otherwise it reports path non-existence. Fig

1.3 shows challenging scenarios of a gear-shaped robot in a 2D rectangular region with

two gear-shaped obstacles. A complete motion planner should be able to compute a

path for the left scenario and determine path non-existence for the right scenario.

In terms of state of the art, there are no known practical complete motion plan-

ning approaches even for low 3-4 DOF robots. Earlier exact approaches are complete

but their implementation are limited to low 2-3 DOF robots or special shapes such

as spheres or ladders due to the high combinatorial complexity and robustness issues

7

Figure 1.3: Complete motion planning. A gear-shaped robot with 2 translational and
1 rotational DOF needs to move from its initial configuration to goal configuration. A
complete motion planner should be able to compute a path for the left scenario and
determine the path non-existence for the right scenario. These are interesting scenarios
since even for humans it is not intuitive to check for the existence of paths in each
scenario.

of geometric computation (Avnaim and Boissonnat, 1989b). Approximate cell decom-

position approaches are simple to implement. Provided the number of subdivisions is

sufficiently high, these approaches can find a pth or report path non-existence in finite

time. However, there are no known efficient cell labelling algorithms (i.e. to determine

whether a cell lies entirely in the free space or C-obstacle), and the current techniques

may be overly conservative (Brooks and Lozano-Pérez, 1985; Paden et al., 1989; Zhu and

Latombe, 1990). Sampling-based randomized approaches may not terminate when no

collision-free path exists in the free space. In practice, when such a planner does not ter-

minate, it is hard to distinguish whether such situation arises due to path non-existence

of the problem or due to inadequate sampling.

In practice, motion planners with the capability of checking for path non-existence

8

can be useful for many applications such as verification in product design. For the

scenario of disassembly of a seat of a car, the question arisen in design phase about

whether the seat can be taken out of car body can be as important as the question of

how to disassemble the seat. One goal in our work is to advance the state of the art and

to design practical algorithms to check for path non-existence.

1.2.2 Narrow Passage Problem

The sampling-based approaches can solve motion planning for high DOF robots. How-

ever, the performance of these planners can degrade if the free space has narrow passages.

The narrow passages are classified as regions, whose removal or perturbation can change

the connectivity of the free space (Hsu et al., 1998). Figure 1.4 shows the well-known al-

pha puzzle benchmark, which is widely regarded as a challenging benchmark for motion

planning algorithms. The problem is mainly caused by the small volume and poor visi-

bility of narrow passages in free space. Because the volume is small, it may be difficult

to generate adequate number of samples in these regions in the free space by perform-

ing uniform or randomized sampling in C-space. Furthermore, narrow passages may

also exhibit the poor visibility, i.e. nearby samples are more difficulty to be connected

by straight lines in the free space and more samples are needed to capture the overall

connectivity in these regions.

The motion planning scenarios that arise in part removal and part disassembly simu-

lations are rather challenging in terms of narrow passages (e.g. Fig. 1.2). Furthermore,

the underlying models are complex and may be represented using thousands of polygons.

Many times the models are given as polygon soup models which don’t have connectivity

or topology information. It is important for virtual prototyping applications that the

motion planner should be able to handle such datasets automatically.

In order to address the issue of the narrow passages, a number of sampling strate-

gies have been proposed, including dense sampling along obstacle boundaries (Amato

9

qinit

qgoal

2F

Alpha puzzle benchmark Configuration space

1F
1F

A B

Figure 1.4: Narrow passage problem in alpha puzzle benchmark. The goal is to separate
the two intertwined alpha-shaped models. This problem reduces to the motion of the
rigid robot A, while treating B as a static obstacle. The 6-dimensional free space of
this problem is decomposed into two types of regions: F1 and F2 and this figure shows
a 2-dimensional projection of those regions. F1 is open and samples inside this region
can be easily generated. F2 is a narrow passage and the solution path lies in this narrow
passage. It is difficult for sampling-based planners to generate and connect samples in
such narrow passage due to its small volume and poor visibility.

et al., 1998), medial axis-based sampling (Guibas et al., 1999), visibility-based tech-

niques (Simeon et al., 2000), using workspace information (Kurniawati and Hsu, 2006),

dilation of free space (Hsu et al., 1998), and using filtering strategies (Boor et al., 1999).

In practice, it is still difficulty for these approaches to deal with challenging benchmarks

such as alpha puzzle and the part disassembly scenarios. One goal of our work is to

improve the performance of sampling-based planners for such challenging scenarios.

1.3 Relevance of Proximity Queries to Motion Plan-

ning

At a high-level, two different formulations for motion planning to model the underlying

C-space have been used. Exact motion planning approaches explicitly compute a repre-

10

C-Space

Explicit
Representation

Planning

(a)

C-SpaceProximity
Queries

Planning

(b)

Figure 1.5: Two formulations of motion planning. (a) Exact approaches explicitly com-
pute the boundary of the free space and use it for planning. (b) Rather than explicit
representation, other approaches including sampling-based motion planning use proxim-
ity queries such as collision detection to incrementally reason about C-space and conduct
the search.

sentation of the boundary of the free space of C-space, and other methods incrementally

reason about C-space (Fig. 1.5). Due to the exponential complexity and robustness

issues in computing the boundary, the exact approaches are difficult for robots with

high DOF and most of their applications are limited to low 2-3 DOF robots.

On the other hand, by incrementally reasoning about robot’s C-space via random-

ized sampling, sampling-based motion planning approaches have been successful and can

solve many challenging and high DOF problems. As compared to the exact approaches,

these approaches are easier to implement. Rather than computing an explicit repre-

sentation of the free space, these approaches use proximity queries to determine spatial

relationship among the robot and the obstacles for incrementally reasoning about the

C-space and search for a feasible solution. One widely used query is collision detec-

tion, which determines whether a configuration lies in the free space or C-obstacle (Fig.

1.7). Efficient collision detection algorithms have been developed for handling complex

geometric models (Lin and Manocha, 2003).

Approximate cell decomposition can also be categorized as an incremental approach.

11

C-space is decomposed into cells and the decomposition can be refined until a path

is found or path non-existence is reported. The primitive query used by approximate

cell decomposition is cell labelling, which determines whether a cell lies entirely in free

space or C-obstacle. In this thesis, we refer to labelling a cell entirely in C-obstacle

as C-obstacle cell query or often shortened as C-obstacle query (Fig. 1.7). Given that

the time and space complexity of approximate cell decomposition methods grow quickly

with the level of subdivision, it is important to identify cells that lie in C-obstacle space

such that no further subdivision is performed for them. However, C-obstacle query is

harder to be performed than collision detection because the query needs to assert that

at every configuration over this cell, the robot intersects with some obstacle. There are

no prior efficient algorithms to perform C-obstacle query (Zhang et al., 2008c).

1.3.1 Penetration Depth Computation

In this thesis, we explore other C-space queries along with collision detection to de-

sign better algorithms for motion planning. C-space queries often corresponds to prox-

imity queries or determining the spatial relationship among geometric objects in the

workspace. Most prior work on proximity queries is on collision detection. However,

collision detection only returns a boolean answer and does not report quantitative infor-

mation about the extent of separation or intersection. In this regard, separation distance,

which is defined the minimum distance between models, has been used for quantifying

the extent of separation. There are efficient algorithms to compute separation distance

(Larsen et al., 1999).

Penetration depth is widely used for quantifying of the extent of intersection between

models. Fig. 1.6 shows an example of the intersection between two models. Most prior

work has been restricted to compute translational PD or the minimal translation needed

to separate two intersecting rigid models. Translational PD is not sufficient for motion

planning application as it does not take into account the rotational motion of the robot.

12

Figure 1.6: The problem of quantifying the extent of intersection (e.g. between the ‘cup’
and ‘spoon’ models) arises in motion planning, haptic rendering, dynamic simulation and
tolerance verification.

In (Ong, 1997), a penetration measure is proposed that considers both translational

and rotational motion. However, no efficient algorithms exist to compute this measure.

In this thesis, we extend the notion of translational PD to generalized PD by taking

into both translational and rotational motion as mentioned in (Ong, 1997). We present

efficient algorithms to compute generalized PD between rigid models.

In terms of using penetration depth for motion planning, some authors have observed

that penetration depth computation may be useful for improving the performance of

sampling-based planners in narrow passages in earlier works such as (Hsu et al., 1998).

However, due to the difficulty of penetration depth computation, the use of such algo-

rithms has been limited.

1.4 Thesis Statement

Generalized penetration depth for quantifying the extent of intersection between rigid

models can be efficiently computed and used to develop planning algorithms that can

efficiently check for path non-existence for low DOF robots or compute collision-free

paths in cluttered environments.

13

1.5 Main Results

In this thesis, we present efficient algorithms for proximity queries that are used to

reason about the robot’s configuration space. We show that generalized penetration

depth is another important query in addition to collision detection, and can be used to

infer the distance information in C-space, especially in C-obstacle. Based our generalized

penetration depth computation and other C-space query algorithms, we design practical

motion planning approaches: which are either complete for general low DOF robots, or

are efficient in terms of solving difficult planning problems for rigid models with narrow

passages. We apply our approach to part removal or disassembly problems in virtual

prototyping and CAD.

1.5.1 Generalized Penetration Depth Computation

Most prior work has been restricted to compute translational PD or the minimal transla-

tion to separate two intersecting rigid models. We propose a formulation of generalized

PD that takes into account the translational and rotational motion to describe the extent

of intersection between the models (Zhang et al., 2007a,c). Generalized PD is defined

as the minimal translational and rotational motion for the separation and is formulated

using model-dependent C-space distance metrics. We present an efficient algorithm to

compute a distance metric defined as the maximum displacement on the points of the

model when it is transformed (Zhang et al., 2008b).

We present two new algorithms to compute generalized PD between rigid models. We

first present a convexity-based algorithm using convex decomposition and containment

optimization (Zhang et al., 2007c). We show that for two overlapping convex polytopes,

generalized PD is equivalent to translational PD. Otherwise, when the complement of

one of the objects is convex, we pose the generalized PD computation as a variant

of the convex containment problem and compute an upper bound using optimization

techniques. When both of the objects are non-convex, we treat them as a combination

14

d

C-obstacle

Free space

Collision Detection Distance Metric
Computation

Generalized Penetration Depth
Computation

C-obstacle Query

d

F O

O

F

closest

O

F

O

F

Figure 1.7: C-Space queries. It is computationally prohibitive to explicitly compute the
boundary of C-obstacle. Rather than explicitly computation, practical motion planning
approaches use primitive queries to reason about C-space. Collision detection is one
such query, which determines whether a configuration lies in C-obstacle or not. In this
proposal, we show that other queries to C-space are also useful for motion planning.
The queries are C-space distance metric computation, generalized penetration depth
computation and C-obstacle query. We present efficient algorithms for these queries
and use them for motion planning.

of the above two cases and present algorithms that compute a lower bound and an upper

bound on the generalized PD.

We further present a constrained optimization based algorithm to compute gener-

alized PD (Zhang et al., 2007a). We use global approaches to find an initial guess for

optimization and present efficient techniques to compute a local approximation of the

contact space for iterative refinement. As compared to the convexity-based algorithm,

this algorithm does not need to perform convex decomposition and can be applicable to

rigid objects represented as polygonal soup models.

We highlight the efficiency and robustness of both algorithms on many complex 3D

15

models.

1.5.2 Complete Motion Planning

We present a complete motion planning algorithm that can compute a path if it exists

and report the path non-existence otherwise for low DOF robots among static obstacles

(Zhang et al., 2008c). Our algorithm is based on approximate cell decomposition of

C-space. We use C-obstacle cell query to check whether a cell lies entirely inside the

C-obstacle. This reduces the problem of checking for path existence to checking whether

there exists a path through the set of all cells that do not lie entirely inside C-obstacle.

We present a simple and efficient algorithm to perform C-obstacle cell query using gen-

eralized PD computation. As compared to prior approaches, our algorithm is practical

for 2-3 low DOF robots in complex environments. The algorithm is robust and simple to

implement. Although our C-obstacle query algorithms are conservative, we prove that

the overvall planner is still complete.

In order to further improve the performance of complete motion planning, we also

present a hybrid approach that combines the completeness of approximate cell decom-

position (ACD) with the efficiency of probabilistic roadmaps (PRM) (Zhang et al.,

2007b). Our approach uses ACD to subdivide C-space into cells and computes local-

ized roadmaps by generating samples within each of these cells. We have applied our

approach to 3-4 DOF robots. In practice, we observe up to 10 times improvement in

scenarios with narrow passages or no collision-free paths over our first complete motion

planner.

Our complete motion approaches are also extended to feedback motion planning

(Zhang et al., 2009). Our algorithm computes a global vector field in the entire free

space as a feedback plan, which ensures that the robot at any collision-free configuration

knows the direction to move in order to reach the goal. We compute a local vector field

for each cell in the free space and address the issue of the smooth composition of the local

16

vector fields between the non-uniform adjacent cells. As compared to prior approaches,

our algorithm works well on non-convex robots and obstacles. We demonstrate its

performance on planar robots with 2 or 3 DOF, articulated robots composed of 3 serial

links and multi-robot systems with 6 DOF.

1.5.3 An Efficient Retraction-based Sampling Planner

We present a novel optimization-based retraction algorithm to improve the performance

of sampling-based planners in narrow passages for 3D rigid robots (Zhang and Manocha,

2008b). The retraction step, which is equivalent to generalized PD computation, is

formulated as a constrained optimization problem using an appropriate C-space distance

metric. Our algorithm computes samples near the boundary of C-obstacle using local

contact analysis and uses those samples to improve the performance of RRT planners

in narrow passages. We analyze the performance of our planner using Voronoi diagrams

and show that the generate tree tends to grow closely towards any randomly generated

sample. Our algorithm is general and applicable to all polygonal models. In practice,

we observe significant speedups over prior RRT planners on challenging scenarios with

narrow passages.

We apply our retraction-based planning algorithm to part removal or disassembly

problems, where a part usually needs to be extracted from a very cluttered environment

(Zhang et al., 2008a). Based on retraction-based sampling, we show that our planner can

handle complex CAD scenarios with narrow passages and composed of a few hundreds

of thousands triangles.

In this thesis, we mainly focus on using our novel generalized PD algorithms be-

tween rigid models for efficient motion planning. In future, it is interesting to extend

our generalized PD and motion planning algorithms to articulated robots. It is also in-

teresting to apply the generalized PD algorithms to other applications, such as dynamic

simulation and haptic rendering.

17

1.6 Thesis Organization

The rest of the thesis is organized into two parts. The first part (Chapters 2,3 and 4)

addresses the problem of generalized PD computation and the second part (Chapters 5

and 6) focuses on designing efficient motion planning approaches using generalized PD

computation. More specifically,

• Chapter 2 introduces the problem of quantifying the extent of the intersection

between overlapping objects and presents the notion and basic formulation of

generalized PD computation;

• Chapter 3 presents an efficient C-space distance computation algorithm for rigid

or articulated robots;

• Chapter 4 presents two algorithms for generalized PD computation: the convexity-

based algorithm and the second algorithm based on constrained optimization;

• Chapter 5 presents our approaches for complete motion planning and feedback

motion planning for low DOF robots by using generalized PD computation;

• Chapter 6 presents an efficient sampling-based planner using retraction strat-

egy by performing generalized penetration depth computation. The chapter also

demonstrates the applications of our planner to part disassembly simulation.

• Chapter 7 concludes this thesis, discusses the limitations of our algorithms and

suggests directions for future research.

18

Chapter 2

Notion and Formulation of Generalized

Penetration Depth

Penetration depth (PD) is a distance measure for quantifying the extent of intersection

between overlapping objects. Along with other proximity queries such as collision de-

tection and separation distance, PD is useful for robot motion planning and many other

applications, including physically-based simulation, haptics, and CAD/CAM. In these

applications, the problem of quantifying the intersection arises frequently. When using

computers to simulate objects in the physical world, physical constraints may often be

violated, which can result in incorrect simulation results. For instance, the constraint

of non-interpenetration between simulated objects may often be invalid, i.e. the objects

may intersect with each other (e.g. Fig. 1.6). In these cases, an effective measure of

the extent of intersection can be useful to restore the simulated objects to their valid

positions. In robot motion planning, a robot needs to avoid collision with the obstacles

in the environment. Collision detection is used to determine whether a configuration

of the robot is collision-free or not. By further quantifying the extent of intersection

for any invalid colliding configuration of the robot, PD computation can compute the

distance for any colliding configuration to its nearest collision-free configuration. Such

distance information in the invalid search space of the robot can be useful for designing

efficient motion planning algorithms as shown in Chapters 5 and 6.

Most of the prior work on PD computation, however, has been restricted to transla-

tional PD (Cameron and Culley, 1986; Dobkin et al., 1993; van den Bergen, 2001; Kim

et al., 2002a). Translational PD between two overlapping objects is often defined as the

maximum translational distance needed to separate them. Translational PD computa-

tion is not sufficient for robot motion planning and other applications as it does not take

the rotational motion into account. In this thesis, we extend the notion of translational

PD to generalized PD by taking into account translational as well as rotational motion

to separate the overlapping objects.

In this chapter, we first introduce the problem of penetration depth (PD). After a

brief survey of previous work on PD computation, we present our notion of generalized

PD. In the rest of this chapter, we focus on issues of choosing good distance metrics and

formulating generalized PD based on these metrics. In the next two chapters, we present

an algorithm for computing a meaningful distance metric and present two algorithms

for generalized PD computation.

2.1 Penetration Depth: A Measure of Interpenetra-

tion between Intersecting Objects

There are many ways to quantify the extent of intersection. As shown in Fig. 2.1,

given two intersecting objects A and B, one can calculate the volume of the intersection

as a measure. One can also shrink the model A uniformly and compute the scale

when the scaled model A′ is barely touching B (Ong and Gilbert, 1996). Compared to

these measures, penetration depth (PD) has been more widely used since it can more

accurately measure the extent of intersection especially for non-convex models.

Most of the previous work on PD computation focuses on translational PD. For two

overlapping objects A and B, translational PD is defined as the minimum translation

to be applied to one of the objects A to separate it from the other one B.

20

B

A A'' A'''
A′

Compute the volume of
the intersection Scale the model A Translate A Translate and rotate A

Figure 2.1: Different measures for quantifying the extent of intersection between two
overlapping models A and B.

PDt(A,B) = min{‖ d ‖ |interior(A+ d) ∩B = ∅,d ∈ R3}. (2.1)

Many good algorithms to compute translational PD between convex and non-convex

polyhedra are known (van den Bergen, 2001; Kim et al., 2002b). Most these algorithms

for computing translational PD are based on the formulation of Minkowski sum which

is shown in detail in Fig. 2.2.

Despite the computational efficiency, translational PD computation is not sufficient

for many applications as it does not take the rotational motion into account. One

intuitive example is shown in Fig. 2.3, where the model A can be more ‘easily’ separated

using both the translational and rotational motion as compared to only the translational

motion. Therefore, in order to compute a more accurate measure of the extent of

intersection, we need to take into account both translational and rotational motion

during PD computation. In rigid body dynamics simulations, objects undergo both

translational and rotational motion due to external forces and torques. In order to

compute an accurate collision response, we also need to take into account rotational

21

B
A

()B A⊕ −

PDt -A

B

Configuration space Minkowski Sum

PDt

Figure 2.2: Translational penetration depth. Translational penetration depth can be
formulated using the notion of configuration space, where the object B is treated as the
fixed obstacle and A as a robot, which can only translate. The contact space or the
boundary of C-obstacle is defined as the locus of every configuration where the robot
A is touching the obstacle B at its boundary. Translational PD (PDt) is defined as
the closest distance between the querying configuration of the robot to this boundary.
C-obstacle can be formulated as a Minkowski sum operation between B and −A, i.e.
B ⊕ (−A) = {b− a, b ∈B, a ∈A}.

motion. Similarly, in 6-DOF haptic rendering (McNeely et al., 1999), the rotational

component in penalty forces, such as torque, should be considered in order to compute

the response force. Also, in motion planning, since the configuration space of a rigid

free-flying robot is 6-dimensional, it is necessary to consider rotational motion during

PD computation.

2.2 Previous Work on Penetration Depth Compu-

tation

There has been considerable research work done on proximity queries including colli-

sion detection, separation distance, and PD computation between two or more objects

in robotics, computer graphics and computational geometry (Lin and Manocha, 2003;

Ericson, 2004). In this section, we briefly discuss prior approaches to PD computation.

22

A

B

A

B

A'
A"

PDt !=PDg

(a) (b)

Figure 2.3: Separating intersecting models. In this example, it is ‘easier’ to separate two
intersecting models A and B by both translational and rotational motion (from A to A′′)
as compared to translational motion (from A to A′). Therefore, it is more accurate to
measure the extent of intersection by taking into account both translational and rotational
motion.

2.2.1 Translational Penetration Depth

Translational PD can be formulated in terms of the Minkowski sum of two objects, and

the computation of PDt is equivalent to finding a nearest point on the surface of the

Minkowski sum to the origin (Dobkin et al., 1993). Several algorithms have been pro-

posed for exact or approximate computation of PDt. van den Bergen (2001) proposes a

quick lower bound estimation to PDt between two convex polytopes by iteratively ex-

panding a polyhedral approximation of the Minkowski sum. Kim et al. (2002a) present

an incremental algorithm to estimate a tight upper bound on PDt between convex poly-

topes by walking to a “locally optimal solution”. They have also presented an algorithm

to compute an approximation of global PDt between two general polyhedral models by

using hierarchical refinement (2002b). The running time for the best known theoreti-

cal algorithm to compute PDt between convex polytopes is O(n
3
4
+ε

1 n
3
4
+ε

2 + n1+ε
1 + n1+ε

2)

for any positive constant ε, where n1 and n2 denote the number of features in the two

polytopes (Agarwal et al., 2000). However, we are not aware of any implementation

of this algorithm. In the case of general non-convex polyhedral models, the computa-

23

tional complexity of solving PDt can be O(n6), where n is the number of features in the

polytopes. Due to the difficulty of computing a global PDt between non-convex models,

some fast local PDt algorithms using graphics hardware have been proposed (Redon and

Lin, 2005; Sud et al., 2006).

2.2.2 Considering both Translational and Rotational Motion

Only a few authors have addressed the problem of generalizing the measure of penetra-

tion by taking into account both translational and rotational motion. In the literature,

Ong’s work (1997) can be considered as one of the earliest attempts, and has shown

that, in the case of convex objects, the measure is equivalent to the translational one.

A new distance measure based on scaling of a model, namely growth distance, has also

been presented (Ong and Gilbert, 1996). The growth distance can unify the notion of

separation and penetration distances and can be efficiently computed for convex objects.

A class of closely related work to the generalized PD computation are the polygon

containment algorithms (Chazelle, 1983; Avnaim and Boissonnat, 1989a; Grinde and

Cavalier, 1996; Agarwal et al., 1998; Milenkovic, 1999) and rotational overlapping min-

imization algorithms (Milenkovic, 1998; Milenkovic and Schmidl, 2001), if we view the

problem of separating the object A from B as placing A into B̄ - the complement space

of B. The standard 2D polygon containment problem is to check whether a polygon

Q with n1 vertices can contain another polygon P with n2 vertices. For general non-

convex polygons, the time complexity of this problem is O(n3
1n

3
2log(n1n2)) (Avnaim and

Boissonnat, 1989a). When restricted to convex objects, the time complexity of the 2D

containment problem can be significantly improved. Chazelle (1983) proposes an enu-

merative algorithm with an O(n1n
2
2) time complexity. Milenkovic (1999) and Grinde

and Cavalier (1996) use mathematical programming techniques to compute an optimal

solution.

Given an overlapping layout of polygons inside a container polygon, the rotational

24

overlapping minimization problem is to compute the translational and rotational motion

to minimize their overlap. This problem is solved by mathematical programming meth-

ods (Milenkovic, 1998). By using the non-overlapping property as a hard constraint,

Milenkovic and Schmidl (2001) minimize a quadratic function of the position and orien-

tation of objects to compute a non-overlapping layout based on quadratic programming.

2.3 Generalized Penetration Depth

We extend the notion of translational PD by taking into account translational as well

as rotational motion to separate the overlapping polyhedral models namely, generalized

penetration depth (generalized PD) (Zhang et al., 2007a,c).

2.3.1 Notation

We first introduce some terms and notation used throughout the rest of this section. We

use a bold face letter, such as the origin o, to distinguish a vector quantity from a scalar

quantity. We use a sextuple (x, y, z, φ, θ, ψ) to encode the 6-dimensional configuration of

a 3D rigid object, where x, y and z represent the translational component, and φ, θ and

ψ represent Euler angles for the rotational component. The rotational component can

be also represented as a rotation vector r = (r1, r2, r3)
T = αâ, where α is the rotation

angle and â is the rotation vector. A(q) is a placement of an object A at configuration

q, and p(q) is the corresponding position of a point p on A.

2.3.2 Definition

Given two overlapping objects A and B, we assume B is fixed and A is movable, i.e.

A is treated as a robot and B is treated as an obstacle. When A at a configuration qo

intersects with B, their generalized penetration depth is defined as:

25

A

Configuration space

F

O

gPD

B

qo

qm
qo

qm

Figure 2.4: Generalized penetration depth. (a) Generalized PD (PDg) is a distance
measure that quantifies the extent of intersection between two overlapping objects (e.g.
A at qo and B). Intuitively, PDg is defined as the “minimal translational and rotational
motion” to separate A from B (e.g. moving A from qo to qm). (b) In configuration
space, PDg is defined as the minimal distance from the colliding configuration qo of
A to non-colliding (collision-free or contact) configurations, with respect to a distance
metric.

PDg
δ(A,B) = min{δ(qo,q)| interior(A(q)) ∩B = ∅,q ∈ C}, (2.2)

where δ is any distance metric in C-space and the computation of generalized PD (short-

ened as PDg
δ) is equivalent to minimizing a distance under δ metric, constrained by

non-interpenetration between A and B. Fig. 2.4 gives an intuitive illustration of the

notion of generalized PD. For a given colliding configuration qo, the goal is to compute

the shortest distance to non-colliding (collision-free or contact) configurations.

Translational PD is a special case of generalized PD. When the model A can only

translate, we can choose the Euclidean metric for δ. In this case, the computation of

generalized PD reduces to the translational PD defined in Eq. (2.1).

For rigid robots, our notion on generalized PD takes into account the translational

and rotational motion to describe the extent of intersection as the chosen metric can

26

measure the distance in SE(3). Similarly, with a distance metric defined for an articu-

lated model, the notion of generalized PD is also applicable to quantify the intersection

between an articulated robot and the environment.

As we can see, one important issue on defining and formulating generalized PD is on

choosing an appropriate metric. We address this issue in detail in the next section.

2.4 Distance Metrics in Configuration Space

Although any distance metric in C-space can be used to define generalized PD, we desire

good mathematical properties with the chosen metric. In this section, we address the

issue of choosing an appropriate distance metric for generalized PD. The problem of

choosing good distance metrics also arises in many other applications and the choice

of the metric can affect the performance of the overall algorithms. For instance, in

sampling-based motion planning algorithms (Kavraki et al., 1996; Kuffner and LaValle,

2000; LaValle, 2006), a distance metric is used to determine nearby samples which need

to be connected. The choice of distance metric can affect the connectivity of the roadmap

and the performance of planners (Amato et al., 2000; Kuffner, 2004). The distance metric

in configuration space is also used to evaluate the properties of generated samples (e.g.

dispersion) in the planning algorithm (LaValle, 2006).

Specifically, a distance metric in C-space is used to compute a measure of distance be-

tween two configurations in C-space of a rigid or articulated object. Intuitively speaking,

for a rigid object, the measure of a distance in configuration space under an appropriate

distance metric can be used to quantify how far this object is displaced from one config-

uration to another. Defining and calculating the distance for a rigid object undergoing

only translational motion is relatively easy, because the well-defined Euclidean distance

metric can be employed in this case. However, it is harder to just define a distance

metric for a rigid object undergoing both translational and rotational motion (Zhang

27

et al., 2008b). The main challenge is how to combine the translational and rotational

components naturally, such that the metric is bi-invariant with the choice of the inertial

and body-fixed reference frames for the object, and is independent of the representation

of the configuration space (Park, 1995). We can classify most distance metrics into

model-independent and model-dependent based on whether or not the shape of an ob-

ject is considered in defining distance metrics. It is well-known that model-independent

metrics are not bi-invariant, and thus most approaches use model-dependent metrics for

proximity computations (Latombe, 1991; Lin and Burdick, 2000; Zhang et al., 2008b).

Moreover, for practical applications, it often requires that the distance metric can be

efficiently computed (Plaku and Kavraki, 2006).

Different distance metrics have been proposed for rigid and articulated models, in

particular in the area of robotics and kinematics (Latombe, 1991; Tchon and Duleba,

1994; Park, 1995; Lin and Burdick, 2000). We mainly consider three distance metrics

for our generalized PD computation due to their good mathematical properties. These

distance metrics are: DISP metric (Latombe, 1991) and object norm - OBNO metric

(Kazerounian and Rastegar, 1992), which are based on the displacements of the points

on the model when it moves, and TRAJ metric (Zhang et al., 2007c), which is based on

the length of the trajectory traced by the points on the moving model.

2.4.1 Distance Metrics in SE(3)

The spatial rigid body displacements form a group of rigid body motion, SE(3). Through-

out the rest of the thesis, we will refer to a model-independent distance metric in SE(3)

as a distance metric in SE(3). The Lp (p ≥ 1) weighted sum metrics have been widely

used for SE(3) of rigid objects (LaValle, 2006). In theory, there is no natural choice

for distance metrics in SE(3) (Loncaric, 1987; Park, 1995). Loncaric (1985) shows that

there is no bi-invariant Riemannian metric in SE(3).

28

2.4.2 Model-dependent Distance Metrics: DISP, OBNO and

TRAJ

In the problems of generalized PD computation and robot motion planning, since models

of robots are usually known in advance, one define a model-dependent distance metric.

The notation of displacement vector or trajectory length of any point of the moving model

can be used to defined a meaningful metric (Latombe, 1991; Kazerounian and Rastegar,

1992; Zhang et al., 2007c).

Using the notion of a displacement vector for each point in the model, the DISP

distance metric is defined as the maximum length over all the displacement vectors

(Latombe, 1991; LaValle, 2006; Zhang et al., 2008b). The object norm, proposed by

(Kazerounian and Rastegar, 1992), is defined as an average squared length of all dis-

placement vectors. Hofer and Pottmann (2004) use a similar metric, but consider only

a set of feature points in the model. All of these displacement vector-based metrics can

be efficiently evaluated. The length of a trajectory travelled by a point on a moving

model can be also used to define model-dependent metrics (Hsu et al., 1999; Zhang

et al., 2007c). However, it is difficult to compute the exact value of these metrics.

DISP Metric

The displacement metric or shorten as DISP is defined by the maximum Euclidean

displacement for all of the points of a model when the model is placed at two different

configurations (Latombe, 1991; LaValle, 2006; Zhang et al., 2008b) (Fig. 2.5):

DISP(q0,q1) = max
p∈A
||p(q1)− p(q0)||. (2.3)

This distance metric can naturally combine translational and rotational motion with-

out relying on any weighting factor. Additionally, it is invariant with the choices of

reference frames, and is independent of the representation of the underlying configura-

29

1()A q

0()A q

0()x q
1()x q

Configuration Space

0q

1q

3D Space

0 1DISP(,)q q

Figure 2.5: DISP metric: The DISP distance of a model A between two configurations
q0 and q1 in configuration space is defined as the maximum length of the displacement
vector between p(q0) and p(q1), where p is any point on A (Latombe, 1991).

tion space. However, to the best of our knowledge, no prior algorithms are known to

efficiently compute DISP for complex models.

OBNO Metric - Object Norm

Also based on displacement vectors, Kazerounian and Rastegar (1992) make use of an

integral operator to define the object norm:

σ(q0,q1) =
1

V

∫
A

ρ(p)||p(q1)− p(q0)||2 dV, (2.4)

where V is the volume of A and ρ(p) is the mass distribution function.

By using a quaternion representation, we can simplify the formula originally derived

by Kazerounian and Rastegar (1992) into:

σA(q0,q1) =
4

V
(Ixxb

2 + Iyyc
2 + Izzd

2) + x2 + y2 + z2, (2.5)

where diag(Ixx, Iyy, Izz) forms a diagonal matrix computed by diagonalizing the inertia

matrix I of A. (a, b, c, d) is the quaternion for the relative orientation of A between q0

and q1, and (x, y, z) is the relative translation.

30

o

0()A q
1()A q

1(,)p lµ

2(,)p lµ

1()p q

()A q∞

2()A q

0()A q
B

(b)

(c)

0q

1l

2l
l∞

1q

(a)

0()p q

Figure 2.6: TRAJ Distance Metric. (a) There are an infinite number of curves, such as
l1, l2, that connect two configurations q0 and q1 in C-space. (b) When the configuration
of the object A moves along any curve l, any given point on A will trace out a distinctive
trajectory in the 3D Euclidean space. This sub-figure shows the trajectories traced by p
when A travels along l1 and along l2, while µ(p, l1) and µ(p, l2) are the arc-lengths of
these trajectories, respectively. For each curve l, some point on A corresponds to the
longest trajectory length as compared to all other points on A. The distance metric
TRAJ(q0,q1) is defined as the minimum over longest trajectory lengths over all curves
connecting q0 and q1.

TRAJ Metric

Let li be a curve in C-space, which connects two configurations q0 and q1 (Fig. 2.6(a))

and is parameterized in t. When the configuration of A changes along the curve l, any

point p on A will trace out a trajectory in 3D Euclidean space shown in Fig. 2.6(b).

Let this trajectory as r = p(l(t)). Its arc-length µ(p, l), which is denoted as trajectory

length, can be calculated by:

µ(p, l) =

∫
||ṗ(l(t))|| d(t).

As Fig. 2.6(a) shows, there can be multiple curves connecting two configurations

q0 and q1. When A moves along any such curve, some point on A corresponds to

the longest trajectory length as compared to all other points on A. For each C-space

curve connecting q0 and q1, we consider the corresponding longest trajectory length.

We define the distance metric TRAJ(q0,q1) as the minimum over all longest trajectory

lengths (Fig. 2.6(b)):

31

TRAJ(q0,q1) = min({max({µ(p, l)|p ∈ A})|l ∈ L}), (2.6)

where L is a set of all of the curves in C-space connecting q0 and q1.

In general, TRAJ metric is difficult to compute. We compute a lower bound and an

upper bound for TRAJ metric.

Lower bound on TRAJ(q0,q1). DISP(q0,q1) is a lower bound of TRAJ(q0,q1):

TRAJ(q0,q1) ≥ DISP(q0,q1).

This holds since the length of any curve between two points in 3D Euclidean space

is larger than or equal to the length of the displacement vector between the two points.

Upper bound on TRAJ(q0,q1). In order to compute an upper bound for a 3D rigid

object with translational and rotational DOF, we first consider computing the TRAJ by

only varying a single DOF. Then, when we vary all the DOF simultaneously, the final

TRAJ would be less than or equal to the sum of the TRAJ’s computed with respect to

each DOF (Schwarzer et al., 2005; LaValle, 2006).

When Euler angles are used to represent rotation, the upper bound on TRAJ can

be calculated as:

TRAJ(q0,q1) ≤ ∆x + ∆y + ∆z +Rφ∆φ +Rθ∆θ +Rψ∆ψ, (2.7)

where the Lipshitz constants Rφ, Rθ, and Rψ are the maximum Euclidean distances

from any point on A to X, Y, and Z axes in the local coordinate system, respectively.

∆ denotes the absolute value of the difference of each DOF (x, y, z and Euler angles φ,

θ, ψ) between these two configurations.

If the rotation vector is used to represent rotation, the upper bound can be calculated

32

Distance Metrics Weighted Sum DISP TRAJ Object Norm

Weights required Yes1 No No No
Model-independent Yes2 No No No

Computational complexity Constant Linear3 Expensive 4 Constant
Extendable to articulated models Yes Yes Yes Yes

Table 2.1: Comparison of distance metrics for rigid models. 1 The major disadvantage
for weighted sum metrics lies in the difficulty for users to choose weights to combine
rotational and translational components. 2 The radius of the model may be used for
choosing weights. Then the metric is classified as model-dependent. 3 we propose an
efficient method to compute DISP using its convexity property and bounding volume
hierarchy in Chapter 3. 4 Computing the exact value of this metric is difficult. Its upper
bound and lower bound can be computed in constant time.

by:

TRAJ(q0,q1) ≤ ∆x + ∆y + ∆z +R

3∑
k=1

∆rk, (2.8)

where the constant R is the maximum Euclidean distance from the origin of A to every

point on A. In Chapter 4, we use these two upper bound formulae to compute an upper

bound on generalized PD.

2.4.3 Metric Properties

DISP, OBNO and TRAJ can combine the translational and rotational components

without relying on the choice of any weighting factor. We highlight other mathematical

properties of these metrics.

Properties of Metric Space. The distance metrics DISP, OBNO and TRAJ have

the following properties (LaValle, 2006):

• Non-negativity: δ(q0,q1) ≥ 0,

• Reflexivity: δ(q0,q1) = 0 ⇐⇒ q0 = q1,

• Symmetry:δ(q0,q1) = δ(q1,q0),

• Triangle inequality: δ(q0,q1) + δ(q1,q2) ≥ δ(q0.q2).

33

Most properties follow from the definition of metrics. We only prove the triangle

inequality property for DISP metric.

Proof. Suppose the point p on A has the maximum displacement given as DISP(q0,q2).

In other words, ||p(q0) − p(q2)|| = DISP(q0,q2). In the Euclidean space, every point

on A satisfies the triangle inequality, so does the point p. Therefore, ||p(q0) − p(q1)||

+ ||p(q1) − p(q2)|| ≥ DISP(q0,q2). Since DISP(q0,q1) ≥ ||p(q0) − p(q1)|| and

DISP(q1,q2) ≥ ||p(q1)− p(q2)||, DISP(q0,q1) + DISP(q1,q2) ≥ DISP(q0.q2).

As a result, the configuration space C with DISP is a metric space, and algorithms

that are based on the properties of a metric space are also applicable to C.

Invariance Properties. Since these metrics are defined by using displacement vectors

or trajectory lengths, they have some invariance properties:

• Invariance of reference frames: DISP, OBNO, or TRAJ is independent of

the choice of inertial reference frame and body-fixed reference frame (Lin and

Burdick, 2000). Regardless of the choice of the frames, the distance defined by

DISP, OBNO, or TRAJ for a model between two configurations does not change.

• Independence of configuration space representation: DISP, OBNO, or

TRAJ is independent of the underlying representation of the configuration space.

In case of a rigid model, there are many choices to represent the rotational de-

grees of freedom such as Euler angles, quaternions, or transformation matrices.

The distance computed using DISP, OBNO, or TRAJ is independent of these

representations, as well.

These invariance properties hold, since in the Euclidean space the length of the

displacement vector of any point on A or the trajectory length is invariant of the choice

of reference frames and independent of the configuration space representation. Due to

34

the underlying distance metric, PDg
DISP, PDg

OBNO or PDg
TRAJ is independent of the choice

of inertial and body-fixed reference frames. In practice, these invariance properties

are useful since one can choose arbitrary reference frames and representation of the

configuration space to compute these metrics and their generalize PD.

Translational PD defined by Eq. (2.1) is essentially a special case of PDg
DISP, PDg

OBNO

or PDg
TRAJ. When an object A can only translate, all the points on A traverse the same

distance and displace in the same amount. As a result, the distance DISP(q0,q1)

(OBNO or TRAJ) is equal to the Euclidean distance ‖ q1 − q0 ‖. In this case, Eq.

(2.2) can be simplified to Eq. (2.1).

DISP and OBNO metrics can be computed efficiently. In (Zhang et al., 2008b), we

show that for a rigid model, the DISP distance is realized by a vertex on its convex

hull. This leads to an efficient algorithm, C-DIST, to compute DISP. In Table 2.1, we

summarize these distance metrics.

2.5 Formulation of Generalized Penetration Depth

We formulate the computation of generalized PD which is defined by Eq. (2.2) using an

appropriate metric such as DISP, OBNO or TRAJ. According to this equation, general-

ized PD can be formulated as an optimization problem under the non-interpenetration

constraint, where the optimization objective is described by the metric. In general, gen-

eralized PD computation is difficult since it involves non-linear optimization due to the

non-linear rotational term embedded in the definition. Furthermore, generalized PD

computation has high combinatorial complexity due to non-convex geometric models

which we need to handle.

In this section, we present the contact space realization property for generalized PD

computation. We prove that the optimal configuration realizing generalized PD using

each of our chosen metrics must lie in the contact space. We discuss the combinato-

35

oq

F

O
Ccontact

'mq
mq

Contact Space Realization of PDg

Figure 2.7: Contact space realization of generalized PD. The optimal configuration qm,
which realizes PDg

DISP (or PDg
OBNO, PDg

TRAJ), must be in the contact space Ccontact;
otherwise, one can compute the contact configuration qm

′, which further reduces the
metric function.

rial complexity of the contact space for polyhedral models, which governs the overall

complexity of generalized PD computation. In Chapter 4, we present two algorithms to

compute the generalized PD either exploring the convexity of the geometric models or

using the formulation of constrained optimization.

2.5.1 Contact Space Realization

For rigid models, PDg
DISP (PDg

OBNO or PDg
TRAJ) has a contact space realization prop-

erty. This property implies that any non-colliding configuration qm that minimizes the

objective DISP (OBNO or TRAJ) for PDg must lie in the contact space of A and B, or

equivalently, at this configuration qm, A and B barely touch with each other.

Theorem 1. (Contact Space Realization) For a rigid model A placed at qo, and

a rigid model B, if interior(A(qm)) ∩ B = ∅ and DISP(qo,qm) = PDg
DISP(A,B), then

qm ∈ Ccontact. This property also holds for PDg
OBNO and PDg

TRAJ.

Proof. We prove it by contradiction. Suppose the optimal configuration qm realizing

PDg
DISP does not lie in the contact space Ccontact. Then, qm must lie in the free space F

36

(Fig. 3.1(b)).

We use Chasles’ theorem in Screw theory (Murray et al., 1994), which states that a

rigid body transformation between any two configurations can be realized by rotation

about an axis followed by translation parallel to that axis, where the amount of rotation

is within [0, π]. The screw motion is a curve in C-space, and we denote that curve

between qo to qm as s(t), where s(0) = qo and s(1) = qm. Since qo is in O, and qm

is in F , there is at least one intersection s(t′), t′ ∈ (0, 1) between the curve s(t) and the

contact space (Fig. 3.1). We denote the intersection point as qm
′.

Based on Chasles theorem, we can compute the length of the displacement vector

for any point p on A between qo and any configuration on the screw motion s(t).

Furthermore, we can show that this length strictly increases with the parameter t.

Therefore, for each point on A, the length of the displacement vector between qo and

qm is less than the one between qo and qm
′. Since DISP metric uses the maximum

operator for the length of the displacement vector over all points on A, we can infer

that DISP(qo,qm
′) < DISP(qo,qm). This contradicts our assumption that qm is the

realization for PDg
DISP.

Similarly, we can infer OBNO(qo,qm
′) < OBNO(qo,qm), and thus prove the prop-

erty for PDg
OBNO.

For PDg
TRAJ, we can also prove the contact space realization property by contra-

diction. Suppose lm be the C-space curve which realizes PDg
TRAJ, i.e lm(0) = qo

and lm(1) = qm. If qm does not lie in the contact space, we can obtain the qm
′

which is the intersection between lm and the contact space. The trajectory length

for each point A is shorter when moving from qo to qm
′ than to qm. Therefore,

TRAJ(qo,qm
′) < TRAJ(qo,qm). This contradicts our assumption that qm is the real-

ization for PDg
DISP.

According to Thm. 1, in order to compute PDg, it is sufficient to search only the

contact space Ccontact, which is one dimension lower than that of C. In Chapter 4, we

37

present a generalized PD algorithm using this property for constrained optimization.

2.5.2 Complexity of Generalized PD Computation

The overall complexity of generalized PD computation is governed by the computation

of contact space which is defined as the set of every configuration for A at which it barely

touches B. The computation of contact space usually boils down to two steps: enumerat-

ing contact surfaces and computing their arrangement (Latombe, 1991; Halperin, 2004).

A contact surface is defined to be the locus of configurations of A at which a specific fea-

ture of A (vertex, face or edge) is in contact with a feature of B. For a rigid robot which

can only translate, its contact surfaces are planar; otherwise, the contact surfaces are

non-planar. The computation of contact space formed by these contact surfaces entails

an arrangement problem. Given a finite set of hypersurfaces S (e.g. contact surfaces

in the contact space computation) in a d-dimensional space, their arrangement A(S)

is the decomposition of the d-dimensional space into cells C of dimensions 0, 1, . . . , d.

Here, a k-dimensional cell Ck in A(S) is a maximally connected set contained in the

intersection of a subset of the hypersurfaces in S that is not intersected by any other

hypersurfaces in S (Halperin, 2004). It is well known that in the worst case, the com-

binatorial complexity of an arrangement of n hypersurfaces in a d-dimensional space is

O(nd).

When a rigid polyhedral model only translates in 3D, its contact space lies in R3. At

this time, the computation of its contact space is equivalent to the well-known Minkowski

sum computation. The size of its contact space or Minkowski sum has an O(n2) com-

binatorial complexity for convex polytopes where n is the number of features in the

objects; for two non-convex polyhedra, it has O(n6) complexity due to the arrangement

of O(n2) planar contact surfaces in R3. Furthermore, the complexity of translational PD

computation, which entails the search for the minimal distance to the contact space, has

the same complexity as the contact space: O(n2) for two convex polytopes and O(n6)

38

for two non-convex polyhedra in the worst case.

In general, computing generalized PD between two non-convex polyhedra is more

difficult than computing the translational PD due to the 6-dimensional SE(3) space as

well as non-linear rotational term embedded in its definition. Each contact surface for a

3D rigid model which translates and rotates is a 5-dimensional hypersurface. Therefore,

its contact space, which can be computed by arrangement, has the O(n12) combinatorial

complexity for non-convex polyhedra in the worst case. Furthermore, the complexity of

computing the minimal distance between a point and a contact surface, which is a non-

planar hypersurface, is dependent on the chosen distance metric in SE(3). In addition,

due to the non-linearity of the hypersurface, such computation is more expensive than

computing the minimal distance between a point and a hyperplane whose running time

is constant. Therefore, we conjecture that the overall complexity of generalized PD

computation can be higher than O(n12).

In addition to the high complexity of contact space computation for formulating

generalized PD, the overall computation can also suffer from robustness issues. The

arrangement of contact surfaces involves the intersection computation which can be dif-

ficult due to robustness issues (Raab, 1999). Even in R3, such intersection computation

suffers from the numerical errors and can have the difficulty to produce numerically and

topologically accurate results (Varadhan et al., 2006). For the contact space computa-

tion in a 6 dimensional SE(3) space where each contact surface is non-linear, it is more

difficulty to compute their arrangement precisely and robustly.

39

Chapter 3

Efficient C-Space Distance Computation

The notion of configuration space (C-space) is widely used in motion planning and other

fields such CAD/CAM (Joskowicz and Sacks, 1999), dynamic simulation and virtual

environments (Ruspini and Khatib, 2000). A fundamental problem is computation of

a measure of the distance in C-space between two arbitrary configurations qa and qb

for a model. Intuitively, the distance computed using some metric is used to quantify

the extent of transformation of the model between two configurations qa and qb. Many

distance metrics have been proposed. In particular, the DISP distance metric (Fig.

2.5), which is defined as the maximum length of the displacement vector over the points

of the model between two configurations and is described in Chapter 2, has several

useful mathematical properties and is applicable to both rigid and articulated models.

This distance metric can meaningfully combine translational and rotational motions

without relying on any weighting factor. Additionally, it is invariant with the choices of

reference frames and independent of the representation of the underlying configuration

space. Given that no practical algorithms are known for computing DISP efficiently, its

applications have been limited.

In this chapter, we present an efficient algorithm (C-DIST) to compute the DISP

distance between two configurations of a rigid or articulated model (Zhang et al., 2008b).

Our algorithm is based on Chasles theorem in Screw theory, and we show that for a rigid

p
1p

p′
θ

ω

r d

(a) (b) (c)

Figure 3.1: Chasles theorem in screw theory. (a) shows a rigid body transformation of
a rectangular bar. (b) The Chasles theorem states that any rigid transformation can be
realized by rotation about an axis followed by translation parallel to that axis. Such axis is
called a screw axis. (c) According to the Chasles theorem, when a model is transformed,
the length of the displacement vector for any point p on the model can be calculated by
first considering the rotation about the screw axis ω (from p to p1), then the translation
along ω (from p1 to p′).

model the maximum distance is realized by one of the vertices on the convex hull. We

use this formulation to compute the distance, and present two acceleration techniques:

incremental walking on the dual space of the convex hull and culling vertices on the

convex hull using a bounding volume hierarchy (BVH). Our algorithm can be easily

extended to articulated models by maximizing the distance over its each link and we

also present culling techniques to accelerate the computation. We have implemented our

algorithm. We highlight its performance on many complex rigid models with hundreds

of thousands of triangles and articulated models. In practice, the distance computation

takes tens of micro-seconds on a high-end PC.

3.1 C-DIST Computation for Rigid Models

In this section, we present a novel formulation of this metric and an efficient algorithm,

C-DIST, to compute the distance for rigid models. We first show that the DISP distance

of a rigid polyhedral model is equal to the maximum length of the displacement vectors

41

over the vertices on its convex hull (CH). Following this formulation, a straightforward

algorithm is to maximize the displacement vectors over all the vertices on the CH, which

has a linear complexity in the size of the CH. Finally, we present two different techniques

to accelerate the distance computation: incremental walking on the dual space of the

CH, and culling vertices on the CH using a bounding volume hierarchy (BVH) structure.

In practice, the culling technique can improve the performance by an order of magnitude.

3.1.1 Convexity in C-DIST Computation

We first present a convex realization theorem for the DISP distance for a rigid model:

Theorem 2. (Convex Realization) Given a rigid polyhedral model A, the DISP dis-

tance of A between two arbitrary configurations is equal to the maximum length of the

displacement vectors over all the vertices on the convex hull of A.

Proof. We use the Chasles theorem from screw theory as shown in Fig. 3.1 (a) and

(b) (Ball, 1876; Murray et al., 1994). It states that a rigid body transformation from a

configuration qa to a configuration qb can be realized by rotation about an axis followed

by translation parallel to that axis. Such an axis is called a screw axis. As Fig. 3.1 (c)

shows, when a model first rotates around the screw axis ω by θ, and translates along ω

by d, a point p on the model will be displaced to p1, then to p′.

We compute the length of the displacement vector
−→
pp′. Let us represent the distance

from the point p to the axis ω as r. Given that the vector −−→pp1 is orthogonal to
−−→
p1p

′,

the squared length of the displacement vector
−→
pp′ is given as:

||
−→
pp′||2 = ||−−→pp1||2 + ||

−−→
p1p

′||2

= 4r2sin2(θ/2) + d2

= 2(1− cosθ)r2 + d2.

(3.1)

42

p
m

pS

ω

A

CH()A

p′

Figure 3.2: Maximum distance between a polyhedra and a line. η(A, ω), the maximum
distance from points on a polyhedral model A to a line ω is equal to the maximum distance
from the vertices on its convex hull to ω.

In Eq. (3.1), θ and d are independent of the model A and are solely governed by

the input configurations qa and qb. However, the distance r for every point on A to the

screw axis ω varies. Since (1− cos(θ)) ≥ 0 for any θ, a larger value of r implies a larger

value of the length of the displacement vector. If we denote the maximum distance from

every point on A to the screw axis ω as η(A, ω), DISP can be written as:

DISP(q0,q1) =
√

2(1− cosθ)η2(A, ω) + d2. (3.2)

According to Eq. (3.2), proving Thm. 2 is equivalent to proving the following lemma.

Lemma 1. The maximum distance from points on a polyhedral model A to a line ω is

equal to the maximum distance from the vertices on the convex hull of A to ω.

We prove Lem.1 by contradiction. Throughout the rest of the proof, we distinguish

a vertex which comprises a corner of the polyhedral model from a point which can be

designated anywhere on the model.

It can be easily shown that Lem.1 holds when A is convex. If A is non-convex, we

first find a vertex p, which is on the convex hull of A or CH(A), and is farthest to the

line ω. Denote the projection of the vertex p on ω is m. We construct a plane Sp which

43

passes through p and is orthogonal to −−→pm. Since p is the farthest point on CH(A) to ω

and A ⊆ CH(A), A and ω must be located on the same half-space of Sp (see Fig. 3.2)

Assume that Lem.1 does not hold for non-convex A. This means that η(A, ω) 6=

η(CH(A), ω). Since A ⊆ CH(A), we have η(A, ω) < η(CH(A), ω). As a result, A does

not intersect with Sp (Fig. 3.2). Next, we translate the plane Sp along the direction of

−−→pm until it touches a point p′ on A. Denote S ′p as the resulting plane which is passing

through p′ and parallel to Sp. Because A lies entirely on one side of the S ′p, we get a

different convex hull for A. This contradicts the fact that the convex hull of an object

is unique. As a result, Lem. 1 holds. �

Similarly to the proof for Thm. 2, we can also prove the following proposition for

general smooth models.

Proposition 1. DISP(q0,q1) distance of a rigid smooth model A between two configu-

rations q0 and q1 is equal to the maximum length of the displacement vectors over all

the boundary points of CH(A); DISP(q0,q1) can be calculated using Eq. (3.2), where r

is the maximum distance from the boundary points on CH(A) to the screw axis.

3.1.2 C-DIST Computation Algorithm

Two simple algorithms to compute DISP(q0,q1) for a polyhedral model A follow directly

from Thm. 2 and Eq. (3.2).

Maximization of Displacement Vectors. According to Thm. 2, one can compute

the convex hull CH(A) of A and find the maximum length of displacement vectors for

all the vertices on CH(A). In many applications, we can compute the convex hull of a

rigid model as a preprocessing step. At runtime, DISP can be efficiently computed by

only considering the vertices on the convex hull. If the size of the convex hull is small,

it is plausible to consider all the vertices on the convex hull, compare the length of all

displacement vectors and compute their maximum.

44

Maximization of Distance to Screw Axis. One can also use Eq. (3.2) to compute

the DISP. In this equation, θ and d are determined by the motion between two config-

urations qa to qb. η(A, ω), which depends on the underlying model A and screw axis

can be computed by visiting all the vertices of CH(A) and computing the maximum

distance to the screw axis ω.

Each of the two methods described above has a linear complexity in the size of the

convex hull, and is efficient for moderately complex models. Furthermore, these two

methods are robust and simple to implement. Finally, these methods do not impose

any topological requirements on the model. Even for a model represented as a triangle

soup, i.e., without connectivity information or as a point cloud, DISP can be computed

easily.

In practice, however, the number of vertices on the convex hull can be rather high.

Therefore, we present techniques to accelerate our algorithm by reducing the number of

accesses to the vertices on the convex hull. In the following Sections 3.1.3 and 3.1.4, we

present two acceleration techniques: incremental walking on the dual space of CH, and

culling vertices on CH by using a bounding volume hierarchy (BVH) structure.

3.1.3 Accelerating C-DIST Computation by Incremental Walk-

ing

In order to reduce the number of accesses to the vertices on the convex hull, we present

an optimization-based algorithm that performs feature walking on the dual space of the

convex hull. We use the properties of Gauss map to compute the extremal vertices of

convex hull, which are orthogonal to the screw axis.

Given Eq. (3.2), it follows that DISP is realized by one of the vertices on the convex

hull CH(A), which has the maximum distance to the screw axis ω. We use this property

to compute DISP in two steps:

45

ω

⊥
1ω

⊥
2ω

1v2v

1P2P

1R
2R

E

Figure 3.3: Walking Algorithm. The maximum distance η(A, ω) from every point on A
to the screw axis ω can be computed by visiting all the vertices on the convex hull whose
support plane can have a normal ω⊥ orthogonal to ω. (Left) an initial vertex vk = v1 for
the walking algorithm is located since v1 can have a supporting plane P1 whose normal
is ω⊥1 orthogonal to ω. The next search vertex vk+1 := v2 is found since v2 is adjacent
to v1 and has a supporting plane P2 whose normal is ω⊥2 orthogonal to ω. This search
process is iterated until vk+1 becomes equal to v1 again. (Right) The same process can be
explained based on the Gauss map of the given convex hull. Enumerating all the vertices
whose supporting plane can have a normal orthogonal to ω is equivalent to finding all the
regions (including R1, R2 that are mapped from v1, v2, respectively) on the Gauss map
that intersect with the equator E when ω is mapped to the pole of the Gauss map.

1. Enumerate all the vertices vi on CH(A) supported by a plane whose normal is

orthogonal to ω.

2. Find a vertex in vi that corresponds to η(A, ω).

The main computational task in the above algorithm lies in the first step. A relatively

straightforward way to implement this step is (Fig. 3.3):

1. Choose any direction ω⊥ orthogonal to ω. Find a vertex v1 whose supporting

plane has a normal parallel to ω⊥ and set v1 as the current search vertex vk := v1.

Computing v1 is known as support mapping of ω⊥ or extremal vertex query along

ω⊥, and it can be computed in logarithmic time in the number of vertices of

the convex hull (de Berg et al., 1997). In practice, the support mapping can be

46

efficiently implemented using a lookup table.

2. Walk to the neighboring vertices vk+1 of vk, if vk+1 has a supporting plane with a

normal orthogonal to ω.

3. Repeat the above two steps, until vk+1 becomes equal to v1.

Alternatively, we can compute all vi’s based on the Gauss map of CH(A). The

mapping is defined from the feature space of an object to the surface of a unit sphere S2

as: a vertex is mapped to a region, a face to a point and an edge to a great arc (Spivak,

1999). The task of enumerating all vi’s boils down to finding the intersecting regions

on the Gauss map with its equator when the north or south pole of the Gauss map

corresponds to the direction of ω. The computational complexity of this algorithm is

governed by two factors: finding an initial vertex v1 and the walking step itself. Finding

v1 can have a logarithmic complexity in terms of the number of vertices of the convex

hull and the walking step has a linear complexity in the number of vertices that are

traversed.

In practice, computing the intersections between Gauss map regions and the equator

can be performed by centrally projecting both the equator and the Gauss map to a

plane and finding the intersections of convex polygons (projected Gauss regions) and a

line (projected equator).

3.1.4 Accelerating C-DIST Computation using a Bounding Vol-

ume Hierarchy (BVH)

In practice, the vertices of the convex hull of the models are not distributed uniformly

in 3D space. As a result, the walking scheme highlighted above can result in robustness

problems, especially when accessing those vertices that are very close with each other. In

this section, we present a different acceleration technique for C-DIST computation. Our

method uses a bounding volume hierarchy (BVH) tree structure to cluster the vertices

47

Figure 3.4: C-DIST computation. The leftmost figure shows the ‘alpha’ model with 1, 008
triangles, and the middles its convex hull with 311 vertices. The rightmost figure shows
a scenario when the model is placed at two arbitrary configurations. The vertex on this
model, which realizes the longest displacement vector is found by our C-DIST algorithm
and highlighted. The line segment connecting this vertex at the two configurations is also
highlighted. Using SSV-Tree, our C-DIST algorithm can perform distance query for this
model within 5.6µs.

on a convex hull. The BVH enables us to efficiently compute η(A, ω), the maximum

distance between from every point on a model A to an axis ω. The acceleration is

achieved because a node in the BVH as well as its descendant nodes can be culled if the

distance η from this node to the axis is less than the global maximum distance.

In practice, we use the BVH of swept sphere volumes (SSV) (Larsen et al., 1999). SSV

includes three different types of bounding volumes (BVs): point swept sphere (PSS),

line swept sphere (LSS), and rectangle swept sphere (RSS). PSS, LSS, and RSS are

created by sweeping a sphere along a point, a line and a rectangle in three-dimensional

space, respectively.

SSV-Tree Construction for a Point Set. Let us denote S as a set of vertices on

the convex hull of the given model A. As a preprocessing step, our algorithm recursively

builds an SSV-tree for the point set S from top to bottom. We first compute its swept

sphere volume, SSV (S), as the root node of the SSV-Tree. To decide whether to

further subdivide a node N into two children nodes, we measure the density ρ defined

as the number of vertices inside a node over its volume. If ρ is larger than some given

threshold, we terminate the subdivision. Otherwise, we partition the point set Q inside

48

N into two subsets Q1 and Q2 in a way to maximize the sum of densities for SSV (Q1)

and SSV (Q2). For the purpose of maximization, we sweep a partitioning plane along

the longest dimension of the node N and evaluate ρ(Q1) + ρ(Q2) of two resulting point

subsets, Q1, Q2. We choose a partitioning plane that maximizes this sum.

SSV-Tree Traversal and SSV-Axis Distance Query. We use the SSV-Tree struc-

ture to efficiently query the maximum distance from a point set S to the axis ω. By

initializing the global maximum distance as −∞ and starting from the root node, our al-

gorithm traverses its associated SSV-Tree in the depth-first order. During the traversal,

we compute the maximum distance from the visited SSV node to the axis ω. Depend-

ing on the type of the underlying SSV , we need to compute the maximum distance

between 1, 2 or 4 corner spheres of the SSV and the axis. If this distance is not greater

than the global maximum distance, we need not check the node as well as its descendant

nodes any more, and can cull them. Otherwise, the depth-first order traversal continues.

During the traversal, if a leaf SSV node is reached, we check whether the distance from

any point contained in the SSV node to the axis is larger than the global maximum

distance; if yes, we update the global maximum distance.

3.2 C-DIST Computation for Articulated Models

The C-DIST computation algorithm for rigid models can be extended to articulated

models, whose links can form serial or parallel chains, tree structure, or closed loops.

In order to compute the DISP distance for an articulated model between two arbitrary

configurations, we consider each of its links as a separate rigid body; the maximum

DISP distance over all articulated links is the DISP distance for this articulated model.

This algorithm can be improved by conservatively estimating the DISP distance for

each link using a bounding volume and comparing it with the DISP for other links that

have been already calculated. Specifically, for a link L in an articulated model A, we

49

Figure 3.5: C-DIST computation. The rigid model - ‘bunny’ has 69, 451 triangles. (a)
shows a scenario of the DISP distance query between two different configurations of the
bunny model. Our C-DIST algorithm can perform the query within 8.0µs on average.
(b) shows the convex hull of this model. (c) shows the vertices on this convex hull, which
are not uniformly distributed in 3D space. This can result in the robustness problems
for the CDIST algorithm based on incremental walking.

precompute its bounding volume (e.g., an oriented bounding box of link L, OBB(L)).

If DISP for all the links that have been already computed is greater than DISP for

OBB(L), we need not compute the exact DISP for link L and can cull it away.

In case of an articulated robot forming a serial chain, a link farther from the base

of the robot typically undergoes a larger displacement as compared to the ones that are

nearer to the base. Therefore, a simple heuristic to accelerate DISP computation for

such an articulated robot is to first compute DISP for links that are farther from the

base.

3.3 Implementation and Performance

We have implemented our C-DIST computation algorithm and applied it to various rigid

and articulated models. In this section, we highlight its performance on these complex

benchmarks. All the timings reported in this section were taken on a 2.8GHz Pentium

IV PC with 2GB of memory.

50

Alpha Puzzle Cup Bunny Hand Dragon

#Tri 1,008 4,226 69,451 86,361 871,414
#V 3,024 3,000 208,353 259,803 2,614,242

#V of CH 311 1,019 1,504 1,836 2,448

tpre (s) 0.016 0.002 0.584 0.661 9.517
tpre qhull (s) 0.016 0.000 0.581 0.651 9.508
tpre ssv(s) 0.000 0.002 0.003 0.010 0.009

tbf (µs) 184.8 231.1 13,633 16,730 169,062
tch (µs) 19.1 64.1 85.3 105.0 153.0
top ssv (µs) 5.6 10.2 8.0 18.2 15.2

Speedup (tch/top ssv) 3.4 6.3 10.7 5.76 10.1

Table 3.1: Performance of C-DIST for rigid models. #V , #V of CH denote the num-
ber of the vertices on each input model and the number of vertices on its convex hull,
respectively. tpre is the time for the preprocessing step, including the computation of
convex hull and building the BVH structure. tbf , tch, tbf are the average DISP query
time, based on three different methods. tbf is the running time of the brute-force method
that checks all the vertices of the input model. tch is the running time of our C-DIST
method, which checks all the vertices on the convex hull. top is the running time of our
accelerated C-DIST method that uses a SSV-Tree.

3.3.1 Rigid Models

In our implementation, we precompute the convex hull for an input rigid model using

QHull 1. We further build a BVH structure - swept sphere volumes (SSV) tree for the

vertices on the convex hull. For BVH-based DISP computation, we use the SSV-Tree

to compute the maximum distance from the model to the screw axis.

We test our C-DIST implementation on a set of rigid polyhedral models, including

triangular mesh models, such as the Cup model, and triangle soup models without

connectivity information, such as Alpha Puzzle, Bunny, Hand and Dragon. The model

complexity and the performance is summarized in Table 3.1.

Fig. 3.4 shows the Alpha Puzzle model as well as its convex hull. In this test, we place

this model at two arbitrary configurations and use our C-DIST algorithm to compute

the DISP distance. We highlight the line segment that connects the vertex with the

1http://www.qhull.org/

51

Figure 3.6: C-DIST computation. The rigid model - ‘dragon’ has 871, 414 triangles. Our
C-DIST algorithm can perform the DISP distance query at two different configurations.
Our algorithm takes about 15.2µs, on average, to perform this query.

largest displacement at the two configurations. For this model, the brute force method

of visiting all the vertices on the model takes 184.8µs on average, for each DISP query.

Our C-DIST algorithm that compares all the vertices on the convex hull can perform

the query in 19.1µs. Using SSV-Tree, our C-DIST computation can perform the query

in 5.6µs.

Figs. 3.5 and 3.6 highlight the application of C-DIST algorithm to complex models

consisting of tens of thousands of triangles. According to Table 3.1, our C-DIST compu-

tation based on SSV-Tree can perform each distance query within 20µs for these models.

We achieve up to 10 times speedup over an algorithm that computes the displacement

for each vertex of the convex hull.

3.3.2 Articulated Models

Our C-DIST implementation for articulated models is built on top of C-DIST compu-

tation for rigid models. We construct an OBB for each link of the model, and use them

for culling.

Fig. 3.8 highlights a 9-DOF articulated model - Puma manipulator with 6 joints as

well as 3 degree of freedoms of its base. Our C-DIST algorithm can perform the distance

query in 27.91µs on average. Fig. 3.9 shows a complex articulated model with 6 DOF -

52

DOF Tri #V of CH tch (µs) tobb (µs) Speedup

Puma 9 868 296 42.30 27.91 1.5
IRB-2400 6 3,791 531 73.89 21.90 3.4

Table 3.2: Performance of C-DIST for articulated models. Using OBB culling, our
C-DIST can perform the DISP query for these two examples within 30µs.

IRB2400 with an arcgun. Our algorithm can perform DISP distance query in 21.90µs.

Tab. 3.2 summarizes the performance of C-DIST for these two articulated models.

3.3.3 Comparison

As compared to other distance metrics that are used for configuration space distance

computation, such as any weighted metric combing the translational and rotational

components, DISP has many elegant mathematical properties. For example, the users

need not choose any weighting factor between the translational and rotational com-

ponents. DISP metric shares many properties with another model-dependent metric

- object norm, which is easier to compute than DISP metric. However, each of these

metrics is suitable for different applications. Since object norm is defined as an average

squared length of all displacement vectors of a model, it could characterize the variation

of energy when a model is transformed from one configuration to another configuration.

In contrast, due to the geometric property of DISP metric implied by the maximum

operation in its definition, DISP metric can be more useful for proximity queries and

path planning.

53

Figure 3.7: C-DIST computation. Our algorithm can handle any polyhedral model rep-
resented as a triangular mesh, a triangle soup, or a point-set model. The ‘Cup’ model
on the left is represented as a triangular mesh, while the ‘Hand’ model on the right is a
scanned model and represented as a triangle soup with 86, 361 triangles. Our algorithm
can perform the distance query for these models within 10.2µs and 18.2µs, respectively.

Figure 3.8: C-DIST computation for an articulated model - ‘puma’. Left: the model
with 9 DOF include 6 articulated joints and 3 DOF of its base. Middle: the result of
the distance query by our C-DIST algorithm is highlighted. Right: the OBB associated
with each link. For this model, our algorithm can perform the query within 27.91µs, on
average.

Figure 3.9: C-DIST computation for an articulated model - ‘IRB2400’ with an arcgun.
This model has 6 joints and 3, 791 triangles. Our algorithm can perform the query within
27.91µs on average. In the middle, we highlight the OBB associated with each link which
can be used for efficient culling.

54

Chapter 4

Generalized Penetration Depth

Computation

In Chapters 2 and 3, we have presented the notion of generalized PD for quantifying the

extent of intersection and addressed its formulation by choosing appropriate C-space

distance metrics. In general, generalized PD computation has very high combinatorial

complexity for 3D non-convex models and no prior efficient algorithms are known. In this

chapter, we present two generalized PD algorithms for 3D models. The convexity-based

algorithm explores the convexity of the models (Zhang et al., 2007c). The algorithm

uses convex decomposition and containment optimization to compute lower and upper

bounds on generalized PD. The second algorithm is based on constrained optimization

(Zhang et al., 2007a). We present efficient techniques to compute a local approximation

of contact space of models for iterative refinement. The second algorithm dose not per-

form convex decomposition and is applicable to polygon soup models. We highlight the

efficiency and robustness of both algorithms on many complex 3D models. In Chapter

5, we use generalized PD computation to perform C-obstacle query for complete motion

planning. In Chapter 6, we use generalized PD computation to perform retraction-based

sampling for cluttered environments.

4.1 A Convexity-based Generalized PD Algorithm

In this section we present an algorithm for computing generalized PD for polyhedral

models using TRAJ metric (Eq. 2.6) (Zhang et al., 2007c). Our algorithm is based on

convex decomposition of the given models. The algorithm can also be extended for DISP

and OBNO metrics. We present three new results to compute PDg
TRAJ. First, we show

that for two overlapping convex polytopes, PDg
TRAJ is equivalent to PDt. Second, when

the complement of one of the objects is convex, we pose the generalized PD computation

as a variant of the convex containment problem and compute an upper bound using

optimization techniques. Finally, when both objects are non-convex, we treat them as

a combination of the above two cases and present an algorithm that computes a lower

bound and an upper bound on the generalized PD. We have implemented our algorithm

and applied it to many non-convex 3D models undergoing rigid motion. The running

time varies with the complexity and the relative configurations of the two models. In

practice, our algorithm takes about 2 ms to 6 ms on a 2.8 GHz PC to compute the lower

bound on generalized PD, and 20 ms to 1 sec for the upper bound.

4.1.1 Convex Objects

We first consider the problem of computing generalized PD between two convex objects.

In this case, it was shown by Ong (1997) that generalized PD using DISP metric is

equivalent to PDt. Similarly, we can prove that PDg
TRAJ is also equivalent to PDt. As a

result, the well-known algorithms to compute PDt between convex polytopes (van den

Bergen, 2001; Kim et al., 2002a) are directly applicable to generalized PD.

Theorem 3. (Convexity of Generalized PD Computation) Given two convex

objects A and B, we have:

PDg
TRAJ(A,B) = PDt(A,B).

56

d
B

L

A′

+L
-L

p′

A r

p

Figure 4.1: Proof for PDt(A,B) = PDg
TRAJ(A,B) for convex objects A and B. Let A′

a placement of A which realizes PDg
TRAJ. L is an arbitrary separating plane between A′

and B, which divides the space into two half-spaces L− and L+. For any L, there always
exists a point p on A on L− side with ||d|| ≥ PDt(A,B). As a result, we cannot move
A towards L+ side with a traveling distance that is less than PDt(A,B), even when
rotational DOF are allowed. Therefore, generalized PD based on TRAJ metric is equal
to translational PD for convex objects.

Proof. Let us assume that A and B intersect; Otherwise, it is trivial to show that

PDg
TRAJ = PDt = 0.

First of all, we can say that PDg
TRAJ ≤ PDt, as PDg

TRAJ is realized under more DOF

than PDt . Next, we show that PDg
TRAJ < PDt is not possible and therefore, we can

conclude PDg
TRAJ = PDt. We use a proof by contradiction.

Suppose PDg
TRAJ < PDt. Let us call A′ as the placement of A that realizes PDg

TRAJ,

implying that A′ is disjoint from B (Fig. 4.1). Since A′ and B are convex, there exists

a separating plane L that separates A′ and B. Moreover, let L divide the entire space

into two half-spaces: L−, which contains B and L+, which contains A′. Let p be the

farthest point on A on L− side from the separating plane L, and d be the vector from

p to its nearest point on L. As a result, ||d|| ≥ PDt. Otherwise, we could separate A

and B by translating A by d, which would result in a smaller PDt (i.e. d), and this

contradicts the definition of PDt in Eq. (2.1).

57

Since p, which is on L− side, is at least PDt far away from L, p must travel at

least by PDt to reach the new position p′, which can be lying on L or contained in L+.

However, according to the definition of PDg
TRAJ and the assumption of PDg

TRAJ < PDt,

there must exist a trajectory l connecting p and p′, whose arc-length is less than PDt.

This means that p could be moved to L or within L+ by less than the amount of PDt,

which is contradictory to the earlier observation that p must travel at least by PDt.

Therefore, we conclude that L can not be a separating plane between A′ and B.

The previous deduction shows that under the assumption that PDg
TRAJ < PDt, no

separating plane can exist. This contradicts the fact that a separating plane must exist

when convex objects are disjoint. Therefore, PDg
TRAJ < PDt is not possible and hence

PDg
TRAJ = PDt.

Corollary 1. For two convex objects A and B, their generalized PD is commutative;

i.e.,

PDg
TRAJ(A,B) = PDg

TRAJ(B,A).

Proof. For convex objects, PDg
TRAJ(A,B) = PDt(A,B) and PDg

TRAJ(B,A) = PDt(B,A).

Since PDt is commutative such that PDt(A,B) = PDt(B,A), it follows that PDg
TRAJ(A,B) =

PDg
TRAJ(B,A).

Non-Convex objects. Note that, for non-convex objects, PDg
TRAJ(A,B) is not nec-

essarily equal to PDt(A,B). Figs. 2.3 and 4.2 show such examples. In Fig. 2.3,

PDg
TRAJ(A,B) < PDt(A,B), because when both translation and rotation are allowed in

(b), the trajectory length that any point on A travels is shorter than its corresponding

length when only translation is allowed in (a). In Fig. 4.2, an object B, which could be

infinitely large with a hole inside, can contain A only when A adjusts its initial orien-

tation. Hence, the PDt(A,B) = ∞ (i.e. the height of B), but PDg
TRAJ(A,B) is not ∞

(i.e. is much smaller than the height). So, PDg
TRAJ(A,B) < PDt(A,B). We can also

see that PDg
TRAJ(A,B) is not necessarily equal to PDg

TRAJ(B,A) in this example. If B

58

is movable, the TRAJ metric for B at any two distinctive orientations is always ∞, be-

cause B is unbounded. Therefore, PDg
TRAJ(B,A) is∞ in this case, while PDg

TRAJ(A,B)

is not ∞.

4.1.2 A Convex Object and a Convex Complement

In this section, we show how to pose the generalized PD computation as a containment

problem. Using this formulation, we investigate a special case of generalized PD where

a movable object A and the complement of a fixed object B (i.e. B̄) are both convex (as

shown in Fig. 4.2). Instead of computing an exact solution for this case, we compute

an upper bound of PDg
TRAJ by using a two-level optimization algorithm based on linear

programming.

Relationship between Generalize PD and Object Containment Problems

The general object containment problem can be stated as follows: given two objects

P and Q, determine whether Q can contain P by performing translation and rotation

transformation on P . Generalized PD defined in Eq. (2.2) is closely related to the

object containment problem. That is, testing interior(A(q)) ∩ B = ∅ in Eq.(2.2) can

be reduced to a containment query: whether B̄ can contain A, as shown in Fig. 4.2.

However, there are a few differences between these two problems. The object contain-

ment problem finds one instance of a placement of P that can fit inside of Q, whereas

generalized PD computation needs to search through all containment configurations to

find a configuration that minimizes the objective function defined by the distance metric

δ.

The standard object containment problem is known to be difficult even for 2D polyg-

onal models. However, if the primitives are convex, computational complexity of con-

tainment reduces from O(n3
1n

3
2log(n1n2)) to O(n1n

2
2) for polygons with n1 and n2 vertices

(Chazelle, 1983; Avnaim and Boissonnat, 1989a). As a result, we consider the case when

59

BB

A

1 1 1j j jc x c y c z b+ + ≤

A'

ip

ip ′

A'

B

Figure 4.2: Generalized PD computation between the convex object A and the object
B whose complement - B̄ is convex. In this case, the PDg

TRAJ(A,B) 6= PDt(A,B) =∞
and PDg

TRAJ(A,B) 6= PDg
TRAJ(B,A) = ∞. We compute an upper bound on PDg

TRAJ

by reducing the problem to a variant of the convex containment problem by using linear
programming.

a movable polyhedron A is convex and the complement of a fixed polyhedra B is convex

as well. To compute an upper bound of PDg
TRAJ for this case, our algorithm performs

two levels of optimizations:

1. We compute a configuration q1 for A so that the convex container B̄ contains

A(q1). This is performed by minimizing their overlap. The computed containment

configuration yields an upper bound of PDg
TRAJ, which may not be tight.

2. We iteratively compute a configuration, q2, to yield a tighter upper bound of

PDg
TRAJ by setting the upper bound of TRAJ metric in Eq. (2.8) as the objec-

tive function for optimization. The algorithm terminates until a locally-optimal

configuration is computed.

Computing a Containment

In this section, we introduce the formulation of the convex containment problem and

extend the 2D optimization-based algorithm described by Grinde and Cavalier (1996)

60

and Milenkovic (1999) to 3D objects, both of which serve as a foundation of finding a

locally-optimal containment.

To check whether A lies fully inside B̄ can be mathematically formulated as follows.

The convex object, B̄ with n faces is represented as an intersection of n half-spaces

cjx ≤ bj, j = 1, ..., n. A placement of A lies fully inside B̄ if and only if every vertex

pi(i = 1, ...,m) of A lies inside all the half-spaces, i.e. cjpi ≤ bj, i = 1, ...,m, j = 1, ..., n,

or:

Cpi ≤ b, i = 1, ...,m, (4.1)

where C = [c1, ..., cm]; cj is normalized so that for a given point p, |cj · p − bj| is the

Euclidean distance from p to the corresponding face j.

Denote R as the rotation matrix when A is rotated around an arbitrary axis from

its origin o. When A is rotated by R, followed by the translation of t, the new position

of p on A can be calculated as:

p′ = R(p− o) + o + t. (4.2)

The 3D containment problem now can be stated as finding a solution to the following

system:

Cp′i ≤ b, i = 1, ...,m. (4.3)

The 3D containment computation stated by Eq. (4.3) is a non-linear problem, as the

rotation matrix R is embedded with non-linear terms. These non-linear terms could be

linearized by using a small-angle approximation (Milenkovic and Schmidl, 2001). When

A is rotated by α around an arbitrary axis â, its rotation vector r is equal to αâ. If the

variation of a rotation angle α is small enough, we can get a linearized approximation

for Eq. (4.2):

p̃ ≈ p + r× (p− o) + t. (4.4)

61

By replacing p′ by its approximation p̃, the non-linear system in Eq. (4.3) is simpli-

fied to a linear one:

gij = cj · t− (cj × (pi − o)) · r + (cj · pi − bj) ≤ 0, ∀i, j. (4.5)

Here t and r are the unknown vectors. gij, which is called as containment function, is

defined for each pair of the vertex of A and the face of B̄:

In order to solve the linear system defined in Eq. (4.5), we introduce a slack variable dij

for each pair (i,j), representing the distance from p̃i, the approximate position of pi of

A after it is transformed, to the j’th face on B̄. In this case, the 3D convex containment

constraint for A and B̄ can be approximated as a linear programming problem (LP1):

min Z =
m∑
i=1

n∑
j=1

dij,

subject to gij(t, r)− dij = 0 ∀i, j.

(4.6)

If the solutions dij for this optimization problem are less than or equal to zero, we end

up computing a solution to Eq. (4.5).

Given A and B̄, we construct a linear programming problem defined as in Eq. (4.6)

and apply the standard linear programming technique to optimize its objective function

Z. We compute the solution, say (t, r), and place A at A′. Then a new linear program-

ming problem for A′ is constructed and solved. These steps are iterated until a local

minimum for Z is computed. As the algorithm iterates, the small-angle approximation

for the rotation matrix R becomes more accurate. When the solutions dij are less than

or equal to zero, a valid containment of A at configuration q1 has been found.

Computing a Locally-Optimal Containment

The optimization algorithm highlighted earlier can only find a valid containing configu-

ration for A, which yields an upper bound for PDg
TRAJ. We perform the second level of

62

optimization to compute an even tighter upper bound for PDg
TRAJ by using the result

of the first level optimization as an initial condition.

Let q0 = (t0, r0) be the initial configuration of A used in the first level optimization.

Let q1 = (t1, r1) be the resulting configuration of the first level optimization. Our goal is

to compute ∆q = (∆t,∆r), such that q2 = (t1 +∆t, r1 +∆r) yields another containing

placement of A while TRAJ(q0,q2) < TRAJ(q0,q1).

We perform the second level optimization by setting the upper bound on the TRAJ

metric in Eq. (2.8) as an optimization objective function. Here we do not choose Eq.

(2.7), because the 3D containment computation uses the notation of rotation vector.

Setting the containment of A by B̄ as a hard constraint, we get the system:

min Z =
3∑

k=1

|∆tk + t1,k − t0,k|+ R
3∑

k=1

|∆rk + r1,k − r0,k|,

subject to gij(∆t,∆r) ≤ 0 ∀i, j,

(4.7)

where t0,k or r0,k are, respectively, the kth translational or rotational DOF for an initial

configuration of A; similarly, t1,k or r1,k is the kth DOF for the resulting configuration

after the first level optimization; ∆tk and ∆rk are the variables. Note, here the contain-

ment function gij is computed from every vertex of A(q1) (instead of A(q0)) and each

face of B̄. Let us further set uk = ∆tk + t1,k − t0,k and vk = ∆rk + r1,k − r0,k. In this

case, we can rewrite the second level optimization problem in Eq. (4.7) as:

min Z =
3∑

k=1

|uk|+ R
3∑

k=1

|vk|,

subject to g1
ij(u,v) ≤ 0 ∀i, j,

(4.8)

where g1
ij is obtained from gij in Eq. (4.7) by the change of variables: u = ∆t + t1 − t0

and v = ∆r + r1 − r0.

The objective function in the optimization system (Eq. 4.8) contains absolute arith-

63

metic operations. We replace |uk| with u+
k + u−k in the objective function, and uk with

u+
k − u

−
k in the containment function g1

ij, where u+
k , u

−
k ≥ 0 for k = 1, 2, 3. A similar

replacement is performed for vk. Finally, we formulate this optimization problem as a

linear programming problem (LP2):

min Z =
∑
k

(u+
k + u−k) + R(v+

k + v−k),

subject to g2
ij(u

+,u−,u+,u−) ≤ 0 ∀i, j

u+
k , u

−
k , v

+
k , v

−
k ≥ 0, k = 1, 2, 3,

(4.9)

where g2
ij is obtained from g1

ij by the change of variables.

By solving Eq. (4.9), we get u+
k , u

−
k , v

+
k , v

−
k . Using the solution, we can compute

∆t+1,k,∆t
−
1,k,∆r

+
1,k and ∆r−1,k, which yields a new configuration q2. We replace q1 by

q2, and iterate this optimization process until the objective Z in Eq. (4.9) converges

to a local minimum. At this stage, since u+
k , u

−
k , v

+
k , v

−
k are zeroes, our small-angle

approximation becomes accurate and A is forced to be disjoint from B. After computing

an optimal containing placement q2 for A, we compute an upper bound on PDg
TRAJ using

Eq. (2.7).

4.1.3 Lower Bound for Non-Convex Objects

Our algorithm for computing a lower bound on PDg
TRAJ is based on the fact that PDg

TRAJ

is equivalent to PDt for convex polyhedra (Section 4.1.1). As a result, we compute a

lower bound of PDg
TRAJ by first performing convex decomposition of the models. Next,

we take the maximum value of PDt
i’s between all pairwise combinations of convex pieces.

The overall algorithm proceeds as:

1. As a preprocessing, perform convex decomposition for A and B i.e., ∪Ai = A and

∪Bi = B. Here Ai, Bi are convex sets; how they are not necessarily disjoint from

64

Algorithm 1 Lower bound on generalized PD computation
Input: The robot A, the obstacle B and the configuration q
Output: The lower bound on PDg

TRAJ between A(q) and B.

1: // During preprocessing
2: Decompose A and B into m and n convex pieces; i.e., A = ∪Ai and B = ∪Bj.
3: // During run-time query
4: for each pair of (Ai(q), Bj) do
5: k = (i− 1)n+ j
6: if Ai(q) collides with Bj then
7: kPDg

TRAJ = PDt((Ai(q), Bj)
8: else
9: kPDg

TRAJ = 0
10: end if
11: end for
12: return max(kPDg

TRAJ) for all k.

each other.

2. During the run-time query, place Ai at the configuration q, i.e. compute Ai(q).

3. For each pair of (Ai(q), Bj) where i = 1, . . . ,M and j = 1, . . . , N ,

(a) Perform collision detection to check for overlaps.

(b) If the pair overlaps, let kPDg
TRAJ = PDt(Ai(q), Bj); otherwise kPDg

TRAJ = 0,

where k = 1, . . . ,MN .

4. Finally, PDg
TRAJ = max(kPDg

TRAJ) for all k.

The resulting lower bound generalized PD algorithm is summarized in Algorithm 1.

Translational Penetration Depth Computation

In our method, the lower bound on generalized PDg
TRAJ computation is decomposed into

a set of PDt queries among convex primitives. The PDt between two convex polyhedra

can be computed using the algorithms presented in (Cameron, 1997; van den Bergen,

2001; Kim et al., 2002a). These methods compute PDt by calculating the minimum

distance from the origin to the surface of the Minkowski sum of the two convex polyhedra.

65

Since we are computing a lower bound to PDg
TRAJ, this requires that the PDt compu-

tation algorithm used by our method should compute an exact value or a lower bound

to the PDt. In particular, the algorithm proposed by Cameron (1997) satisfies this

requirement, and van den Bergen (2001) algorithm also provides a tight lower bound.

Acceleration using Bounding Volume Hierarchy

Our computation of a lower bound on PDg
TRAJ can be accelerated by employing a stan-

dard bounding volume hierarchy. For a pair of convex pieces (Ai, Bj) which are disjoint,

PDt corresponds to zero. In practice, there are many disjoint pairwise combinations of

convex pieces (Ai, Bj). We detect such disjoint pairs by using an oriented bounding box

(OBB) hierarchy (Gottschalk et al., 1996), and prune them away.

4.1.4 Upper Bound for Non-convex Objects

One simple way to compute an upper bound to PDg
TRAJ for general non-convex ob-

jects is to compute the PDt between their convex hulls. This corresponds to an upper

bound because PDg
TRAJ(A,B) ≤ PDg

TRAJ(CH(A),CH(B)), and the latter is equal to

PDt(CH(A),CH(B)), thanks to Theorem 3. In practice, this upper bound is relative

simple to compute. However, this algorithm could be overly conservative for non-convex

models, as shown in Figs. 2.3 and 4.2.

PDt(A,B) is also an upper bound on PDg
TRAJ(A,B). However, this can result in

a conservative upper bound in practice too. Since the computational complexity of

exact computation of PDt(A,B) for non-convex models can be high, current approaches

typically compute an upper bound of PDt(A,B) (Kim et al., 2002b).

We present an algorithm to compute an upper bound on PDg
TRAJ for non-convex

polyhedra by reducing this problem to a set of containment optimization sub-problems

(as defined in Section 4.1.2).

66

A'

A

B

A'

A

B

(a) (b) (c)

A

B
A'A''

1L

2L 2S

1S

Figure 4.3: Separating plane, convex separator and non-convex separator. (a). L1 and
L2 are separating planes, which separate A′ and B, and A′′ and B respectively. (b). S1

is a separator, which is composed by a set of piece-wise linear plane. S1 separates A′

from B. A separator is called convex (i.e. S1), if it lies on the boundary of its convex
hull. (c). A non-convex separator S2 separates A from B′.

Algorithm Overview

Given two disjoint non-convex objects A and B, there is either a single separating

plane between the objects (as shown in Fig. 4.3(a)), or there is a set of piecewise linear

surfaces, which is called a separator (Mount, 1992) (Figs. 4.3(b) and (c)). More precisely,

a separator is defined as a simple piece-wise linear surface that divides the space into

two half-spaces. The separator can be an open surface or a closed surface. A separator S

is convex if and only S ⊂ ∂(CH(S)), as shown in Fig. 4.3(b). Otherwise, the separator

is non-convex, as shown in Fig. 4.3(c). A single separating plane can be regarded as a

special case of a separator. However, we specifically use the term separator to refer to

the non-plane separator.

Our upper bound PDg
TRAJ(A,B) computation algorithm proceeds as follows: dur-

ing the preprocessing phase, we enumerate all possible separating planes and convex

separators by analyzing the convexity of the boundary of B. During the query phase,

for each separating plane L (or each convex separator S), we compute an upper bound

67

Figure 4.4: The ‘hammer’ example. (a) When the ‘hammer’ is at time t=0, it collides
with the ‘notch’. (b) The collision-free placement of the ‘hammer’ for scenario (a). We
use our containment optimization algorithm to get this free configuration, which realizes
the UB1(PDg

TRAJ). (c) The ‘hammer’ at time t=0.5. (d) The collision-free placement is
computed for scenario to get the UB1(PDg

TRAJ)

on TRAJ distance when A is separated from B with respect to the separating plane

L (or separator S), using the technique described in Sec. 4.1.2. The minimum of all

these upper bounds yields a global upper bound on PDg
TRAJ. Now we explain how to

efficiently enumerate L and S as part of the preprocessing step.

Separating Planes

The set of all possible separating planes is included in the complement of the convex hull

of B. According to Theorem 3, PDg
TRAJ = PDt for convex objects, and the minimum

TRAJ distance with respect to all these separating planes is PDt(CH(A),CH(B)). This

means that the computation of PDt(CH(A),CH(B)) implicitly takes into account all

possible separating planes. Therefore, we need not enumerate any separating planes

explicitly during the preprocessing phase.

Convex Separators

Any separator S divides the whole space into two half-spaces. One half-space would

include the object B. We can regard the other half-space as a container. Placing A

inside the container is equivalent to making A and B disjoint with respect to each

68

separator S. Therefore, the computation of the minimum TRAJ distance for S can be

regarded as a 3D convex containment optimization problem. By applying two levels

of linear programming optimization algorithm discussed in Sec. 4.1.2, we compute an

upper bound of PDg
TRAJ for each convex separator S. The minimum of all PDg

TRAJ over

all enumerated convex separators yields an upper bound on PDg
TRAJ.

Convex Separators Enumeration

Enumerating convex separators of B can be performed as a preprocessing. This step

can be regarded as computing a convex decomposition of the complement space of B.

Given the fact that we are computing an upper bound of PDg
TRAJ, the conservativeness

of the separator enumeration does not affect the correctness of our algorithm.

We use the surface convex decomposition for the complement space of B (Ehmann

and Lin, 2001). We discard the surface with one face from the surface decomposition,

since these planes have been processed as separating planes.

Moreover, if the geometry of input A and B is very complex we simplify each prim-

itive to compute a coarser model A′, B′. If A ⊆ A′ and B̄ ⊆ B̄′, it is easy to prove

that PDg
TRAJ(A,B) ≤ PDg

TRAJ(A
′, B′). Therefore, we can compute the upper bound by

applying our algorithm on these simplified models.

Separator Culling

We can cull some of the separators by making use of the currently known upper bound

on PDg
TRAJ during any stage of the algorithm. If the minimum distance between the

separator and the object A is larger than the current upper bound, we can discard this

separator. We use the PDt between the two convex hulls of input models as an initial

upper bound of PDg
TRAJ.

69

4.1.5 Complexity

The complexity of the lower bound algorithm is governed by the number of convex

pieces that are obtained from the decomposition, and the geometric complexity of each

convex piece, e.g. the number of vertices of the convex piece. Let n1, n2 denote the

number of convex pieces of the robot A and the obstacle B, respectively. Let the

geometric complexity of all convex pieces of A and B be a and b, respectively. Then,

the average numbers of features in each piece of A and B are a
n1

and b
n2

, respectively.

Using the complexity of translational PD, we can derive that the complexity of lower

bound generalized PD computation for 2D rigid objects A and B is O(an2 + bn1), and

for 3D rigid objects is O(ab). The main computational component of the upper bound

algorithm is the containment optimization using linear programming. Each iteration

within the containment optimization is governed by the number of convex separators

as well as their geometric complexity (i.e. the number of facets). However, the overall

convergence of the optimization algorithm is difficult to analyze since it is dependent on

the shapes of A and the convex separators.

4.1.6 Implementation and Performance

We have implemented our lower and upper bound computation algorithms for general-

ized PD between 3D rigid non-convex models. We have tested our algorithms to compute

on a set of benchmarks. In this section, we only present the implementation and experi-

mental results on generalized PD based on TRAJ metric. The implementation can also

be extended for other C-space distance metrics. All the timings reported in this section

were taken on a 2.8GHz Pentium IV PC with 2GB of memory.

Implementation of Lower Bound Algorithm

In our implementation, the convex decomposition is performed as a preprocessing step.

Currently, we use the convex surface decomposition algorithm proposed by Ehmann and

70

Figure 4.5: The ‘cup’ example. The left column shows the placements of the ‘spoon’ in
the ‘cup’, when t=0.0, t=0.5, and t=1.0, respectively. At all of these placements, the
‘spoon’ collides with the ‘cup’. The right column shows the collision-free configurations
which are realized for UB1(PDg) at each t.

Lin (2001), which can be regarded as a special case of convex decomposition. In order to

compute PDt between two convex polytopes, we use the implementation available as a

part of SOLID package (van den Bergen, 2001). In order to accelerate this algorithm, we

precompute an OBB hierarchy (Gottschalk et al., 1996) and use the bounding volumes

to conservatively cull convex pairs that do not intersect with each other.

Implementation of Upper Bound Algorithm

The preprocessing step of convex separator enumeration can be regarded as convex

decomposition of the complement of the input model. In our implementation, we use

the surface decomposition algorithm to generate a set of convex surfaces (Ehmann and

Lin, 2001) and discard the surfaces that have only one face. For each convex separator,

we use the containment optimization technique developed in Sec. 4.1.2 to compute

71

Figure 4.6: The ‘hammer in narrow notch’ example. This example is modified from the
‘hammer’ example, where the size of the notch is decreased such that there is only narrow
space for the ‘hammer’ to fit inside. (b) and (d) show the placement of the ‘hammer’ at
t=0 and t=0.5. (c) and (e) are their corresponding configurations, respectively, which
realize the UB1(PDg). The computed UB1(PDg) is tighter than the UB2(PDg) for most
of time t.

an upper bound on PDg
TRAJ. In particular, we use the QSopt 1 package to solve the

linear programming problems. In order to accelerate the upper bound computation, we

conservatively cull any convex separator, if the minimum distance between this separator

and the object A is larger than the current upper bound on generalized PD.

Performance

We use different benchmarks to test the performance. Our experimental setup is as

follows: each benchmark includes two polyhedral models A and B, where A is movable

and B is fixed. The model A is assigned a starting configuration q0 and an end configu-

ration q1. We linearly interpolate between these two configurations with n intermediate

configurations (i.e. n samples). For each interpolated configuration q = (1− t)q0 + tq1,

t ∈ [0, 1], we compute various bounds for generalized PD between A(q) and B, including:

1. LB(PDg): The lower bound on PDg
TRAJ based on pairwise translational PDt com-

putation.

2. UB1(PDg): The upper bound on PDg
TRAJ computed by containment optimization.

1http://www2.isye.gatech.edu/˜wcook/qsopt/

72

3. UB2(PDg). The upper bound on generalized PD based on the translational PD

computation between their convex hulls.

In order to get accurate timing profiling, we run our PD algorithms for each configuration

with a batch number b. The average time for each bound computation is the total

running time on all samples, divided by the number of samples and the batch number

b.

‘Hammer’ example. Fig. 4.4, Tab. 4.1, and Fig. 4.8(a) show the results and

timings for the ‘hammer’ example. In this case, the ‘hammer’ model has 1,692 triangles,

and is decomposed into 214 convex pieces. The ‘notch’ model has 28 triangles. It

is decomposed into 3 convex pieces, including a notch (i.e. convex separator) in the

center of the ‘notch’ model. Initially (at t=0), the ‘hammer’ intersects with the ‘notch’

as shown in Fig. 4.4(a). Fig. 4.4(b) shows a collision-free placement of the ‘hammer’,

which corresponds to the position after moving by UB1(PD
g). According to Fig. 4.8(a),

the value is UB1(PDg) = 4.577083, which is greater than LB(PDg) (0.744020) and less

than UB2(PDg) (6.601070).

For this example, we generate 101 samples for the ‘hammer’ when it is rotated around

the Z axis. The rotation motion is linearly interpolated from the configuration (0, 0, 0)T

to (0, 0, π)T . Fig. 4.4(c) shows the placement of the ‘hammer’ at t = 0.5. Fig. 4.4(d) is

the corresponding collision-free placement, which realizes the UB1(PDg).

We also compare the lower and upper bounds on generalized PD over all the config-

urations. In Fig. 4.8(a), the solid green curve highlights the value of UB1(PDg) between

the ‘hammer’ and the ‘notch’ over all interpolated configurations. The dashed red curve,

which corresponds to UB1(PDg), always lies between LB(PDg) and UB2(PDg). In this

example, UB1(PDg) is less than UB2(PDg).

The timing for this example is shown in Tab. 4.1. We run the generalized PD

algorithm 5 times (b=5) for all the configurations (n=101). The average timing for

LB(PDg), UB1(PDg), and UB2(PDg) is 1.901ms, 21.664ms and 0.039ms, respectively.

73

Figure 4.7: The ‘pawn’ example. The large ‘pawn’ is fixed and the small one is movable.
(a) shows the colliding placement of the ‘pawn’ at t = 0. (b) shows its corresponding
collision-free placement, which is computed based on UB1(PDg).

‘Hammer in narrow notch’ example. We perform a similar experiment on ‘Ham-

mer in narrow notch’ example (Fig. 4.6) to test the robustness of our algorithm. This

example is modified from the ‘hammer’ example, where the size of the notch is decreased

such that there is only narrow space for the ‘hammer’ to fit inside. Our algorithm can

robustly compute the lower and upper bounds on generalized PD for this example. Fig.

4.8(b) compare the lower and upper bounds over all sampled configurations (n=101).

The third row of Tab. 4.1 shows the performance of our algorithm for this example.

‘Spoon in cup’ example. We apply our algorithm to a more complex scenario shown

in Fig. 4.5. In this example, the ‘spoon’ model has 336 triangles and is decomposed into

28 convex pieces. The ‘cup’ model has 8,452 triangles and is simplified into a model with

1,000 triangles. We get 94 convex pieces and 53 convex separators from the simplified

model.

In Fig. 4.5, the left column shows the placements of the ‘spoon’ in the ‘cup’, cor-

responding to t = 0.0, t = 0.5, and t = 1.0, respectively. At all these placements, the

‘spoon’ collides with the ‘cup’. The right column of this figure shows the collision-free

configurations that are computed based on UB1(PDg) in each case. We also compare

our computed lower bound and upper bounds over all the samples (n=101), which are

74

Hammer H2 ? Spoon Pawn

A Hammer Hammer Spoon Small pawn
tris # 1,692 1,692 336 304

convex pieces # 215 215 28 44

B Notch Notch Cup Large panw
tris # 28 28 8,452 304

convex pieces # 3 3 94 44
separator # 1 1 53 43

sample # (n) 101 101 101 101
batch # (b) 5 5 5 5

t for LB (ms) 1.901 4.300 6.127 4.112
t for UB1 (ms) 21.664 108.024 1027.014 482.511
t for UB2 (ms) 0.039 0.053 0.154 0.055

Table 4.1: Performance of convexity-based generalized PD computation. This table
highlights the benchmarks used to test the performance of our convexity-based algorithm.
The top rows in the table list the model complexity, and the bottom rows report the time
taken to compute the lower and upper bounds on generalized PD. ‘H2?’ is the example
‘hammer in narrow notch’.

shown in Fig. 4.8(c). The timing performance for this example is also listed on Tab.

4.1.

‘Pawn’ example. The last benchmark used to demonstrate the performance of our

algorithm is the ‘pawn’ example. As Fig. 4.7 shows, the large ‘pawn’ is fixed, while the

small one is moving. The ‘pawn’ model has 304 triangles and is decomposed into 44 con-

vex pieces. The large ‘pawn’ has 43 convex separators. Fig. 4.7(a) shows the colliding

placement of the ‘pawn’ at t = 0. Fig. 4.7(b) shows its corresponding collision-free place-

ment, which is computed based on UB1(PDg). Fig. 4.8(d) highlights the comparison of

the lower bound and upper bounds over the sampled configurations (n=101). Tab. 4.1

shows the average time to compute the lower and upper bounds over all configurations.

75

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

t

LB(PDg)

UB
1
(PDg)

UB
2
(PDg)

(a) ‘hammer’

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

t

LB(PDg)

UB
1
(PDg)

UB
2
(PDg)

(b) ‘hammer in narrow notch’

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

t

LB(PDg)

UB
1
(PDg)

UB
2
(PDg)

(c) ‘cup’

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

LB(PDg)

UB
1
(PDg)

UB
2
(PDg)

(d) ‘pawn’

Figure 4.8: Comparison of lower and upper bounds on generalized PD computation.
(a) The lower and upper bounds on generalized PD between the ‘hammer’ and the
‘notch’ models are computed over all interpolated configurations. The dash-dot blue
curve LB(PDg) stands for the lower bound of generalized PD by computing pairwise
translational PD. The dashed red curve UB2(PDg) stands for the upper bound of gener-
alized PD computed by the translational PD of their convex hulls. The solid green curve
UB1(PDg) highlights the upper bound of PDg by using our containment optimization,
which always lies between LB(PDg) and UB2(PDg). In this example, UB1(PDg) is less
than UB2(PDg) for most of time t. (b,c,d) we compare the results of the other three
examples.

76

4.2 A Fast and Practical Generalized PD Algorithm

using Constrained Optimization

In this section, we present a fast and practical algorithm to compute generalized PD

for rigid, non-convex models (Zhang et al., 2007a). Based on model-dependent distance

metrics, we have shown that the optimum answer lies in the contact space (Thm. 1).

Therefore, we can pose the generalized PD computation as a constrained optimization

problem. We use global approaches to compute an initial guess. We further present

efficient techniques to compute a local approximation of the contact space, and incre-

mentally refine the solution in the local contact space along the maximally-decreasing

direction of the distance cost. The algorithm makes no assumption about model topol-

ogy. We highlight the performance of our algorithm on many complex models. In

practice, our algorithm takes about a few hundred milli-seconds on non-convex models

composed of a few thousand triangles.

4.2.1 Algorithm Overview

As shown in Fig. 4.9, for a colliding configuration qo of the robot, the goal is to compute

a (locally) closest configuration in the contact space according to a distance metric δ.

Our algorithm can optimize the objective function defined by δ by performing incremen-

tal refinement in the contact space. The iterative optimization algorithm (Algorithm 2)

consists of three major steps:

1. Given an initial guess of contact configuration qa, the algorithm first computes a

local approximation Lqa of the contact space around qa (Line 3 of Algorithm 2).

2. The algorithm searches over the local approximation to find a new configuration

qb that minimizes the objective function δ (Line 4).

3. The algorithm assigns qb as a starting point for the next iteration (i.e. walk from

77

oq

aq
bq

mqL aq

F

O

Ccontact

Figure 4.9: Constrained optimization. We reduce the generalized PD problem to com-
puting a closest configuration in the contact space for qo by iterative optimization.

qa to qb) if qb is in the contact space and it has a smaller value of the objective

function as compared to qa’s. Otherwise, we compute a new contact configuration

qb
′ based on qb (Line 5-14).

These steps are iterated until a local minimum configuration qm is found or the

maximum number of iterations is reached. We address each of these steps in more

detail.

4.2.2 Local Contact Space Approximation

Since it is computationally prohibitive to compute a global representation of the contact

space Ccontact, our algorithm computes a local approximation. Given a contact configu-

ration qa, where A is in contact with B, we enumerate all contact constraints according

to the pairs of contact features (Latombe, 1991; Xiao and Ji, 2001). We further decom-

pose each contact constraint into primitive contact constraints, i.e. vertex/face (v − f),

face/vertex(f −v) or edge/edge (e− e). Conceptually, each primitive contact constraint

represents a halfspace, and the set of all primitive constraints are used to characterize

the local contact space. Finally, we obtain a local approximation Lqa of Ccontact around

the contact configuration qa after concatenating all these primitive constraints {Ci}

using proper intersection or union operators {◦i}:

78

Algorithm 2 Generalized PD Algorithm using Constrained Optimization
Input: two overlapping 3D rigid models: A - movable, B - static.
qo := a colliding configuration of A, qo ∈ O.
qa := an initial guess of contact configuration for A, qa ∈ Ccontact.
Output: PDg

δ(A, B)

1: repeat
2: i++;
3: Lqa := Local contact space approximation at qa;
4: qb := arg min{δ(qo,q), q ∈ Lqa};
5: if δ(qo,qb) == δ(qo,qa) then
6: return δ(qo,qa);
7: else if qb ∈ Ccontact then
8: qa := qb;
9: else if qb ∈ F then

10: qa := Bisection(qo, qb);
11: else
12: qb

′ := CCD(qa, qb);
13: Lqa := Lqa

⋂
L′qb

;
14: goto 4;
15: end if
16: until i < MAX ITERATION

Lqa = {C1 ◦1 C2 · · · ◦n−1Cn}. (4.10)

It should be noted that we do not explicitly compute a geometric representation of

Lqa . Instead, it is algebraically represented, and each primitive constraint is simply

recorded as a pair of IDs, identifying the contact features from A and B, respectively.

When decomposing each constraint into primitive constraints, we need to choose

proper Boolean operators to concatenate the resulting primitive constraints. This issue

has been addressed in the area of dynamics simulation (Egan et al., 2003) and we address

it in a similar manner for generalized PD computation. Fig. 4.10 shows a 2D example

with a triangle-shaped robot A touching a notch-shaped obstacle B. When decomposing

a v − v contact constraint into two v − e constraints C1 and C2, if both of A and B

are convex at the contact vertices (Fig. 4.10(a)), we use a union operator, because if

either constraint C1 or C2 is enforced, there is no local penetration. Otherwise, if either

79

Workspace

Configuration
space

Linearization of
contact space

F

O

F

O

(a) (b) (c) Multi-contact

c1

c2
F

O

F

O

c1 c2

c1 U c2 c1∩ c2

B

A

F

O

F

O

c1∩ c2

c1

c2

Figure 4.10: Local contact space approximation. The local contact space is algebraically
represented as a set of contact constraints concatenated with intersection or union op-
erators (Eq. 4.10). Columns (a) and (b) explain how to obtain proper operators when
decomposing a constraint into primitive contact constraints using 2D examples (Section
4.2.2). Column (c) shows a multiple contact situation. The last row illustrates the
corresponding linearization for each local contact space.

model at the contact vertex is non-convex (Fig. 4.10(b)), the intersection operation is

used. For 3D models, a similar analysis is performed by identifying the convexity of

edges based on their dihedral angles. In case of multiple contacts, one can first use

intersection operations to concatenate all the constraints. Each individual constraint is

then further decomposed into primitive constraints properly.

4.2.3 Searching over Local Contact Space

Given a local contact space approximation Lqa of the contact configuration qa, we search

over Lqa to find qb that minimizes the objective function. Since the contact space is a

non-linear subspace of C, we use two different search methods: random sampling in L

and optimization over a first-order approximation of L. Each of them can be performed

independently.

80

aq

lq
C1

C2

L 1 2{ }
aq c c= ∩F

O
Figure 4.11: Sampling in local contact space. Lqa is a local approximation of contact
space around qa, represented by the intersection of its contact constraints C1 and C2.
Our algorithm randomly generates samples on C1 and C2. Many potentially infeasible
samples, such as ql, can be discarded since they are lying outside the halfspace of C2.

Sampling in Local Contact Space

Our algorithm randomly generates samples on the local contact approximation Lqa

around qa (Fig. 4.11), by placing samples on each primitive contact constraint Ci as

well as on their intersections (Ji and Xiao, 2000). We discard any generated sample q if

it lies outside of the halfspace formulated by Lqa by simply checking the sign of Lqa(q).

Since Lqa is a local contact space approximation built from all contact constraints,

this checking of L allows us to cull potentially many infeasible colliding configurations.

For the rest of the configuration samples, we evaluate their distances δ to the initial

configuration qo, and compute the minimum.

These samples are efficiently generated for each non-linear contact constraint Ci.

First, we generate random values for the rotation parameters. By plugging these values

into a non-linear contact constraint, we formulate a linear constraint for the additional

translation parameters. Under the formulated linear constraint, random values are gen-

erated for these translation parameters.

In practice, an optimal solution for generalized PD may correspond to multiple con-

tacts, suggesting that one needs to generate more samples on the boundary formed by

multiple contact constraints. As a result, we set up a system of non-linear equations for

each combination of these constraints, generate random values for the rotation param-

eters in the system (thereby making the system linear), and sample the resulting linear

81

system for the translation parameters.

Linearizing the Local Contact Space

We search for a configuration with smaller distance in the contact space by linearly

approximating the contact space. For each basic contact constraint Ci, we compute its

Jacobian, which is the normal of the corresponding parameterized configuration space.

Using this normal, we obtain a half-plane, which is a linearization of the contact surface

(Ruspini and Khatib, 1997; Redon and Lin, 2005). By concatenating the half-planes

using Boolean operators ◦i, we generate a non-convex polyhedral cone, which serves as

a local linear approximation of Ccontact. For simplicity, one can only use intersection

operators for ◦i (Redon and Lin, 2005) and obtain a convex cone, which is a subset of

the original non-convex cone.

Local Search

The sampling-based local search method is general for any distance metric. Moreover,

we can generate samples on each non-linear contact constraint efficiently. Finally, using

the local contact space approximation, our method can cull many potentially infeasible

samples.

On the other hand, the method of linearizing the contact space is suitable for opti-

mizing generalized PD, if the underlying objective has a closed form. For example, for

the OBNO metric, we transform the coordinate in the quadratic function in Eq. (2.5),

from an elliptic form to a circular one. Now, the problem of searching over L reduces to

finding the closest point in the Euclidean space from qa to the non-convex polyhedral

cone, formulated using the linearization of L. Note that the computation of the closest

point to the non-convex cone can be difficult. In practice we can use the simplified

convex cone.

82

oq

aq

bq

bq′F

O

aq

oq
B

A

bq

bq′

C1

C2

Figure 4.12: Local refinement. Left: using the local contact space representation of qa,
which includes only one constraint C1, we obtain new configuration qb. Though qb

is still on C1, it may not be in the contact space any more, since it will violate other
constraint, such as C2 here. The right figure shows a dual example happening in the
workspace. When A slides on B, i.e. from qa to qb, a collision can be created by other
portions of the models. Our algorithm uses CCD to compute a correct, new contact
configuration qb

′.

4.2.4 Refinement

Although searching over the local contact space L around qa can yield a new configura-

tion qb that improves the optimization objective of qa, we still need to check whether

qb is a valid contact configuration before advancing to it because qb is computed based

upon a local approximation of contact space and qb may not be in the contact space.

For instance, the new configuration qb may be a collision-free configuration due

to the first-order approximation. To handle this case, we project qb back to Ccontact by

computing the intersection qb
′ between the contact space and a curve interpolating from

qo to qb using screw motion. Since qo is in O and qb is free, the intersection qb
′ can be

efficiently computed by recursive bisection (Line 10 in Algorithm 2). If the middle point

qmid on the screw motion between qb and qo is an colliding configuration, bisect between

qb and qmid; otherwise bisect between qmid and qo. Once we compute the intersection

qb
′, according to the contact space realization theorem (Thm. 1), δ(qo,qb

′) < δ(qo,qb).

Therefore, we are guaranteed to obtain a new configuration qb
′, which is closer to qo,

83

and thus it can be used for successive iterations.

It is also possible that the new configuration qb may be a colliding configuration.

As Fig. 4.12 on the left shows, when moving from qa to qb, the contact constraint

C1 is maintained. However, qb is a colliding configuration as it does not satisfy the

new constraint C2. The figure on the right highlights this scenario in the workspace.

When A moves from qa to qb, the contact is still maintained. In order to handle this

case, we use continuous collision detection (CCD) to detect the time of first collision

when an object continuously moves from one configuration to another using a linearly

interpolating motion in C (Redon, 2004; Zhang et al., 2006). In our case, when A moves

from qa to qb, we ignore the sliding contact of qa, and use CCD to report the first

contact qb
′ before the collision (Line 12 in Algorithm 2). The new configuration qb

′ can

be used to update the local approximation of qa (Line 13 in Algorithm 2). This yields a

more accurate contact space approximation and consequently improves the local search,

e.g. culling away additional invalid samples.

4.2.5 Initial Guess

The performance of the generalized PD algorithm depends on a good initial guess.

For many applications, including dynamic simulation and haptic rendering, the motion

coherence can be used to compute a good initial guess. For some other applications

in which no motion coherence could be exploited, we propose a heuristic. Our method

generates a set of samples in the contact space as a preprocess. At runtime, given a

query configuration qo, our algorithm searches for the K nearest neighbors from the

set of precomputed samples imposing the inter-distance between any pair of these K

samples should be greater than some threshold. The distance metric used for nearest

neighbor search is the same as the one to define generalized PD. The resulting K samples

serve as initial guesses for our generalized PD algorithm. To generate samples in the

contact space, we randomly sample the configuration space and enumerate all pairs of

84

Figure 4.13: The ‘CAD part’ example. (a) the models A - ‘pawn’ and B - ‘CAD part’
are used in this test. (b) a typical generalized PD query scenario is illustrated where
the model A at A0 overlaps with B. A1 and A2 are intermediate configurations of A
during the optimization for PDg

DISP. A3 is the solution for an upper bound of PDg
DISP.

The sequence of images (c,d,e) illustrates that our algorithm incrementally slides the
model ‘pawn’ on the model ‘CAD part’ to minimize the DISP distance to its original
configuration A0.

free and collision samples. For each pair, a contact configuration can be computed by a

bisection method.

4.2.6 Implementation and Performance

We have implemented our generalized PD algorithm using local contact space sampling

for general rigid non-convex models. In this section, we discuss some important imple-

mentation issues and highlight the performance of our algorithm on a set of complex

models. All the timings reported in this section were taken on a 2.8GHz Pentium IV

PC with 2GB of memory.

Implementation

Since our generalized PD formulation is independent of the representation of the con-

figuration space, we use a quaternion to represent the rotation because of its simplicity

and efficiency. In our generalized PD algorithm, any proximity query package sup-

porting collision detection and contact determination can be employed. In our current

implementation, we use SWIFT++ library which is efficient and provides both prox-

imity queries (Ehmann and Lin, 2001). By computing all the contacts between A and

85

B for a contact configuration qa, we sample the contact space locally around qa. For

each primitive contact constraint Ci, we derive its implicit equation with respect to the

parameters of a rotation component (a quaternion) and a translation component (a 3-

vector). In order to sample on a constraint Ci, we first slightly perturb its rotational

component by multiplying a random quaternion with a small rotational angle. The re-

sulting rotational component is plugged back into the constraint Ci. This yields a linear

constraint with only translational components, and therefore can be used to generate

additional samples. To linearize Ci, we compute the Jacobian of its implicit equation for

Ci . For other types of contacts, we decompose them into primitive contact constraints.

Proper operators to concatenate them are identified by computing the dihedral angle of

contacting edges, thereby determining whether the contact features are convex or not.

In the refinement step of the algorithm, we perform collision detection using SWIFT++

library to check whether qb from the local search step still lies in the contact space.

When qb is on contact space, our algorithm proceeds to the next iteration. Otherwise,

when qb is free, a new contact configuration qb
′ is computed for the next iteration by

performing recursive bisections on the screw motion interpolating between qo and qb.

Finally, when qb is in C-obstacle space, we compute a new contact configuration qb
′ by

using CCD for moving from qa towards qb. In our current implementation, we check

for collision detection on a set of discrete samples on a screw motion between qa and

qb. In order to ignore the old contact during CCD query, the idea of security distance

is used (Redon, 2004). After computing a new contact configuration qb
′ from the CCD

query, our algorithm updates the local approximation around qa and resumes a local

search again.

Since our generalized PD algorithm only relies on collision detection or contact

queries, the algorithm can also be extended for polygonal soup model as shown in

Chapter 6.

86

Figure 4.14: The ‘torus knot’ example. The left image highlights a generalized PD query
for a model ‘torus knot’ B intersecting with a model ‘L-shaped box’ at A0 (red). A1 is a
collision-free placement of the ‘L-shaped box’ model as a result of PDg

OBNO computation;
the right image shows the same result but from another viewpoint.

Performance

We use different benchmarks to test the performance of our algorithm. Fig. 4.13(a)

shows a typical setup of our experiment including two overlapping models, where A

(‘Pawn’) is movable and B (‘CAD part’) is stationary. In (b), our algorithm computes

PDg
DISP or PDg

OBNO to separate the model A, initially placed at A0, from the model B.

The three images on the right highlight the intermediate configurations of A1 and A2

and a PDg
DISP solution A3 with yellow color. The sequence of images (b,c,d,e) illustrates

that our algorithm successfully finds an upper bound of PDg
DISP by gradually sliding the

‘pawn’ model on the ‘CAD part’ model.

Figs. 4.14 and 4.15 show two more complex benchmarks that we have tested. In Fig.

4.14, the model ‘torus knot’ has hyperbolic surfaces. This benchmark is difficult for the

convexity-based algorithm, as it is difficult to perform the convex decomposition of the

complement of the complex model ‘torus knot’. On the other hand, the algorithm based

on constrained optimization can easily handle this benchmark, and compute an upper

bound on generalized PD.

Table 4.2 summarizes the performance of our algorithm on different benchmarks.

In our implementation, we set the maximum number of iterations as 30. For the most

of the models we have tested, our algorithm can perform PDg
DISP query within 300ms,

87

Figure 4.15: The ‘hammer’ example. From left to right: PDg
DISP query between A and

B, an intermediate configuration A1, and the solution A2.

1 2 3

A L-Shape Pawn Hammer
tris # 20 304 1,692

B Torus knot CAD part Bumpy sphere
tris # 2,880 2,442 2,880

Avg PDg
DISP(ms) 219 297 109

Avg PDg
OBNO(ms) 156 445 138

Table 4.2: Performance of generalized PD computation using constrained optimization.
This table highlights the geometric complexity of different benchmarks we test, as well
as the performance of our algorithm.

and PDg
OBNO query with 450ms. Our current implementation is not optimized and the

timings can be further improved.

4.3 Summary

In this chapter, we have addressed the problem of generalized PD computation between

non-convex rigid models, which takes into account translational and rotational motion.

We have presented two new algorithms for generalized PD computation. We summarize

our algorithms and discuss their limitations.

The convexity-based algorithm makes use of the convexity of the models. Based on

the convex decomposition over the input models, the algorithm can compute an lower

bound and an upper bound for generalized PD. Our experimental results show that the

88

algorithm is efficient and robust for many 3D models.

The main limitation of the convexity-based method is to perform the convex decom-

position during the preprocessing, which is difficult to compute for complex objects or

models without connectivity information. Given the complexity of exact generalized PD

computation, our algorithm only computes lower and upper bounds. The accuracy of

the bounds also depends on the convex decomposition.

The algorithm based on constrained optimization can often handle more complex

non-convex models than the convexity-based algorithm. This is because we reduce

generalized PD computation to proximity queries such as collision detection and contact

determination. Since there are well known efficient algorithms for both queries, this

algorithm is relatively easy to implement and can handle complex non-convex models.

The algorithm based on constrained optimization computes an upper bound on gen-

eralized PD, since the resulting configuration is guaranteed to be in the contact space.

However, its performance depends on the choice of an initial guess and the algorithm

can not guarantee a global solution. In theory, the algorithm can converge to a local

minimum due to the constrained optimization formulation. One termination condition

for the optimization is to check whether the gradient of the distance function has the

same direction as the normal of the contact configuration at the contact space after

each iteration. Issues can arise in checking this condition in practice. For example, in

the case of DISP metric, one can only compute an approximation of the gradient, since

no closed form is available for DISP metric. Furthermore, a convergence analysis of

the algorithm is difficult, due to the discontinuity in contact space caused by multiple

contacts. Our algorithm also shares some similarities with the one (Nawratil et al.,

2009). Both algorithms are based on iterative optimization and can only compute a

local minimum. However, in (Nawratil et al., 2009) the method and analysis assume

that the given models are smooth. Instead, we focus on polyhedra and polygon soup

models. Our algorithm is based on efficient collision detection and local contact space

89

search.

90

Chapter 5

Complete Motion Planning

A complete motion planning approach can either compute a collision-free path if one

exists, or report path non-existence otherwise. Although motion planning has been

extensively studied for more than three decades, there are no practical approaches for

determining path non-existence even for general low 3-4 DOF robots. Earlier exact

motion planning approaches are complete. However, these approaches are known to have

a high theoretical complexity and are very difficult to implement in practice. Sampling-

based approaches such as probabilistic roadmap planners (PRMs) are relatively simple

to implement and can be easily applied to general robots with high DOF(Kavraki et al.,

1996). However, if there is no collision-free path, these approaches may not terminate.

Furthermore, their performance may degrade significantly if the free space of the robot

has narrow passages. In practice, when such a planner does not terminate, it is hard

to distinguish whether such situation arises due to path non-existence or due to narrow

passages and inadequate sampling.

Approximate cell decomposition (ACD) approaches subdivide the configuration space

into simple shapes, e.g. rectangloid cells. These approaches are usually complete pro-

vided the number of subdivisions is sufficiently high. One of the main computational

components in approximate cell decomposition methods is cell labelling, i.e. to deter-

mine whether a cell lies entirely in free or C-obstacle. Most prior labelling methods are

qgoal
F

O
Obstruction

qinit

Figure 5.1: Basic idea of path non-existence computation. To check for path non-
existence, we can use C-obstacle query and determine a set of cells lying entirely in
C-obstacle. If the union of these cells is ‘obstructing’ initial and goal configurations, we
can conclude the path non-existence.

based on contact surface computations or explicitly computing a boundary of the free

space, which can be rather complicated and prone to degeneracies, especially when the

robot has more than 3 DOF or the geometric models of the robot and obstacles are

complex (Lozano-Pérez, 1983; Donald, 1987; Zhu and Latombe, 1990).

To be able to compute the path non-existence, the key issues are to efficiently de-

termine whether a volumetric primitive e.g. a cell lies entirely in C-obstacle space and

to decide whether the union of those identified cells is ‘obstructing’ initial and goal

configurations (Fig. 5.1).

In this chapter, we present an efficient query algorithm to C-obstacle space, namely

C-obstacle query based on generalized penetration depth computation (Zhang et al.,

2008c). Using the C-obstacle query, we present a simple and efficient approximate cell

decomposition algorithm for path non-existence. Our algorithm searches a path through

cells which do not lie in C-obstacle. The non-existence of such a path is a sufficient

condition for path non-existence between the initial and the goal configurations of the

robot and these computations are performed in a hierarchical manner. Our resulting

motion planning algorithm is complete for a rigid robot with translational and rotational

DOF. Furthermore, our approach can also be extended to articulated robots. We have

implemented our planner and highlight its performance on 3 DOF and 4 DOF robots.

92

We further present an efficient algorithm for complete motion planning for low DOF

robots by combining the completeness of approximate cell decomposition (ACD) with

the efficiency of probabilistic roadmaps (PRM) (Zhang et al., 2007b). In practice, we

observe up to 10 times improvement in performance over our first complete motion

planning algorithm.

We also extend our complete motion planning framework to feedback motion plan-

ning (Zhang et al., 2009). Our algorithm computes a global vector field computation

in the free space as a feedback plan, which ensures that the robot at any collision-free

configuration knows either the direction to move in order to reach the goal, or path

non-existence to the goal. We compute a local vector field for each cell in the free space

and address the issue of the smooth composition of the local vector fields between the

non-uniform adjacent cells. As compared to prior approaches, our algorithm works well

on non-convex robots and obstacles. We demonstrate its performance on planar robots

with 2 or 3 DOF, articulated robots composed of 3 serial links and multi-robot systems

with 6 DOF.

The rest of this chapter is organized as follows. We briefly survey related work on

motion planning in Section 5.1. We then introduce path non-existence using approximate

cell decomposition in Section 5.2. We present our efficient cell labelling algorithms for

complete motion planning in Section 5.3. We present our hybrid planner in Section 5.4

and the global vector field method in Section 5.6. Finally, we discuss a few limitations

of our approaches in Section 5.5. All the timings reported in this chapter were taken on

a 2.8GHz Pentium IV PC with 2GB of memory.

5.1 Previous Work

Motion planning has been extensively studied for more than three decades. Excellent

surveys of this topic are available in (Latombe, 1991; Choset et al., 2005; LaValle, 2006).

93

In terms of complete motion planning, there are no practical algorithms for determine

path non-existence even for general low DOF robots. In this section, we briefly review

the related work.

5.1.1 Exact Motion Planning

Some of earlier work on exact motion planning includes criticality-based algorithms such

as exact free-space computation for a class of robots (Lozano-Pérez and Wesley, 1979;

Kedem and Sharir, 1988; Avnaim and Boissonnat, 1989b; Halperin, 2002), roadmap

methods (Canny, 1988), and exact cell decomposition methods (Schwartz and Sharir,

1983). The exact cell decomposition methods require an exact description of the bound-

ary of the free space. The free space are partitioned into a collection of simpler geometric

regions and compute a connectivity graph representing the adjacency between the re-

gions.

In theory, these methods are complete and general. However, in practice, most of

these methods are challenging to implement. Their implementations have been limited

to simple planar robots, convex polytopes or special shapes such as spheres or ladders.

No good implementations are known for general robots with higher than three DOF (Av-

naim and Boissonnat, 1989b; Banon, 1990). Recently, a star-shaped roadmap method

has been proposed (Varadhan and Manocha, 2005), which partition the free space into

star-shaped regions. This method is complete as long as there are no tangential contacts

in the boundary of the free space.

5.1.2 Approximate Cell Decomposition

Most practical algorithms for complete motion planning of general robots are based

on approximate cell decomposition (ACD) (Brooks and Lozano-Pérez, 1985; Latombe,

1991). ACD algorithms are complete: provided the number of subdivisions is high. One

of the main computational issues in approximate cell decomposition methods is cell la-

94

belling (Wise and Bowyer, 2000). In order to label a cell, most prior approaches rely

on contact surface computations (Zhu and Latombe, 1990), which could be complicated

and prone to degeneracies. Paden et al. (Paden et al., 1989) describe a labelling method

based on workspace distance computation. However, due to the lack of rigorous formu-

lation of interpenetration between two models, their method may be overly conservative

in practice.

5.1.3 Sampling-based Approaches

The sampling-based approaches such as probabilistic roadmap (PRM) (Kavraki et al.,

1996) and rapidly-exploring trees (RRT) (LaValle, 1998) have been widely used for differ-

ent motion planning applications. These approaches are relatively simple to implement

and have been successfully applied to high DOF robots. However, these approaches are

only probabilistically complete: if a solution exists, the planner finds one in bounded time

with high probability; otherwise, the planner may not terminate. Furthermore, since

these approaches sample the robot’s free space randomly, they may fail to find paths,

especially those passing through narrow passages (Amato et al., 1998; Pisula et al., 2000;

Simeon et al., 2000; Hsu et al., 2006; Zhang and Manocha, 2008b).

5.1.4 Checking for Path Non-Existence

Exact planning approaches described in Section 5.1.1 can check for path non-existence.

However, most of them are not practical due to their implementation difficulty. Approx-

imate cell decomposition approaches can also check for path non-existence. However,

one main issue is efficient labelling of the cells. The sampling-based methods such as

PRM or RRT are only probabilistically complete and cannot determine the path non-

existence. Some effort has been made to address the issue of path non-existence in PRM

planners (Basch et al., 2001), though the resulting approach is restricted to very special

cases.

95

5.1.5 Feedback Motion Planning

Feedback motion planning generates a feedback plan over the entire free space for the

robot to arrive at the goal. The feedback plan usually is represented as a vector field.

One can also use potential field methods to compute navigation functions (Rimon and

Koditschek, 1992), and further derive the vector fields by taking the gradients. The

more direct approaches are to compute the vector field based on sequential composition

(Conner et al., 2003; Belta et al., 2005; Lindemann and LaValle, 2009). By incorporating

the non-holonomic and dynamic constraints, these approaches can compute vector fields

for car-like robots (Lindemann and LaValle, 2007). Most of these approaches compute

feedback plans with the convergence property. A quad-tree based decomposition is used

for feedback planning on a simple 2D robot with 2 translational DOF and is further

extended for 3D translational robots (Kloetzer and Belta, 2006). A feedback planning

algorithm based on randomized sampling is presented in (Yang and LaValle, 2004).

5.2 Path Non-existence Computation using Approx-

imate Cell Decomposition

Our algorithm to check for path non-existence is based on approximate cell decompo-

sition (ACD). The configuration space C is subdivided into cells at successive levels of

the subdivision. A cell C in n-dimensional C-space is defined as a Cartesian product of

real intervals:

C = [x′1, x
′′
1]× [x′2, x

′′
2] · · · × [x′n, x

′′
n].

A cell is labelled as empty if it lies entirely in F , as full if it lies in O, and mixed oth-

erwise. The mixed cells are further subdivided (Fig. 5.2) until the algorithm computes

a collision-free path or concludes the path non-existence. In Section 5.3, we present an

efficient algorithm for cell labelling.

96

qinit

(a) Configuration space (b) Connectivity graph (c) Guiding path (d) Path non-existence

qgoalO

F L
G

Figure 5.2: Path non-existence computation using approximate cell decomposition. (a)
Path non-existence between the configurations qinit and qgoal. (b) the configuration space
is decomposed into cells and a connectivity graph G is built for all empty and mixed cells.
(c) The guiding path L, which connects the cells including qinit and qgoal, is computed
from G. Any mixed cell along L is further subdivided. For simplicity, only one of
such mixed cells is highlight in (d). (d) The connectivity graph is updated. Now the
cell containing qinit and the cell containing qgoal are disconnected with respect to the
connectivity graph. This concludes that there is no collision-free path between qinit and
qgoal.

5.2.1 Connectivity Graphs

For each level of subdivision, the connectivity graph G is constructed to represent the

adjacency relationship among all empty and mixed cells. Formally, the connectivity

graph (Latombe, 1991) associated with a decomposition of C is an undirected graph,

where:

• The vertices in G are the empty and mixed cells.

• Two vertices in G are connected by an edge if and only if the corresponding two

cells are adjacent to each other.

Intuitively, G covers the classified free space which is the union of the empty cells, and

the ‘uncertain’ space which is the union of the mixed cells.

In order to check for path non-existence, we first find the cells Cinit and Cgoal that

contain qinit and qgoal, respectively. Next, the algorithm searches the graph G to find

a guiding path L which connects the vertices corresponding to the cells Cinit and Cgoal.

The path L corresponds to a sequence of adjacent empty or mixed cells connecting

97

Cinit and Cgoal (Fig. 5.2). Therefore, if no such path is found, it is sufficient to claim

that there is no collision-free path that connects qinit and qgoal, or qinit and qgoal are

disconnected.

There are various known heuristics to prioritize the search on the connectivity graph

G. We use the shortest path algorithm to search for a path in G. We further assign

each edge a different weight. The edge associated with two empty cells has the lowest

weight (0 in our implementation) and the one associated with two mixed cells has the

highest weight. The rationale is that any two points in two adjacent empty cells can

always be connected by a collision-free path. Therefore, edges associated with empty

cells are favored over other types of edges.

The algorithm terminates if it can prove path non-existence using the connectivity

graph G, or it can find a collision-free path using a subgraph Gf of G. Gf represents

the adjacency relationship among all empty cells, which lie in the free space. Intuitively,

Gf represents a part of the free space that has been classified till the current level of

subdivision. If there is a path in Gf , a collision-free path can be easily computed by

connecting the centers of the corresponding empty cells of the path. This path can also

be further optimized to generate a high quality path (Zhu and Latombe, 1990).

5.2.2 Guided Subdivision

When a path L is computed after searching the connectivity graph G, it is not clear

whether qinit and qgoal are disconnected. If so, we need to further explore the ‘uncertain’

region - the union of mixed cells, to acquire more connectivity information within this

region. There are various ways to further explore the ‘uncertain’ region. A straightfor-

ward way is to apply another level of subdivision to all the mixed cells. However, in

this way, the number of cells could increase quickly. Considering that not all ‘uncertain’

regions contribute to a possible disconnection from qinit to qgoal, we employ the first-

cut algorithm (Latombe, 1991; Zhu and Latombe, 1990) to first subdivide some of the

98

‘uncertain’ regions. Specifically, all the mixed cells on the path L are assigned higher

priorities for the next level of the subdivision than other mixed cells. The algorithm is

recursively applied until it finds a collision-free path or concludes path non-existence.

5.3 Cell Labelling for Path Non-existence Compu-

tation

Compared to prior approximate cell decomposition approaches, one of the distinct fea-

tures is that during cell decomposition, we use reliable and efficient algorithms for cell

labelling. As a result, our algorithm does not need to explicitly compute the contact sur-

faces. In this section, we present our C-obstacle cell query algorithm to check whether

a cell lies entirely in C-obstacle. It is equivalent to checking whether the following

predicate Po is true:

Po(A,B,Q) : ∀q ∈ Q, A(q) ∩B 6= ∅. (5.1)

Here, A is a robot, B represents obstacles and Q is a C-space primitive, e.g. a cell; A(q)

represents the placement of A at the configuration q. Q may be a cell generated from

approximation cell decomposition or any other volumetric primitive in C-space.

The collision detection algorithms can check whether a single configuration lies in F

or O. In contrast, C-obstacle cell query needs to check whether a spatial cell lies entirely

in F or O. This corresponds to checking the collision for all configurations within the

cell. Therefore, this query is more general, and it is much harder as compared to collision

detection for a single configuration.

In order to perform C-obstacle cell query, we place the robot at the configuration

qc - the center of the cell C and compute the extent of the motion or the bounding

motion that the robot can undergo as it moves away from qc while still being restricted

99

within the cell C. In order to perform the We then use generalized penetration depth

to measure the amount of intersection between the robot at qc and the obstacle B, and

compare it with the extent of the robot’s bounding motion. If the amount of intersection

is larger than the extent of the robot’s motion, the robot placed at any configuration

within the cell will collide with the obstacle. Therefore, the cell C must lie entirely in

C-obstacle and it is labelled as a full cell. Our approach is conservative and provides

a sufficient condition for the query. In practice, our algorithm is fast and performs the

query in a few milliseconds for 2D or 3D rigid robots.

5.3.1 Motion Bound Calculation

Motion bound for a line segment

In order to formulate the motion bound for the robot when its configuration is restricted

within a cell, we first introduce a case when a robot moves along a line segment in C-

space. Schwarzer et al. (Schwarzer et al., 2005) define the motion bound λ when a robot

moves along a line segment πqa,qb
as an upper bound on µ(p, πqa,qb

) - the maximum

length of the trajectory traced by any point p on the moving robot:

λ(A, πqa,qb
) = Upper Bound(µ(p, πqa,qb

) | p ∈ A).

For 2D planar robots with translational and rotational DOF, the motion bound λ can

be computed as a weighted sum of the difference between qa and qb for translational

components x, y and the rotational angle φ:

λ(A, πqa,qb
) = ∆x + ∆y +Rφ∆φ,

where ∆x (∆y) is the absolute value of the difference between the x (y) components of

the two configurations qa and qb. ∆φ is for the rotational component. When subtracting

angles that “wrap around”, we choose the direction consistent with the motion πqa,qb
.

100

The weight Rφ is defined as the maximum Euclidean distance between every point on

A and its rotation center. In this case, we can even achieve a tighter motion bound:

λ(A, πqa,qb
) =

√
∆2
x + ∆2

y + Rφ∆φ. (5.2)

We can also extend the motion bound computation for 3D rigid objects:

λ(A, πqa,qb
) =

√
∆2
x + ∆2

y + ∆2
z + Rφ∆φ + Rθ∆θ + Rψ∆ψ. (5.3)

where φ, θ and ψ are the Euler angles that are used to represent the rotational motion.

Motion Bound for a Cell

Now, we define the motion bound λ of a robot when it is restricted within a cell C,

instead of a line segment, as:

λ(A,C) = max
qb∈∂C

{λ(A, πqa,qb
)}, (5.4)

where qa is the center of C, and qb is any point on ∂C or the boundary of C.

Among all line segments πqa,qb
, any of the main diagonal line segments of the cell

has the maximum difference ∆ on each component between these two configurations.

According to Eqs. (5.2, 5.3), we can infer that the maximum of the motion bound

λ(A, πqa,qb
) is achieved by any main diagonal line segment of the cell. Therefore, the

motion bound for a cell C is equivalent to the motion bound over any main diagonal

line segment πqa,qc :

λ(A,C) = λ(A, πqa,qc), (5.5)

where qa is the center of the cell and qc is any corner vertex of the cell.

5.3.2 Generalized Penetration Depth Computation

In order to perform the C-obstacle cell query, we measure the extent of intersection

between the robot and the obstacle, and compare it with a bound on the robot’s motion.

101

If the robot only has translational DOF, we can use translational PD. However, when

the robot is allowed to both translate and rotate, translational PD is not sufficient for

C-obstacle cell query.

In order to deal with a robot with translational and rotational DOF, we use our no-

tion of generalized penetration depth presented in Chapters 2 and 4. Our generalized PD

takes into account both translational and rotational motion for quantifying the extent

of intersection. The exact computation of generalized PD between non-convex objects

is a difficult problem (Zhang et al., 2007c). In our C-obstacle cell query algorithm, we

use a lower bound generalized algorithm on PDg
TRAJ that guarantees the correctness of

the query. The detail on lower bound algorithm is presented in Chapter 4.

5.3.3 C-obstacle Cell Query Criterion

We now state a sufficient condition for C-obstacle cell query; i.e., checking whether A

and B overlap at every configuration q within a cell C.

Theorem 4. (C-obstacle Cell Query) For a cell C with a center at qa, the predicate

Po(A,B,C) is true if:

PDg
TRAJ(A(qa), B) > λ(A,C).

Proof. Our goal is to show that Eq. (4) implies that there is no free configuration

along any line segment πqa,qb
, where qb is any configuration on the boundary of a

cell C. According to the formulation of PDg
TRAJ, the maximum trajectory length for

every point on a robot A moving along a possible separating path should be greater

than or equal to PDg
TRAJ(A(qa), B). Moreover, according to Eq. (5.4), the trajectory

length of the robot when it moves along πqa,qb
is less than or equal to λ(A,C). Since

PDg
TRAJ(A(qa), B) > λ(A,C), the minimum motion required to separate the robot A

102

from obstacle B is larger than the maximum motion the robot A can undergo. Therefore,

there are no free configurations along any line segment πqa,qb
.

Since there is no free configuration along every line segment between qa to any

configuration on the boundary of a cell qb, this implies that every configuration in

the cell C lies inside the C-obstacle region, and therefore, the predicate Po(A,B,C)

holds.

We use Theorem 4 to conservatively decide whether a given cell C lies inside the

C-obstacle space. The C-obstacle cell query algorithm consists of two steps:

1. Compute a lower bound on PDg
TRAJ for the robot A(qa) and the obstacle B by

Algorithm 1 presented in Section 4.1.3.

2. Compute an upper bound on motion, λ(A,C) by Eq.’s (5.5) and (5.2).

Our C-obstacle cell query algorithm is general for both 2D and 3D rigid models. For

the case where the environment consists of more than one obstacle, each obstacle is

decomposed into convex pieces. Then the generalized PD algorithm can be used to

compute a lower bound between the robot and each of the obstacles.

5.3.4 Extension to Articulated Robots

Our path non-existence algorithm using C-obstacle query can be extended to articulated

robots. Given an articulated robot A with n links A1, A2, ..., An, we treat every link Ai

as a rigid robot with translational and rotational DOF. We need to take into account

the self-collision among the links of an articulated robot.

To perform C-obstacle query, we check the query criterion described in Section 5.3.3

for every link Ai of the articulated robot. We set the robot’s configuration as qa - the

center of the query cell C. We compute a lower bound on generalized PD between a link

Ai and the obstacle B. Next, we compute the motion bound λ(Ai, C) for a link Ai when

103

Figure 5.3: Illustration of path non-existence computation for ‘gear’ example. (a) The
goal of this example is to move a gear-shaped robot from A to A′ through the two gear-
shaped obstacles B1 and B2. It is uncertain whether there is a path for these configura-
tions, even though the robot at Am is collision-free. (b, c) shows the graph Gf built from
empty cells, and the region of full cells (shaded volumes). Since no path is found when
searching the Gf , we search the graph G for a guiding path L, which indicates the next
level of subdivision. (d) After the subdivision is recursively applied, the algorithm finally
concludes that no path exists. This is because the initial and the goal configuration are
separated by full cells (shaded volumes in (d)).

the robot’s configuration varies but is restricted within the cell C. Similar to a rigid

robot, we can prove that this reduces to the computation of λ(Ai, πqa,qc) - the bound

of a main diagonal line segment of this cell. For an articulated robot composed by a

serial of links, a motion bound on a line segment can be computed by using the Jacobian

based methods described in (Paden et al., 1989; Schwarzer et al., 2005; LaValle, 2006).

Finally, we compare the lower bound of PDg
TRAJ(PDg

TRAJAi, B) with λ(Ai, C). If the

lower bound is larger, the cell C lies in C-obstacle.

If there is self-collision among the links of an articulated robot, the corresponding

configuration of this robot will lie in C-obstacle. Therefore, we need to check whether

a cell lies in C-obstacle caused by self-collision of the articulated robot. To do so, we

check every pair of non-adjacent links Ai and Aj. We compute the lower bound on

PDg
TRAJ(Ai, Aj). If it is larger than λ(Ai, C) + λ(Aj, C), the cell C lies in C-obstacle.

104

Figure 5.4: ‘Five-gear’ example for path non-existence. (Left) The goal of this example is
to move a gear-shaped robot from A to A′ passing through the 2D environment composed
of five, static, gear-shaped obstacles B1, ... and B5. (Right) Our planner can successfully
report that no collision-free path exists for this example within 6.317s. The result can
be conservatively determined since the initial and the goal configuration are separated by
full cells, which are highlighted by the shaded volumes in this subfigure.

Figure 5.5: ‘Five-gear’ example with narrow passage. (Left) this planning problem
is almost same as Fig. 5.4 except that the obstacle B5 is slightly modified as well as
translated. Our method can find a path passing through the narrow passage in the free
space. We show the robot’s intermediate configurations for the found path. (Right)
The connectivity graph over the empty cells in C-space and the collision-free path are
highlighted.

Free Cell Query

We use free cell query to check whether a cell is empty or lies entirely in free space. We

can compute the separation distance between the robot and the obstacle. This distance

describes the ‘clearance’ between the robot and the obstacle. If this ‘clearance’ is greater

than the amount of the motion bound that the robot can make, the robot will not collide

with the obstacle, and the cell C will be declared as an empty cell.

105

Figure 5.6: ‘2D puzzle’ example. (a) Our algorithm can report the path non-existence for
this planning problem of moving A to A′ within 7.898s. (b) is a modified version of (a),
where the obstacle B3 is removed. Our algorithm can find a collision-free path through
a narrow passage among the obstacles. (c) shows a few intermediate configurations
denoted Am of the robot along the collision-free path.

5.3.5 Experimental Results

In this section, we describe an implementation of our algorithms for cell labelling and

path non-existence computation. We highlight their performance on several benchmarks.

Our implementation of the approximate cell decomposition framework is general for

any dimensional configuration space. Currently, we use the implementation for robots

with three or four DOF. The main computational component for C-obstacle query is

to compute generalized PD. We reduce PDg
TRAJ to the computation of translational

PD between convex pieces, which can be implemented by using the algorithm (van den

Bergen, 2001) for 3D models, and the Minkowski sum based algorithm for 2D models

(Wein, 2008).

We illustrate our algorithm on the ‘two-gear’ example in Fig. 5.3. In order to check

whether the gear-shaped robot can pass through the passage among the gear-shaped

obstacles, the algorithm performs cell decomposition, and builds the connectivity graph

G for empty and mixed cells as well as its subgraph Gf for the empty cells. The cell

decomposition, which is performed in the region indicated by the guiding path from

the search on the connectivity graph G, is iterated 40 times until the initial and goal

configurations are found to be separated by full cells. The entire computation takes

106

3.356s.

We have applied our algorithm to some complex benchmarks including: ‘five-gear’,

‘five-gear with narrow passage’, ‘2D puzzle’ and ‘2D puzzle with narrow passage’. Table

5.1 highlights the performance of our algorithm on these benchmarks. According to

Table 5.1, our approach can report path non-existence for these benchmarks within 10s.

In particular, for the ‘five-gear’ example, the total timing is 6.317s with 1.162s and

1.376s for the C-obstacle cell queries and free cell queries, respectively.

Fig. 5.7 shows a four DOF star-shaped robot. With 3 translational DOF and 1

rotational DOF, the star-shaped robot is allowed to translate freely in 3D space as well

as to rotate around its local Z axis (indicated by the yellow arrow). For this planning

problem, our algorithm can successfully report path non-existence with 161.720s.

Table 5.2 gives details about the performance of our algorithm on different bench-

marks. For the ‘five-gear’ example, the cell decomposition, which is restricted in the

region indicated by the guiding path, is iterated 67 times. The final cell-decomposition

includes 39, 068 cells, including 3, 473 empty cells, 16, 172 full cells and 19, 424 mixed

cells.

Fig. 5.8 shows a benchmark for a 3-DOF 2D articulated robot. The robot is com-

posed by 3 serial links with a fixed base. The articulated robot needs to manipulate

from its initial configuration to goal configuration without colliding with any of the ten

rectangle-shaped obstacles in the 2D plane. For this problem, our planner can determine

path non-existence within 1, 513.682s. The breakdown of the timing and other profiling

information of this benchmark are summarized in Tables 5.1 and 5.2.

Since our algorithm performs cell decomposition, it is directly applicable to com-

puting collision-free paths even when the free space has narrow passages. Finding a

collision-free path through a narrow passage has been considered as a difficult task for

randomized sampling methods, such as PRM. Fig. 5.5 shows the modified ‘five-gear’

example. Our planner can find a path through the narrow passage within 85.163s.

107

Figure 5.7: 4-DOF ‘star’ example. The star-shaped robot is allowed to translate freely
in 3D space as well as to rotate around its local Z axis (indicated by the yellow arrow).
(a) the goal of this example is to move the star-shaped robot from A to A’ by passing
through the star-shaped hole of the rectangular bar model. Our algorithm can successfully
report path non-existence for this planning example with 161.720s. (b) shows the set of C-
obstacle cells, which separate the robot from its initial configuration to goal configuration.
We project the configuration space R3×SO(1) into R3, and use different colors indicate
the different levels of subdivision when cells are generated.

Figure 5.8: A 3-DOF articulated robot. Our planner determines path non-existence
from the robot’s initial configuration to goal configuration within 1, 513.682s.

two five five-gear puzzle puzzle star serial
-gear -gear narrow narrow 4-DOF links

Total timing(s) 3.356 6.317 85.163 7.898 15.751 161.720 1,513.682
Free cell query(s) 0.858 1.376 6.532 2.174 2.993 21.050 42.591

C-obstacle cell query(s) 0.827 1.162 4.675 2.021 2.612 24.492 209.660
G searching(s) 0.389 1.409 30.687 1.991 5.685 61.802 820.976
Gf searching(s) 0.077 0.332 7.169 0.309 1.035 17.643 164.939

Subdivision,Overhead(s) 1.205 2.038 36.100 1.403 3.426 36.733 275.516

Table 5.1: Performance. This table highlights the performance of our complete motion
planning algorithm on different benchmarks.

108

two five five-gear puzzle puzzle star serial
-gear -gear narrow narrow 4 DOF links

of iterations 41 67 237 66 107 294 417
of free cell queries 32,329 44,649 192,009 59,121 77,297 207,713 2,133,241

of C-obstacle cell queries 30,069 41,177 176,685 55,683 70,438 174,131 1,962,493
of cells 28,288 39,068 168,008 51,731 67,635 194,731 1,866,586

of empty cells 2,260 3,472 15,324 3,438 6,859 33,582 170,748
of full cells 12,255 16,172 74,713 26,295 3,0351 73,928 670,928

of mixed cells 13,773 19,424 77,971 21,998 30,425 87,221 1,024,910

Table 5.2: The table summarizes various statistical information of our complete planner.

Five-gear narrow

Cell Culling Ratio 75.21%
Time Per Cell Culling(ms) 0.12

Time of Original Method(s) 261.4
Time of Accelerated Method(s) 110.4

Speedup 2.4
Time for C-obstacle Cell Query(s) 13.3

Table 5.3: Performance for C-obstacle cell query. For the Gear example, our query can
identify about 75.21% of C-obstacle cells. The average query time is about 0.12ms. Based
on C-obstacle query, we improve the performance of the star-shaped roadmap planner by
2.4 times in this case.

Effectiveness of C-obstacle Cell Query

To demonstrate the effectiveness of our C-obstacle cell query, we apply our C-obstacle

query algorithm to speedup a complete motion planning algorithm - the star-shaped

roadmap method (Varadhan and Manocha, 2005) (cf Fig.5.4). We define the cell culling

ratio as the number of cells in C-obstacle space identified by our query algorithm over

the total number of cells in C-obstacle space.

Tab. 5.3 illustrates that our C-obstacle query algorithm can achieve 75.21% cell

culling ratio in our Gear benchmark. Tab. 5.3 also shows that the average time for each

C-obstacle query in the Gear example is about 0.12ms. In this complex 2D scenario,

the C-obstacle query algorithm improves the performance of the star-shaped roadmap

planner by by 2.4 times.

109

5.4 A Hybrid Approach for Complete Motion Plan-

ning

The approach presented in the previous section based on approximate cell decomposition

(ACD) and cell labelling is complete: it can either find a collision-free path or conclude

that no such path exists provided the number of subdivisions is high or small resolution

parameters are chosen. However, the algorithm can generate a large number of mixed

cells. Moreover, the complexity of the subdivision algorithm increases exponentially

with the dimension of C.

On the other side, the practical motion planning algorithms for high-DOF robots

are based on sampling-based approaches, including the probabilistic roadmap (PRM)

method and its variants. Because of their simplicity and efficiency, these algorithms have

been successfully used to solve many high-DOF motion planning problems. However,

these algorithms may not terminate when no collision-free path exists in the free space.

Their performance can degrade when the configuration space has narrow passages.

In this section, we present an efficient algorithm for complete motion planning that

combines approximate cell decomposition (ACD) with probabilistic roadmaps (PRM)

(Zhang et al., 2007b). Our approach uses ACD to subdivide the configuration space

into cells and computes localized roadmaps by generating samples within these cells.

We augment the connectivity graph for adjacent cells in ACD with pseudo-free edges

that are computed based on localized roadmaps. These roadmaps are used to capture

the connectivity of free space and guide the adaptive subdivision algorithm. At the same

time, we use cell decomposition to check for path non-existence and generate samples in

narrow passages. Overall, our hybrid algorithm combines the efficiency of PRM methods

with the completeness of ACD-based algorithms. We have implemented our algorithm

on 3-DOF and 4-DOF robots. We demonstrate its performance on planning scenarios

with narrow passages or no collision-free paths. In practice, we observe up to 10 times

110

F O
F

O

F F O
(a) (b)

(c) (d)

O

oqO
Ccontact

'mq

Figure 5.9: Benefits of the hybrid planner. This example highlights that our hybrid
algorithm can combine both benefits of ACD and PRM. First row: (a) In ACD, to
capture the connectivity of the free space within this mixed cell, many subdivisions are
required; (b) A localized roadmap within this cell can well capture its connectivity by
only a few samples, and thereby can improve the overall performance of the planning
algorithm of ACD. Second row: (c) It is difficult for PRM methods to sample in the
narrow passage; (d) The structure of the cell decomposition can be used to generate
more samples in the narrow passage.

improvement in performance over our first complete motion planning algorithms.

The rest of the section is organized as follows. We first give an overview of our hybrid

approach and introduce the key data structures. We then give the details of localized

roadmap computation and subdivision algorithms. We describe our implementation of

the hybrid planner and highlight its performance on many examples. Finally, we discuss

the limitations of our method and compare its performance with prior approaches.

5.4.1 Overview

In this section, we give a broad overview of our hybrid planning algorithm. We also

introduce the key data structures used in our algorithm.

111

At a broad level, our algorithm performs adaptive decomposition of C into rectangular

cells similarly to the previous ACD methods, and uses efficient labelling algorithms

presented in the previous section to classify them as empty, full or mixed cells. The

main bottleneck in previous ACD methods lies in dealing with a large number of cells.

Most of the cells are classified as mixed cells, and they are recursively subdivided till their

size is less than a threshold. This is due to three reasons. First, the exact boundary of

the free space is complex and not aligned with the cell boundaries (Fig. 5.9). Therefore,

many levels of subdivisions are needed to compute a good approximation of the free

space. Secondly, most cell labelling algorithms tend to be conservative, i.e. some of the

empty or full cells are classified as mixed. Finally, the complexity of the subdivision

algorithm increases as an exponential function of the number of DOF.

In order to address these problems, we augment the cells with localized roadmaps,

which tend to capture the connectivity of the free space within each mixed cell. Further-

more, we attempt to connect the localized roadmaps of adjacent cells using pseudo-free

edges. Within each mixed cell, the roadmap provides a compact representation of its con-

nectivity, while a pseudo-free edge captures the connectivity of the localized roadmaps

between two adjacent cells. As a result, there is a high probability that we can compute

a path through these mixed cells and assign them a lower priority in terms of adaptive

subdivision. Overall, our hybrid algorithm performs fewer subdivisions compared to

prior ACD algorithms.

Our hybrid method also improves the performance of PRM algorithms. Since we

only generate random samples in the mixed cells at any level in the subdivision, our

approach automatically computes more samples near or in narrow passages. Compared

to prior PRM approaches, this results in an improved sampling strategy. Moreover, by

using ACD for path non-existence queries, our hybrid algorithm is complete.

112

Pseudo-free edge

F O
c3 c4

v3 v4
c1

c2

c3

v1

v2 v3 v4

c4

c7 c5

c6

v5

v6
G

Free edge

Uncertain edge

v1 v2

v5 v6

Figure 5.10: Pseudo-free edges and connectivity graph. ACD subdivides the C-space,
and classifies the resulting cells as empty, such as c1, full such as c7 or mixed such as
c3. The connectivity graph G is a dual graph to ACD and each empty or mixed cell
is mapped to a vertex in G. There are three types of edges in our connectivity graph
G. Two adjacent empty cells, such as c1 and c2 are connected by a free edge (v1, v2).
Two non-full cells are connected by a pseudo-free edge such as (v3, v4) if their localized
roadmaps can be connected as the right figure shows; otherwise, they are connected by
an uncertain-edge such as (v5, v6).

Localized Roadmaps

Let us denote the approximate cell decomposition of configuration space as P , and

use ci to represent each cell in P . In our approach, a small fraction of mixed cells

are associated with localized roadmaps. For each empty cell, a trivial roadmap with

only a single sample in its center is constructed. We also implicitly maintain a global

roadmap M for P , including all the localized roadmaps Mc associate with each cell c;

i.e., M⊃ ∪Mc where Mc 6= φ. In addition, for two adjacent cells ci and cj, if there is

a collision-free path to connect their associated localized roadmaps Mci and Mcj , this

path is added toM (Fig. 5.10). Details of this computation are given in Section 5.4.2.

Connectivity Graph

As a dual graph of P , the connectivity graph G represents the connectivity between the

cells in P . The graph is defined as follows: each non-full (empty or mixed) cell in P

is mapped to a vertex v in G; if two non-full cells ci and cj in P are adjacent to each

other, their corresponding vertices, vi and vj, respectively, are connected by an edge

113

e(i, j) in G. Furthermore, an edge e(i, j) is classified into one of the following three

types (Fig.5.10):

• Free: If ci and cj are both empty, e(i, j) is a free edge. This implies that there

exits a collision-free path between any configuration q0 in ci to any configuration

q1 in cj.

• Pseudo-free: If e(i, j) is not a free edge, but two localized roadmaps Mci and

Mcj associated with ci and cj can be connected by a collision-free path, e(i, j) is

called a pseudo-free edge. The existence of a pseudo-free edge can be checked by

any local planner. Its existence indicates that it is highly likely that there exists

a collision-free path between any free configuration q0 in ci and free configuration

q1 in cj.

• Uncertain-edge: If e(i, j) is neither free nor pseudo-free, it is classified as an

uncertain-edge. Since the localized roadmaps Mci and Mcjcan not be connected

by local planning, it is unlikely that there exist a collision-free path between any

free configuration q0 in ci and any free configuration q1 in cj.

We further define some of the subgraphs of G as follows: the free connectivity graph

Gf is a subgraph of G that only includes all free edges of G. The pseudo-free connectivity

graph Gsf is a subgraph of G that includes both all the free edges and the pseudo-free

edges. The three types of connectivity graphs represent different levels of approximations

of the free space F and are used by the path planning algorithm. More specifically,

• G represents the adjacency among free or mixed cells, which form a superset of

the free space F . Therefore, the graph is useful for deciding path non-existence,

because no path found in G implies that there is no collision-free path in F .

• Gf represents the adjacency among all free cells, which forms a conservative ap-

proximation or a subset of F . It is useful for finding a collision-free path for

114

A.

• Gsf represents the adjacency among all free cells and a portion of mixed cells.

They represent a good approximation of the free space for path queries, since a

free edge (or a pseudo-free edge) among two adjacent cells indicates there must

be (is likely) a collision-free path between any pair of free configurations in the

two cells. We compute localized roadmaps to capture the connectivity for this

approximation, and use them for path queries.

5.4.2 Hybrid Planning Algorithm

In this section, we describe our hybrid motion planning algorithm in detail, with an

emphasis on computation and use of data structures introduced in the previous section.

Fig. 5.11 shows a flowchart of our algorithm, which consists of two stages: finding a

collision-free path and checking for path non-existence. These two stages are executed

iteratively until a collision-free path is found or the path non-existence is detected.

Starting with an initial, coarse and uniform approximate cell decomposition P of C,

our algorithm proceeds in the following manner.

Stage I. Collision-free Path Computation

1. Locate the cells in P that contain qinit and qgoal; denote their corresponding

vertices in G as vinit and vgoal, respectively.

2. Search Gf to find a path that connects vinit and vgoal. If a path Lf is found, a

collision-free path for the given planning problem can be computed by connecting

the initial configuration, the path Lf and the goal configuration, since the space

represented by Gf is a conservative approximation of F .

3. If no path is found in Gf , we search the graph Gsf for a path to connect vinit

and vgoal. If no path is found in Gsf , this means that there is no collision-free

115

Does the path yield a
collision-free path?

Search on Gsf ;
Is there a path?

Report a collision
 free path

Search on G ;
Is there a path?

No

Stage I

Stage II

No

Yes

No

Yes

Yes

Search on Gf ;
Is there a path?

Input

Yes

Sampling and Cell Decomp.

Sampling and Cell Decomp.
Report path

non-existence

No

2

3

4

5

1
2

Locate the vinit and vgoal
1

Figure 5.11: Flowchart of the hybrid planner. Our algorithm consists of two stages. The
algorithm is executed iteratively until a collision-free path is found in stage I, or the path
non-existence is detected in stage II.

path within the current approximation of F represented by Gsf . Therefore, our

algorithm proceeds to checking for path non-existence stage.

4. If a path, say Lsf , is found in Gsf , it suggests that a collision-free path may exist.

In order to verify the existence, we search over the union of all localized roadmaps

associated with the cells along the path Lsf . If a collision-free path is found,

our algorithm terminates. More specifically, let PLsf
be a sequence of cells in P

corresponding to the vertices in Lsf . Let MLsf
be a subgraph of M that lies

within PLsf
. To verify whether Lsf can yield a collision-free path, we first search

over MLsf
. If no path is found in MLsf

, then we search the entire roadmap M.

116

If no collision-free path is found within M, this implies that the current PRM

representation is not fine enough to compute a collision-free path. Therefore, we

need a more accurate (or finer) representation of F . For this case, the algorithm

proceeds to the next step.

5. If no path can be computed, we identify critical cells along the path Lsf , which

break the reachability between qinit to qgoal. Additional samples are generated in

the critical cells to improve their localized roadmaps. After that, we perform one

level of subdivision on these cells and update the graphs G, Gf and Gsf . Next,

the algorithm returns to the Path Computation Stage.

Stage II. Checking for Path Non-Existence

1. We perform a graph search on G to find a path connecting vinit and vgoal. If no

path can be found in G, our algorithm can safely conclude that the given planning

query has no solution, since the space represented by the graph G is a superset of

F .

2. Otherwise, we compute a path L in G to connect vinit and vgoal, and perform

sampling and cell subdivisions on the critical cells along L. The algorithm then

updates the connectivity graphs and returns to the Path Finding Stage.

Improved Sampling and Cell Subdivision

If the stage of path computation is not able to find a collision-free path in Gf or Gsf , we

generate additional samples forM and subdivide the cells in P (i.e., step 5 of Stage I). A

straightforward scheme would generate additional samples for all mixed cells in PLsf
and

further subdivide them. In order to perform this step more efficiently, we identify the

critical cells and only generate additional samples and perform cell subdivision on these

cells. More specifically, the critical cells are defined as those cells, where the roadmap

MLsf
is disconnected with respect to qinit to qgoal.

117

Overall, the use of critical cells results in adaptive sampling and fewer subdivisions.

First of all, there may exist cells in C-obstacle that actually separate a part of free space.

These types of cells are useful in terms of checking for path non-existence. Therefore,

we can concentrate on classifying these cells by performing additional sampling and

subdivisions. Moreover, poor sampling in one of these cells can result in a disconnected

localized roadmap, and therefore, these cells are good candidates to receive additional

samples.

Critical cell computation: In order to identify the critical cells in the set PLsf
, we use

a propagation algorithm based on depth first search (DFS). The time complexity of this

algorithm is linear to the size of MLsf
. As Fig. 5.12 shows, we denote the cells along

the path Lsf as c1, c2, ..., cn (n=5), and their corresponding vertices in Lsf are vinit,

v2, ..., vn−1, vgoal. The algorithm searches MLsf
from q = qinit using DFS, and set the

reachable flags of its descent samples as true (initially, the flag for every sample is false).

When DFS stops, we check whether the reachable flag of qgoal has been set. If not, the

algorithm searches for a cell ci, which contains at least one reachable sample and has

the largest index i. The cell ci is a critical cell, since the roadmapMLsf
is disconnected

in this cell w.r.t. qinit and qgoal. If vi is not equal to vgoal, we iterate this process to

find more critical cells. Since Lsf is computed from Gsf , vi should have a pseudo-free

edge with its adjacent vertex vi+1 in Lsf . Furthermore, this pseudo-free edge is realized

by a local path between a sample qm in ci with a sample qn in ci+1. Therefore, we can

resume DFS search from q = qm. This process continues until vi is equal to vgoal.

Critical cell computation for path non-existence: In the stage corresponding

to path non-existence computation, if a path L is found in G, we need to refine our

representation of F . For this purpose, one known technique is first graph cut (Latombe,

1991), which only subdivides the cells along the L, instead of mixed cells in P . In

our algorithm, we further reduce the number of subdivisions by identifying the critical

cells along L. More specifically, a cell c along L is critical if there exists more than

118

the University of North Carolina at CHAPEL HILL

qinit

qgoal

c1

c2 c3

c4

c5

vinit

v2 v3 v4

vgoal

q1
q2

Pseudo-free connectivity graphCells along Lsf

Figure 5.12: Critical cell computation. The cells c2 and c4 are classified as critical cells,
since there the roadmap M is disconnected. We identify such cells using a propagation
algorithm based on DFS. Note that since the roadmaps in c2 and c3 are connected by an
edge, their corresponding vertices v2 and v3 are connected by a pseudo-free edge too.

one connected graph component inMc; two adjacent cells on the path L are critical, if

there is no free edge or pseudo-free between them. Only these critical cells are further

subdivided and extra samples are generated to update their localized roadmaps.

5.4.3 Implementation and Performance

We have implemented our hybrid planner and tested its performance on 3-DOF and

4-DOF robots in difficult motion planning scenarios. In this section, we address some

implementation issues. We analyze the performance of our planner, and compare it with

other complete motion planning algorithms.

Implementation

We perform approximate cell decomposition on the configuration space C, and use C-

obstacle and Free-cell query algorithms to label the cells during subdivision. Our for-

mulation of the adaptive subdivision framework is general for arbitrary dimensional C,

and we have tested it on 3 and 4 dimensional C.

The two main computational components in our algorithm are graph search and

119

Figure 5.13: ‘Five-gear’ example with narrow passage. The left figure shows a 3-DOF
planning problem with narrow passages. Shown in the left and middle figures, where 3
dimensional C-space is illustrated together with the workspace, our hybrid planner can
generate samples in the narrow passage, and the global roadmap constructed can capture
the connectivity in the free space well. The middle figure also highlights the roadmap
for the free space. The figure in the right shows the histogram of the number of cells in
different levels of subdivisions.

localized roadmap computation. In order to search for a shortest path in the connectivity

graph G, we assign different weights to different types of edges. The underlying idea

is to assign a higher weight (i.e. a lower priority) to the uncertain edges, so that the

search algorithm tends to find a path through the free edges and pseudo-free edges.

This results in a path with fewer uncertain edges and results in fewer subdivisions. In

our current implementation, the weight of a free edge is set as zero and the weight of a

pseudo-free edge is also set as zero. The weight of an uncertain edge e(i, j) is set as the

distance between the centers of cells ci and cj.

For the localized roadmap computation, more samples are generated for mixed cells

than free cells. In our experiments, the maximum number of free samples in each mixed

cell, Nm, is set as 5. The maximum trial number of random samples used to generate

each free sample, Ntrial, is 5. For each free cell, we only need to generate a sample at

its center.

Results

We have tested our hybrid planner on different examples. Our current implementation

is not optimized. We also compare our algorithm with the ACD-based complete planner

presented in Section 5.3. The performance and various statistics are summarized in

120

(sec) Five-gear Star Star(no-path) Notch

Total timing 33.855 16.197 48.453 102.076
Cell labelling 4.025 9.562 31.793 20.915

Sampling 5.313 0.265 1.096 5.147
Link computation 8.829 4.172 14.345 27.623
Gf , Gsf search 1.123 0.462 2.037 3.185

G search 5.472 1.218 6.139 13.574
Subdivision 9.093 0.518 6.130 31.632

Table 5.4: Performance of the hybrid planner. This table highlights the performance of
our algorithm on different examples. We show the breakup of timings among different
parts of the algorithm. The five-gear is a 3-DOF example and the rest are 4-DOF
examples.

Tables 5.4 and 5.5.

3-DOF ‘five-gear’ example with narrow passages This is a difficult 3-DOF mo-

tion planning problem. There are narrow passages for this example, and the boundary of

C-space for this example is very complex. Our hybrid planner can compute a collision-

free path within 33.855s, which is about three times faster than previous method. The

number of cells in the approximate cell decomposition is 50, 730, which is only 30.2%

of the number in the previous ACD method. Fig. 5.13 highlights that our approach

can generate the samples and construct the probabilistic roadmap effectively near or in

narrow passages. The roadmapM for this example includes 6, 488 samples and 15, 298

edges. Each sample in M has only 4.7 neighbors on average. This can be observed in

Fig. 5.13, where each sample is connected with a few other samples.

Table 5.5 demonstrates that only a subset of mixed cells in ACD are associated with

localized roadmaps. This confirms that our approach is able to generate and utilize the

samples effectively.

4-DOF ‘star’ example Figs. 5.14 and 5.15 show a 4-DOF robot, with 3 translational

DOF and 1 rotational DOF. The star-shaped robot is allowed to translate freely in 3D

space and to rotate around its local Z axis (indicated by the yellow arrow) in its local

121

Figure 5.14: 4-DOF ‘star’ example with narrow passage. The star-shaped robot is al-
lowed to translate freely in 3D space and to rotate around its local Z axis (indicated by
the yellow arrow). (a) This planning problem is to move the robot from the red place-
ment (top) to the green placement (bottom) by passing through the star-shaped narrow
hole. Our approach can find a collision-free path within 16.197s. For the purpose of
the visualization, we project the configuration space from R3 × SO(1) into R3. (a, c)
shows the path and the robot’s intermediate configurations on the path. (b,d) shows the
roadmap from two different viewpoints.

Figure 5.15: 4-DOF ‘star’ example for path non-existence. We modify the scene in Fig.
5.14 by scaling the robot by 1.3. Our planner can report path non-existence for this
new example within 48.453s. (b, c) shows the samples and the roadmap generated by
our approach. (d) shows the subset of mixed cells in ACD, which are associated with
localized roadmaps. (e) shows the set of C-obstacle regions, which separate the robot
from its initial configuration to goal configuration.

Figure 5.16: 4-DOF ‘notch’ example. The star-shaped robot needs to pass through the
very narrow notch. Our approach can find a collision-free path within 102.076s.

122

Five-gear Star Star Notch
no path

of cells 50,730 48,046 82,171 164,446
of empty cells 1,272 12,159 15,651 7040
of full cells 20,761 10,063 31,984 108,983

of mixed cells 28,697 25,824 34,536 48,423

of samples inM 6,488 465 2,791 5,494
of edges inM 15,298 732 5,040 12,707

Avg degree of sample 4.72 3.15 3.61 4.63

of mixed cells 2,457 69 353 1,584
associated withM

of free cells 568 335 2,078 2,804
associated withM

Peak memory usage (MB) 67 51 75 130

Table 5.5: This table gives different statistics related to the examples.

Hybrid Planner ACD-based Planner Speedup

Total timing 33.855(s) 85.163(s) 2.52
Total cells 50,730 168,008 3.31

Table 5.6: Comparison. We achieve up to 3 times speedup over prior ACD method for
the ‘five-gear’ example. For the 4-DOF ‘star’ example, the ACD version presented in
the previous section could not terminate within 10 mins. But the hybrid planner can
report the correct result for both scenarios less than 1 min.

coordinate system. We test this example for two scenarios: to find a collision free path

for the original star-shaped robot, and to detect path non-existence when the robot is

uniformly scaled by 1.3. The performance and various statistics for this example are

summarized in Tables 5.4 and 5.5.

4-DOF ‘notch’ example Fig. 5.16 shows a 4-DOF example, where the star-shaped

robot needs to pass through a very narrow passage, the notch in this figure. Our ap-

proach can find a collision-free path for this example within 166.464s, and only generates

5, 494 samples.

123

5.5 Analysis and Comparison

In this section, we show that both our algorithms based on approximate cell decompo-

sition (ACD) are complete. In our first ACD-based algorithm, we use our C-obstacle

query algorithm to label the full cells, which lie entirely in C-obstacle space. Our second

hybrid algorithm further improves the overall performance by combining the efficiency

of randomized sampling and the completeness of ACD. We also compare our algorithms

to other exact or hybrid planners.

5.5.1 Completeness

Both of our algorithms are based on ACD. ACD approaches are traditionally classified

as resolution-complete. If there are no tangential contacts in the free space, these ap-

proaches can either find a collision-free path or report that no such path exists provided

small resolution parameters are chosen for the subdivision (Latombe, 1991). We can also

classify ACD approaches as complete since provided the planners can keep subdividing

C-space or the level of subdivisions is sufficiently high, the planners are guaranteed to

compute a collision-free path or correctly report path non-existence in finite time.

The key component in our ACD-based algorithms to check for path non-existence

is the C-obstacle cell query, which provides an efficient scheme to determine whether

a volume or a cell lies entirely inside the C-obstacle space. Essentially, this query

enables us to annul impossible paths, because any path connecting the initial and goal

configurations while passing through a full cell will be infeasible.

Although our generalized PD and C-obstacle query algorithms are conservative, the

overall planners are still complete. To prove the completeness of the planners, we need

to show the following lemma.

Lemma 2. Any cell C that lies entirely in C-obstacle space can be correctly classified

by performing a finite number of C-obstacle queries using Eq. (4) on the sub-cells from

124

the subdivision of C.

Proof. Since the cell C lies entirely in C-obstacle space, for every configuration q ∈

C, the robot intersects with the obstacle. In the preprocessing step of the convex

decomposition, we assume that convex pieces cover the original models completely, i.e.

∪Ai = A and ∪Bi = B. Therefore, at q, there exists at least one pair of intersecting

convex pieces of the robot model and obstacle model. So the lower bound on generalized

PD computed for every configuration q ∈ C is larger than 0. Denote the minimum over

these lower bounds as η. Now we can subdivide the cell C uniformly. The level of

subdivision is chosen so that the motion bound of the resulting sub-cell becomes less

than η. According to the C-obstacle query criterion in Eq. (4), all these sub-cells lie

entirely in C-obstacle space. Therefore, the cell C also lies in C-obstacle.

Since a cell that lies inside C-obstacle space can always be correctly classified within

a finite number of subdivision, our ACD-based planners are complete.

An important assumption in this lemma is that the set of convex pieces of the

decomposition must completely cover its original model; otherwise, the lower bound of

generalized PD for a colliding configuration maybe 0 and the resulting C-obstacle query

may not correctly classify the cells in C-obstacle. In another word, the completeness of

our ACD-based planners is guaranteed by the condition of complete covering the original

models by convex pieces. In practice, considering that the convex decomposition in our

algorithm is performed during the preprocessing step, such decomposition is relatively

easy to compute. For 2D polygons, there are good convex decomposition schemes (Keil,

2000). For 3D models, even a tetrahedral volumetric decomposition will satisfy.

According to the proof of this lemma, we can also infer that if the lower bound of

generalized PD is guaranteed to be larger than 0 for overlapping models, our ACD-based

planners will be complete. This can serve as a guideline on developing new lower bound

generalized PD algorithms for complete motion planning.

125

5.5.2 Analysis of C-obstacle Query Algorithm

The complexity of our path non-existence computation is bounded by the number of

subdivisions performed and the complexity of the cell labelling algorithms. We only

analyze the complexity of the C-obstacle cell query algorithm that is bounded by the

part of generalized PD computation since the part of motion bound can be computed

in constant time. As shown in Section 4.1.5, the computational complexity of our lower

bound generalized PD computation for 2D rigid objects A and B is O(an2 + bn1), and

for 3D rigid objects is O(ab), where n1 and n2 are the number of convex pieces of the

robot A and the obstacle B; a and b are the geometric complexity of all convex pieces

of A and B.

5.5.3 Comparison

We compare our algorithms to some prior exact approaches such as (Avnaim and Bois-

sonnat, 1989b; Banon, 1990), our algorithms are simple and efficient since they does

not involve contact surface computation. Furthermore, our algorithms can be easily

implemented for 4-DOF robots. In contrast, the prior exact approaches are difficult to

implement and are prone to degeneracies due to the enumeration and computation of

all the contact surfaces, especially for 4-DOF robots.

We also compare our algorithms for path non-existence with the star-shaped roadmap

method (Varadhan and Manocha, 2005), especially because our approaches share some

similarities with the star-shaped roadmaps method. Star-shaped roadmap method par-

titions the free space into star-shaped regions and for each star-shaped region computes

a single point called a guard which can see every point in the region. In our approaches,

the empty cells are a special case of star-shaped regions where any configuration in the

cell can be considered as a guard. Moreover, we can label empty and full cells without

relying on contact surface computation, which is simpler as compared to the star-shaped

roadmap method.

126

Many hybrid approaches have been also proposed for efficient motion planning by

combining different methods (Foskey et al., 2001; Hirsch and Halperin, 2003; Hsu et al.,

2005; Morales et al., 2005). In particular, Hirsch and Halperin (2003) present a hybrid

method that combines exact motion planning with probabilistic roadmaps, and apply it

to planning the motion of two discs moving among polygonal obstacles. Our approach

shares some similarities with this prior approach. Specifically, our method combines

ACD with PRM, while their algorithm combines an exact cell decomposition approach

with PRM. Conceptually, each of these algorithms computes two explicit representations

to approximate the free space F : a subset of F , which is used to compute a collision-free

path and a super set of F , which is used to check for path non-existence. However, in our

method, the approximate representation of free space can be incrementally refined using

spatial subdivision, until a collision free path is found or path non-existence is confirmed.

As a result, the strength of ACD approach is fully inherited, i.e. our hybrid method is

complete. In Hirsch and Halperin’s method, an approximate free space representation

is computed as a preprocess and the subset and superset approximations of the free

space can not be further refined. As a result, Hirsch and Halperin’s method (Hirsch

and Halperin, 2003) can decide path non-existence for some cases, but is not a complete

motion planning algorithm. In addition, the implementation of their method is limited

to disc robots, while our hybrid planner can be applied to robots with arbitrary shapes.

Completeness is another benefit of our hybrid method over probabilistic cell decom-

position (Lingelbach, 2004), which is probabilistically complete and can not correctly

handle motion planning scenarios where no path exists. On the other hand, based on

our C-obstacle query algorithm, our hybrid method can report path non-existence.

5.5.4 Limitations

Our complete motion planning approaches have a few limitations. The C-obstacle cell

query algorithm is conservative, which stems from the conservativeness of generalized PD

127

and motion bound computations. Secondly, our path non-existence algorithm assumes

that there are no tangential contacts on the boundary of the free space. Otherwise, the

algorithm may not terminate. As a result, our algorithm can not deal with compliant

motion planning, where a robot cannot pass through obstacles when the robot is not

allowed to touch them. Moreover, when we apply our hybrid planner to 4-DOF or higher

DOF problems, graph searching becomes one of the major bottlenecks. This is because

the size of the connectivity graph increases as a function of the number of the cells

in ACD. There is additional overhead of the two-stage hybrid algorithm. If there is a

collision-free path, then the work performed in Path Non-existence Stage is unnecessary.

The complexity of each complete planner based on approximate cell decomposition

varies as a function of the dimension of the configuration space. In the worst situation,

our planners have an exponential complexity with the number of DOF of the robot.

However, our experimental results show that our planners can work well on many com-

plex 3-4 DOF problems as compared to the prior approaches.

5.6 Extension: Global Vector Field Computation

for Feedback Motion Planning

We have focused on computing collision-free paths for robots. In this section, we show

our complete motion planning approaches can also be extended for feedback motion

planning, which deals with computing a feedback plan by computing a global vector field

over the entire free space. Earlier work on decoupling the feedback and motion planning

can be inefficient. Typically, paths computed by planners may not be smooth and can

be difficult to track. On the other hand, it can be difficult to design feedback control

strategies that take into account non-convex constraints induced by the obstacles in the

environment. Therefore, when a feedback controller fails to steer the robot to follow a

prescribed path, the robot often has to replan for a new path. In order to overcome these

128

problems, feedback motion planning approaches take into account feedback concerns

during collision-free path computation. Rather than planning a single collision-free path

between the initial and goal configurations, these approaches compute a feedback plan

over the entire free space of the robot that can converge towards the goal (Conner et al.,

2003; Lindemann and LaValle, 2009). A feedback plan is often represented as a vector

field over the free space. Moreover, the resulting vector field satisfies the convergence

property, i.e. the robot is guaranteed to arrive at the goal configuration without colliding

with any obstacles in the environment.

Most of the prior work on computing global vector fields for feedback motion plan-

ning is based on sequential composition (Conner et al., 2003; Lindemann and LaValle,

2009; Belta et al., 2005; Kloetzer and Belta, 2006). In these approaches, the robot’s

free space is decomposed into cells. A local vector field is computed within each cell

and a global vector field is composed of individual vector fields. However, most prior

algorithms are limited to low DOF robots and obstacles with simple shapes due to the

difficulty of handling non-convex collision constraints (Kloetzer and Belta, 2006). Other

approaches assume that a good cell decomposition of the robot’s free space, e.g. the

cylindrical algebraic decomposition (CAD), is given a priori (Lindemann and LaValle,

2009). Although CAD is an exact decomposition scheme and be used for general motion

planning problems (Schwartz and Sharir, 1983), it is difficult to implement this scheme

robustly and efficiently, even for low DOF robots. As a result, most prior practical

algorithms for feedback motion planning have been limited to simple robots with three

or fewer DOF.

In this section, we present a practical global vector field computation algorithm for

smooth feedback motion planning (Zhang et al., 2009). Our algorithm performs ap-

proximate cell decomposition method that efficiently decomposes the robot’s free space

into rectanguloid cells adaptively. We construct a smooth vector field within each cell

in the free space and address the issue of smooth composition between the non-uniform

129

adjacent cells. We also show any integral curve over the vector field is guaranteed to

asymptotically converge to the goal configuration, to avoid collision with the obstacles,

and to be smooth. In practice, our algorithm is relatively simple to implement and

we demonstrate its performance on planar robots with 2 − 3 DOF, articulated robots

composed of 3 serial links, and multi-robot systems with 6 DOF.

The rest of the section is organized as follows. We first formally define our problem.

We then present the algorithm. Finally, we analyze some properties of the computed

vector field and highlight the performance.

5.6.1 Problem Definition

In this paper, we consider a robot (or a multi-robot system) navigating in a static

environment with non-convex obstacles. Given a goal configuration qgoal ∈ F , we need

to compute a vector field V over the free space. For any configuration q in the same

connected component in F as qgoal, the vector field V needs to satisfy the following

properties:

1. its integral curve starting from q over the vector field V should converge to the

goal configuration qgoal;

2. its integral curve should lie completely in the free space;

3. its integral curve is smooth (e.g. C∞ differential).

The implication of such a vector field is that for any free configuration in the same

component as qgoal, there is always a collision-free path induced by the vector field.

Therefore, such a vector field is a feedback plan for the given robot with the goal config-

uration qgoal. In the next section, we describe our algorithm to compute such a vector

field over the free space.

130

F

O

Figure 5.17: A discrete plan over approximate cell decomposition. The robot’s configu-
ration space is subdivided into cells. A discrete plan as a tree is computed over all cells
in the free space.

5.6.2 Vector Field Computation Algorithm

In order to compute a vector field, we first perform approximate cell decomposition to

subdivide the robot’s C-space into cells. Given the decomposition, we compute a discrete

plan which captures the global connectivity of the free space. We then construct a local

vector field within each cell in F . Finally, a global vector field over the free space is the

composition of the local vector field associated with each cell.

Discrete Plan

In order to capture the global connectivity of the free space F , we perform approximate

cell decomposition. We use our cell labelling algorithms to obtain a set of empty cells,

which provides an approximate representation of the robot’s free space F (Fig. 5.17). A

connectivity graph between the cells is extracted from the decomposition. Specifically,

the connectivity graph G is defined where a node corresponds to an empty cell, and an

edge denotes the adjacency between two empty cells in the decomposition.

We compute a discrete plan based on the connectivity graph. For any empty cell, a

discrete plan specifies its successor cell so that when recursively following the successor

cell, the goal cell that consists of the goal configuration qgoal will be finally reached. In

order to compute such a discrete plan, we first locate the node in the connectivity graph

G corresponding to the goal cell. Beginning at this node, we perform the breadth first

131

C C1 C
C1

(a) (b)

virtual face

f f1
f f1Face

vector fields

Cell
vector fields

qm

Figure 5.18: Face and cell vector fields for the two cases: uniform and non-uniform
adjacent cells. f is a face in C and f1 is a face in C1. We consider two different cases:
Case (a), f ⊆ f1 and Case (b), f ⊃ f1.

search (BFS) on the graph G and compute a tree that corresponds to that search. The

tree represents a discrete plan and the cell for each node has only one successor cell (i.e.

the parent node in the tree) except the goal cell, which can have multiple descendant

cells (i.e. the children nodes in the tree).

In our algorithm, the decomposition over C-space can be refined incrementally. Ini-

tially, the approximate cell decomposition computes a coarse approximation of the free

space of the robot. If no path can be computed using the coarse approximation (e.g. the

robot’s initial configuration lies in a mixed cell), we refine the decomposition. Specifi-

cally, we iteratively subdivide a fraction of all mixed cells identified by the first graph

cut algorithm until a path connecting a robot’s initial configuration and goal configura-

tion is computed or no such path exists for this problem (Latombe, 1991; Zhang et al.,

2008c). The discrete plan is computed based on the resulting decomposition.

Vector Field Computation within Cells

Based on the discrete plan described above, we compute a smooth vector field for each

empty cell. If the cell is an intermediate cell in F (i.e. does not consist the goal

configuration), the local vector field in C guides the robot through the cell to its unique

132

successor cell; if it is a goal cell, the vector field brings the robot to the goal configuration.

We also desire that the vector field computed in each cell be smooth. In order to compute

such a local vector field, we follow the general scheme described in (Lindemann and

LaValle, 2009). For every face of the cell, we choose a face vector field Vf defined over

the points on the face. We further choose a cell vector field Vc for points within the cell.

The overall vector field V defined at any point p in the cell is a smooth interpolation of

Vf and Vc.

The different resolutions or sizes between adjacent cells pose a difficulty in terms of

choosing the appropriate face or cell vector fields. Consider an intermediate cell C with

its successor C1 (Fig. 5.18). In n dimensional C-space, each cell has 2n faces. Suppose

the face f in C is sharing a boundary with the face f1 in C1. We consider two different

cases:

Case (a): Fig. 5.18(a) shows this simpler case where the size of f is smaller than or

equal to f1 (i.e. f ⊆ f1). Here the face f is defined as an exit face of the cell C since

the vector field of C needs to cross the face to enter its successor C1. Therefore, the

face vector field Vf is chosen to be orthogonal to the face and points outwards. For

other faces in C, their face vector fields are chosen to be orthogonal and point inwards.

Finally, the cell vector field Vc is chosen to be identical to the face vector field of the

exit face (Fig. 5.18(a)).

Case (b): The other case is when f ⊃ f1 (Fig. 5.18(b)). In this case, the face vector

field of f can not always point outwards. Otherwise, the vector field for the region f−f1

will not guide the robot to its successor cell C1. To order to overcome this problem, a

straightforward solution is to further subdivide the cells until the size of each cell becomes

the same (i.e. a uniform subdivision of the entire free space). However, this can result

in too many cells in the overall decomposition. Other approaches such as splitting the

bigger cell so that f = f1 are difficult to be implemented for high dimensional space.

Rather, we introduce the notion of a virtual face. As shown in Fig. 5.18(b), for the

133

fi

q

Figure 5.19: GVD over a cell. A GVD is defined for all faces (including the virtual
faces) of a cell. For a configuration q, a influencing face fi is defined as the closest face
of its cell.

face f on C, over the region shared by both C and C1, the face vector field is defined

as pointing outwards and such a region is also referred to as an exit face. The rest of

the region in f is covered by multiple virtual faces. Each virtual face has the same size

as the exit face, and its face vector field is defined as pointing inwards. Finally, the cell

vector field Vc at a configuration q in the cell C is chosen by normalizing the vector −→qqm,

where qm is the centroid point in the face f1. It should be noted in our implementation,

we don’t instantiate the virtual faces. Rather they can be interpreted indirectly from

the adjacent cells to C.

Next, we deal with the goal cell. There is no exit face for the goal cell. Therefore,

every face vector field Vf can be chosen to be orthogonal to the face and point inwards.

The cell vector field Vc(q) is chosen as the normalization of the vector −→qqgoal.

With the face vector fields Vf and the cell vector field Vc defined for all cells in the

free space, we smoothly interpolate between them as (Lindemann and LaValle, 2009) to

compute the overall vector field in each cell. Given a configuration q in an intermediate

cell, we first determine the closest face fi in this cell and define it as the influencing

face. Therefore, all the faces of the cell determine a generalized Voronoi diagram of cell

(GVD) as shown in Fig. 5.19. Now, V (q), the vector field at configuration q is defined

as:

V (q) = norm((1− b(q))Vfi
(q⊥) + b(q)Vc(q)). (5.6)

Here q⊥ is the projection of q on the face fi. b(q) is a weighting function or bump

134

(a) (b) (c)

(d) (e) (f)

Figure 5.20: ‘Gear’ example. (a) The problem is to compute a feedback plan for a 2-DOF
translating gear-shaped robot in an environment with static obstacles. (b) The C-space
is subdivided into cells adaptively. (c) A discrete plan is computed as a tree with the
root highlighted as the black dot. (d) The vector field over the free space. The shaded
regions denotes C-obstacles. For any collision-free configuration which is in the same
component as the goal configuration, its integral curve converges to the goal. Any integral
curve is smooth, though it may have high-variation in some region. (e) The zoom-in on
the yellow region in (e) shows the integral curve is smooth. (f) The robot moves along
an integral curve towards the goal.

function, whose value is 0 when q is on any face of the cell, and 1 on the GVD of the cell

and interpolates between them according to the ratio of the distance to the influencing

face and the other faces of the cell. In theory, any interpolation function that satisfies

these conditions can be used. We use a C∞ function presented in (Lindemann and

LaValle, 2009). Moreover, in a goal cell, a subdivision is defined by considering the

convex hull of the goal configuration qgoal and every face of the cell. The influence face

then is computed based on the convex hull that the configuration q lies in.

Finally, the global vector field over the entire free space from the decomposition is

the composition of the vector field associated within each cell.

135

5.6.3 Analysis

In this section, we analyze the properties of our vector field computation algorithm.

Theorem 5. (Convergence) For any configuration q in the same connected compo-

nent in F as qgoal, the integral curve starting from q over the computed vector field V

asymptotically converges to qgoal.

Building on the formulation shown in (Lindemann and LaValle, 2009), we prove the

convergence property by first showing that any integral curve over the vector field in an

intermediate cell must reach its exit face and proceed to its successor cell. Specifically, we

prove the following two lemmas. Here, a GVD is defined for all faces of an intermediate

cell C (Fig. 5.19).

Lemma 3. Any integral curve cannot cross a GVD face of an intermediate cell C more

than once.

Proof. According to Eq. (5.6), V at any point q on a GVD face is equivalent to Vc(q).

Therefore, for a GVD face with normal n, the sign of dot product between n and Vc(q)

for any q on the face is fixed for both cases we have considered. Consequently, a GVD

face cannot be crossed more than once.

Lemma 4. Any integral curve in an intermediate cell C will reach its exit face.

Proof. Denote the influencing face of q in C as fi. We determine the first GVD face

f1 that intersects with the ray from the point q with the direction V (q). If there is

no intersection, q is in the Voronoi region of the exit face and it is obvious that the

integral will continue to the exit face. Otherwise, the signs of the dot products between

the normal of f1 and the vectors Vc(q), and between this normal and Vfi
will be the

same. The overall vector field at q is a linear combination of Vc and Vfi
. Therefore, on

the integral curve, the distance to f1 is always decreasing. Consequently, either f1

136

or some other GVD face will be reached by the integral curve. Since there are a finite

number of GVD faces in each intermediate cell and the integral curve cannot cross a

GVD face more than once (Lemma 3), the integral curve finally will reach the exit face

of the cell.

To complete the proof of the convergence property, we still need to show that the

integral curve in a goal cell terminates at the goal configuration. For any point q,

the distance to goal configuration qgoal is always decreasing since Vf · −→qqgoal > 0,

Vc · −→qqgoal > 0. Consequently, the dot product for its linear combination of Vf and Vc is

larger than 0.

Collision-free Planning: Our integral curve is guaranteed to be collision-free, i.e.

fully lie in the free space. This holds since in an intermediate cell, except for the exit

face, the face vector field always points inwards and the weighting function for any point

on the face is 0. Therefore, the only way an integral curve exits an intermediate cell is

to cross through the exit face to its successor cell, which lies in the free space. In the

goal cell, all the face vector fields point inwards. Therefore, the integral curve cannot

exit from the goal cell. In conclusion, the integral curve fully lies in the free space and

is guaranteed to be collision-free.

Smoothness: Same as (Lindemann and LaValle, 2009), our integral curve is also

smooth or C∞ differentiable. Within a cell, the vector field is smooth except on a

set of measure zero (the d − 2 dimensional boundary of a cell; e.g. the vertices of a

cell in 2D) since the chosen weighting function b for interpolating Vc and Vf is smooth.

Furthermore, the vector field on the face between a cell and its successor is also smooth

since all the derivatives of the weighting function on the boundary are 0. Therefore, the

integral curve over V is smooth.

Algorithm Complexity: The complexity of the overall algorithm is governed by the

approximate cell decomposition step for computing the discrete plan. In the worst case,

its complexity can increase exponentially with the number of DOF. The local vector

137

Gear Gear (3-DOF) L-Shape 3-Link Multi-Robot

DOF 2 3 3 3 6
tdec(s) 3.01 10.5 9.84 186.2 23.97
level of subdivision 11 6 6 5 3
Cells 46,510 133,512 182,288 72,262 297,424
Memory (MB) 38 242 304 190 451

Per Point Loc.(µs) 1 2 2 2 2
Per Evaluation(µs) 13 26 24 47 61
Eva. Frequency:kHZ 78.9 38.2 41.1 21.2 16.3

Table 5.7: Performance of our global vector field computation algorithm on different
examples.

field computation algorithm within each cell has complexity of O(n) for determining the

influencing face of a given configuration, where n is the number of faces (including the

virtual faces) of the cell.

5.6.4 Experimental Results

We have implemented our vector field computation algorithm. We use an approximate

cell decomposition method developed in (Zhang et al., 2008c) to subdivide the C-space.

The implementation is general for arbitrary dimensional C-space. In our implementa-

tion we parameterize the rotation using Euler angles. During the decomposition, the

angles are partitioned into intervals and are allowed to wrap around. The cell labelling

to determine whether a cell lies entirely in free space or C-obstacle is performed by

computing the separating distance or penetration depth computation between the robot

and obstacles (Zhang et al., 2008c). We compute the discrete plan as a tree using the

breadth first search. We choose the appropriate face vector field and cell vector field for

the two cases as described in Section 5.6.2. In order to compute an integral curve, we

use the Runge-Kutta integration method.

We have tested our implementation on planar robots with 2-3 DOF and multi-robot

systems up to 6 DOF. Fig. 5.20 shows a gear-shaped robot navigating in a 2D plane

with 2 translational DOF. We compute the vector field for the given goal configuration

138

(a) (b)

Figure 5.21: (a) 3-DOF L-shaped robot (b) 3-DOF gear-shaped robot

and highlight the integral curve for an initial configuration. The integral curve path is

collision-free and converges to the goal configuration. It should be noted the integral

curve is indeed smooth, though the curve haves high variation in some regions. Fig.

5.21 shows 3-DOF robots navigating in a 2D environment. The robots can translate

and rotate in the plane.

We have applied our algorithm to articulated robots. Fig. 5.22(a) shows an example

on an articulated robot composed of 3 serial links in a plane. The level of subdivision

is 5, i.e in each dimension 25 decompositions are applied. Next, the first graph cut

algorithm mentioned in Section 5.6.2 is used to incrementally refine the decomposition.

Finally, a global vector field is constructed and used to guide the robot to the goal.

Due to the underlying axis-aligned decomposition, the robot sometimes moves one link

a time.

Fig. 5.22(b) shows an example of feedback planning for a multi-robot system. The

system is composed of three robots, and each robot has 2 translational DOF. We com-

pute a feedback plan for this system. This example may be difficult for a decoupled

multi-robot planner. When moving towards its goal, each robot is blocked by other

robots. Instead, we perform approximate cell decomposition on the composite 6D con-

139

(a) (b)

Figure 5.22: (a) The vector field is computed for an articulated robot composed of 3 serial
links. It guides the robot moving towards its goal qgoal. (b) Vector field computation for
a multi-robot system with 3 translating planar robots.

figuration space and compute vector fields on 6D cells in the free space. Given an initial

configuration for the multi-robot system, we compute an integral curve over the global

vector field. The motion for each robot is computed by projecting the 6D integral curve

in a 2D plane. It should be noted that the integral curve in 6D is smooth. However,

as shown in the figure, the motion for each robot may exhibit high variation or “cusps”

due to the projection to a lower dimensional space.

Table 5.7 highlights the performance of our vector field computation algorithm. In

the table, tdec denotes the total timing to perform the approximate cell decomposition,

which is the major computation-intensive step in our algorithm. The total number of

cells and the memory usage are also reported for each example. Overall, our algorithm

can efficiently compute vector fields for smooth feedback planning for these examples.

We have also tested the performance on evaluating the constructed vector filed

(shown in Table 5.7). For each example, we randomly generate 1 million samples in

the robot’s configuration space. Based on the approximate cell decomposition, we can

efficiently locate the cell containing each sample in the logarithmic complexity. For any

sample lying inside an empty cell, we evaluate its vector. Each evaluation takes only

13− 61 microseconds on average; the corresponding frequency is 78.9− 16.3 kHZ.

140

Limitations. We discuss some limitations of our global vector fiele method. Though

the integral curves are guaranteed to be C∞ smooth, the curves can sometimes have

sharp turns due to the underlying adaptive decomposition. Furthmore, no smooth vector

field exists in a non-contractible free space. However, our vector field has additional non-

smoothness on some boundaries of the cells: if the nodes in the discrete plan for two

adjacent cells are not connected by an edge, the vector field along their common face is

not smooth. To overcome this limitation, one may simplify the discrete plan.

5.7 Summary

We present efficient complete motion planning approaches for low DOF robots. We first

present a simple approach to check for path non-existence. Based on approximate cell

decomposition, our approach uses the C-obstacle cell query to efficiently check whether a

cell in C-space lies entirely inside the C-obstacle region. We describe simple and efficient

algorithms to perform this query using generalized penetration depth computations. The

C-obstacle query algorithm is general for 2D or 3D rigid robots, or articulated robots.

The overall planner is complete and we highlight its performance on 3-4 DOF robots.

In order to further improve the efficiency of the complete planner, we present a novel

algorithm that combines the completeness of ACD with the efficiency of a probabilistic

roadmap approach. The improved planner is also complete. We apply the planner to

4 DOF rigid robots, and observe significant improvement in performance over our first

complete planner.

We also extend our complete motion approaches to compute a global vector field in

the entire free space of the robot for feedback motion planning. We compute smooth

vector field for each cell in the free space and address the issue of smooth composi-

tion between non-uniform adjacent cells. As compared to prior work, our algorithm is

practical for robot and obstacles with non-convex shapes and is simple to implement.

141

Chapter 6

A Retraction-based Planner for Cluttered

Environments

Sampling-based planning algorithms such as probabilistic roadmaps (PRM) (Kavraki

et al., 1996) or rapidly-exploring random trees (RRT) (LaValle, 1998; Kuffner and

LaValle, 2000) have been widely used to compute collision-free paths for robots in com-

plex environments. These algorithms generate samples using randomized techniques

and attempt to capture the connectivity of the free space by graphs or trees. These al-

gorithms are very simple to implement and have been successfully applied to high-DOF

robots.

The performance of sampling-based planning algorithms, however, can degrade sig-

nificantly if a robot needs to operate in a cluttered environment or the free space of a

robot has narrow passages. Due to the small volumes of these passages or regions, it is

difficulty to generate an adequate number of samples. Interestingly, the motion plan-

ning scenarios that arise in part removal and part disassembly simulations are rather

challenging in terms of narrow passages because parts in the simulations usually tightly

fits with each other.

In this chapter, we present a retraction-based sampling algorithm to improve the per-

formance of sampling-based planners in narrow passages (Zhang and Manocha, 2008b).

We formulate the retraction step as a generalized PD problem which computes the clos-

est boundary configuration for a given colliding configuration (Sections 6.1-6.3). We

integrate our retraction-based sampling with a RRT planner in Section 6.4 and analyze

the performance of our planner using Voronoi diagram in Section 6.5. Based on our

retraction-based sampling, we present D-Plan approach for part disassembly simulation

in Section 6.6 (Zhang et al., 2008a). We highlight the efficiency of our approaches in

Section 6.7.

6.1 Introduction

The performance of sampling-based planners can degrade if the free space has narrow

passages. The narrow passages are classified as regions, whose removal or perturba-

tion can change the connectivity of the free space (Hsu et al., 1998, 2006). Figure 1.4

shows the well-known alpha puzzle benchmark, which is widely regarded as a challeng-

ing benchmark for motion planning algorithms. The problem is mainly caused by the

small volume and poor visibility of narrow passages in free space. Because the volume

is small, it can be difficult to generate an adequate number of samples in these regions

of the free space by performing uniform or randomized sampling in C-space. Further-

more, narrow passages may also exhibit the poor visibility, i.e. nearby samples are more

difficulty to be connected by straight lines in the free space. Thus, more samples are

needed to capture the overall connectivity in these regions. Many techniques have been

proposed in the literature to improve the performance of these planners in narrow pas-

sages. These include use of workspace information to guide the sampling (Kurniawati

and Hsu, 2006), use of filters to reject samples (Boor et al., 1999; Simeon et al., 2000)

and retraction-based planning (Amato et al., 1998; Hsu et al., 1998; Saha et al., 2005).

In this chapter, we primarily focus on improving the performance of retraction-based

planners.

One of the main steps in retraction-based planning is to retract a sample or a config-

143

A narrow passage

A narrow passage

C-obstacle

q

Figure 6.1: Retraction-based sampling for narrow passages. The basic idea is to retract a
randomly generated configuration to a more desirable region in the free space. A desirable
location for retraction of a colliding configuration q is the closest boundary point in the
free space. Intuitively, the given colliding configuration, e.g. q which is close to the
boundary, is retracted into the narrow passage. This increases the number of samples in
this narrow passage.

uration to a more desirable region of the free space. This includes moving samples close

to the boundary of the configuration space obstacle (C-obstacle) or near the medial axes

of the free space. One specific retraction strategy is to retract any colliding configuration

(a configuration in C-obstacle) to the closest boundary point of C-obstacle. In practice,

this is equivalent to computing the generalized penetration depth, which is presented

in Chapter 2. However, exact computation of generalized penetration depth has very

high complexity. As a result, prior planners use simple heuristics to perform the retrac-

tion step, and their performance varies with the shape of the robot and the obstacles,

and their relative placement. Other retraction-based approaches for handling narrow

passages include dilation-based planners (Saha et al., 2005; Cheng et al., 2006). These

algorithms dilate the free space by considering samples that lie inside the C-obstacle

space and are close to its boundary. However, most of dilation-based planners can be

hard to implement as they need a robust technique to perform the dilation or shrinking

operation on general polygonal models.

A Retraction-based Planning: In this chapter, we first present a novel optimization-

based retraction algorithm for 3D rigid robots. The retraction step is formulated as an

144

optimization problem for generalized PD computation using an appropriate C-space

distance metric. Our algorithm computes samples near the boundary of C-obstacle us-

ing local contact analysis and uses those samples to improve the performance of RRT

planners in narrow passages. We analyze the performance of our planner using Voronoi

diagrams and show that the tree can grow closely towards any randomly generated

sample. Our algorithm is general and applicable to all polygonal models. We have im-

plemented our planner and highlight its performance on difficult scenarios with narrow

passages. As compared to the basic RRT algorithm, we observe significant improvement

in the running time and the number of generated samples.

D-Plan: Efficient Collision-Free Path Computation for Part Removal and

Disassembly: We also address the application of part disassembly simulation using

our retraction-based planner. The problems of assembly maintainability and mechanical

part disassembly frequently arise in design and manufacturing applications. The manual

generation of detailed disassembly or maintainability paths can be tedious and time

consuming, particularly in environments prone to frequent design changes. The recent

trend has been towards developing automated algorithmic solutions for such design

problems that can automatically compute a collision-free, global path. These simulation

technologies are increasingly used for virtual prototyping and PLM (product lifecycle

management), where the goal is to provide efficient software solutions to problems that

were traditionally solved using costly physical mockups.

Based on our retraction-based planner, we present an efficient approach - D-Plan

for part disassembly simulation and virtual prototyping of part removal. In order to

effectively handle the tight-fitting scenarios arisen in virtual prototyping, we use the

retraction-based sampling technique to generate samples in narrow passages.

Our D-Plan approach is applicable to general, complex, polygon soup models. Such

models are increasingly used in virtual prototyping and PLM, since many CAD sys-

145

tems import models generated from other sources, and sometimes the translators do

not maintain the connectivity information. We present techniques to perform efficient

contact query among polygon soup models and compute their closest features pairs.

We further improve the performance of our planner by performing localized collision

detection and exploit the spatial coherence between nearby queries in the configuration

space. We highlight the performance on many challenging benchmarks including alpha

puzzle benchmark, maintainability of the windscreen wiper motion, and disassembly of

a seat from the interior of a car body.

6.2 Related Work

In this section, we give a brief overview of prior work in sampling-based motion planning

and retraction-based methods.

6.2.1 Sampling-based Planning

As compared to other motion planning algorithms, sampling-based approaches can deal

with high degree-of-freedom motion planning problems, handle complex scenes and are

relatively simple to implement and. However, these algorithms may not work well when

the free space has narrow passages. The main challenge is to generate sufficient number

of samples that can capture the connectivity of free space through narrow passages.

Many sampling strategies have been proposed to improve the performance of these

planners. See (Hsu et al., 2006) for a recent survey. These include use of workspace

information to guide the sampling (van den Berg and Overmars, 2005; Kurniawati and

Hsu, 2006), filters to reject samples (Boor et al., 1999; Simeon et al., 2000; Sun et al.,

2005), adaption of the sampling distribution based on history (Morales et al., 2005),

and retraction-based methods (Amato et al., 1998; Hsu et al., 1998; Wilmarth et al.,

1999; Redon and Lin, 2006; Saha et al., 2005; Cheng et al., 2006). Another issue with

146

sampling-based motion planning approaches is that they are probabilistically complete.

If there exists a solution path, these algorithms will find one with high probability.

However, when there exists no path, these approaches can not decide it.

6.2.2 Retraction-based Motion Planning

The retraction-based approaches have been widely used to improve the performance

of sample-based planners in narrow passages (Amato et al., 1998; Hsu et al., 1998;

Wilmarth et al., 1999; Foskey et al., 2001; Redon and Lin, 2006; Rodriguez et al., 2006).

The main idea is to retract a randomly generated configuration towards a more desirable

region, e.g. to the closest point on the boundary of C-obstacle (Fig. 6.1) or the medial

axis of the free space.

The main challenge in retraction-based approaches is that the retraction step may

involve complicated or non-trivial computation. For example, computing the closest

boundary point for a colliding configuration boils down to generalized penetration depth

computation based on an appropriate distance metric. The computation of globally

optimum penetration depth has high complexity (Zhang et al., 2007c). As a result,

most algorithms use heuristics to compute samples near the boundary of C-obstacle or

in the contact space (Amato et al., 1998; Wilmarth et al., 1999; Redon and Lin, 2005;

Rodriguez et al., 2006). Other approaches include dilation-based planning (Hsu et al.,

1998), and current practical solutions for them compute an approximate medial axes

of the model (Saha et al., 2005), shrink the boundary using tetrahedral decompositions

(Cheng et al., 2006), or estimate the bound of the motion for the moving robot (Ferr

and Laumond, 2004). In practice, except (Ferr and Laumond, 2004), most of these

techniques are limited to closed models and can be susceptible to robustness issues and

degeneracies.

147

6.2.3 Contact Space Planning

Many retraction-based approaches tend to generate more samples near the contact space,

the subset of the configuration space (C-space), which consists of the configurations

when the robot touches one or more obstacles without any penetration. Contact space

planning has been shown useful for handling narrow passages (Redon and Lin, 2006),

along with manipulator planning and compliant motion planning. There is considerable

work on contact modeling using the geometric or algebraic formulation, sampling, and

local compliant planning (Donald, 1987; Hirukawa et al., 1994; Ji and Xiao, 2001; Xiao

and Ji, 2001).

6.2.4 Applications to Part Disassembly Simulation

Assembly and disassembly planning is a broad topic that has been extensively studied

in CAD/CAM, virtual prototyping and motion planning. It mainly deals with the

sequencing of the (dis)assembly operations of multiple parts to (dis)assemble a product

(Latombe, 1991; Wilson and Latombe, 1994; Lambert, 2003). In this paper, we only

focus on specific problems on part removal or maintainability study, where one needs

to compute a collision-free path for a particular part that needs to be removed from

an assembly. Part disassembly problem can be reduced to a motion planning problem,

where the part to be extracted is treated as a robot and the rest of the assembly parts are

treated as static obstacles. Some specialized and efficient motion planning algorithms

based on random sampling and diffusion have been proposed for part disassembly and

integrated into the KineoCAM commercial software (Ferr and Laumond, 2004).

6.3 Optimization-based Retraction

In this section, we present our optimization-based retraction algorithm for sample gen-

eration. We use this algorithm to improve the performance of RRT planners in Section

148

Free Space

rq
C-Obstacle

Contact
Space

mq

dqcq
nq

Figure 6.2: Optimization-based retraction. Given a colliding sample qr, our algorithm
retracts it to the locally closest point qm on the boundary of C-obstacle by iterative
optimization. In this case, qn is the initial guess, while qc and qd are intermediate
samples during the optimization.

6.4. Given a colliding sample, our algorithm retracts this sample to a more desirable

location, i.e. the closest point on the boundary of C-obstacle or contact space. This idea

is similar to other retraction-based sampling strategies such as the one used in OBPRM

(Amato et al., 1998), which also tend to generate samples near the contact space to

improve the performance of the planner in narrow passages. The main difference is that

our retraction step is formulated as generalized PD computation and performed using

iterative optimization.

6.3.1 The Retraction Step

As shown in Fig. 6.2, given a colliding sample qr, the retraction step is to compute its

closest boundary point qm, which can be formally defined as:

qm = arg min
q

δ(q,qr),q ∈ F ∪ Ccontact, (6.1)

where δ is a distance metric defined in the configuration space of the robot, and the

configuration q lies in the free space F or the contact space Ccontact of the robot. Ac-

cording to Theorem 1, for DISP, OBNO or TRAJ C-space distance metric, the optimal

configuration qm must lie in the contact space.

149

The retraction step computation is equivalent to generalized PD computation. There-

fore, we can apply techniques developed for generalized PD to perform the retraction

computation. More specifically, the generalized PD algorithm using constrained opti-

mization (Section 4.2) is employed since the algorithm can deal with complex non-convex

models. Furthermore, this generalized PD algorithm can also benefit from the samples

in the planner for choosing a good initial guess. We briefly present our optimization

algorithm in the context of retraction computation.

We formulate the retraction computation (Eq. 6.1) as a constrained optimization

problem. The objective function is based on the distance metric δ such as DISP, OBNO

or TRAJ in C-space, and the constraint is that the resulting configuration needs to lie

in Ccontact. As shown in Fig. 6.2, to retract a given colliding sample qr, our method

starts with a non-colliding sample qn (either collision-free or in the contact space) as the

initial guess. The algorithm then performs the following steps in an iterative manner:

1. Project qn into the contact space in order to generate a sample qc in the contact

space;

2. Perform a contact query, i.e. compute the closest feature pairs within a tolerance

distance between the robot at qc and the obstacles;

3. Searching over the local contact space formed by the closest feature pairs, compute

a new non-colliding sample qd, which locally minimizes the distance to the sample

qr according to a distance metric δ;

4. Assign qn = qd, and go to Step 1.

These steps are iterated until the distance to qr cannot be further reduced, which means

a sample qm realizing a local minima is found, or the maximum number of iterations has

been reached. We use the symbol S to represent the sequence of samples qn, qc, and qd

generated by each iteration, excluding the duplicated or colliding samples. The distance

150

qc

Free Space

C-Obstacle

qn

Free Space

C-Obstacle

qc

(a) Standard RRT Extension

qr
T

qn

qr

(b) Retraction-based RRT Extension

qd qm

T

Figure 6.3: Difference of tree extension between RRT and RRRT. (a) Given a randomly
generated configuration qr, the basic RRT extension scheme grows the tree - T from
its nearest node qn towards qr, stopping at the configuration qc on the boundary. (b)
In our retraction-based extension, we retract qr to the free space by optimization. The
retraction step generates a sequence of non-collision configurations S = {qc,qd, ...,qm},
where qm is a local minima point of the distance δ to qr. We then extend the tree
to every configuration in S using the basic RRT extension. Therefore, the tree in our
algorithm can grow towards qr closely.

of every sample in the sequence S to qr strictly decreases, i.e. δ(qi,qr) > δ(qi+1,qr),

and it monotonically approaches the local minima δ(qm,qr). The generated samples in

S can be used by any sampling-based planner.

Our algorithm can efficiently optimize over the contact space and compute a local

minima. The optimization algorithm only needs to perform collision detection, along

with local contact analysis to sample and search over the local contact space. Such

computation can be implemented for any type of polygonal models, including polygon

soup models. As a result, our algorithm is general and applicable to all general polygonal

models.

6.4 Retraction-based RRT Planner

In this section, we use the optimization-based retraction algorithm to improve the per-

formance of the rapidly-exploring random tree planners (RRT). Prior retraction-based

sampling strategies have mainly been applied to PRM planners and only retract the

151

samples that lie in C-obstacle space. In our case, we retract many of the generated

samples including the ones that belong to the free space.

6.4.1 RRT Planner

The RRT algorithm explores the free space by randomly sampling and building a tree

(Fig. 6.3-(a)). RRT’s are used to search high-dimensional spaces with both algebraic

constraints (arising from obstacles) and differential constraints (e.g. the non-holonomic

constraints). The basic RRT algorithm is as follows. Starting with a tree T with a

root node, the algorithm iteratively adds more nodes to the tree. During each iteration,

a configuration qr is randomly generated, and the basic RRT algorithm attempts to

connect the nearest node qn in the tree T to qr by a straight line in the configuration

space (Fig. 6.3-(a)). If the configuration qr and qn can be connected via a collision-free

path, the tree is extended from qr to qn and grows. Otherwise, the planner computes

qc, the first contact configuration (a configuration in the contact space) on the straight

line from qn to qr. The tree then extends to qc. We refer to this way of growing the

tree as the basic RRT extension.

One of the challenges for RRT planners is to generate samples in narrow passages of

the free space. Moreover, though the basic RRT planner can perform a biased search

towards regions not yet visited, such bias does not take into account the obstacles in

the environment. Therefore, the basic RRT planner can have difficulty growing out of

narrow passages in cluttered environments.

6.4.2 Retraction-based RRT

We use the retraction-based algorithm to improve the performance of RRT planners,

especially in narrow passages. Our modified RRT algorithm (Algorithm 3) proceeds as

follows:

152

Algorithm 3 Retraction-based RRT Extension
Input: T = {V,E} - an RRT; qr - a randomly generated configuration in C-space
Output: T , an extended RRT

1: qn ← the nearest neighbor of qr in T
2: if qnqr is a collision-free path then
3: T.AddV ertex(qr), T.AddEdge(qn,qr)
4: else
5: // To get a set of non-colliding configurations by retracting qr
6: // Using qn as the initial guess
7: S ← ConstrainedOptimization(qr,qn)
8: for qi ∈ S do
9: Basic RRT Extension(T,qi)

10: end for
11: end if
12: return T

1. Given the randomly generated configuration qr, free or colliding, we compute the

nearest node qn in the tree;

2. Check whether qr and qn can be connected via a collision-free path. If there is

such a path, grow the tree from qn to qr.

3. Otherwise, we retract the sample qr, as shown in Fig. 6.3-(b):

(a) Using qn as the initial guess, we apply the optimization-based retraction

step presented in Section 6.3. The retraction step generates a sequence S of

non-collision configurations, approaching the closest boundary point of qr;

(b) For every configuration in S, our algorithm performs the basic RRT extension.

We refer to our scheme of growing the tree as retraction-based extension. There are

several benefits of our enhanced RRT planner using this new extension scheme. First,

the sampled configurations that are close to the narrow passages are likely to be re-

tracted into the narrow passages. Consequently, our extended planner generates more

samples in narrow passages. Secondly, the tree grows closely towards any randomly

generated configuration, significantly improving the bias of the growth of the tree to-

wards regions not yet visited. Finally, we perform the retraction step on free as well

153

as colliding configurations. Overall, our retraction-based RRT can explore or capture

the connectivity of narrow passages quickly. We further analyze the behavior of our

retraction-based RRT algorithm in Section 6.5 and demonstrate these benefits on many

challenging benchmarks in Section 6.7.

6.5 Analysis

In this section, we analyze the behavior of our retraction-based RRT planner. We use

the Voronoi diagram defined over the nodes of the RRT in the configuration space to

analyze the performance of our enhanced RRT planner. Based on this analysis, we

identify the planning scenarios with narrow passages where our retraction-based RRT

planner can be quite effective.

6.5.1 Voronoi Diagrams

The behavior of RRT algorithms can be understood using Voronoi diagrams (Kuffner and

LaValle, 2000; LaValle, 2006; Yershova et al., 2005). Specifically, the Voronoi diagram

for a set of points S in a metric space is the partition of this space which associates a

region V (q) with each point q from S in such a way that all points in V (q) are closer

to q than to any other point in S. Given a tree built by an RRT algorithm, we consider

the Voronoi diagram over the set of nodes of the tree (Fig. 6.4) in the configuration

space associated with a distance metric δ.

Given a randomly generated configuration qr, the step of computing the nearest

node in the RRT algorithm is equivalent to locating the Voronoi region that contains qr

(Fig. 6.4). Therefore, the probability of a node q in the tree being chosen for extension

is proportional to the ratio ρ of the volume of its Voronoi region V (q) to the volume of

154

Tqr

qnV(qn)
C-Space

Figure 6.4: Analyzing RRT using Voronoi diagrams. Given a randomly generated config-
uration qr, the step of finding its nearest node qn in the tree T for extension is equivalent
to locating the Voronoi region that contains qr (LaValle, 2006).

the sampling space or the entire configuration space C:

ρ(q) =
V olume(V (q))

V olume(C)
. (6.2)

We refer to this ratio as extension ratio of a node. If a node has a higher value of

extension ratio ρ, this node has a higher likelihood of being chosen for extension as

compared to other nodes in the tree. Therefore, RRT planners can bias the growth of

the tree towards regions not yet visited.

6.5.2 Analysis of Retraction-based RRT

We analyze the behavior of our retraction-based RRT planner (Fig. 6.5). The tree in

our planner is biased towards the contact space, and many nodes of the tree are either

close to it or in the contact space (e.g. qn1 in Fig. 6.5-a). This is due to the retraction

algorithm, which iteratively optimizes over the contact space. We classify the nodes in

the tree, near or in the contact space, according to whether a node is:

• Type 1: far away from any narrow passage (e.g. qn0 in Fig. 6.5-(a)),

• Type 2: lying in a narrow passage, or

• Type 3: close to the entrance of a narrow passage (e.g. qn1 in Fig. 6.5-(a)).

Among these nodes, the nodes of Type 2 or Type 3 are important for planning as they

are associated with narrow passages. Our retraction algorithm utilizes them in a manner

155

T

V(qn1)

qn1

T T T

qr1

T

qn2

(a) (b) (c) (d) (e) (f)

qn3

qn2

V(qn2) V(qn2) V(qn3)

qn3

qr2V(qn1)

T

qn1qn0
qn2

Figure 6.5: Analysis of the retraction-based RRT planner (a) A tree - T needs to grow
through a zigzag narrow passage. The Voronoi diagram is defined over the nodes of
the tree in the configuration space. The Voronoi region of the node qn1 is denoted as
V (qn1). (b) For a randomly generated colliding configuration qr1, our RRT planner
uses its nearest neighbor qn1 as the initial guess and performs the optimization-based
retraction. Since qn1 is close to the entrance of the narrow passage, it is very likely that
the optimization algorithm generates configurations, e.g. qn2, in the narrow passage.
(c) Though the node qn2 in the tree T lies in the narrow passage, it has a high value
of extension ratio ρ due to the large volume of its Voronoi region V (qn2). Therefore,
the node qn2 has a high likelihood of being chosen for extension. (d) Given a randomly
generated collision-free configuration qr2, the node qn2 is chosen for extension and more
samples in the narrow passage are generated. (e) With a high value of the extension ratio,
the node qn3 in the narrow passage has a high likelihood of being chosen for extension.
Therefore, more nodes in the narrow passage can be generated. (f) Finally, the tree
grows through the narrow passage.

such that many samples are generated in close proximity of Type 2 and Type 3 nodes

or in the associated narrow passages. This is due to our retraction computation, and

Fig. 6.5-(b) shows such an example. For a randomly generated sample qr1 , its nearest

neighbor qn1 with Type 3 is chosen for extension. Stating from qn1 , our retraction algo-

rithm iteratively optimizes over the contact space and generates more samples towards

or along narrow passages.

A key factor that governs the effectiveness of our retraction-based RRT planner is the

probability with which the nodes of Type 2 and Type 3 are chosen for RRT extension.

In general, the performance of sample-based approaches degrades in narrow passages

since the ratios of the volumes of narrow passages to the volume of the sampling space

156

are typically small. As a result, prior randomized sampling methods may not compute

sufficient number of samples in narrow passages to find collision-free paths. However,

there are many planning scenarios with narrow passages where the extension ratios, ρ,

for the tree nodes of Type 2 and Type 3 are much larger as compared to the ratios of

the volumes of their associated narrow passages to the volume of the sampling space.

Fig. 6.5 illustrates such cases. Our retraction algorithm can generate more samples in

the narrow passages and thereby improve the performance of the planner.

6.6 D-Plan: Efficient Collision-Free Path Computa-

tion for Part Removal and Disassembly

The simulation of assembly maintainability in virtual prototyping attempts to remove

a particular part from an assembly. Similarly, part disassembly simulation boils down

to computing collision-free trajectories for objects through tight spaces or narrow pas-

sages. Many of these problems reduce to motion planning of robots, where collision-free

paths need to be computed for rigid objects with six degrees of freedom (DOF) among

stationary obstacles (Chang and Li, 1995; Latombe, 1991; Garber and Lin, 2002; Tesic

and Banerjee, 2002; Ferr and Laumond, 2004). However, in terms of narrow passages,

these motion planning scenarios are rather challenging since the parts are often tight-fit

with each other. Furthermore, the underlying models are complex and may be repre-

sented using thousands of polygons. Many times the models are given as polygon soup

models with no connectivity or topology information. Such models are increasingly used

in virtual prototyping and PLM (product lifecycle management), since many CAD sys-

tems import models generated from other sources, and sometimes the translators do not

maintain the connectivity information. It is important that motion planners in PLM

applications can handle such datasets automatically.

In this section, we present a general and fast motion planning algorithm, D-Plan,

157

Figure 6.6: Contact query for polygon soup models. Left: The basic algorithm for
contact query is to determine all feature pairs between alpha-shaped models A and B,
whose distances are less than a given tolerance. Many feature pairs are computed, while
some of them are either duplicate or nearby. Right: We filter the duplicate or nearby
pairs and compute the representative ones, i.e. the locally closest feature pairs of between
the models. In this example, we obtain three representative pairs of features.

for part disassembly simulation (Zhang et al., 2008a). D-Plan uses retraction-based

sampling to improve the performance in narrow passages. We apply D-Plan to general,

complex, polygon soup models. We present techniques to perform efficient contact

query among polygon soup models and compute their closest features pairs. We further

improve the performance of our planner by performing localized collision detection and

exploit the spatial coherence between nearby queries in the configuration space.

6.6.1 Contact Query on Polygon Soup Models

The basic algorithm for performing the contact query can be described as follows. We

assume that each object corresponding to the robot or any obstacle is represented as a

collection of triangles. We may or may not have any connectivity information among

the triangles. Given two polygon soup models A and B, we build a bounding volume

hierarchy (BVH) for each of them. By traversing both the BVHs, we can efficiently

determine all the pairs of triangles between the two models, whose distance is less than

some given tolerance κc. For each such triangle pair, we can further obtain the feature

pair realizing the closest distance. In general, there are three types of feature pairs:

(V,F), a vertex of A and a face of B, (F,V), a face of A and a vertex of B and an edge

of A and an edge of B (E,E). We collect every such feature pair whose distance is less

158

than κc, as Σ.

There could be many duplicate or nearby feature pairs in Σ, computed by the above

basic algorithm, as shown in Fig. 6.6(left). The duplicate feature pairs are generated

because a feature in each model may be incident to more than one triangle. For example,

for an (E, E) feature pair in Σ, if there are two triangles sharing an edge for each

model, this feature pair is reported four times. Furthermore, the hierarchical algorithm

described above will report many nearby feature pairs as long as their distances are

smaller than the given tolerance κc.

The duplicate or nearby feature pairs need to be filtered from Σ. Otherwise, many

unnecessary contact constraints are constructed, which can result in many extra samples

during our sampling stage. In general, it is difficult to filter out duplicate or nearby

feature pairs, since we do not have the connectivity information of the models. We use

a simple heuristic for the purpose of filtering and computing the representative ones, i.e.

the locally closest feature pairs between A and B. For each feature pair computed by the

basic algorithm, we compute their witnessing points pa and pb in those features, i.e. the

points which witness the closest distance between the two features. In order to determine

whether a feature pair is duplicate or representative, we compare its witnessing points

pa and pb against witnessing points p′a and p′b of every known representative pair. If the

distance between pa and p′a and the distance between pb and p′b are both greater than

the tolerance κc, the pair is declared as a new representative pair.

6.6.2 Localized Collision Detection

The main issue with our retraction-based sampling method is how to efficiently search

over the local contact space. Our method randomly generates many samples on the local

contact space and performs the optimization step. In this case, the collision detection

routine is invoked for every generated sample to check whether it is in free space. Given

a highly cluttered environment with narrow passages, typically many generated samples

159

A B
Collision Detection

between Subtrees in BVHs

V F

Figure 6.7: Localized collision detection. Our algorithm can quickly cull colliding sam-
ples generated near the contact space and in narrow passages. The culling is achieved
by checking the collision among subtrees of BVHs. We determine such subtrees using
the closest features from the latest contact query (a (V,F) feature pair in this example).

would be colliding. When a sample is likely to lie in the C-obstacle space rather than free

space, BVH-based collision detection algorithms often perform poorly as they traverse

the hierarchy all the way to the leaf nodes. As a result, the resulting sampling method

spends a significant fraction of the overall running in collision checking and traversing

the BVHs.

We use a simple localized approach to accelerate the sample generation and collision

checking. Our algorithm can conservatively cull away the samples lying in C-obstacle

space by efficiently exploiting spatial coherence between nearby queries. During each

retraction step, our localized collision detection algorithm performs as follows (Fig. 6.7):

1. Use the feature pairs reported by the latest contact query, and locate their corre-

sponding triangles as well as the corresponding bounding volumes (BVs) in BVHs

of the robot A and the obstacles B;

2. Compute the subtree within each BVH, which contains the located BVs;

3. Perform collision detection among the subtrees of BVHs for A and B;

4. If a collision is reported, we can quickly declare that the sample is colliding;

160

5. Otherwise, detect collisions using the entire BVHs.

Our localized approach can considerably accelerate the collision detection when sam-

pling near the contact space and in narrow passages. The size of each subtree is much

smaller than the entire BVH. However, our localized approach is conservative. If a sam-

ple could not be identified as colliding in Step 3, the algorithm moves to Step 5, and

performs collision detection by traversing from the root of the BVH from scratch.

Essentially, our localized collision detection approach exploits spatial coherence that

exists within our retraction-based sampling algorithm. When planning near the con-

tact space or in narrow passages, our sampling algorithm performs collision queries for

nearby samples in the configuration space. Our localized approach exploits this spatial

coherence by making use of the subtrees of BVHs for direct traversal. Therefore, our

approach is able to quickly cull away many colliding samples. Finally, our localized

approach can also improve the performance of local planning methods, where collision

detection is performed on a finite number of samples on the interpolated path.

6.7 Implementation and Results

In this section, we present experimental results of our retraction-based RRT planner

(RRRT) on 3D rigid robots and our D-Plan approach for part disassembly simulation.

We first address some implementation issues. Next, we highlight the performance of

our RRRT planner on a set of examples. In each example, a rigid robot needs to plan

through some narrow passages in the 3D environment. We also test the performance

of D-Plan on difficult part removal and disassembly problems. These include the well-

known Alpha puzzle benchmark (Amato et al., 1998), maintainability of the windscreen

wiper motion with 15K triangles for the robot and 11K triangles for the obstacle, and

disassembly of a seat (30K triangles) outside a car body (214K) described in (Ferr and

Laumond, 2004).

161

Figure 6.8: ‘Notch’ example. (a) A G-shaped robot. (b) The environment is consisted
of three notch-shaped obstacles, and the robot needs to move from one side to the other.
Due to the narrow passages, the basic RRT planner was unable to find a solution after
500, 000 iterations within 1, 232.2s. On the other hand, RRRT can find a collision-free
path within 25.4s. In (b), (c), the collision-free path, the tree and its nodes are highlighted
after being projected from the 6D C-space into 3D Euclidean. Many nodes are biased
towards the contact space as well as the narrow passage. (d) is a magnified version of the
result. Here, a node in the tree is visualized by a 3D point to indicate the position of the
robot, together with a 3-dimensional orthogonal frame to indicate the orientation. (e)
shows the nodes generated by the basic RRT planner, where no node lies in the narrow
passages.

6.7.1 Implementation

We have implemented RRRT on 3D rigid robots. Our implementation consists of two

parts: the implementation of the retraction step and the integration with an RRT

planner. In the first part, we use the DISP distance metric defined in SE(3) and extend

the generalized PD algorithm using constrained optimization in in Section 4.2 to perform

the retraction step. We set the maximum iteration in each retraction step as 5. We use

PQP (Larsen et al., 1999) for collision detection. We implement a basic RRT planner.

For simplicity, we perform the local planning by using a linear interpolation motion and

checking for collisions on a finite number of intermediate configurations of the motion.

We integrate our retraction algorithm into the basic RRT planner. During each

retraction step, a sequence of configurations, close to or in the contact space, are gener-

ated. Our planner RRRT then attempts to extend the tree to each configuration using

the basic RRT extension scheme. In our implementation, we observe the difficulty of

connecting two nearby samples when both of them are close to the contact space. Cur-

rently we use an enhanced local planning scheme - vertex enhancement that can generate

162

Figure 6.9: ‘Torus’ example. Left: A L-shaped robot needs to move from one side (red)
in the environment, consisting of two torus knot shaped obstacles, to the other (green).
Our planner can compute a collision-free path within 44.9s. Right: the computed tree is
highlighted.

additional samples around them (Kavraki et al., 1996). To deal with this issue, other

local planning schemes can also be employed (Zhang and Manocha, 2008a).

Our D-Plan approach is based on retraction-based RRT planner. We implement the

contact query on general polygon soup models. This enables our D-Plan to automatically

handle any type of CAD models. By extending PQP (Larsen et al., 1999), our contact

query uses hierarchies of swept sphere volumes of given models to efficiently determine

those feature pairs (V,F), (F,V), or (E/E), whose distances are less than the tolerance

κc. In our experiment, this tolerance is simply set as the radius of the smallest enclosing

sphere of the robot multiplying by 0.01. We remove the duplicate pairs and further

identify locally closest pairs, using the tolerance κr = 10κc. Though both parameters

are chosen heuristically, they work well on our benchmarks. Fig. 6.6 depicts the result

of contact query between two alpha-shaped models.

We use localized collision detection to improve the performance of D-Plan. Based on

PQP, we find the leaf nodes in BVHs, which correspond to the latest contact query. We

determine the subtrees containing the leaf nodes in each BVH. Currently, the depth of

each subtree is chosen as 6, though it may be worthwhile choosing the depth according

to the complexity of the model. We use the subtrees to localize the computation of

collision checking.

163

Figure 6.10: ‘Flange’ example. The CAD model - ‘elbow’ needs to slide out of the hole
of the CAD model - ‘flange’. Our planner takes 25.0s for this task, while a variant of
RRT presented in (Rodriguez et al., 2006) takes 227.1s on a similar PC.

6.7.2 Results

We test our retraction-based RRT planner (RRRT) on a set of benchmarks. In our

experiment, we run every benchmark 10 times and compute the average running time.

The timing is summarized in Table 6.1. The geometric complexity of the benchmarks is

highlighted in Table 6.2. RRRT can handle general polygonal models, including polygon

soup models. The timings reported for RRRT planner were taken on a 2.8GHz Pentium

IV PC with 2GB of memory.

In the ‘notch’ example (Fig. 6.8), there are three narrow passages since the width

of the corridor within each notch-shaped model is 1 and it is slightly larger than the

‘thickness’ of the g-shaped robot, 0.95. The environment also possesses an interesting

property. The widths of the two gaps formed by the three notch-shaped models are 0.9,

resulting in two potentially false passages. Therefore, dilation-based planners may not

work well on this benchmark. In our experiment, the basic RRT planner was unable to

find a solution within 1, 232.2s. On the other hand, our planner can find a collision-free

path within 25.4s. Figs. 6.9 and 6.10 show two additional examples where the models

are more complex. Our planner can compute a collision-free path through a narrow

passage within 44.9s and 25.0s, respectively.

Table 6.3 highlights two ways to break down the running time for RRRT. One way

is to measure the tretraction, the time on the retraction step and tlinking, the time on

164

Notch Torus Flange

RRRT: tall (s) 25.4 44.9 25.0
RRRT: nodes 1,401 1,471 119

Basic RRT: tall (s) > 1,232.2? 4,920.9 680.1
Basic RRT: nodes > 105,987? 43,512 95

Table 6.1: Performance of our retraction-based RRT. The table compares the perfor-
mance of our planner - RRRT with the basic RRT planner on different benchmarks.
The table includes the planning time tall and the number of nodes in the resulting tree.
?: the basic RRT planner cannot find a path within a large mount of time.

Notch Torus Flange

Tri of robot 28 20 3,525
Tri of obstacles 756 5,760 5,306

of obstacles 3 2 1

Table 6.2: Model complexity. The table summarizes the geometric complexity of each
benchmark.

Notch Torus Flange
tall(s) 25.4 44.9 25.0

tretraction(s) 11.0 22.1 16.1
#retraction 625 1,203 232
tper retra(ms) 17.600 18.371 69.397
tretraction/tall 43.3% 49.2% 64.4%
tlinking (s) 14.2 18.9 6.6
#linking 1,587 2,920 303
tper linking (ms) 8.948 6.473 21.782
tlinking/tall 55.9% 42.1% 26.4%

tcd(s) 18.5 32.1 19.3
#cd 91,958 133,580 20,794
tper cd(ms) 0.201 0.240 0.928
tcd/tall 72.8% 71.5% 77.0%
tcontact(s) 0.9 2.0 2.9
#contact 1,548 2,831 252
tper contact(ms) 0.581 0.706 11.508
tcontact/tall 3.4% 4.4% 11.5%

Table 6.3: Breakdown of running time. The table summarizes two ways to break down
the running time for main functions in RRRT. One way is to measure tretraction, the
time on the retraction step and tlinking, the time on connecting the generated samples.
Another way is measure tcd, the time on collision detection and tcontact, the time on
contact query. #retraction and tper retra denote the number of retraction steps and the
average time of each retraction step, respectively.

165

connecting the samples. The other way is to measure tcd the time on collision detection

and tcontact, the time on contact query. Overall, the function for collision detection takes

around 70% to 80% of the total time.

We apply D-Plan to four challenging benchmarks. The timing of these benchmarks

was taken on these benchmarks was on a PC with a 4-core Xeon 3GHz CPU with 4GB

of memory. The geometric complexity of them and the performance of our D-Plan

approach are summarized in Tables 6.5 and 6.6.

• Alpha Puzzle - Fig. 6.11: A well known benchmark with narrow passages for

testing the performance of motion planning approaches (Amato et al., 1998);

• Pipe - Fig. 6.12: Maintainability test in the CAD model of a complex machinery

room. We check how to remove a pipe-shaped robot from the machinery room

without any collision;

• Wiper - Fig. 6.13: Maintainability test of the windscreen wiper motion (Ferr and

Laumond, 2004). This is an industrial benchmark with narrow passages;

• Car Seat - Fig. 6.14: Disassembly of a seat outside a car body (Ferr and Laumond,

2004). This is an industrial benchmark with complex geometric representation.

For simplicity, in our local planning algorithm, we perform collision detection by

using a finite number of samples on the interpolating motion, e.g. 15, 50, 20, and

30 samples for alpha puzzle, pipe, wiper, and car seat benchmark, respectively.

6.7.3 Comparison

We compare the performance of our retraction-based RRT planner with other RRT

planners. We first compare with the basic RRT planner, which uses the basic RRT

extension. Table 6.1 shows for all four benchmarks, RRRT is much more efficient than

the basic RRT planner. We also test both planners on different versions of the ‘notch’

166

Robot Scale 0.80 0.85 0.90 0.91 0.92 0.93 0.94 0.95
Basic RRT: tall(s) 11.6 31.2 120.8 143.4 184.7 292.7 306.3 > 1,232.2 ?
RRRT: tall(s) 6.6 7.0 9.4 14.0 8.1 26.1 23.6 25.4
Basic RRT: nodes 4,226 8,843 22,755 23,085 28,417 43,200 42,530 > 105,987 ?
RRRT: nodes 398 467 524 786 510 1,519 1,460 1,401

Table 6.4: Performance comparison of RRRT and RRT. The table compares the per-
formance of retraction-based RRT with the basic RRT planner on the ‘notch’ example.
The robot is scaled from 0.8 to 0.95. Our planner significantly improves the performance
on each version of the problem. ? denotes the most difficult version - 0.95. The basic
RRT planner cannot solve it after running 500, 000 iterations within 1.232.2s, while our
RRRT can compute a path within 25.4s.

example, i.e. scaling the G-shaped robot from 0.8 to 0.95. Table 6.4 shows that RRRT

significantly improves the performance for each version of the problem. Even for rel-

atively less open scenarios (e.g. scale = 0.8), our planner is still more efficient than

basic RRT planner. Figs. 6.8-(c),(e) compare the distribution of the nodes generated by

RRRT and the basic RRT planners for the 0.95 version. The RRRT planner generates

more samples in the contact space and narrow passages, while the basic RRT cannot

generate samples in narrow passages.

There are variants of RRT-based planners such as (Strandberg, 2004; Rodriguez

et al., 2006) to improve the performance on narrow passages. We quantitatively compare

our planner with the RRT-based planner presented in (Rodriguez et al., 2006) by using

the ‘flange’ example(Fig. 6.10). Our planner takes 25.0s for this task and is much more

efficient than the planner in (Rodriguez et al., 2006), which takes 227.1s on a similar

PC. Compared with another RRT planner in (Strandberg, 2004), one difference is that

we perform the retraction on both colliding as well as collision-free configurations, while

their method can only bias the growth of the tree using the collision-free configurations.

Finally, another RRT variant (Yershova et al., 2005) also takes into account C-obstacle

into the RRT bias as ours. However, their work mainly characterizes the issue when

the sampling domain is not well adapted to the problem, while our method focuses on

improving the performance in narrow passages.

Our planner is efficient as compared to other retraction-based methods (Ferr and

167

Benchmarks Alpha Pipe Wiper Car
Puzzle Seat

A Alpha Pipe Wiper Seat
B Alpha Machine Room Windscreen Car Body

Tri: A 1,044 10,352 15,197 30,790
Tri: B 1,044 38,146 11,569 214,337

Table 6.5: Model complexity of part disassembly benchmarks. Many benchmarks we
use have no connectivity information. The moving objects correspond to robots (row A)
and the static obstacles are shown in row B.

Benchmarks Alpha Puzzle Pipe Wiper Car Seat

RRRT: timing (s) 1043.0 124.7 1197.8 181.2
samples 53,535 2,539 8,890 1,352

Basic RRT: timing (s) >119,668.4 1,444.0 >12,011.3 311.0
samples >84,847 4,345 >39,962 3,230

Table 6.6: Performance of D-Plan. For all these difficult benchmarks, our planner is
able to compute a collision-free motion in less than 20 minutes. The basic RRT planner,
however, can not solve the alpha puzzle benchmark within 100 times of our planning
running time. For the rest of benchmarks, D-Plan is also significantly faster than the
basic RRT planner.

Laumond, 2004; Saha et al., 2005; Cheng et al., 2006). Our D-Plan approach takes less

than 20 minutes to compute a collision-free path for all these difficulty benchmarks.

Furthermore, for the alpha puzzle benchmark, D-Plan can find a collision-free path

within 1, 043.0 seconds, while the recent retraction-based planner takes 5, 850 seconds

on a relative slower machine (Cheng et al., 2006), and the basic RRT planner based on

our implementation can not find a path within 119, 668.4 seconds. Except for the wiper

benchmark, the performance of our D-Plan approach is competitive as compared to the

algorithm in KineoCAM software (Ferr and Laumond, 2004).

Also, our planner has many distinct features. The small-step retraction-based meth-

ods (Saha et al., 2005; Cheng et al., 2006) identify the colliding configurations near the

free space by shrinking the models of the robot and the obstacles. These methods are

only applicable to closed models. Moreover, it is difficult to perform the shrinking step

168

Alpha Puzzle Pipe Wiper Seat
Contact Query tcontact (s) 128.2 7.1 344.8 21.4

#contact 82,309 4,628 21,583 1,597
tper contact (ms) 1.6 1.5 16.0 13.4
tcontact/tall 12.3% 5.6% 28.8% 11.8%

Localized Collision Detection tlcd (s) 181.6 4.7 33.2 2.4
#lcd 5,854,345 304,774 1,445,944 86,785
tper lcd (ms) 0.031 0.016 0.063 0.028
tlcd/tall 17.4% 3.7% 2.8% 1.3%
Culling Ratio 48.8% 18.82% 36.5% 32.6%
tper lcd/tper cd 13.3% 3.6% 9.5% 1.3%

Collision Detection tcd (s) 698.1 111.2 608.9 126.0
#cd 2,995,802 247,419 917,818 58,497
tper cd (ms) 0.233 0.449 0.663 2.1
tcd/tall 66.9% 88.3% 50.1% 69.5%

Planner tall (s) 1043.0 125.9 1197.8 181.2

Table 6.7: Breakdown of running time of D-Plan. The table highlights the timing break-
down for D-Plan. tcon, #con and tper con are the total timing, the number, and the
timing on average for the contact query; tlcd and tcd are the total timing for localized
collision detection and collision detection, respectively. Overall, the module for colli-
sion detection takes around 50.1% to 88.3% of the total timing (tcd/tall), the module
for contact query takes around 5.6% to 28.8%, and the module for localized collision
detection accounts for 1.3% to 17.4% of total running time. In order to evaluate the
effectiveness of our localized collision detection, we measure the culling ratio #lcd/#cd,
the number of global collision detection queries over the number of the localized collision
detection queries. According to the table, our method can achieve 18.8% to 48.8% culling
ratios on the tested benchmarks. Furthermore, tper lcd/tper cd, the ratio of the timing
for localized collision detection over the average time for collision detection is around
1.3% to 13.3%. These two ratios indicate that our localized collision detection algo-
rithm effectively exploits the spatial coherence and considerably improves the planner’s
performance.

on complex models, and the topology of the dilated free space may be different. On the

other hand, our algorithm is directly applied to general polygonal models. Furthermore,

based on the shrinking of geometric models, these methods implicitly use the formulation

of growth distance for quantifying the amount of intersection among the models (Ong

and Gilbert, 1996). This formulation is not as rigorous as our underlying formulation of

generalized penetration depth computation, which is based on a proper distance metric

that meaningfully combines the translational and rotational motion of the robot as we

discuss in Chapter 2.

169

Figure 6.11: Alpha puzzle benchmark. the sequence of images shows a collision-free
path computed by D-Plan. For this challenge benchmark, D-Plan takes 1, 043.0s.

6.8 Limitations

There are several limitations of our retraction-based planner. Our optimization-based

retraction searches over the contact space and computes a local minima. As a result,

it can generate many configurations that lie in the contact space but not in the narrow

passages. This can affect the overall performance of the planner. Furthermore, the

optimization-based retraction step has additional overhead. If the configuration has no

narrow passages, our enhanced planner may take longer time as compared to the basic

planner. However, in the notch benchmark where the robot is scaled down to 0.8 so

that the narrow passages become wider, our planner still performs as well as the basic

RRT. Finally, our algorithm is restricted to rigid models, and performing the retraction

step on articulated models can be more expensive.

In terms of our D-Plan approach for part disassembly simulation, there are also a

few limitations. Like most previous motion planning approaches, our local planning

algorithm performs discrete collision detection along a finite number of samples on the

interpolating motion. If the chosen resolution is not high enough, a local path reported

as collision-free may not be correct. Furthermore, our method needs to perform the

170

Figure 6.12: Maintainability test of a pipe motion. A pipe model (highlighted as A)
needs to be taken out of the machinery room. The sequence of images shows a path
automatically generated by D-Plan. It only takes around 2 minutes to compute the
collision-free path.

contact query repeatedly and use it for sample generation as part of the retraction step.

This may impact the overall performance of the planner on complex models. Finally,

D-Plan is only able to handle rigid objects.

6.9 Summary

In this chapter, we present an optimization-based retraction algorithm to improve the

performance of RRT planners by retracting the samples so that they can be more likely

to be connected to the tree. The resulting tree can grow closely towards every ran-

domly generated sample, including colliding as well as free configurations. We analyze

the behavior of our planner using Voronoi diagrams of the configurations in the tree

and highlight the scenarios where our planner can handle narrow passages well. We

have implemented this algorithm and applied it for rigid robots in challenging planning

scenarios. Our experimental results show that our algorithm generates more samples

near the contact space or in the narrow passages than prior RRT planners and is able

to explore more difficult regions in the configuration space. In practice, we observe

171

Figure 6.13: Maintainability of the windscreen wiper motion. The first image shows the
input configuration for the benchmark, where the wiper is inside the windscreen model
with very tight space. The wiper needs to be taken outside with the final configuration
shown in the last image. The intermediate sequence of images shows a path automatically
computed by D-Plan.

significant speedups over prior RRT planners.

We also present a general and efficient motion planning approach, D-Plan, for part

removal and disassembly simulation. Our algorithm is based on sample-based motion

planning and we use new optimization-based technique to generate samples near the

boundary of C-obstacle space and narrow passages. Furthermore, we utilize a con-

strained interpolation scheme for local planning that connects nearby samples with a

higher probability of computing collision-free paths. We also present efficient techniques

for performing contact query among general polygon soup models and accelerate the per-

formance based on localized collision detection. D-Plan is able to handle all CAD models

with no assumptions on their connectivity or topology. We demonstrate its application

to many challenging CAD scenarios.

172

Figure 6.14: Disassembly of a seat outside a car body. This benchmark of disassembly
of a seat outside of a car body also arises from an industrial application (Ferr and
Laumond, 2004). It is a difficult scenario for motion planning approaches due to the
cluttered environment and complex geometric representation of the models, i.e. 30K
triangles for the seat model and 214K triangles for the car body model. The sequence of
images shows a path automatically generated by D-Plan in about 3 minutes.

173

Chapter 7

Conclusion and Future Works

In this thesis, our main focus has been on design of efficient and practical motion plan-

ning approaches. We mainly address two important problems: (1) develop practical

approaches to check for path non-existence for low (up to 4) DOF robots; (2) improve

the performance of sampling-based planners when the free space of a robot has narrow

passages.

We show that the generalized penetration depth is an important proximity query

and can be useful for both the problems. In practice, collision detection algorithms

can only determines whether a configuration lies in the robot’s free space or not. By

quantifying the extent of intersection between the overlapping models (e.g. a robot and

an obstacle), penetration depth can be used as a distance measure about the C-obstacle

space of the robot. In order to handle 6-DOF free-flying rigid robots, we extend the

prior notion of translational PD to generalized PD, which takes into account both the

translational and rotational motion. We formulate the generalized PD computation

using model-dependent C-space distance metrics and present practical algorithms to

compute generalized PD.

We use our generalized penetration depth computation algorithms to design practical

motion planning approaches: which are either complete for general low DOF robots, or

are efficient in terms of solving difficult planning problems for rigid robots with narrow

passages. We use our approach for part removal or disassembly problems in virtual

prototyping and CAD.

In the following sections, we summarize our algorithms, discuss some of their limi-

tations and suggest a few directions for future investigation.

7.1 Generalized PD Computation

We address the generalized PD problem between rigid models by taking into account

translational as well as rotational motion. We formulate the problem by choosing an

appropriate C-space distance metric, such as DISP, OBNO or TRAJ. We present an

efficient algorithm to compute the DISP metric for rigid or articulated robots.

We present two new algorithms to compute generalized PD. We first present a

convexity-based algorithm using convex decomposition and containment optimization.

For two overlapping convex polytopes, we show that generalized PD is equivalent to

translational PD. when the complement of one of the objects is convex, we pose the

generalized PD computation as a variant of the convex containment problem and com-

pute an upper bound using optimization techniques. When both of the objects are non-

convex, we treat them as a combination of the two cases described above and present

algorithms that compute a lower bound and an upper bound on generalized PD. Our

empirical results show that we can efficiently compute generalized PD for these cases.

We also present a practical algorithm to compute generalized PD for non-convex

models based on constrained optimization. Our algorithm performs iterative optimiza-

tion in the contact space. The experimental results show that we can efficiently compute

an upper bound of generalized PD for complex non-convex models composed of a few

thousands of trainless. As compared to the convexity-based algorithm, the constrained

optimization algorithm offers the following benefits:

• Generality: Our algorithm is general and applicable to both convex and non-

175

convex rigid models. The approach makes no assumption about object topology

and doesn’t need to perform convex decomposition. The approach can also be

extended for polygon soup models.

• Practicality: Our algorithm is relatively simple to implement and useful for

many applications that require both translation and rotation measures for the

intersection.

• Efficiency: Our algorithm use a local optimization algorithm and reduce the

problem of generalized PD computation to performing multiple collision detection

and contact queries.

We demonstrate the efficiency and the robustness of both generalized PD algorithms

on many complex 3D models.

7.1.1 Limitations

One limitation of our convexity-based generalized PD algorithm is that it requires convex

decomposition as a preprocess. Such computation is inefficient for complex objects or

difficult on models without the connectivity information. Given the complexity of exact

generalized PD computation for non-convex polyhedra, we only compute lower and

upper bounds. These bounds depend on the convex decomposition of the models and

may not tight. However, in most practical cases, the extent of penetration is small and

we expect that our algorithm would compute a good approximation.

The main limitation of our algorithm based on constrained optimization is that the

algorithm only computes a local minimum and can not guarantee a global solution for

generalized PD computation. Its performance depends on the choice of an initial guess.

176

7.2 Efficient Motion Planning

We present efficient complete motion planning approaches using generalized PD com-

putation. In order to check for non-existence, we use the C-obstacle query to efficiently

check whether a cell in C-space lies entirely inside the C-obstacle region. We describe

simple and efficient algorithms for C-obstacle using generalized PD computation. Our

query algorithm is applicable to 2D or 3D rigid robots, or articulated robots. We fur-

ther present an efficient hybrid algorithm that combines the efficiency of randomized

sampling methods with the completeness of approximate cell decomposition algorithms.

We also extend our complete motion planning approach to feedback motion planning

by computing a global vector field in the entire free space of the robot. As compared to

prior approaches, our planner and its variants are complete and relatively simple to im-

plement. The resulting planners also work robustly on non-convex robots and obstacles.

We demonstrate their performance on 3-4 DOF robots.

We present an optimization-based retraction algorithm to improve the performance

of sampling-based planners in narrow passages for 3D rigid robots. Based on general-

ized PD computation, our algorithm retracts samples to the nearby boundary of the

C-obstacle space. Our algorithm is general and makes no assumption about model

connectivity or object topology. Based on the retraction-based sampling, we present

D-Plan approach for part disassembly tasks, which frequently arise in CAD/CAM and

virtual prototyping and have tight-fitting configurations. We highlight the performance

of D-Plan on many challenging benchmarks with narrow passages (e.g. the alpha puzzle

benchmark).

7.2.1 Limitations

Our complete motion planning approaches have a few limitations. The C-obstacle cell

query algorithm is conservative, which stems from the conservativeness of generalized

177

PD and bounding motion computations. Secondly, our path non-existence algorithm as-

sumes that there are no tangential contacts on the boundary of the free space. Otherwise,

the algorithm may not terminate. As a result, our algorithm can not deal with com-

pliant motion planning, where a robot cannot pass through obstacles without touching

the obstacles. The complexity of our algorithms based on approximate cell decompo-

sition varies as a function of the dimension of the configuration space. However, our

experimental results show that our algorithms works well on many path non-existence

scenarios. Finally, when we apply our planners to 4-DOF or higher DOF problems,

graph searching along with the cell decomposition becomes one of the major bottle-

necks. This is because the size of the connectivity graph G increases as a function of

the number of the cells in ACD.

For global vector field computation method, the resulting integral curves are guaran-

teed to be C∞ smooth. However, the curves can have sharp turns due to the underlying

adaptive decomposition.

7.3 Future Work

We have presented new algorithms for efficient motion planning using generalized PD

computation. In practice, we have been able to solve some of the planning benchmarks

that were considered as challenging for prior techniques. But, there are a number of

remaining challenges in the areas. This includes improving generalized PD computa-

tion for rigid robots and articulated robots, extending our complete motion planning

approaches for higher DOF problems, such as 6-DOF rigid robots and incorporating

differential constraints into our geometric path planning approaches.

Generalize PD computation: It would be useful to derive tight bounds on the ap-

proximations (i.e. the lower and upper bounds) and analyze the convergence properties

of our generalized PD algorithms. A tighter lower bound can improve the accuracy of C-

178

obstacle cell query and therefore improve the overall performance of path non-existence

computation. For retraction-based planners, a tighter upper bound on generalized PD

can result in more effective retraction computation.

Articulated robots such as manipulators have been widely used. In order to improve

the efficiency of motion planning for an articulated robot in a constrained environment,

we need to reason about its C-obstacle space more effectively. Generalized PD computa-

tion can provide a distance measure to C-obstacle space. However, the straightforward

way by treating each link of the robot as a rigid body can be overly conservative for

computing generalized PD. In order to compute tight bounds, we may make use of the

robot’s kinematic structure and design efficient schemes for local contact space search.

Complete motion planning for 6-DOF rigid robots: Our C-obstacle query algo-

rithm is directly applicable to 3D rigid robots or high DOF robot. The implementation

of ACD is also general for any dimensional C-space. The main challenge is to reduce the

number of cells from spatial decomposition for higher dimensional problems. Currently,

one of the performance bottlenecks in our implementation is the graph searching step

for each level of guided subdivision. This may be improved by using incremental graph

search algorithms that can exploit the spatial coherence between different levels.

It is also interesting to investigate sampling-based path non-existence approaches.

For any colliding configuration of a n-DOF robot, based on the lower bound on its

generalized PD, we can compute a closed n-ball, which lies entirely in the robot’s C-

obstacle. One sufficient condition for checking for path non-existence is whether the

robot’s initial and goal configurations are path disconnected with respect to the union of

all such balls from randomized sampling. The major difficulty to address is to determine

the disconnection while avoiding the expensive step of explicitly computing the union

of balls in high dimensional C-space.

179

Feedback motion planning and dynamic constraints: We are interested in com-

bining our feedback planning algorithm with randomized sampling techniques for higher

DOF robots. We are also interested in improving the quality of integral curves over the

global vector field. For instance, in order to reduce the high-variation of curvature on the

paths, we may compute an optimal vector field over the approximate cell decomposition.

Also, we would like to extend our algorithm to robots with non-holonomic and dynamic

constraints so that the planner can not only satisfy collision avoidance constraints, but

also guarantee the safety of the system in terms of dynamic constraints.

Finally, it may be worth testing the performance of our retraction-based planner on

more complex benchmarks and integrating our D-Plan approach into commercial CAD

and virtual prototyping systems.

180

Bibliography

Agarwal, P., Amenta, N., and Sharir, M. (1998). Largest placement of one convex
polygon inside another. In Discrete Comput. Geom, volume 19, pages 95–104. 24

Agarwal, P., Guibas, L., Har-Peled, S., Rabinovitch, A., and Sharir, M. (2000). Pene-
tration depth of two convex polytopes in 3d. Nordic J. Computing, 7:227–240. 23

Amato, N., Bayazit, O., Dale, L., Jones, C., and Vallejo, D. (1998). OBPRM: An
obstacle-based prm for 3d workspaces. Proceedings of WAFR, pages 197–204. 9, 95,
143, 146, 147, 149, 161, 166

Amato, N., Bayazit, O., Dale, L., Jones, C., and Vallejo, D. (2000). Choosing good
distance metrics and local planners for probabilistic roadmap methods. IEEE Trans.
Robot. and Autom., 16(4):442–447. 27

Avnaim, F. and Boissonnat, J.-D. (1989a). Polygon placement under translation and
rotation. RAIRO Inform. Theor., 23:5–28. 24, 59

Avnaim, F. and Boissonnat, J.-D. (1989b). Practical exact motion planning of a class
of robots with three degrees of freedom. In Proc. of Canadian Conference on Com-
putational Geometry, page 19. 4, 5, 8, 94, 126

Ball, R. (1876). The Theory of Screws. Hodges and Foster, Dublin. 42

Banon, J. (1990). Implementation and extension of the ladder algorithm. In Proceedings
of International Conference on Robotics and Automation, pages 1548–1553. 94, 126

Basch, J., Guibas, L. J., Hsu, D., and Nguyen, A. T. (2001). Disconnection proofs for
motion planning. In Proc. IEEE International Conference on Robotics and Automa-
tion, pages 1765–1772. 95

Belta, C., Isler, V., and Pappas, G. J. (2005). Discrete abstractions for robot motion
planning and control in polygonal environments. IEEE Transactions on Robotics,
21(5):864–874. 96, 129

Boor, V., Overmars, M. H., and van der Stappen, A. F. (1999). The gaussian sam-
pling strategy for probabilistic roadmap planners. In Proceedings of International
Conference on Robotics and Automation, pages 1018–1023. 10, 143, 146

Brooks, R. A. and Lozano-Pérez, T. (1985). A subdivision algorithm in configuration
space for findpath with rotation. IEEE Trans. Syst, SMC-15:224–233. 5, 8, 94

Cameron, S. (1997). Enhancing GJK: Computing minimum and penetration distance
between convex polyhedra. IEEE International Conference on Robotics and Automa-
tion, pages 3112–3117. 65, 66

181

Cameron, S. A. and Culley, R. K. (1986). Determining the minimum translational
distance between two convex polyhedra. In Proc. of IEEE Inter. Conf. on Robotics
and Automation, pages 591–596. 20

Canny, J. (1988). The Complexity of Robot Motion Planning. ACM Doctoral Disserta-
tion Award. MIT Press. 5, 94

Chang, H. and Li, T. (1995). Assembly maintainability study with motion planning. In
Proceedings of International Conference on Robotics and Automation. 157

Chazelle, B. (1983). The polygon containment problem. Advances in Computing Re-
search, 1:1–33. 24, 59

Cheng, H.-L., Hsu, D., Latombe, J.-C., and Sánchez-Ante, G. (2006). Multi-level free-
space dilation for sampling narrow passages in PRM planning. In Proc. IEEE Int.
Conf. on Robotics & Automation, pages 1255–1260. 144, 146, 147, 168

Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., and
Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementa-
tions. MIT Press. 2, 93

Conner, D. C., Rizzi, A. A., and Choset, H. (2003). Composition of local potential func-
tions for global robot control and navigation. In Proceedings IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3546–3551. 96, 129

de Berg, M., van Kreveld, M., Overmars, M. H., and Schwarzkopf, O. (1997). Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, Berlin. 46

Dobkin, D., Hershberger, J., Kirkpatrick, D., and Suri, S. (1993). Computing the
intersection-depth of polyhedra. Algorithmica, 9:518–533. 20, 23

Donald, B. R. (1987). A search algorithm for motion planning with six degrees of
freedom. Artif. Intell., 31(3):295–353. 4, 92, 148

Egan, K., Berard, S., and Trinkle, J. (2003). Modeling nonconvex constraints using
linear complementarity. Technical Report 03-13, Department of Computer Science,
Rensselaer Polytechnic Institute (RPI). 79

Ehmann, S. and Lin, M. C. (2001). Accurate and fast proximity queries between poly-
hedra using convex surface decomposition. Computer Graphics Forum (Proc. of Eu-
rographics’2001), 20(3):500–510. 69, 70, 71, 85

Ericson, C. (2004). Real-Time Collision Detection. Morgan Kaufmann. 22

Ferr, E. and Laumond, J.-P. (2004). An iterative diffusion algorithm for part disassembly.
In Proceedings of International Conference on Robotics and Automation, pages 3149–
3154. 6, 147, 148, 157, 161, 166, 167, 168, 173

Foskey, M., Garber, M., Lin, M., and Manocha, D. (2001). A voronoi-based hybrid
planner. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. 127, 147

182

Garber, M. and Lin, M. (2002). Constraint-based motion planning for virtual prototyp-
ing. In Proc. ACM Symposium on Solid Model and Applications. 157

Gottschalk, S., Lin, M., and Manocha, D. (1996). OBB-Tree: A hierarchical structure
for rapid interference detection. Proc. of ACM Siggraph’96, pages 171–180. 66, 71

Grinde, R. and Cavalier, T. (1996). Containment of a single polygon using mathematical
programming. European Journal of Operational Research, 92(2):368–386. 24, 60

Guibas, L., Holleman, C., and Kavraki, L. (1999). A probabilistic roadmap planner for
flexible objects with a workspace medial-axis-based sampling approach. In Proc. of
IROS, pages 254 – 259. 10

Halperin, D. (2002). Robust geometric computing in motion. International Journal of
Robotics Research, 21(3):219–232. 4, 5, 94

Halperin, D. (2004). Arrangements. In Goodman, J. E. and O’Rourke, J., editors,
Handbook of Discrete and Computational Geometry, chapter 24, pages 529–562. CRC
Press LLC, Boca Raton, FL. 4, 38

Hirsch, S. and Halperin, D. (2003). Hybrid motion planning: Coordinating two discs
moving among polygonal obstacles in the plane. In Springer Tracts in Advanced
Robotics, pages 239 – 256. 127

Hirukawa, H., Papegay, Y., and Tsukune, H. (1994). A motion planning algorithm of
polyhedra in contact for mechanicalassembly. In 20th International Conference on
Industrial Electronics, Control and Instrumentation, volume 2, pages 924–929. 148

Hofer, M. and Pottmann, H. (2004). Energy-minimizing splines in manifolds. In SIG-
GRAPH 2004 Conference Proceedings, pages 284–293. 29

Hsu, D., Kavraki, L., Latombe, J.-C., Motwani, R., and Sorkin, S. (1998). On finding
narrow passages with probabilistic roadmap planners. Proc. of 3rd Workshop on
Algorithmic Foundations of Robotics, pages 25–32. 9, 10, 13, 143, 146, 147

Hsu, D., Latombe, J., and Kurniawati, H. (2006). On the probabilistic foundations of
probabilistic roadmap planning. Int. J. Robotics Research, 25(7):627–643. 95, 143,
146

Hsu, D., Latombe, J.-C., and Motwani, R. (1999). Path planning in expansive config-
uration spaces. International Journal of Computational Geometry and Applications,
9((4 & 5)):495–512. 29

Hsu, D., Sánchez-Ante, G., and Sun, Z. (2005). Hybrid PRM sampling with a cost-
sensitive adaptive strategy. In Proc. IEEE Int. Conf. on Robotics & Automation.
127

Ji, X. and Xiao, J. (2000). On random sampling in contact configuration space. Proc.
of Workshop on Algorithmic Foundation of Robotics. 81

183

Ji, X. and Xiao, J. (2001). Planning motion compliant to complex contact states.
International Journal of Robotics Research, 20(6):446–465. 148

Joskowicz, L. and Sacks, E. (1999). Computer-aided mechanical design using configu-
ration spaces. Computing in Science and Engineering, 1(6):14–21. 40

Kavraki, L., Svestka, P., Latombe, J. C., and Overmars, M. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans.
Robot. Automat., pages 12(4):566–580. 5, 27, 91, 95, 142, 163

Kazerounian, K. and Rastegar, J. (1992). Object norms: A class of coordinate and
metric independent norms for displacement. In et al, G. K., editor, Flexible Mech-
anism, Dynamics and Analysis: ASME Design Technical Conference, 22nd Biennial
Mechanisms Conference, volume 47, pages 271–275. 28, 29, 30

Kedem, K. and Sharir, M. (1988). An automatic motion planning system for a convex
polygonal mobile robot in 2-d polygonal space. In ACM Symposium on Computational
Geometry, pages 329–340. 4, 94

Keil, J. M. (2000). Polygon decomposition. In Sack, J.-R. and Urrutia, J., editors,
Handbook of Computational Geometry, pages 491–518. Elsevier Science Publishers
B.V. North-Holland, Amsterdam. 125

Kim, Y. J., Lin, M. C., and Manocha, D. (2002a). DEEP: an incremental algorithm for
penetration depth computation between convex polytopes. Proc. of IEEE Conference
on Robotics and Automation, pages 921–926. 20, 23, 56, 65

Kim, Y. J., Lin, M. C., and Manocha, D. (2002b). Fast penetration depth computa-
tion using rasterization hardware and hierarchical refinement. Proc. of Workshop on
Algorithmic Foundations of Robotics. 21, 23, 66

Kloetzer, M. and Belta, C. (2006). A framework for automatic deployment of robots
in 2d and 3d environments. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 953–958. 96, 129

Kuffner, J. (2004). Effective sampling and distance metrics for 3d rigid body path
planning. In IEEE Int’l Conf. on Robotics and Automation. 27

Kuffner, J. and LaValle, S. (2000). RRT-connect: An efficient approach to single-query
path planning. In Proc. IEEE International Conference on Robotics and Automation.
27, 142, 154

Kurniawati, H. and Hsu, D. (2006). Workspace-based connectivity oracle: An adaptive
sampling strategy for prm planning. In Proc. of 7th International Workshop on the
Algorithmic Foundations of Robotics. 10, 143, 146

Lambert, A. J. D. (2003). Disassembly sequencing: a survey. International Journal of
Production Research, 41:3721–3759(39). 148

184

Larsen, E., Gottschalk, S., Lin, M., and Manocha, D. (1999). Fast proximity queries
with swept sphere volumes. Technical Report TR99-018, Department of Computer
Science, University of North Carolina. 12, 48, 162, 163

Latombe, J.-C. (1991). Robot Motion Planning. Kluwer Academic Publishers. 2, 4, 28,
29, 30, 38, 78, 93, 94, 97, 98, 118, 124, 132, 148, 157

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.
Technical Report TR 98-11, Computer Science Dept., Iowa State University. 5, 95,
142

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press (also available
at http://msl.cs.uiuc.edu/planning/). 2, 27, 28, 29, 32, 33, 93, 104, 154, 155

Lin, M. and Manocha, D. (2003). Collision and proximity queries. In Handbook of
Discrete and Computational Geometry. 11, 22

Lin, Q. and Burdick, J. (2000). Objective and frame-invariant kinematic metric functions
for rigid bodies. The International Journal of Robotics Research, 19(6):612–625. 28,
34

Lindemann, S. R. and LaValle, S. M. (2007). Smooth feedback for car-like vehicles in
polygonal environments. In IEEE International Conference on Robotics & Automa-
tion, pages 3104–3109. 96

Lindemann, S. R. and LaValle, S. M. (2009). Simple and efficient algorithms for com-
puting smooth, collision-free feedback laws over given cell decompositions. The In-
ternational Journal of Robotics Research, 28(5):600–621. 96, 129, 133, 134, 135, 136,
137

Lingelbach, F. (2004). Path planning using probabilistic cell decomposition. In Proc.
IEEE International Conference on Robotics and Automation. 127

Loncaric, J. (1985). Geometrical analysis of compliant mechanisms in robotics. PhD
thesis, Harvard University. 28

Loncaric, J. (1987). Normal forms of stiffness and compliance matrices. IEEE Journal
of Robotics and Automation, 3(6):567–572. 28

Lozano-Pérez, T. (1983). Spatial planning: A configuration space approach. IEEE
Trans. Comput., C-32:108–120. 2, 92

Lozano-Pérez, T. and Wesley, M. (1979). An algorithm for planning collision-free paths
among polyhedral obstacles. Comm. ACM, 22(10):560–570. 4, 94

McNeely, W., Puterbaugh, K., and Troy, J. (1999). Six degree-of-freedom haptic ren-
dering using voxel sampling. Proc. of ACM SIGGRAPH, pages 401–408. 22

Milenkovic, V. (1998). Rotational polygon overlap minimization and compaction. Com-
putational Geometry, 10(4):305–318. 24, 25

185

Milenkovic, V. (1999). Rotational polygon containment and minimum enclosure using
only robust 2d constructions. Computational Geometry, 13(1):3–19. 24, 61

Milenkovic, V. and Schmidl, H. (2001). Optimization based animation. In ACM SIG-
GRAPH 2001. 24, 25, 61

Morales, M., Tapia, L., Pearce, R., Rodriguez, S., and Amato, N. M. (2005). C-space
subdivision and integration in feature-sensitive motion planning. In Proc. IEEE In-
ternational Conference on Robotics and Automation. 127, 146

Mount, D. (1992). Intersection detection and separators for simple polygons. In Proc.
8th Annual ACM Sympos. Comput. Geom, pages 303–311. 67

Murray, R., Li, Z., and Sastry, S. (1994). A Mathematical Introduction to Robotic
Manipulation. CRC Press. 37, 42

Nawratil, G., Pottmann, H., and Ravani, B. (2009). Generalized penetration depth
computation based on kinematical geometry. Computer Aided Geometric Design,
26(4):425–443. 89

Ong, C. (1997). On the quantification of penetration between general objects. Interna-
tional Journal of Robotics Research, 16(3):400–409. 13, 24, 56

Ong, C. and Gilbert, E. (1996). Growth distances: New measures for object separation
and penetration. IEEE Transactions on Robotics and Automation, 12(6). 20, 24, 169

Paden, B., Mess, A., and Fisher, M. (1989). Path planning using a jacobian-
based freespace generation algorithm. In Proceedings of International Conference
on Robotics and Automation. 5, 8, 95, 104

Park, F. (1995). Distance metrics on the rigid-body motions with applications to mech-
anism design. ASME J. Mechanical Design, 117(1):48–54. 28

Pisula, C., Hoff, K., Lin, M., and Manocha, D. (2000). Randomized path planning
for a rigid body based on hardware accelerated voronoi sampling. In Proc. of 4th
International Workshop on Algorithmic Foundations of Robotics. 95

Plaku, E. and Kavraki, L. E. (2006). Quantitative analysis of nearest-neighbors search
in high-dimensional sampling-based motion planning. In Workshop on Algorithmic
Foundations of Robotics (WAFR), New York, NY. 28

Raab, S. (1999). Controlled perturbation for arrangements of polyhedral surfaces with
application to swept volumes. In Proc. 15th ACM Symposium on Computational
Geometry, pages 163–172. 4, 39

Redon, S. (2004). Fast continuous collision detection and handling for desktop virtual
prototyping. Virtual Reality, 8(1):63–70. 84, 86

186

Redon, S. and Lin, M. (2005). Practical local planning in the contact space. In IEEE
International Conference on Robotics and Automation (ICRA), pages 4200–4205. 24,
82, 147

Redon, S. and Lin, M. (2006). A fast method for local penetration depth computation.
Journal of Graphics Tools, 11(2):37–50. 146, 147, 148

Reif, J. (1979). Complexity of the mover’s problem and generalizations. In 20th Annual
IEEE Symposium on Foundations of Computer Science, pages 421–427, San Juan,
Puerto Rico. 5

Rimon, E. and Koditschek, D. E. (1992). Exact robot navigation using artificial potential
fields. IEEE Transactions on Robotics and Automation, 8(5):501–518. 96

Rodriguez, S., Tang, X., Lien, J., and Amato, N. (2006). An obstacle-based rapidly-
exploring random tree. In Proceedings of International Conference on Robotics and
Automation, pages 895–900. 147, 164, 167

Ruspini, D. and Khatib, O. (1997). Collision/contact models for the dynamic simula-
tion of complex environments. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems. 82

Ruspini, D. and Khatib, O. (2000). A framework for multi-contact multi-body dynamic
simulation and haptic display. In Proceedings of International Conference on Robotics
and Automation. 40

Saha, M., Latombe, J., Chang, Y., Lin, and Prinz, F. (2005). Finding narrow passages
with probabilistic roadmaps: the small step retraction method. Intelligent Robots and
Systems, 19(3):301–319. 143, 144, 146, 147, 168

Schwartz, J. T. and Sharir, M. (1983). On the piano movers probelem ii, general tech-
niques for computing topological properties of real algebraic manifolds. Advances of
Applied Maths, 4:298–351. 5, 94, 129

Schwarzer, F., Saha, M., and Latombe, J. (2005). Adaptive dynamic collision checking
for single and multiple articulated robots in complex environments. IEEE Tr. on
Robotics, 21(3):338–353. 32, 100, 104

Simeon, T., Laumond, J. P., and Nissoux, C. (2000). Visibility based probabilistic
roadmaps for motion planning. Advanced Robotics Journal, 14(6). 10, 95, 143, 146

Spivak, M. (1999). A Comprehensive Introduction to Differential Geometry. Publish or
Perish Press, 3 edition. 47

Strandberg, M. (2004). Augmenting RRT-planners with local trees. In Proceedings of
International Conference on Robotics and Automation, volume 4, pages 3258–3262.
167

187

Sud, A., Govindaraju, N., Gayle, R., Kabul, I., and Manocha, D. (2006). Fast proximity
computation among deformable models using discrete voronoi diagrams. Proc. of ACM
SIGGRAPH, pages 1144–1153. 24

Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., and Reif, J. (2005). Narrow passage sampling
for probabilistic roadmap planners. IEEE Trans. on Robotics, 21(6):1105–1115. 146

Tchon, K. and Duleba, I. (1994). Definition of a kinematic metric for robot manipulators.
Journal of Robotic Systems, 11(3):211–221. 28

Tesic, R. and Banerjee, P. (2002). Motion modeling concepts in virtual manufacturing
simulator. Journal of Advanced Manufacturing, 1:37–49. 157

van den Berg, J. and Overmars, M. (2005). Using workspace information as a guide to
non-uniform sampling in probabilistic roadmap planners. The International Journal
of Robotics Research, 24(12):1055–1071. 146

van den Bergen, G. (2001). Proximity queries and penetration depth computation on
3d game objects. Game Developers Conference. 20, 21, 23, 56, 65, 66, 71, 106

Varadhan, G., Kim, Y., Krishnan, S., and Manocha, D. (2006). Topology preserv-
ing approximation of free configuration space. In IEEE International Conference on
Robotics and Automation (ICRA), pages 3041–3048. 39

Varadhan, G. and Manocha, D. (2005). Star-shaped roadmaps - a deterministic sampling
approach for complete motion planning. In Proceedings of Robotics: Science and
Systems, Cambridge, USA. 5, 94, 109, 126

Wein, R. (2008). 2d Minkowski sums. In Board, C. E., editor, CGAL User and Reference
Manual. 3.4 edition. 106

Wilmarth, S. A., Amato, N. M., and Stiller, P. F. (1999). Motion planning for a rigid
body using random networks on the medial axis of the free space. In Symposium on
Computational Geometry, pages 173–180. 146, 147

Wilson, R. H. and Latombe, J.-C. (1994). Geometric reasoning about mechanical as-
sembly. Artif. Intell., 71:371–396. 148

Wise, K. D. and Bowyer, A. (2000). A survey of global configuration-space mapping
techniques for a single robot in a static environment. The International Journal of
Robotics Research, 19(8):762–779. 95

Xiao, J. and Ji, X. (2001). On automatic generation of high-level contact state space.
International Journal of Robotics Research, 20(7):584–606. 78, 148

Yang, L. and LaValle, S. M. (2004). The sampling-based neighborhood graph: A frame-
work for planning and executing feedback motion strategies. IEEE Transactions on
Robotics and Automation, 20(3):419–432. 96

188

Yershova, A., Jaillet, L., Simeon, T., and LaValle, S. M. (2005). Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain. In Proceedings of
International Conference on Robotics and Automation, pages 3856–3861. 154, 167

Zhang, L., Huang, X., Kim, Y., and Manocha, D. (2008a). D-Plan: Efficient collision-
free path computation for part removal and disassembly. Journal of Computer-Aided
Design and Applications, 5(6):774–786. 17, 143, 158

Zhang, L., Kim, Y., and D.Manocha (2008b). Efficient distance computation in config-
uration space. Computer Aided Geometric Design, 25(7):489–502. 14, 27, 28, 29, 35,
40

Zhang, L., Kim, Y., and Manocha, D. (2007a). A fast and practical algorithm for
generalized penetration depth computation. In Proceedings of Robotics: Science and
Systems, Atlanta, GA, USA. 14, 15, 25, 55, 77

Zhang, L., Kim, Y., and Manocha, D. (2007b). A hybrid approach for complete motion
planning. In IEEE/RSJ International Conference On Intelligent Robots and Systems
(IROS), pages 7–14, San Diego, CA, USA. 16, 93, 110

Zhang, L., Kim, Y., and Manocha, D. (2008c). Efficient cell labelling and path non-
existence computation using c-obstacle query. The International Journal of Robotics
Research, 27(11-12):1246–1257. 12, 16, 92, 132, 138

Zhang, L., Kim, Y., Varadhan, G., and D.Manocha (2007c). Generalized penetration
depth computation. Computer-Aided Design, 39(8):625–638. 14, 25, 28, 29, 55, 56,
102, 147

Zhang, L., LaValle, S., and Manocha, D. (2009). Global vector field computation for
feedback motion planning. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 477–482. 16, 93, 129

Zhang, L. and Manocha, D. (2008a). Constrained motion interpolation with distance
constraints. In International Workshop on the Algorithmic Foundations of Robotics
(WAFR), pages 269–284. 163

Zhang, L. and Manocha, D. (2008b). A retraction-based RRT planner. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 3743–3750. 17, 95,
142

Zhang, X., Lee, M., and Kim, Y. (2006). Interactive continuous collision detection for
non-convex polyhedra. In Pacific Graphics 2006 (Visual Computer). 84

Zhu, D. and Latombe, J. (1990). Constraint reformulation in a hierarchical path planner.
Proceedings of International Conference on Robotics and Automation, pages 1918–
1923. 5, 8, 92, 95, 98

189

