Reconstruction of Human Body Pose and Appearance Using Body-Worn
IMUs and a Nearby Camera View for Collaborative Egocentric Telepresence

Qian Zhang* Akshay Paruchuri*

Howard Jiang*  Adrian llie*  Andrei State*

YoungWoon Cha

Danielle Albers Szafir*

Jiabin Huang* Jade Kandel*

Daniel Szafir  Henry Fuchs*

*Department of Computer Science, University of North Carolina at Chapel Hill
+School of Computing, Gachon University
tDepartment of Computer Science, University of Maryland

y

( . . . . -
Take it easy, Bill. [Blll made excellent progress since last time!
Move slowly.
&

Figure 1: Future scenario: a) Patient outside his home, with his pose and appearance captured by his own AR glasses and IMUs,
plus camera imagery from the AR glasses of his care partner. b) Patient’s data being reviewed by his physical therapist. Current
scenario: c) Overview of “home” with the “patient” on the left wearing IMUs (circled in red) , the “care partner” on the right wearing
an AR device with a camera (circled in blue), and a “therapist” who can view the reconstruction remotely using VR glasses. d)
Segmented input image from the camera worn by the “care partner.” e) Output image for the novel viewpoint of the “therapist.”

ABSTRACT

‘We envision a future in which telepresence is available to users at
any time and location, enabled by sensors and displays embedded
in accessories worn everyday, such as wristwatches, jewelry, belt
buckles, shoes, and eyeglasses. As a step toward reaching this
goal, we present a collaborative approach to 3D reconstruction that
combines a set of inertial measurement units (IMUs) worn by a
target person with an external view from another nearby person
wearing an AR headset, used for estimating the target person’s body
pose and reconstructing their appearance, respectively. We illustrate
this approach with a prototype system in a physical therapy scenario
that enables a patient to perform their exercises in the comfort of
their home. Our system captures and reconstructs the patient’s
pose and appearance over time for interactive feedback from, and
later review by, a therapist wearing a VR headset. Our results
demonstrate that integrating the IMUs and an external camera yield
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better reconstructions than when using either of them alone. We
believe our collaborative approach is orthogonal to other egocentric
approaches to 3D reconstruction of human bodies in uninstrumented
environments while minimizing the encumbrance imposed on the
users in terms of the number and size of devices to wear.

Index Terms: Computing methodologies—Artificial intelligence—
Computer vision—Reconstruction; Computing methodologies—
Machine learning—Machine learning approaches—Neural networks

1 INTRODUCTION

Telemedicine methods have recently emerged as an alternative to
in-person physical therapy sessions. Initially employed to reduce
costs, engage with those in rural areas, and alleviate the challenges
of patients with mobility issues, their use has increased significantly
during the COVID-19 pandemic. To support an increasing range of
remote physical therapy assessments and interventions, telepresence
approaches featuring standard cameras, displays, microphones, and
speakers embedded in laptops or phones have been augmented by
wearable technologies such as IMUs. We anticipate a not-too-distant
future in which these devices will be embedded in accessories al-
ready worn every day, such as AR eyeglasses, watches, jewelry,
belt buckles, shoes, etc. These additional sensors provide opportu-
nities for improved reconstruction of the pose and appearance of
the patient, as well as vast opportunities for improved medical and



health-related monitoring.

While telepresence enables remote social interaction, it often
comes with onerous harware requirements such as instrumeting an
environment with cameras, and restricts the users to the intrumented
space. In contrast, collaborative egocentric telepresence has the
potential to enable remote interactions anytime, anywhere. An
AR headset typically has cameras, in addition to a display used
to overlay computer graphics onto the real world. One of these
cameras can be used to better understand the world around its user,
including the pose and appearance of other human beings that are
either completely or partially in the camera view. We expect AR
headsets to become widely-available in the future, and that camera
views from these headsets will be leveraged for the improvement of
3D reconstruction of other human beings involved in a collaborative
egocentric telepresence experience.

Importantly, many aspects of patient care necessitate an involved
clinician (in a clinic setting) and care partner (when at home). The
availability of an additional person to work with the patient pro-
vides a unique opportunity to incorporate an additional viewpoint
for enhancing the reconstruction of the patient’s body pose and
appearance.

As a step toward a fully-mobile telepresence system that does
not rely on instrumented environments, we present a collaborative
approach, which uses an external view from a camera worn by a
second, nearby person. We employ today’s versions of tomorrow’s
unencumbering sensors: a combination of body-worn IMUs and
a camera from a prototype headset worn by a different person to
generate novel target views. We show that using a combination
of poses from IMUs and a single external camera as a reference
view leads to encouraging results compared to prior methods of
reconstructing body pose and appearance.

2 RELATED WORK
2.1 IMU-based 3D Body Pose Capture

We are interested in self-contained 3D pose and appearance capture
for a situation in which the user is wearing AR eyeglasses. We
assume the AR glasses contain at least one IMU and one outward-
looking camera to determine their pose in a given environment.
The user’s pose can be determined using a number of body-worn
IMUs, with 10 IMUs worn on the major body bones shown to be
sufficient for reliable body pose capture [40]. Other methods have
employed fewer IMUs and estimations of temporal orientations
and accelerations [16,42], but we find they don’t work well in our
situation due to issues such as measurement noise and drift, or
complex calibration procedures. Additional methods utilize both
cameras and IMUs, with camera views used to constrain the IMU
pose result, and IMUs used to track body poses outside of the camera
views [5,26,37,39,40]. A recent method [9] uses visual-inertial
sensor fusion to give accurate 3D body pose, leveraging egocentric
downward-looking cameras and only 4 IMUs. We cannot employ
this method because our AR headset does not feature downward-
looking cameras. Since the main contribution of this paper is the
improvements gained with the use of a single external camera, for
now, we rely on the simple, robust 10-IMU method [40] to acquire
the user’s pose instead.

2.2 3D Body Models

The most widely-used body model is SMPL [24]. It is an unclothed
body model that uses linear blend skinning to deform a predefined
body mesh model. Multiple research efforts [14,19,21,23,27,29,
32,43] focus on estimating the body shape and pose parameters.
Octopus [4] was proposed to estimate the shape and texture for a
SMPL model. Most of these methods assume a weak perspective
camera model, with only scale and translation parameters, while
SPEC [20] estimates the relative body pose using a perspective
camera model. These approaches only apply to fixed cameras, as

they need to see the full body to estimate the body parameters. Our
collaborative approach uses a head-worn camera that can get close
to the target person, often generating partial views of their body.
EgoRenderer [15] introduced a method to estimate full body pose
and texture with a bulky egocentric downward-looking fish-eye cam-
era. In our project, we strive to use a lightweight AR headset that
could plausibly be worn in the future as part of a person’s daily
life. To that end, we opted to do the reconstruction in a collabo-
rative manner, using a nearby person’s view to reconstructing the
appearance. NeRF [28] demonstrated a 3D reconstruction method
for static scenes and objects, which has recently been extended to
body-model-based deformations [11,41]. We evaluated these meth-
ods on our datasets and found that while they work well on simple
motions, they fail on complex motions (see Figure 2).

2.3 Pose-Guided Human Image Synthesis

Instead of estimating the body model in 3D, there are methods
that synthesize novel views and novel human poses in 2D. Some
methods are based on motion transfer [12, 22, 35], but they only
work on small view changes. Other methods are based on body
joints and skeletons [6, 10]. DensePose [13] is a representation
that describes the body motion by mapping each pixel from the
body image into a canonical texture space. Methods based on this
representation include [3,30]. Unfortunately, the estimation is not
consistent across different frames, so when applied to video data,
the generated texture map becomes very blurry. In this work, instead
of relying on DensePose to give the correspondence between frames,
we only use it as an intermediate representation for the body pose
features. Our DensePose is generated by the SMPL body model,
which is spatially and temporally consistent across frames.

3 APPROACH

Our goal is to capture the pose and appearance of a target person
over time using a set of IMUs worn by the target person combined
with an external view from another nearby person wearing an AR
headset. Toward that end, we have devised a collaborative recon-
struction approach that reaps the benefits of previous approaches,
while avoiding their shortcomings. We combine the flexibility of
modeling human motion using the SMPL body model with the trans-
formation capabilities of mappings and the encoding power of neural
networks.

Our approach takes as inputs IMU-based body poses and images
from the reference view. The wearer’s body pose is used to compute
the parameters of a SMPL model that is fitted in a pre-scan step.
We also fit an extra global offset T,, rf.; (Equation 2) in the SMPL
template using the body silhouette from reference view space. The
resulting 3D mesh is first used together with images from the refer-
ence view at each time step to obtain partial reference uv maps via
inverse texture mapping. Next, the 3D mesh is used with the partial
reference uv maps to render partial reference images from the target
viewpoint using texture mapping. Similarly, DensePose [13] and
positional encoding (PE) [38] uv maps are rendered in the target
view using texture mapping. The rendered images are fed into a
conditional GAN (cGAN) [17] that outputs the final image in the
target view. The cGAN is trained using randomly sampled frames
from videos captured by the prototype headset.

We have begun to apply our approach to the scenario shown in
Figure 1 (right), in which a patient performing physical therapy
exercises is captured and a physical therapist can either review their
performance or provide interactive feedback using a VR headset.
We developed the prototype egocentric capture system! described in
Section 3.1. Its pipeline is shown in Figure 3.

ICode available at: https://github.com/qzane/CoEgoRecon
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(a) Octopus (b) Anim-NeRF (c) HumanNeRF (d) Ours (e) Ground Truth

Figure 2: Limitations of existing methods. The first row shows the result from the simple motion dataset and the second row shows results from
the complex motion dataset. The texture-and-mesh-based methods like Octopus (a) usually produce a blurry texture map, and cannot accurately
represent body appearance. NeRF-based methods (b,c) don’t use an explicit body model, so they can better describe body appearance. However,
when the person is doing exercise with a complex body pose, the motion network fails to produce a good deformation of the body model and
significant artifacts are visible in the rendered result. Our method (d) improves the rendered image quality by using a nearby person’s view.
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Figure 3: Overview of our approach. The body pose from IMUs is used to generate the SMPL, s, 3D mesh. The image from the reference view
is used together with the 3D mesh to generate a partial reference uv map through inverse texture mapping. We then use texture mapping to render
the positional encoding (PE), DensePose and partial reference uv maps from the target viewpoint. Lastly, we use the rendered PE, DensePose
and partial reference images as the input for an image-to-image translation network. The output is the predicted image for the target view.



3.1 Prototype Capture System

Our capture system, shown in Figure 1 (top right), consists of 10
Xsens MTw Awinda IMUs and an Ximmerse Rhino X Pro AR headset.
We use the IMUs to compute the full body pose using the method
from [40]. We use three headset cameras: two monochrome cameras
for running SLAM to get the headset pose and one RGB camera
for recording videos used for reconstruction. We plan to reduce the
number of IMUs used to estimate the body pose by using a headset
with downward-looking cameras and the approach in [9].

3.2 Body Mesh Estimation

Figure 4: SMPL (left) vs. SMPL, s (right). The mesh (shown in blue)
is @ much better fit around the hands and face (highlighted with green
arrows) when adding our global offset.

We use a modified SMPL model to represent the estimated human
body mesh, as shown in Figure 4. The original SMPL model [24]
is a linear function that maps the shape parameters 3 and pose
parameters 0 to a set of n = 6890 3D vertices points:

SMPL(B,0) =W (T(B,6),J(B),8,W)

7(5.0) = Tump + B5(B) + B (6) .
B € R'0 are the shape parameters, and 6 € R® are the pose pa-
rameters that represent the rotations for 23 body joints. W is the
linear blend-skinning function, 7 is the deformed template mesh, J
represents the skeleton joints, W represents the blending weights,
Template € RO89053 ig the template body mesh, Bg represents the
shape blend shapes, and Bp represents the pose blend shapes. The
SMPL body model was designed for unclothed bodies, so it usu-
ally doesn’t fit the body boundary well, especially around the head,
hands and feet. To obtain a better fit, we introduced a global offset
Toftser € RO890%3 and our modified model SMPL, ffser DEcomes:

SMPLoffset(Bv 0) = W(T(Bv 9)7J(B)7 G,W)

2
T(Bve) :T;emplate+T0ffset+BS(ﬁ)+BP(9) ( )

We use the differentiable silhouette renderer of Pytorch3D [33]
and Adam [18] to optimize 3, 6 and T,y ;. The loss function we

use for the optimization is:
Liotal = w1 * Lproj + w2 * Lynoorn
Lproj = Ljoints + Ly (3)
Lsmooth = Ledge + Llap

Lproj is the sum of the reprojection loss for the 3D body joints
projected onto the image plane L jo;ns and the loss for the silhouette
Lyjj. Lgnoorn 18 @ smoothness loss which consists of a mesh edge
length term (L1 norm) L,,; and a Laplacian smoothing term L ,.
In our experiments, we use weights (w1, w;) = (30,1).

We use 10 IMUs to estimate the human body pose. As shown
in Figure 1 (top right), the IMUs are positioned on the back of the
head, the wrists, the upper arms, the back of the pelvis, the upper
legs, and the ankles. We use the gyroscope data from these IMUs to
obtain the local bone rotations:

RS = [54,5y,5;] € R )

We use S to denote the Skeleton space. The local bone rotations

allow us to directly update the pose parameters, 6, which are then

used, alongside f3 obtained from the training phase shown in Figure

5, to render the DensePose [13], positional encoding (PE) [38] and
partial reference uv maps in the target view.

Figure 5: Training phase. In this phase, the “patient” performs a few
exercises, and the “care partner” records videos of their movement
using an AR headset. We use this data to train our pix2pix [17] neural
network model and also fit the shape parameters of the SMPL [24]
model.

3.3 Camera Pose Estimation

Like most commercial IMUs, the system described in Section 3.2
produces reliable rotations combined with unreliable translations
exhibiting large drifts. Consequently, an extra step is needed to align
the body model and the headset video. We formulate this step as
a perspective-n-point (PnP) problem [25]. Given a set of 3D body
joints Py, € R3 from SMPL and a set of 2D body joints P,, € R?
from the headset image detected by OpenPose [8], find the relative
camera pose {R, T} to align these points such that:

{P ﬂ — k# (Po: X R4 T) )



Unlike other methods that require observing most of the body to
estimate the model parameters, our method only requires detecting
4 (out of 25) joints to compute a reasonable alignment. This is
advantageous in our application, because we cannot expect the care
partner to look at the patient all the time. With fewer joints, the
widely-used iterative PnP solver often falls into local minima when
the initialization is not good enough, while the SQPnP [36] algorithm
is more robust to tracking loss.

After the initial alignment, we use a differentiable rendering
method [33] to refine the camera pose based on the segmented body
silhouette. We found that the improved camera parameters from this
refinement step help the optimization in Section 3.2 better cope with
misalignments like the ones illustrated in Figure 4.

3.4 Rendering Images from the Target Viewpoint

Instead of simply rendering the 3D mesh from the target viewpoint,
as in Octopus [4], we opted for a neural-network-based approach
that produces the 2D image directly.

We use both positional encoding [38] and DensePose [13] to help
encode the transform of the pixel coordinates from the canonical
texture space to the target image space. The DensePose values are
just the uv coordinates from -1.0 to 1.0, and the positional encoding
we used is the sine functions for u and v, with i positions to encode:

PE(pos,2i) = sin(pos/ 1000021'/41,"{%1) ©)

We use d,;;,q.1 = 3 channels for both u and v coordinates and our
experiments show that PE helps to make the details reconstructed
better than just using DensePose.

We use “grid_sample” in pytorch for the texture mapping. For in-
verse texture mapping, there is no off-the-shelf implementation. We
first apply a forward texture mapping to determine which triangles
are visible in the reference view. And then, for each visible triangle,
we use affine warpping to build the partial reference uv map.

3.5 Image-to-image translation

We use the pix2pix [17] framework for the final rendering step.
This framework uses a conditional adversarial network (cGAN) to
translate images from one domain to another. This network consists
of an image generator G and a discriminator D. The generator
G takes as input the label image x and a random vector noise y
and outputs the rendered image. The discriminator D will try to
distinguish whether a given image is a “fake” image from G or a real
image from the ground truth, producing the image loss for training.

In our case, our input domain has 12 channels, 6 for the PE of
the uv map, 3 for the DensePose and 3 for the partial image warped
from the reference view to the target view. The output is a 3-channel
image from the target view.

We tried both UNet and ResNet architectures for G, and find the
ResNet architecture performs slightly better in our experiments.

In the training phase, we follow the standard approach from
pix2pix [17]. We use the video from the headset as the ground truth
images for the output domain. To obtain the reference view image
during training, we randomly sample an image in the most recent 60
frames from our dataset. We train the cGAN for 300 epochs with a
batch size of 8.

3.6 Integration with the environment reconstruction

To convey the patient’s surroundings to the physical therapist, we
record a video of the environment and use structure from motion
(StM) [2] to get the 3D reconstruction for the environment. We also
placed a checkerboard in the room to help align the environment
coordinate system and the simultaneous localization and mapping
(SLAM) system running in the AR headset [7].

4 EXPERIMENTS
4.1 Experimental setup

We implemented our model with Pytorch [31], the most popular
machine learning library today. It features a linear algebra library
that runs very fast on GPUs. One of its key features is the built-in
automatic differentiation engine, which enables the implementation
of the back-propagation (BP) [34] algorithm for solving optimization
problems.

We used Pytorch3D [33] for differentiable rendering optimization.
It is a machine learning library that focuses on 3D data. It offers effi-
cient operations on 3D points and triangle meshes, including the loss
functions we used in Equation 3. It also has a differentiable mesh
renderer that supports basic shaders and camera models. The differ-
entiable rendering feature enabled us to optimize our SMPLy fser
model (Equation 2) and the camera pose (Equation 5) with the BP
algorithm.

For both training and optimization, we used Adam [18] with a
learning rate of 0.001. Adam is an algorithm that adaptively updates
the learning rate during the optimization process and produces results
in a way that is less sensitive to the selection of initial learning rates.

We trained our model on a NVIDIA 3090 GPU, and the training
typically takes around six hours.

4.2 Datasets

We collected two motion datasets with 120Hz IMU data, 30Hz
RGB video data and 30Hz SLAM localization data for the headset.
One dataset contains only simple motions like walking and turning
around, and the other contains more complex exercises like stretch-
ing. There are 3828 frame images in the simple motion dataset and
2662 frame images in the complex motion dataset. In both datasets,
we use 50% for training, 25% for validation and 25% for testing.

4.3 Evaluation metrics

We use peak signal-to-noise ratio (PSNR), structural similarity in-
dex measure (SSIM) and learned perceptual image patch similarity
(LPIPS) for evaluation. PSNR is the the most popular metric for
estimating image similarity, and it reflects the pixel-level differences
between two images. SSIM is a newer method that is designed to
take into account structural similarity between two images. LPIPS is
a deep learning-based metric that measures the dissimilarity between
two images by comparing the deep feature representations of image
patches using a pretrained multi-layer neural network.

A higher PSNR, a higher SSIM or a lower LPIPS usually means
the output image is more similar to the ground truth image.

4.4 Comparison with State-of-the-Art Methods

We comparied our method with a SMPL model-based method: Oc-
topus [4], and two model-free methods: Anim-NeRF [11] and Hu-
manNeRF [41].

4.4.1 Image quality

The quantitative evaluation results are shown in Table 1 and the vi-
sual comparison is shown in Figure 6 for the simple motion dataset,
and in Figure 7 for the complex motion dataset. We note that
the model-based method generates a blurry texture map, while the
model-free methods generate noticeable “ghosting” artifacts with
complex motion. Our method has been successful in generating im-
ages with clear textural, while effectively minimizing the presence
of artifacts.

4.4.2 Rendering Speed

Octopus is a texture mesh-based method, and it uses linear blending
skinning to deform the model, so the rendering speed is very fast.
Anim-NeRF and HumanNeRF are both ray sampling-based methods
and query many rays to generate a single output image, so they run
relatively slowly.



Figure 6: Performance on the simple dataset. From left to right: Octopus, Anim-NeRF, HumanNeRF, Ours, Ground Truth
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Figure 7: Performance on the complex dataset. From left to right: Octopus, Anim-NeRF, HumanNeRF, Ours, Ground Truth
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Figure 8: Ablation studies, from left to right: Ours w/o reference image, ours w/o PE, ours w/ UNet as a generator, Ours w/ ResNet, Ground Truth.




Simple Motion Dataset | PSNRT | SSIM? LPIPS|
Ours 22.536 | 0.940 0.046
Octopus [4] 15.463 0.887 0.136
Anim-NeRF [11] 22.510 | 0.931 0.082
HumanNeRF* [41] 17.272 | 0.865 0.123
Complex Motion Dataset | PSNRT | SSIMT LPIPS|
Ours 23.748 | 0.948 0.057
Octopus [4] 14902 | 0.877 0.162
Anim-NeRF [11] 18.744 | 0.897 0.153
HumanNeRF* [41] 14.481 0.809 0.221

*We use HumanNeRF single GPU version for the experiment
Table 1: Quantitative evaluation results (complex moption dataset)

Octopus | Anim-NeRF | HumanNeRF | Ours
0.02s 30s Ss 0.3s
Table 2: Rendering speed (seconds per frame)

4.5 Ablation studies

We performed an ablation study, the results of which are shown in
Fig. 8. We concluded that:

1. The reference view image helps reduce the noise in the output
image.

2. The positional encoding (PE) helps retain more details in the
image.

3. ResNet and UNet have virtually identical performance in gen-
erating the image.

4. ResNet is slightly better at recording details like the IMU on
the right wrist.

Complex Motion Dataset
Ours w/o Refer
Ours w/o PE

PSNRT | SSIM?T | LPIPS|
19.643 0.906 0.081
19.541 0.906 0.101
Our w/ UNet as Generator | 23.569 0.941 0.052
Ours (w/ ResNet) 23.748 0.948 0.057
Table 3: Ablation study

4.6 Limitations and Failure Cases

We found that reconstructing hands can be difficult (see Fig. 9),
because we don’t have any pose estimates for the wrist and fingers,
and the reprojection and the alignment of the SMPL model and
image are not good enough. We tried improving the result with
a hand-enabled body model like SMPL-X [32], but we found the
hand shape and thumb pose very difficult to optimize. Also, because
our final rendering output is from a conditional GAN, the spatial
consistency of the body appearance cannot be guaranteed.

Figure 9: Example failure case

5 APPLICATIONS

This research is motivated by an ongoing collaboration with physical
therapists to improve therapy outcomes and access. Traditional
physical therapy sessions are in-person, which presents challenges
for patients with mobility issues or in rural environments. The
COVID-19 pandemic demonstrated the potential for telemedicine
to enhance access to clinical treatment but highlighted therapists’
lack of access to meaningful movement data for informing treatment.
Wearable technologies have been employed to help track movement,
performance, falls, gait, and other relevant data. However, they
provide a limited view of a patient’s movement. Tracking systems
provide more robust data, but require greater space and consist of
delicate, expensive devices that can be difficult to deploy reliably in
a patient’s home.

Our proposed reconstruction method using body-worn IMUs and
a nearby egocentric view can help overcome limitations in current
data collection methods to support telemedicine in physical ther-
apy. We implemented our method in a prototype system for remote
physical therapy that enables clinicians to collect rich data about a
patient’s movement during therapy exercises while only requiring
the patient to wear a set of small IMUs mounted on easily-attached
Velcro straps. A care partner or family member provides an external
view by wearing a headset with a few miniature cameras. Prior to the
therapy session, the care partner looks around the environment and
moves around the patient, enabling our system to reconstruct the en-
vironment and an avatar for the patient. During the session, a remote
physical therapist wearing a VR headset can see the patient from
any viewpoint and provide therapy instructions and performance
feedback in real-time. Data from the IMUs and the care partner’s
headset cameras enable pose and appearance avatar updates in near
real-time, as the patient moves through their exercises.

Our prototype system allows the patient and therapist to concen-
trate on the therapy itself while providing robust data collection for
later review. The therapist has full access to the patient’s movements
from any angle, and the patient does not have to remain within the
field of view of a fixed camera or the active volume of a tracker, or
worry about costly or complex instrumentation in their home.

Clinicians can also use our method to estimate a patient’s body
pose and reconstruct their appearance in subsequent playbacks of a
physical therapy session. During playback, clinicians can see the pa-
tient’s avatar movements in their reconstructed environment to gain
contextualized insight into their therapy activities. An immersive
visualization summarizes relevant motion data to allow clinicians to
rapidly identify time segments of interest and recurrent patterns in
the patient’s movements.

Extracting joint locations from the IMU sensors, a visualization
dashboard displays data critical to our clinical collaborators, includ-
ing trunk angle and the relative position of the trunk angle to the
feet in the coronal and sagittal planes. The visualization consists
of a skeletal model with vectors describing relevant relative joint
positions with length and color encoding magnitude. Clinicians can
use these vectors to visualize how far the feet are from under the
pelvis, which leg the patient is bearing their weight on, and how
far forward or backward the patient is leaning at a given time point.
A temporal heatmap summarizes this data across all collected time
points, allowing clinicians to rapidly identify patterns across a set of
sessions. For example, in the dashboard in Figure 10, the clinician
can infer when the patient is sitting down by looking for dark red ar-
eas (when the feet are far from the pelvis) with bordering dark green
marks (increased trunk angle from bending forward). The clinician
can also infer that the patient tends to put more weight on one leg
because the top blue row is darker than the second row, indicating
that the hip is often closer to one foot than the other. Clinicians can
use these patterns to quickly find movement sequences to investigate
in greater detail through the reconstruction.
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Figure 10: A prototype immersive visualization dashboard that summarizes relevant motion data for clinicians.

6 CONCLUSION AND FUTURE WORK

We presented a novel collaborative egocentric telepresence approach
which makes telepresence available anywhere, anytime, using de-
vices that can one day be embedded in accessories worn everyday.
We believe that advances in the technologies and algorithms used
will enable collaborative egocentric approaches to match and even-
tually surpass the quality of the results currently available in fully
instrumented environments.

Our method, using a combination of the pose from IMUs and
a single external camera stream, has shown encouraging results,
with significant improvements over prior methods of body pose and
appearance capture.

In the near future, we plan to refine our technique to use fewer
IMUs, preferably embedded in items likely to be worn daily, such
as shoes, watches, and exercise bands. We hope to incorporate even
fewer IMUs by having the patient also wear an AR headset, with
both conventional forward- and downward-looking cameras [9]. We
believe AR glasses with internal displays, cameras, and IMUs will be
miniaturized to the form factor of today’s prescription eyeglasses and
worn all day, enabling scenarios such as the one shown in Fig. 1 (a,b).
With this miniaturization and increasingly widespread adoption, we
are optimistic that techniques such as those introduced in this paper
will become widely useful for medical and healthcare applications,
and also many other applications in which multiple participants with
AR glasses are co-located in the same environment.
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