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Figure 1: 3D capture from depth cameras can be used to prepare immersive learning experiences for medical students.

ABSTRACT

Commodity depth cameras, such as the Microsoft Kinect®, have
been widely used for the capture and reconstruction of the 3D struc-
ture of room-sized dynamic scenes. Camera placement and coverage
during capture significantly impact the quality of the resulting recon-
struction. In particular, dynamic occlusions and sensor interference
have been shown to result in poor resolution and holes in the recon-
struction results. This paper presents a novel algorithmic framework
and a method for off-line optimization of depth cameras placements
for a given 3D dynamic scene, simulated using virtual 3D models.
We derive a fitness metric for a particular configuration of sensors
by combining factors such as visibility and resolution of the entire
dynamic scene with probabilities of interference between sensors.
We employ this fitness metric both in a greedy algorithm that de-
termines the number of depth cameras needed to cover the scene,
and in a simulated annealing algorithm that optimizes the place-
ments of those sensors. We compare our algorithm’s optimized
placements with manual sensor placements for a real dynamic scene.
We present quantitative assessments using our fitness metric, as well
as qualitative assessments to demonstrate that our algorithm not only
enhances the resolution and total coverage of the reconstruction, but
also fills in voids by avoiding occlusions and sensor interference
when compared with the reconstruction of the same scene using
mual sensor placement.

Index Terms: G.1.6 [Numerical Analysis]: Optimization—Global
optimization , Simulated annealing ; I.4.8 [Computing Methodolo-
gies]: Image Processing and Computer Vision—Reconstruction ,
Scene Analysis; I.6.3 [Computing Methodologies]: Simulation and
Modeling—Applications , Model Development;
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1 INTRODUCTION

3D capture of room sized dynamic scenes has many applications,
such as virtual reality and telepresence [2, 22]. The primary appli-
cation of our research are events about which some information is
known in advance, such as surgical procedures, dance performances
or motion picture shots. In this paper, we use prostate biopsies as
an example event of interest that may be recorded and repeated
many times, including when supervising young surgeons or recer-
tifying experienced ones. The resulting 3D capture enables us to
provide medical students with an immersive learning experience
using virtual reality headsets, as shown in Figure 1. The capture of
these room-sized events can be done using commodity depth cam-
eras such as the Kinect v1. However, sensor resolution limitations,
dynamic occlusions in the scene, and depth errors due to sensor
interference makes the capture a challenging problem. Smooth and
realistic reconstructions of dynamic scenes can be achieved by mak-
ing use of temporal information in the form of tracked surfaces [13].
However, sudden or significant changes in the scene may lead to
failure in surface tracking. Attempts to reduce sensor interference
by making use of hardware mechanisms such as vibration [23], and
time-multiplexing methods such as shuttering [3] have proven help-
ful, but suffer from limitations such as image blurring, vibration
noise and frame rate drop. Time-of-flight depth cameras such as the
Kinect v2 offer better accuracy, but their limitations are less well
understood, and continue to be an active area of research [28, 32].

We propose an algorithm to optimize the placements of the depth
cameras such that it not only maximizes the scene coverage and
enhance the capture resolution, but also attempts to reduce the holes
in the resulting reconstruction by avoiding interference and reducing
dynamic occlusions. We assume that the approximate choreography
of the events to be captured is known in advance, which allows our
system to simulate the entire scene using virtual actors. We attempt
to provide realistic animations of the virtual actors in the simulation,
and analyze the effect of inaccuracies in the simulated animations on
the capture results. In order to ensure that the optimized sensor place-
ments work efficiently even if the actors in the actual capture move
differently than the virtual actors in our simulations, we introduce
variability in the movements of our virtual models, capture the actual
events multiple times, and optimize our simulations iteratively.

Our system assigns different weights to different parts of the
bodies of the captured actors, depending on the nature of the events.
For example, when capturing a surgery, the surgical site of the patient
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and the movements of the surgeon’s hands are more important than
other parts of the scene. We also analyze how a significant movement
of a captured subject might either result in sensor pose adjustments
around that subject, or require more sensors in order to provide full
coverage. We show how making use of event-specific optimization
weights leads to better capture results.

We begin by summarizing some related work in Section 2. Section
3 defines our fitness metric and details its computation. Section 4
presents our optimization process. We present our results in Section
5, envision future directions in Section 6 and conclude the paper in
Section 7.

2 RELATED WORK

While there is ample related work in optimizing camera placement,
to our knowledge, there is no such prior work for depth cameras.
However, many of the principles, concepts and factors explored
by camera placement optimization approaches also apply to depth
cameras. Camera placement has been applied in diverse domains
such as tracking [6], surveillance [4, 25] and 3D reconstruction [27].

Modeling camera coverage is a useful step when trying to opti-
mize the performance of a camera-based computer vision system.
Camera coverage modeling methods are reviewed comprehensively
by Mavrinac and Chen [24]. Relevant to our work are the geometric
coverage models, which are concerned with the physical volume of
the scene covered by the cameras, and include criteria such as field of
view and resolution. The application domain of geometric coverage
models that is closest to our work is camera placement, which aims to
determine the camera configurations that best satisfy the task require-
ments, given knowledge about the cameras, the environment and the
tasks to accomplish. Comprehensive reviews of camera placement
methods can be found in previous work [15, 17, 19, 31]. Research
closest to our method includes simulation-based approaches [16,30],
which take advantage of computer graphics to render a simulated
scene and help evaluate the fitness of each camera configuration.
Fleishman et al. [16] present an automatic camera placement method
for image-based modeling from scenes with known geometry. They
employ a visibility algorithm that starts with a large set of potential
camera positions to produce a small subset that covers every visible
polygon in the scene. State et. al. [30] describe an interactive soft-
ware simulator that assists with the design of multi-camera setups.
The simulator lets users interactively place and manipulate cameras
within a pre-modeled 3D environment. It uses projected textures to
show the coverage of each camera and the effective spatial resolution
on the 3D surfaces.

Greedy algorithms have been commonly used in sensor place-
ment approaches, and proven to provide good approximate solutions
in polynomial time. For example, Krause et. al. [20] show that
finding the sensor configuration that maximizes mutual information
is NP-complete and describe how a greedy algorithm achieves a
polynomial-time approximation that is within (1− 1

e ) of the opti-
mum.

Many sensor placement methods, including ours, employ opti-
mization of a fitness/performance/quality metric over some domain.
Various metrics have been proposed over time, in an attempt to inte-
grate the heterogeneous factors that can affect performance into a
single number. Wu et al. [33] use the 2D quantization error on the
camera image plane to estimate the uncertainty in the 3D position
of a point when using multiple cameras. The error is modeled geo-
metrically, using pyramids, and the uncertainty is computed as an
ellipsoid around the polyhedral intersection of the pyramids. Chen
and Davis [7] improve this metric by taking into account probabilis-
tic occlusion, and apply it to optimally place cameras for motion
capture. Rahimian and Kearney [27] further improve the metric
by taking into account the convergence angles of the cameras, and
propose a method for dealing with dynamic occlusions when placing
cameras for motion capture systems employed in a CAVE environ-

ment. They compute a quality metric using marker visibility and
triangulation accuracy, and optimize it using simulated annealing.
Mittal and Davis [25] introduce a framework for incorporating vis-
ibility in the presence of random occlusions into sensor planning.
They compute the probability of visibility in the presence of dynamic
occluders, under constraints such as field of view, fixed occluders,
resolution, and viewing angle, as well as algorithmic constraints
such as stereo matching and background appearance. The metric is
evaluated at each location, for each orientation and each given sensor
configuration, aggregated across space, and optimized using simu-
lated annealing and genetic algorithms. In the surveillance domain,
Bodor et al. [4] compute the optimal camera poses for maximum
task observability given the possible target trajectories. The function
being optimized is directly related to the resolution of the targets in
the camera images, and incorporates the distance from the camera
to each target trajectory and the angles that lead to foreshortening
effects. Other authors take an information theory approach to com-
pute their quality metrics. Denzler et al. [10] introduce uncertainty
as a performance metric for selecting the optimal focal length in
3D object tracking. Uncertainty is derived from the expected con-
ditional entropy given a particular action. Visibility is taken into
account by considering whether observations can be made and sub-
sequently using the resulting probabilities as weights. Deutsch et
al. [11, 12] improve the process by predicting several steps into the
future, speeding up the computation, and using sequential Kalman
filters to deal with a variable number of cameras and occlusions.
In his PhD thesis, Ilie [19] uses a similar approach, but substitutes
a-posteriori state error covariance for conditional entropy and uses a
different aggregation method over space and time. Sommerlade and
Reid [29] add a Poisson process to model the potential of acquiring
new targets by exploring the scene.

To the best of our knowledge, there has been no work on optimiz-
ing placement of depth cameras for dynamic scene capture. Most of
the previous efforts mentioned above optimize the placement of reg-
ular cameras for 3D reconstruction. The fundamental differences in
the operating principles between regular cameras that simply receive
light and depth cameras that also have to emit light (usually infrared)
makes their requirements when used for 3D reconstruction differ
in fundamental ways as well. For example, the goal when placing
regular cameras is usually to maximize both overall coverage and
overlap between sets of cameras, to help with computations such
as triangulation or space carving. In contrast, in the case of depth
cameras, while the overall coverage is still maximized, the overlap
needs to be minimized in order to reduce the interference between
sensors. These fundamental differences make it difficult to directly
compare our depth camera placement results with the regular camera
placement results listed in this section. A comparison of the final
reconstruction results needs to carefully isolate the effects of the
camera placement from the effects of the reconstruction method
employed, and is outside the scope of this paper.

3 EVALUATING A CAMERA CONFIGURATION’S FITNESS

In our approach, we use virtual cameras to simulate the depth cam-
eras and polygonal models to simulate known dynamic events in 3D.
We define the fitness value F of a particular depth camera configu-
ration C for a dynamic event taking place over a time interval of T
frames as the average:

F(C,T ) = ∑
t=1..T

f (C,St ,Wt)

T
(1)

f is the fitness function, C = {c1, ..,cK} is the set of K depth
cameras, St = {st1, ..,stN} is the set of N dynamic 3D surfaces in the
scene, and Wt = {wt1 ..,wtN} is the set of weights for the surfaces
based on their importance in the scene, with ∑i=1..N wti = 1. For
every frame t, the surface set St and its associated set of weights Wt
vary as the scene changes.
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The fitness value depends on a number of factors, detailed in the
next subsections, followed by evaluation and implementation details.

3.1 Surface Factors

The fitness function f at each frame t is based on factors taking
into account the characteristics of the 3D surfaces, such as their
resolution, orientation, and visibility. We describe each of these
factors in detail below.

1.0

0.5

0.0

(a) Surface Resolution Factor                    (b)  Surface Orientation Factor

Figure 2: Visualization of surface capture quality factors in simula-
tion

We account for the resolution of a surface s as captured by a depth
camera c using the term fr, defined as:

fr(c,s) =
As

||~c−~s||2
(2)

As is area of surface s, ~c is camera c’s center of projection, and
~s is surface s’s centroid respectively, in 3D space. An example
distribution for this term is shown in Figure 2(a).

We account for the orientation of a surface s with respect to depth
camera c using the term fo, defined as the dot product:

fo(c,s) =
~c−~s
||~c−~s||

·~sn (3)

~sn is the normal vector of surface s. In the simulation the normal at
the centroid of each mesh triangle is treated as the surface normal.
An example distribution for this term is shown in Figure 2(b).

A surface s may not be visible from a depth camera c due to
factors such as clipping associated with the field of view of camera
c, occlusion by other surfaces in the scene and depth ambiguity due
to limits in the range of camera c.

Approaches such as the one by Dou and Fuchs [13] can track
and reconstruct surfaces which are temporarily not visible by using
temporal integration techniques, provided that the surfaces were
visible in the past and become visible again in the future. Figure
3 shows a simple experiment conducted with our simulator. The
corresponding reconstruction results, obtained using the approach
by Dou and Fuchs [13], are shown in Figure 4.
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Figure 3: (a) Visualization of surface visibility. (b) Visualization of
surface tracking confidence ft .
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Figure 4: (a) Reconstruction without surface tracking. (b) Recon-
struction enhanced with surface tracking [13].

We model surface tracking in our framework as follows: if the
surface s is not visible for a time ∆t that is less than a threshold τ ,
then it is marked visible with a tracking confidence ft .

ft = 1− ∆t
τ

(4)

Incorporating tracking into our fitness function, we account for
the visibility of a surface s from depth camera c using the term fv,
defined as:

fv(c,s) =


1 if s is visible by c
0 if s is not visible by c and not tracked
ft if s is tracked for a time ∆t < τ

(5)

3.2 Interference Between Depth Cameras
In this subsection, we describe how our framework attempts to
minimize the interference between depth cameras. We limit our in-
vestigation here to structured-light depth cameras such as the Kinect
v1 and the Intel RealSense. Time-of-flight sensors such as Kinect v2
also suffer from interference that can, in theory, be mitigated using
time multiplexing or different modulation frequencies. However,
modeling and minimizing interference is much more difficult, since
the Kinect v2 currently does not allow direct control of its camera
and projector shutters, or modulation frequency.

A Kinect v1 sensor continually projects a predetermined pattern
of infrared dots, which is then captured by an infrared camera. Depth
is calculated using the disparity between the captured infrared image
and the projected pattern. Correlating the observed and expected
infrared images can fail in areas where there are overlapping dots
from another Kinect, resulting in missing data, or “holes”, in the
depth map. There have been attempts to measure the interference
between multiple Kinects. For example, Limin et. al. [21] model
the interference between two Kinect sensors and conclude that the
probability of interference is directly proportional to the overlap
area.

We do not attempt to reduce sensor interference using the method
by Maimone [23] because the vibrations involved would produce
sounds that may distract in a medical procedure. Multiplexing meth-
ods such as the one by Berger et. al. [3] are inappropriate in our case,
as they significantly degrade the quality of the reconstruction re-
sults by dropping frames, which interferes with temporal integration,
tracking, and synchronization between sensors. Instead, we model
the interference and use the model in our optimization framework.

To model sensor interference, we conducted a simple experiment
with five Kinect sensors aimed at a flat checkerboard placed on a
wall approximately 1m away from the sensors. The setup is shown
in Figure 5(a). We successively switched the Kinect units on, one
by one, and measured at each step the percentage occupied by holes
in the area of the first sensor’s depth map corresponding to a 1m2

area on the checkerboard. Figure 5(b) shows the number of holes
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1 Kinect 2 Kinects 3 Kinects 4 Kinects 5 Kinects

(a) Setup for interference modeling

(b) Holes in Kinect1 depth sensor’s capture after switching on other Kinects

one by one

(c) Inter-depth-sensor interference probability vs number of kinects
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Figure 5: Multiple Kinects setup for interference modeling.

increases with the number of sensors switched on. The relationship
between the number of overlapping Kinects and the interference
probability is shown in Figure 5(c). A quadratic function provides a
close fit, so we define interference probability for a particular surface
as:

p(I) = min(x · I2 + y · I + z,1) (6)

where p is the interference probability, I is the the number of
overlapping sensors that can view the surface s, and x , y and z are
constants determined experimentally as x = 0.021, y = 0.012 and
z =−0.0236. p(I) models the worst case probability of inter-depth-
sensor interference.

We quantify the effect of sensor interference due to overlap on a
surface s of area As seen by I depth cameras, including camera c, as:

fi(c,s, I) = (1− p(I−1))
As

||~c−~s||2
= (1− p(I−1)) · fr(c,s) (7)

where~c is the position of the closest sensor and~s is the position
of the surface.

While we have not conducted a similar experiment using Kinect
v2 sensors, we envision that our probabilistic framework for interfer-
ence minimization can also be used in their case, by measuring the
variance of depth readings from ground truth instead of measuring
the percentage of holes in the depth readings.

3.3 Fitness Function Evaluation
We define the fitness function f at each time t as the weighted sum of
the product between the worst possible combined factors fc = fo · fv
and the sensor interference factor fi:

f (C,St ,Wt) = ∑
i=1..N

wti · min
j=1..K

( fc(c j,sti)) · fi(sti, It) (8)

By substituting Eq. (8) in Eq. (1), our fitness value F for a camera
configuration C becomes:

F(C,T ) = ∑
t=1..T

∑
i=1..N

wti ·min j=1..K( fc(c j,sti)) · fi(sti, It)
T

(9)

3.4 Implementation Details
To speed up the computation of our fitness function, we use GPU
computations and precompute the parts of the fitness function that
do not change during the optimization process.

3.4.1 GPU Acceleration
To compute fc(c,s) = fo(c,s) · fv(c,s), we render the scene from
the point of view of camera c. We compute fc(c,s) at each camera
pixel in a fragment shader, and store its value in a texture along with
the identifier of the surface it belongs to. Then, we compute the
average fc from all pixels belonging to surface s. This is much faster
than a CPU computation of fc, as graphics computations such as
occlusions and clipping are performed in parallel on the GPU. Our
algorithm is dependent on the resolution of the rendered textures,
which we can use to trade-off speed vs. precision.

One shortcoming of this approach is that it treats partially visible
surfaces as completely visible when averaging the score of rendered
pixels belonging to a surface. We try to minimize this problem by
keeping the size of the surfaces very small (about 1-2 cm2).

3.4.2 Fitness Precomputation
We also use a preprocessing step to avoid computing the values of
the combined factors fc at each iteration step of our optimization
(see Sections 4.1 and 4.2): we compute and store fc for surfaces that
are visible in frame t by camera c, and pre-multiply each fc by the
corresponding weight wti. The result is the individual fitness value
fp of a camera pose c ∈C:

fp(c,St ,Wt) = ∑
i=1..N

wti · fc(c,sti) (10)

To keep the size of the precomputed data manageable, we only
keep the fp values for the cameras poses whose individual fitness is
higher than a threshold. We store the corresponding fp values in a
hash map H(c, t) data structure with the surface identifier sti as the
key.

The computation for each frame t is independent of other frames
in set T . If the pose of the camera is changed, we recompute the
hash map H(c, t) for that pose. Algorithm 1 details the computation
of the fitness function F .
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Algorithm 1: Evaluation of Fitness of a Configuration
Input: C,S,W ,H,T
Output: F

1 forall frames t in set T do
2 Ft = 0
3 for each surface sti in set St do
4 xi = 0
5 for each camera pose c j in set C do
6 if find sti key in H(c j, t) then
7 xi j = H(c j, t).valueAtKey(sti)
8 else
9 xi j = fp(c j,sti)

10 end
11 if xi j > xi then
12 xi = xi j
13 end
14 end
15 Ft += Ft + xi · fi(sti, I)
16 end
17 F += Ft
18 end

4 OPTIMIZATION OF CAMERA PLACEMENTS

To solve the problem of finding the optimal camera configuration
for a known dynamic event, we employ a discrete optimization
technique. We discretize the space of possible depth camera poses
as the set P = {c1, ...,cM}, where M is the number of possible
camera poses. Our goal is to find a set O = {c1, ...,cK} such that
O⊆ P represents the optimized camera configuration set and K is
the corresponding number of cameras used. We initialize O using a
greedy algorithm and improve it using simulated annealing.

4.1 Greedy Initialization
We use a greedy algorithm to derive an initial configuration set O.
We start with O = /0. At each iteration k, we select the camera pose
ck from set P which increases the fitness value of set O the most
when added to it. The algorithm stops adding cameras when the
incremental gain g achieved in the fitness value by adding a new
selected camera pose ck to set O is less than a tolerance value v, or
when no suitable camera pose was found. We describe this algorithm
in detail in Algorithm 2.

Algorithm 2: Greedy Algorithm
Input: P,τ
Output: O,K

1 g = ∞ , X = 0 , K = 0 , O = /0
2 repeat
3 ck = /0
4 xk = 0
5 for each camera pose c j in set P do
6 x j = fitness(O+{c j})
7 if x j > xk then
8 ck = {c j}
9 xk = x j

10 end
11 end
12 g = xk−X
13 X = xk
14 O = O+{ck}
15 K = K +1
16 until (g < v) or (X = 0)

4.2 Refinement Optimization by Simulated Annealing
Simulated Annealing (SA) is an effective method for finding a so-
lution close to the global optimum [5]. SA iteratively explores the
solution space by varying components of the solution vector. It has
been shown to produce very good, but not provably optimal results
in a reasonable time for a variety of problems [18].

We start with the initial configuration set O produced by the
greedy algorithm. In each iteration, SA changes the camera con-
figurations either by changing the pose of cameras in set O or by
selecting new camera poses from set P. If the fitness value of the
new configuration is better than the best configuration found so far,
the algorithm accepts the new configuration. If it is worse, SA ac-
cepts the new configuration with some probability, depending on
the current temperature and Boltzmann selection [1]. SA accepts
a configuration with a quality metric less than the best known con-
figuration with higher probability at the beginning of the run, to
escape potential local maximums. As the algorithm proceeds, the
probability of accepting a configuration with a fitness value that is
lower than that of the best known configuration is reduced, until the
algorithm only accepts solutions that are better than the best current
configuration.

5 RESULTS

5.1 Experimental Setup
The primary motivation of our work is to reconstruct dynamic events
such as surgeries. These reconstructions can be displayed on Vir-
tual Reality headsets and used by medical students for immersive
learning experiences as shown in Figure 1. We started by capturing
a real procedure in a clinic, using 3 Kinect sensors (Figure 6). This
initial experiment provided valuable insights into the procedure and
its capture, including the need to better understand the minimum
number of cameras required and their optimal placement.

Figure 6: (a) 3D capture of a prostate biopsy procedure; (b) simpli-
fied simulation of the procedure.

Our next step was to set up a space where we could conduct
experiments: a capture lab whose dimensions, layout and equipment
closely match the clinic room (3.7m×2.8m×2.6m). The next hurdle
was repeatability: testing many different camera configurations
with live actors (or medical professionals) would be prohibitively
expensive and time-consuming. Therefore, we initially simulated
the procedures using virtual models and cameras. We used our
optimization to select the best configurations for further testing in
our capture lab, with real cameras and actors. This way, when we
arrive at the best camera configuration for a procedure, we can use
it to set up our cameras in the clinic and capture actual procedures
involving doctors and patients.

We used the approach by Dou and Fuchs [13] to reconstruct the
real capture room. First, we obtained a scan of the static background
by capturing a sequence of RGB-D frames with a moving Kinect,
and used the plane-based and visual feature-based bundle adjustment
system by Dou et. al. [14] to align all frames. We then used a
combination of a volumetric depth map fusion algorithm [9] and
the Marching Cubes algorithm [8] to generate a triangle mesh of
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the empty room. The result is shown in Figure 7(a). To make use
of this high-quality background during live capture, we segmented
out the parts that belonged to the static background by subtracting
images of the empty room taken before starting the dynamic event,
and combined the remaining 3D data with the high-quality static
background captured beforehand. To speed up the optimization
process, instead of the reconstructed 3D model shown in Figure 7(a),
we used a simplified model, shown in Figure 7(b).

(a) (b)

Figure 7: (a) 3D reconstruction of capture room; (b) simplified
geometric model of capture room.

We simulated the surgery using 3D models for the doctor, patient
and nurse. The polygonal models for these actors have about 10,000
triangles each. We made sure that these triangles are about similar
in size and are evenly distributed over different body parts of the
synthetic models (for example, our synthetic models had about 2200
triangles on the chest and about 1500 triangles on the face). We use
these polygonal surfaces to compute the surface factors of our fitness
function. We animated the 3D models using simple animations
such as walking, sitting and laying on a bed, following the general
choreography of the previously-recorded procedures.

We defined the space of possible camera locations by constraining
the camera positions to the top half of the walls, 30 cm apart in a
regular grid, as shown in Figure 8. Candidate possible camera
angles were between −60◦ to 60◦ in roll, pitch and yaw, with an
angle increment of 10 degrees. The resulting search space consists
of about 8000 different camera poses. We used Eq. (10) in a
preprocessing step to compute the individual camera fitness values
fp for each camera pose, ranked the poses in order of their fitness,
and eliminated about 48 percent of them based on a threshold.

Camera Pose

Valid camera

positions

Invalid camera

positions

Figure 8: Camera placements in grids.

To quickly obtain a rough estimate for the number of cameras
needed, we used the greedy algorithm in Section 4.1. As an experi-
ment, we first set the tolerance value v very high and let the algorithm
run until it could find no additional camera pose that would result
in an improved fitness value. The algorithm took 320 minutes to
complete and stopped after finding 35 camera poses. Figure 9 shows

a plot of the fitness value of the optimized configuration vs. the
number of cameras, truncated at 15 cameras for clarity. We then set
the tolerance value v to 2%. The resulting number of depth cameras
was 9, and the computation took about 12 minutes to complete.
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Manual Placement

Simulated Annealing Alogrithm Placement

Camera
Configuration
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Figure 9: Fitness scores for camera placements using the greedy al-
gorithm, the simulated annealing algorithm, and manual placement.

Next, we used the simulated annealing algorithm in Section 4.2 to
improve the solution. The algorithm performed over 50000 iterations
(initial temperature Ti = 1.0, accepting temperature Taccept = 0.0001,
cooling constant α = 0.99 and 50 neighbor cost iterations at each
temperature) and took about 3 hours, resulting in about 11% im-
provement over the greedy solution, as shown in Figure 9.

After obtaining the optimized camera configuration from our
algorithm, we tested its performance in our capture lab using real
actors. To match the optimized camera poses, we first placed each of
the 9 Kinects at the optimized positions in our lab. Then, in order to
match their orientations, we used fiducial markers. In our simulation
we extend rays from the virtual camera centers to intersect with a
wall, the floor or the ceiling, yielding positions for markers which
we matched by placing physical markers in the actual capture room
using a tape measure. We then adjusted the orientation of each
Kinect so that its corresponding marker appeared in the optical
center of the image taken from the Kinect’s camera. Finally, we
rotated each Kinect along its optical axis to approximately match the
optimized roll value. We plan to improve this process in the future
by placing markers at two diagonally opposed corners of the camera
image. Figure 10 shows an example of our current process.

5.2 The Impact of Weights
Using virtual models for the moving surfaces in our scene allows
us to specify to the optimization procedure the subset of surfaces
which the users (e.g., teachers) consider most important, such as,
in our case, the faces and hands of the medical personnel and the
surgical site. Weights can vary over time, when the importance of
parts of the scene changes due to factors such as the events taking
place there. Additionally, weights can also be changed as part of a
feedback loop, based on experimental observations that parts of the
scene were given more attention at particular times by users viewing
the reconstruction results in VR.

To demonstrate the impact of weights on the optimized camera
configuration and the reconstruction, we apply different weights to
different body parts of the virtual actors in a surgery captured by 9
cameras. The resulting optimized camera configuration is different
in each case, which leads to significantly distinct reconstructions.
Figure 11 shows a single frame from the same sequence in two cases.

In the first case, shown in Figure 11(a), we applied higher weights
to the patient and doctor’s bodies. This leads to improved resolution
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Figure 10: (a) marker position of projected camera center on the
floor in the simulation; (b) marker position of projected camera
center on the floor in the capture room. The pink lines represent the
optical axes of the corresponding cameras, extended to the marker
on the floor.

Figure 11: Choosing different weights (top row) leads to different
reconstructions (bottom row).

and completeness in the reconstructions of the patient and doctor, but
the nurse was not properly reconstructed. In the second case, shown
in Figure 11(b), we assigned higher weights to the nurse’s face and
hands, and the reconstruction fully showed the nurse without a large
impact on the doctor or patient. We kept the latter weights for the
remainder of our experiments. The weights were 0.9 for the surgical
site, 0.8 for the nurse’s upper body, 0.75 for the surgeon’s hands and
head, 0.4 for the surgeon’s legs and the part of the patient’s body
touching the bed, and 0.5 for all remaining body parts.

5.3 Accounting for Variability
When we observe and record a real surgical procedure, we make
note of its general choreography, and use the reconstruction to guide
our subsequent modeling and simulation. However, even if we
were to try and reproduce the procedure exactly in our simulation,
the optimized camera configuration we obtain might fail to recon-
struct a subsequent procedure, since participants may move or orient
themselves slightly differently than before, and the participants them-
selves can change as well. In order to account for the differences
between different instances of the same procedure and obtain a more
robust optimization result, we employ multiple animations that span
likely variations of the event. For example, we can give our virtual
models different heights, as shown in Figure 12.

Figure 12: Height variation for virtual actors.

We also vary the virtual actors’ poses. Figure 13 shows the doctor
and nurse placed in different positions for the same frame of an event.
This makes the optimized configuration more robust to variation in
the actors’ body shapes and movements.

Figure 13: Pose variation for virtual actors.

5.4 Comparison

We compare our optimization result with a camera configuration
selected manually by a person with knowledge about the choreogra-
phy of the event both in simulation and in our capture lab. Figure 14
shows both manually-designed and optimized camera placements.
Figure 16 shows a visual comparison of virtual and real reconstruc-
tions using both manual and optimized camera placement results for
the same frame. The reconstruction results for the manual camera
placements show holes in place of most of the body parts of the
nurse. Also, some areas near the patient’s head are not covered due
to occlusions by the nurse.

Figure 17 shows point clouds generated from the capture with
depth cameras placed in both the manually-designed and the op-
timized configuration. The reconstruction from the manually-
designed configuration capture exhibits low resolution, voids and
depth inaccuracies.

The simulated procedure took about 62 seconds. We plotted the
percentage of surfaces visible in both our optimized configuration
and the manual configuration over the entire interval in Figure 15(a).
Since visibility is only one of the terms of the camera configuration
fitness, we also plotted the fitness scores for both the configurations
in Figure 15(b). The mean configuration fitnesses of the manual and
optimized camera placements were 0.122 and 0.272, respectively.

We observed that in the manual camera configuration most of the
cameras were placed at higher locations and aimed downward in
an attempt to provide more coverage. This led to lower resolution
and more depth inaccuracies (as precision of depth cameras usually
diminishes with increasing depth) in the reconstructions. In contrast,
in the optimized camera configuration, only the cameras covering
the patient were aimed downward. The rest of the cameras were
placed lower and aimed towards the center of the regions where the
doctor and nurse were moving for most of the time interval, and
resulted in higher resolution and fewer depth inaccuracies in the
reconstructions.
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(a) Manual camera placement

(b) Optimized camera placement

Figure 14: Comparison between manual and optimized placements
of 9 depth cameras.

6 FUTURE WORK

In the future, we would like to test our method on other types of
events such as classrooms and group meetings, which feature many
actors and rigid objects such as chairs and tables.

We would also like to model the impact of materials on the recon-
struction results, as depth cameras are known to be sensitive to the
materials the objects in the scene are made of. For example, black
surfaces such as black hair are known to absorb IR light, causing
drop-outs in the depth camera’s results. Also, highly specular sur-
faces which reflect IR light are harder to resolve, and often result in
holes.

Time-of-flight sensors such as the Kinect v2 provide better accu-
racy, but have been shown to suffer from problems such as tempera-
ture drift [28] and multi-path interference [26].We plan to explore
the use of such sensors in detail in our future work.

Another future direction is to perform multiple captures of similar
scenes. More data from multiple recordings will expose our system
to an increased variety of possible sizes and movements of the
people in the scene. We would also like to explore the use of moving
cameras (such as PTZ cameras) to obtain even better results.

7 CONCLUSION

In this paper, we proposed a novel method that can significantly
improve the 3D capture of room-sized dynamic scenes, by using
an optimized depth camera configuration. We demonstrated how
our optimized camera placement for a simple medical procedure
enhanced the resolution of the important surfaces in the scene, and
was also able to reconstruct most of the moving surfaces in the scene
by avoiding occlusions and providing improved coverage of the
scene.
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Figure 15: Comparison between manual and optimized camera
placements for a sequence of 62 seconds in terms of (a) surface
visibility and (b) configuration fitness score.

We plan to make the datasets, reconstructions and our frame-
work publicly available at http://www.cs.unc.edu/˜rohanc/
OCP.html.

8 ACKNOWLEDGMENTS

This research is supported by the BeingTogether Centre, a collabora-
tion between Nanyang Technological University (NTU) Singapore
and University of North Carolina (UNC) at Chapel Hill. The Be-
ingTogether Centre is supported in part by the National Research
Foundation, Prime Minister’s Office, Singapore under its Interna-
tional Research Centres in Singapore Funding Initiative.

The authors would like to thank Dr. Eric Wallen, MD and Chris
Paterno at Department of Urology, University of North Carolina at
Chapel Hill for allowing us to capture a prostate biopsy procedure
and describing to us the important phases in the procedure.

The authors acknowledge Andrei State for his constructive com-
ments and suggestions on improving the text in the paper.

REFERENCES
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