First Order Logic: Quantifiers, COMP 283

Alyssa Byrnes

Fall 2021

1 Lecture Notes

Definition 1

A predicate is a function that maps each possible input to either True or False. [Sno21]

Example 1

Here are two predicates each taking their input x from a set of days, D :
$p(x)=$ "It rained in the morning on day x, " and
$q(x)=$ "I walked to campus on day $x . "$
We can combine these to write the statement "If it did not rain in the morning on day x, then I walked to campus on day x " as $\neg p(x) \Longrightarrow q(x)^{a}$
${ }^{a}$ In the textbook, \Longrightarrow is written as \rightarrow and $\neg x$ is written as \bar{x}.

We are going to introduce the next concept with an example...

Example 2

Let's say that my previous statement only applies on Mondays, Wednesdays, and Fridays. How can we say this using what we already learned? $(\neg p($ Mon $) \Longrightarrow q($ Mon $)) \wedge(\neg p($ Wed $) \Longrightarrow q($ Wed $)) \wedge(\neg p($ Fri $) \Longrightarrow q($ Fri $))$
We can also express this using set notation. Say $D=\{$ Mon, Wed, Fri $\}$.
Similar to how you use a summation \sum for a sequence of additions, we can use the big and
Λ to represent a sequence of ands.
$\bigwedge_{d \in D}(\neg p(d) \Longrightarrow q(d))$ We can also write this using a quantifier.

Definition 2

The "for all" quantifier, denoted \forall, is used to reason about all elements of a set.

Example 3

Back to our previous example, we already showed that for $D=\{$ Mon, Wed, Fri $\}$,

$$
\begin{aligned}
(\neg p(\text { Mon }) \Longrightarrow q(\text { Mon })) \wedge(\neg p(\text { Wed }) \Longrightarrow q(\text { Wed })) & \wedge(\neg p(\text { Fri }) \Longrightarrow q(\text { Fri })) \\
& \equiv \bigwedge_{x \in D}(\neg p(x) \Longrightarrow q(x))
\end{aligned}
$$

There is another way we can say this.

$$
\forall d \in D,(\neg p(d) \Longrightarrow q(d))
$$

We can do something similar with "or" statements. For this we will introduce another quantifier.

Definition 3

The "there exists" quantifier, denoted \exists, is used to reason about at least one element of a set.

Example 4

Now let's say that for at least one day of Monday, Wednesday and Friday, if it's not raining on day x , then I walk to campus on day x .

This can be written using logical or, big or, or with the "there exists" quantifier.

$$
\left.\begin{array}{rl}
(\neg p(\text { Mon }) \Longrightarrow q(\text { Mon })) \vee(\neg p(\text { Wed }) \Longrightarrow q(\text { Wed })) & \vee(\neg p(\text { Fri }) \\
\equiv & \Longrightarrow q(\text { Fri })) \\
\equiv & \not \supset p(x)
\end{array} \Longrightarrow q(x)\right)
$$

Definition 4

A variable specified with a specified domain is a bounded variable. A variable without a specified domain is a free variable.

Example 5

In the preposition $\forall x \in \mathbb{Z}, f(x, y)$,
x is a bounded variable and y is a free variable.

Example 6

For $\sum_{k=0}^{10}(k+n), k$ is a bounded variable and n is a free variable.

1.1 Negation and Inference

Since 'for all' is a big 'and,' and 'exists' is a big 'or,' de Morgan's laws say that the negation of one is the other (with its statement negated.) That is:

Definition 5

$$
\begin{aligned}
& \neg(\forall x, p(x)) \equiv \exists x, \neg p(x) \text { and } \\
& \quad \neg(\exists x, p(x)) \equiv \forall x, \neg p(x)
\end{aligned}
$$

Why are these true?

Example 7

$\neg(\forall x, p(x))$ in English translates to " $p(x)$ does not hold for all x ". This is equivalent to saying, "There exists an x where $p(x)$ does not hold", or $\exists x, \neg p(x)$.

Similarly, $\neg(\exists x, p(x))$ in English translates to "There does not exist x such that $p(x)$ holds.

This is equivalent to saying "For all $x, p(x)$ does not hold", or $\forall x, \neg p(x)$.

Definition 6: Rules of Inference

- Universal Generalization says that if we know $p(x)$ is true for whatever element x of X that our adversary may challenge us with then we may conclude $\forall x \in X, p(x)$.
- Existential generalization says that if we can choose a specific element a $a \in X$ for which $p(a)$ is true, then we may conclude $\exists x \in X, p(x)$; it is an application of absorption.
- Universal instantiation says that if we know $\forall x \in X, p(x)$ then we can conclude $p(a)$ for any specific choice of $a \in X$; it is an application of simplification.
- Existential instantiation says that if we know $\exists x \in X, p(x)$ we can conclude $p(y)$ for a variable y that is not currently in use, but whose value now becomes fixed so that $p(y)$ is true. [Sno21]

Example 8: Nested Quantifiers

This example is to help you get some practice with nested quantifiers and to understand that the order of them matters.

Say that $\operatorname{loves}(x, y)$ is true iff person x loves person y.
$\forall_{e \in P} \exists_{s \in P}$, loves (e, s) translates to "Everybody loves somebody."
$\exists_{s \in P} \forall_{e \in P}$, loves (e, s) translates to "There is somebody that everybody loves."

1.1.1 Other Notation

Here are some other ways we can write things.
If we are talking about pairs of distinct integers, $i, j \in[1 . . n]$ with $i<j$, we may even write $\forall_{1 \leq i<j \leq n}$ or $\exists_{1 \leq i<j \leq n}$.

If we are talking about elements x and y that are members of the same set S, we can write $\forall_{x, y \in S}$ or $\exists_{x, y \in S}$.

2 Acknowledgements

Content for these lecture notes was taken from lecture notes by Jack Snoeyink (UNC) [Sno21], Carola Wenk (Tulane) [Wen15], and Tiffany Barnes (NCSU) [Bar21].

References

[Bar21] Tiffany Barnes. Discrete mathematics lecture notes. 2021.
[Sno21] Jack Snoeyink. Discrete mathematics lecture notes. 2021.
[Wen15] Carola Wenk. Discrete mathematics lecture notes. http://www.cs.tulane.edu/~carola/ teaching/cmps2170/fall15/slides/index.html, 2015.

