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Abstract

Calibrating a network of cameras with non-overlapping

views is an important and challenging problem in computer

vision. In this paper, we present a novel technique for cam-

era calibration using a planar mirror. We overcome the

need for all cameras to see a common calibration object

directly by allowing them to see it through a mirror. We

use the fact that the mirrored views generate a family of

mirrored camera poses that uniquely describe the real cam-

era pose. Our method consists of the following two steps:

(1) using standard calibration methods to find the internal

and external parameters of a set of mirrored camera poses,

(2) estimating the external parameters of the real cameras

from their mirrored poses by formulating constraints be-

tween them. We demonstrate our method on real and syn-

thetic data for camera clusters with small overlap between

the views and non-overlapping views.

1. Introduction

Camera calibration is a well-studied problem in com-

puter vision. It is a fundamental task that enables many

computer vision applications such as 3D reconstruction,

motion estimation, augmented reality, visual surveillance

and telepresence. All these applications use multiple cam-

eras and benefit greatly of having all of them calibrated

in a single coordinate frame. However, an inherent prob-

lem when using camera networks is that the cameras may

have non-overlapping fields of view (FOVs). Many camera

networks calibration techniques assume that cameras have

overlapping FOVs and some even require that the cameras

be synchronized.

To overcome these limitations, we propose a novel cal-

ibration method that relies on a planar mirror to make a

single calibration object visible to all cameras. The mir-

ror removes the need for cameras to observe the calibration

object directly; instead we move the mirror to create differ-

ent views of the calibration object. The calibration object

remains fixed with respect to the cameras during the cali-

Figure 1. Calibrating with a planar mirror. The camera sees the

pattern in the mirror during the calibration step. Left: Image dur-

ing calibration. Right: Camera poses recovered using our calibra-

tion.

bration procedure, providing a unique reference frame for

computing a family of mirrored camera poses. This method

introduces the four degrees of freedom of each mirror pose

(3D normal vector and distance from the camera) as free pa-

rameters into the calibration process. A naı̈ve method could

place markers on the mirror to estimate its relative pose with

respect to the camera. The mirror pose could then be used

to correct for the reflection introduced by the mirror. Our

proposed method introduces a novel set of constraints that

demonstrate that the mirror pose is not needed for calibra-

tion. Instead we use the family of mirrored camera poses

that are associated with the real camera pose as the camera

observes the calibration object through a mirror. We show

that two mirrored images of the calibration pattern are suf-

ficient to recover the external calibration of the camera up

to a finite number of solutions. However, because the re-

sulting equations are non-linear, we prefer to linearize them

by adding more unknowns, which then requires at least five

mirrored images for the entire calibration process.

We show that the internal camera parameters and the

radial distortion coefficients remain the same when using

a mirror during the calibration process. Our calibration

method can then use any available camera calibration tech-

nique as a first step to determine the internal camera pa-

rameters, the radial distortion coefficients and the mirrored

camera poses. In the experiments for this paper we use
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Bouguet’s calibration toolbox [4], which is based on the ap-

proach proposed by Zhang [23]. The key difference from

most calibration techniques is that instead of moving the

calibration object or the camera, we move the mirror and

leave the camera and calibration object fixed. The internal

camera parameters and the mirrored camera poses are used

in the second step of our calibration method to recover the

real camera pose. The rest of the paper is organized as fol-

lows. Section 2 describes the related prior work on calibra-

tion of cameras and camera networks. Section 3 briefly out-

lines the notations we use in the rest of the paper. Section 4

introduces our novel calibration constraints for cameras us-

ing a planar mirror and also discusses the details of how our

calibration procedure is applied to calibrate a network of

non-overlapping cameras. Section 5 shows the result of our

calibration method on both synthetic and real data, followed

by a detailed analysis of its performance, as well as some

practical considerations and rules of thumb to be followed

during the calibration procedure. Finally we conclude the

paper in Section 6.

2. Related Work

Various methods have been proposed to calibrate cam-

eras using calibration objects. Generally there are two

classes of methods: the first class uses a calibration object

and provides the external camera parameters within the co-

ordinate system of the calibration object as a byproduct of

the internal calibration; the second class does not use any

calibration object and delivers an external camera calibra-

tion up to scale.

We first review the methods that can be used in con-

junction with our method. A variety of methods use fixed

3D geometry [9, 19]. Orthonormal properties of the ro-

tation matrix have been used in plane-based approaches

[11, 10, 16, 23, 17]. A planar pattern viewed from at least

three different orientations is used in [23]. Other calibra-

tion objects include: spheres [2, 22], circles [12], surfaces

of revolution [7], shadows [5] and even fixed stars in the

night sky [14]. Most of these methods are based on the con-

straints provided by vanishing points along perpendicular

directions.

The method in [1] uses a moving plate to calibrate multi-

camera environments and does not require a 3D calibration

object with known 3D coordinates. Kitahara et al. [13] cal-

ibrated their large scale multi-camera environment by using

a classical direct method [19]. The necessary 3D points are

collected by a combined use of a calibration board and a

3D laser-surveying instrument. Svoboda et al. [21] have

calibrated a system of at least three cameras by obtaining

a set of virtual 3D points made by waving a bright spot

throughout the working volume. Baker and Aloimonos [3]

proposed a calibration method for a multi-camera network

which requires a planar pattern with a precise grid. Lee et

al. [15] established a common coordinate frame for a sparse

set of cameras so that all cameras observe a common dom-

inant plane. They tracked objects moving in this plane and

from their trajectories they estimated the external parame-

ters of the cameras in a single coordinate system. Sinha et

al. [20] have calibrated a camera network by using epipo-

lar geometry constraints derived from dynamic silhouettes.

All the above systems are networks with cameras that have

overlapping views or at least pairwise overlapping views.

Our technique can be applied without this limitation.

In addition to the above methods for camera calibra-

tion through the use of calibration objects there is work

on the external camera calibration through camera motion

in an unknown scene. Caspi and Irani [6] proposed an

approach to calibrate a camera system consisting of two

cameras with approximately the same center of projection

and non-overlapping views. They capture two image se-

quences and recover the spatial and temporal transforma-

tions between them using the correlated temporal behavior

induced by moving the cameras jointly in space. Requiring

a common optical center and rigid motion are strong limi-

tations that our approach overcomes. Esquivel [8] proposed

an approach to estimate the relative external parameters up

to a common scale factor for a multi-camera rig with non-

overlapping views of internally calibrated cameras. The ap-

proach computes the camera motion up to scale indepen-

dently for each camera. Afterwards all reconstructions are

aligned with a similarity transformation.

3. Notations

In this paper we will denote a 2D image point by m =
[x y]T , and a 3D point by M = [X Y Z]T . In

the homogeneous coordinates, we write them as m =
[x y 1]T and M = [X Y Z 1]T respectively. We

model cameras using the pinhole model. The 3D point M

and its image projection m into a camera with center of pro-

jection C and with orientation R are related by:

m = PM , (1)

where P = K[RT − RT C] is the camera projection

matrix and K is a matrix of the form:

K =





α γ u0

0 β v0

0 0 1



 . (2)

(u0, v0) are the 2D image coordinates of the principal point

and α, β are the focal length in pixels in the x and y di-

rections respectively. γ is the skew factor between the two

axes, which in practice is almost always set to zero. K

represents the intrinsic camera parameters, and R and C

represent the extrinsic camera parameters.



4. Calibrating a Camera Cluster

We first introduce our proposed constraints for the cali-

bration using the mirrored images of a calibration pattern.

Afterwards we explain the details of our novel calibration

technique based on those constraints.

4.1. Using a Planar Mirror to Calibrate

Consider a camera pose characterized by its center of

projection C and its orientation R. We can place a mirror

inside the camera’s field of view to enable it to see a calibra-

tion pattern that is outside its field of view. This effectively

means the camera observes a mirrored pattern and is equiv-

alent to the mirrored camera observing the original pattern

(see Figure 2).

Figure 2. A real camera observing the image of a 3D point in a

mirror is equivalent to a mirrored camera observing the real point

itself.

We describe the mirror pose by its plane normal n and

the distance to the camera center of projection, d. By chang-

ing the position and orientation of the mirror, we generate a

set of mirror poses Πi with i = 1, . . . , l as:

Πi = [ni
T ,−di] for i = 1, . . . , l (3)

For each mirror pose we obtain one image of the calibration

pattern while keeping the camera and the pattern fixed. For

a particular mirror pose the mirrored camera center C′

i
is

given by

C
′

i
= C − 2dini. (4)

We also make the following two crucial observations:

1. The mirrored camera is now left-handed if the original

camera was right-handed and vice-versa.

2. Due to the duality of points and cameras, a camera

placed at point C and looking at point X′ is equiv-

alent1 to a mirrored camera placed at image point C′

and looking at the object point X .

It follows that the image coordinates of x (in the mirrored

camera image) and x′ (in the real camera image) are the

same, which means that the intrinsics and the radial dis-

tortion coefficients of both cameras are identical. Conse-

quently, applying any standard calibration method to the

mirrored images computes the correct intrinsic camera pa-

rameters and radial distortion coefficients for the mirrored

camera positions, as well as for the real camera, except that

the handedness of the coordinate system is changed. The

only remaining unknown is the real camera pose.

4.2. Computing the Real Camera Pose from the
Mirrored Camera Poses

In this subsection, we develop the constraints that the

mirrored camera poses enforce on the real camera pose.

Given a camera at position C with orientation R observ-

ing a calibration pattern through a moving planar mirror, it

follows that the resulting mirrored camera poses belong to

a 3-DoF family of camera poses generated by the three de-

grees of freedom of the mirror plane Πm = [nm
>,−dm].

The mirrored camera center C
′ can be computed using (4)

as C′ = C − 2dmnm. Additionally, the right-handed ori-

entation of the real camera R is uniquely determined by the

left-handed orientations R′ of the mirrored cameras.

We now derive the constraints that the mirrored camera

poses enforce on the real camera pose. Let rk and r′

k
be kth

column vectors of the rotation matrix of the original camera

and a mirrored camera, respectively. Then the following

proposition holds.

Figure 3. The relationship between a mirrored pose and the real

pose of a camera.

1If we don’t consider the change in the handedness of the cameras then

images observed by them are flipped L-R with respect to each other.



Proposition 4.1 The vector connecting point C to C′ is or-

thogonal to (rk + r′

k
), iff rk is not orthogonal to the mir-

ror plane for k = {1, 2, 3}.

Proof C′C is parallel to the normal of the mirror. Let rk be

at an angle θk( 6= 0) with respect to the normal of the mirror.

Using the laws of reflection, it follows that r′

k
is at an angle

180 − θk to the mirror normal. Since |rk| = |r′

k
|, (rk+r′

k
)

will bisect the angle between them, which is (180 − 2θk)
and will enclose an angle of 90−θk with vectors r′

k
and rk.

(rk+r′

k
) will then be at an angle of (180− θk)− (90− θk)

or θk + (90 − θk) to the mirror normal.

Using proposition 4.1, three equations of the following

form can be formulated, for k = {1, 2, 3}:

(C′> − C
>)(r′

k
+ rk) = 0

or C
′>

r
′

k
+ C

′>
rk − C

>
r

′

k
− C

>
rk = 0 (5)

where all the vectors are of size 3×1. Since C and rk with

k = 1, . . . , 3 are unknowns, the resulting three equations

(5) are non-linear. However, if we define

C
>

rk = sk (6)

for k = {1, 2, 3} and substitute into equations (5), we

obtain them as linear constraints with three additional un-

knowns. These are now the basic linear equations for the

position of the real cameras center and its orientation, which

we can rewrite as:

AX = B, (7)

where

A =







−r′

1

>
C′> 0 0

−r′

2

>
0 C′> 0 −I

−r′

3

>
0 0 C′>






(8)

X = [C>, r1
>, r2

>, r3
>, s1, s2, s3]

> (9)

B = −[C′>
r

′

1
,C′>

r
′

2
, C′>

r
′

3
]> (10)

For m mirror poses, 3m such linear equations can be

stacked and we have A as a 3m×15 matrix and B as a

3m×1 matrix. Since there are 15 unknowns and each im-

age provides us 3 constraints, at least 5 images are needed

to solve for the position C and orientation R of the real

camera. Furthermore, the orientation R of the real camera

should satisfy:

[r1 r2 r3]>[r1 r2 r3] = I (11)

11 generates an additional six quadratic constraints for the

orientation of the real camera:

|r1| = |r2| = |r3| = 1 (12)

r1
>

r2 = r2
>

r3 = r3
>

r1 = 0 (13)

(11) and (6) lead to nine quadratic constraints. Together

with the 3m linear constraints, they are used to determine

the 15 unknowns. It follows that m = 2, or two distinct im-

ages are sufficient to obtain the six degrees of freedom of the

real cameras pose. Note that the non-linear constraints are

of degree two and could provide up to two solutions. Dur-

ing the calibration we typically obtain the solution through

an over-constrained linear system of equations. Afterwards

we enforce the nine non-linear constraints to optimize the

solution.

The next section introduces the details of our calibration

method.

4.3. Non-overlapping camera calibration

Our novel camera calibration technique for non-

overlapping cameras is a two step process consisting of:

1. Internal calibration and mirrored external calibra-

tion from the mirrored images captured by leaving the

cameras and the calibration pattern fixed, and moving

the mirror to enable the cameras to observe the mir-

rored calibration pattern in various poses. This step

can use any standard calibration technique that pro-

vides internal and external camera calibration.

2. Computing the real camera pose from the family of

mirrored camera poses. In this step the proposed con-

straints are used to obtain the pose of the real camera.

We used the calibration toolbox from [4], which imple-

ments the method from [23]. This provides us with the in-

ternal parameters and the mirrored camera poses. Next we

solve the linear equations (7) for all mirrored cameras C′

k

and rk, sk, k = {1, 2, 3} in a least-squares sense. Once

we solved for C and rk, sk, k = {1, 2, 3} using the linear

set of equations, the rotation matrix consisting of rk
′s is pa-

rameterized into quaternion by approximating the estimated

linear rotation matrix R = [r1, r2, r3] with the closest ro-

tation matrix. r1, r2, r3 serve as basis solution vectors for

a non-linear optimization to meet (6) and (11).

Bundle adjustment is later used to determine the extrinsic

parameters corresponding to the real pose of the camera by

minimizing the reprojection error of the mirrored pattern

corners. Our bundle adjustment is parameterized in the real

camera’s parameters and the mirror positions. In order to

recover the mirror parameters (nk
>,−dk) for each mirror

k, we use (4) to compute the initial mirror parameters from

the estimated position C and the mirrored camera centers

C′

k
.

5. Experimental Results

We conducted experiments on both synthetic and real

data to test our proposed method. We first review the perfor-
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Figure 4. Position of the six mirrored images of the calibration pat-

tern as observed by the camera in the mirror. The mirror normals

are randomly generated.

mance evaluation on synthetic data. Afterwards, we discuss

our calibration of a real camera system.

5.1. Evaluation on Synthetic Data

We fixed the values of the internal parameters of a syn-

thetic camera as: α = β = 1300, γ = 0, u0 = 320, v0 =
240. We set the image resolution to 640 × 480. We gen-

erated images as reflections of a fixed calibration pattern

containing the dataset of 256 points from [23]. The planar

mirror normal was randomly generated and only the images

in which the pattern can be seen by the camera in the mirror

were considered for calibration. The position and orienta-

tion of the camera were chosen randomly and used as the

ground truth in the error analysis.

We added Gaussian noise with zero-mean and standard

deviation σ to the generated image points in order to sim-

ulate the noise that would be present after reflection in the

mirror and subsequent capture by the camera. We then com-

pared the estimated extrinsic camera parameters with the

ground truth. Note that the correctness of the intrinsic pa-

rameters depends on the calibration method used in the first

step of our approach. We varied the noise level from 0.1 to

1.6 pixels, performed 100 independent trials for each noise

level and averaged the results. Figures 5 and 6 show the

percentage error in the recovery of the extrinsic parameters

of the real camera. The errors are around 0.7% for σ = 0.5,

values that occur in practice for real data.

5.2. Evaluation on Real Data

We used our method to calibrate a PointGrey LadyBug2

camera system [18]. It has six Sony CCD cameras with 2.5
mm lenses. Five CCD cameras are positioned in a hori-

zontal ring and one camera points straight up as shown in

Figure 7. The image resolution is 1024 × 768. We used an
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Figure 5. The percentage error in recovering the original pose of

the real camera from its six mirrored poses.
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Figure 6. The percentage error in recovering the rotation vectors

of the real camera from its six mirrored poses.

Figure 7. Ladybug: a system of spherical digital video cameras.

Five cameras are positioned on a horizontal ring and the sixth cam-

era points upwards

8 × 7 checkerboard pattern with 42 corner points. The size

of the pattern was 649.6 mm × 648.9 mm. The pattern and

the camera were kept fixed. For each camera, the mirror

was moved in front of it such that the camera saw the com-

plete pattern in the mirror.Figure 8 shows example images

as seen by different cameras. Figure 9 shows a top view of

the position of the cameras recovered using our calibration

approach. Note the five cameras that lie on the horizontal

ring and the sixth camera that points away from the checker-

board pattern. The pattern is located on the Z = 0 plane.

Since the reliability of the recovered internal parameters

depends on the calibration method used (in our case [23]),

we only investigate the stability of our method in terms of



Figure 8. Checkerboard pattern as seen in the mirror by each of the

six cameras.

external parameters. In Tables 1 and 2, we show the cali-

bration results (position and orientation, respectively) using

6 through 12 images. The results are very consistent with

each other and converge with increasing number of images

used. In Figure 10, we compare the mean reprojection er-

Images 3D position (mm)

6 279.2 -865.1 -1090.5

8 276.8 -866.7 -1099.6

10 277.2 -874.5 -1105.4

11 276.3 -874.6 -1103.6

12 275.8 -874. 1 -1103.4

Table 1. Convergence of position of the real camera after bundle

adjustment with regard to the number of images.

Images Rotation vector (Rodrigues form)

6 1.7022 -0.8178 1.7300

8 1.7044 -0.8132 1.7366

10 1.6885 -0.8043 1.7449

11 1.7014 -0.8042 1.7452

12 1.7016 -0.8055 1.7430

Table 2. Convergence of orientation of the real camera after bundle

adjustment with regard to the number of images.

ror before and after applying bundle adjustment to our ini-

tial solution obtained by solving linear system of equations.

5.3. Practical Considerations

Degenerate configurations can arise from both the cali-

bration process using method in [23] and our computation

Figure 9. Relative position of the Ladybug cameras recovered us-

ing our calibration method, in the coordinate system defined by the

pattern. Note the five cameras that lie on a horizontal ring and the

sixth camera that points away from the checkerboard pattern. Top:

cameras before bundle adjustment, Bottom: cameras after bundle

adjustment
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Figure 10. The mean reprojection error before and after applying

bundle adjustment.

of the parameters of the real camera from the external pa-

rameters of the mirrored cameras presented in section 4.2.

In this subsection, we discuss how these degenerate config-

urations can be avoided in practice.

The calibration process requires that the rotations of each

pattern position be independent of each other. Zhang [23]

suggests simply changing the orientation of the pattern from

one snapshot to another. While this is easy when calibrat-

ing a camera directly, it is surprisingly difficult when cali-

brating using a mirror: the mirror has to be in the field of

view of the camera, and oriented such that the pattern’s im-

age is reflected into the camera. These requirements may

result in little variation in the pattern orientations as seen

by the camera in the mirror. In order to avoid this degen-

eracy, we have found that it is useful to make the pattern

small enough (or place it far enough) such that its image in

the camera only occupies a fraction of the camera’s field of

view. Although this may lead to less precision in finding

the checkerboard corners, it gives more room to maneuver



the mirror inside the camera’s field of view, and allows for

larger mirror rotations, which result in more variation in the

pattern orientations.

The computation of the real camera parameters from the

mirrored camera poses requires that none of the axes of the

camera coordinate system be perpendicular to the mirror

plane. This is not a common problem for the camera X

and Y axes, because the mirror would be parallel to the Z

axis, and its image would only occupy a small number of

columns or rows of pixels in the camera image. In order to

ensure that the camera’s Z axis is not perpendicular to the

mirror plane, one should try to avoid aiming the mirror in

the general direction of the camera. In practice, this means

that the pattern should not be placed in close proximity to

the cameras.

6. Conclusion

We presented a flexible new method to easily calibrate

a cluster of cameras with non-overlapping or barely over-

lapping views. This technique does not require a camera

to see the calibration object directly. The proposed method

involves solving a set of linear constraints between a fam-

ily of mirrored camera poses and the real camera pose. We

showed that at least five images are required linearly (oth-

erwise two are enough) in order to recover the real camera

position and orientation. We used both synthetic and real

data to test the proposed method and showed impressing

results. Compared to other methods of calibrating camera

clusters, our proposed method is more flexible and does not

require any overlapping views between cameras.
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