

e
Th

Tu
Integ

Tutorials

torials* for the jGRASPTM 1.7
rated Development Environment

James H. Cross II and Larry A. Barowski
Copyright © 2004 Auburn University

All Rights Reserved

March 1, 2004

DRAFT

*These tutorials are from the jGRASP Handbook.
Copyright © 2004 Auburn University

All Rights Reserved

Table of Contents

Overview of jGRASP and the Tutorials ... 1

1 Installing jGRASP ... 3

2 Getting Started... 5

2.1 Starting jGRASP... 6

2.2 Quick Start - Opening a Program, Compiling, and Running.................................... 7

2.3 Generating a Control Structure Diagram .. 9

2.4 Folding a CSD... 11

2.5 Line Numbers.. 12

2.6 Creating a New File .. 13

2.7 Saving a File ... 16

2.8 Compiling a Program – A Few More Details ... 17

2.9 Running a Program - Additional Options ... 20

2.10 Using the Debugger .. 22

2.11 Opening a File – Additional Options .. 24

2.12 Closing a File .. 27

2.13 Exiting jGRASP.. 28

2.14 Exercises ... 28

2.15 Review and Preview of What’s Ahead ... 29

3 Getting Started with Objects.. 30

3.1 Starting jGRASP... 31

3.2 Navigating to Our First Example.. 32

3.3 Opening a Project and UML Window .. 33

3.4 The UML Window.. 34

3.5 Exploring the Features of the UML Window ... 35

3.5.1 Viewing the source code for a class.. 35

3.5.2 Displaying class information .. 35

3.5.3 Displaying Dependency Information.. 35

3.6 Viewing the Source Code ... 36

i

3.7 Compiling and Running the Program ... 37

3.8 Generating Documentation for the Project ... 38

3.9 Using the Object Workbench.. 39

3.10 Invoking a Method.. 41

3.11 Invoking Methods with Parameters .. 42

3.12 Invoking Methods on Object Fields.. 42

3.13 Invoking Inherited Methods.. 43

3.14 Running the Debugger on Invoked Methods.. 44

3.15 Creating Instance from the Java Class Libraries... 44

3.16 Exiting the Workbench ... 44

3.17 Closing a Project ... 45

3.18 Exiting jGRASP.. 45

3.19 Exercises ... 46

4 Projects .. 47

4.1 Creating a Project.. 47

4.2 Adding files to the Project .. 49

4.3 Removing files from the Project ... 50

4.4 Generating Documentation for the Project (Java only) .. 51

4.5 Jar file Creation and Extraction .. 53

4.6 Active Project vs. Open Projects .. 53

4.7 Closing a Project ... 53

4.8 Exercises ... 54

5 UML Class Diagrams .. 55

5.1 Opening the Project... 55

5.2 Generating the UML... 55

5.3 Determining the Contents of the Class Diagram .. 58

5.4 Laying Out the UML Diagram ... 61

5.5 Displaying the Members of a Class .. 62

5.6 Displaying Dependencies Between Two Classes ... 63

5.7 Finding a Class in the UML Diagram... 64

5.8 Opening Source Code from UML... 64

5.9 Saving the UML Layout ... 65

ii

5.10 Printing the UML Diagram... 65

6 The Object Workbench.. 66

6.1 Invoking Static Methods ... 66

6.2 Creating an Object for the Workbench ... 69

6.3 Invoking a Method.. 71

6.4 Invoking Methods with Parameters .. 72

6.5 Invoking Methods on Object Fields.. 72

6.6 Invoking Inherited Methods.. 73

6.7 Running the Debugger on Invoked Methods.. 74

6.8 Exiting the Workbench ... 74

7 The Integrated Debugger ... 75

7.1 Preparing to Run the Debugger... 75

7.2 Setting a Breakpoint.. 75

7.3 Running a Program in Debug Mode ... 76

7.4 Stepping Through a Program.. 77

7.5 Debugging a Program ... 81

8 The Control Structure Diagram (CSD)...................................... 82

8.1 An Example to Illustrate the CSD .. 82

8.2 CSD Program Components/Units ... 84

8.3 CSD Control Constructs ... 85

8.4 CSD Templates ... 89

8.5 Hints on Working with the CSD... 90

8.6 Reading Source Code with the CSD... 91

8.7 References... 96

iii

Overview

Overview of jGRASP and the Tutorials

jGRASP is a full-featured medium-weight integrated development environment, created
specifically to provide visualizations for improving the comprehensibility of the software.
jGRASP is implemented in Java, and thus, runs on all platforms with a Java Virtual
Machine. As with the previous versions, jGRASP supports Java, C, C++, Ada, and
VHDL, and it can be configured to work with almost any compiler. jGRASP, which is
based on its predecessors, pcGRASP and UNIX GRASP (written in C/C++) is the latest
IDE from the GRASP (Graphical Representations of Algorithms, Structures, and
Processes) research group at Auburn University.

jGRASP currently provides for the automatic generation of two important software
visualizations: the Control Structure Diagram (Java, C, C++, Ada, and VHDL) for
source code visualization and the UML Class Diagram (Java) for architectural
visualization. jGRASP also provides an innovative Object Workbench and Debugger
which are tightly integrated with these visualizations. Each is briefly described below.

The Control Structure Diagram (CSD) is an algorithmic level diagram generated for
Ada, C, C++, Java and VHDL. The CSD is intended to improve the comprehensibility of
source code by clearly depicting control constructs, control paths, and the overall
structure of each program unit. The CSD, which is designed to fit into the space that is
normally taken by indentation in source code, is an alternative to flow charts and other
graphical representations of algorithms. The goal was to create an intuitive and compact
graphical notation that was easy to use. The CSD is a natural extension to architectural
diagrams such as UML class diagrams.

The CSD Window in jGRASP provides complete support for the CSD and source code
editing. Source code may be edited directly as with any traditional editor. After editing,
regenerating a CSD is fast and efficient and non-disruptive (approximately 5000
lines/sec). The source code can be folded based on CSD structure (method, loop, if
statement, etc.), then unfolded level-by-level. Standard features for program editors such
as syntax based coloring, cut, copy, paste, and find-and-replace are also provided.

The UML Class Diagram is currently generated for Java source code from all Java class
files and jar files in the current project. Dependencies among the classes are depicted
with arrows (edges) in the diagram. By selecting a class, its members can be displayed,
and by selecting an arrow between two classes, the actual dependencies can be displayed.
This diagram is a powerful tool for understanding a major element of object-oriented
software - the dependencies among classes.

The Object Workbench, in conjunction with the UML class diagram, allows the user to
create instances of classes and invoke their methods. This has proven to be an extremely
useful paradigm for teaching and learning object-oriented concepts, especially for
beginning students.

The Integrated Debugger works in conjunction with the CSD window, UML window,
and the Object Workbench. The Debugger provides a seamless way for users to examine
their programs step by step. The execution threads, call stack, and variables are easily

1

Overview

viewable during each step. The jGRASP debugger has been used extensively during
lectures as a highly interactive medium for explaining programs.

The jGRASP Tutorials are perhaps best utilized while using jGRASP; however, they are
sufficiently detailed to be used in a stand-alone fashion (i.e., just reading them). They are
quite suitable as supplemental assignments during the course. When working with
jGRASP and the tutorials, students can use their own source code, or they can use the
examples shown in the tutorials (jGRASP\examples\tutorial_examples\). Users may
want to copy the examples folder to their own directory prior to modifying them. The
Tutorials are listed below along with suggestions for their use.

1. Installing jGRASP – This tutorial can be skipped if jGRASP and the Java SDK have
already been installed successfully. It is recommended for those students planning to
install jGRASP and the Java SDK on their personal machines.

2. Getting Started – This tutorial is a good starting place for those new to jGRASP. It
introduces the process of creating and editing Java source files, then compiling and
running programs. It also includes generating the CSD for the program.

3. Getting Started with Objects – This tutorial is a good starting place for those
interested in an Objects First approach to learning Java, but assumes the reader will
refer to the previous section as needed. It introduces projects, UML class diagrams,
and the Object Workbench in jGRASP.

4. Projects – This tutorial introduces the concept of a project file (.gpj) in jGRASP,
which stores all information for a specific project. This includes the names (and
paths) of each file in the project, the project settings and the layout of the UML
diagram. Some users may want to work in projects from the beginning, while others
want to deal with projects only when programs have multiple classes or files.

5. The UML Class Diagram – This tutorial assumes the user is able to create a project
(Tutorial 4) and understands the concept of a project.

6. The Object Workbench – This tutorial assumes the user is able to create a project
(Tutorial 4) and work with UML class diagrams (Tutorial 5). The workbench
provides an exciting way to teach object-oriented concepts and programming by
allowing the user to create objects and invoke methods directly rather than via a
main() method.

7. The Integrated Debugger – This tutorial can be done anytime. Students should be
encouraged to begin using the debugger early on so that they can step through their
programs, even if only to observe variables as they change.

8. The Control Structure Diagram – This tutorial is perhaps best read as control
structures such as the if, if-else, switch, while, for, and do statements are studied.
However, for those already familiar with the common control structures of
programming languages, the tutorial can be read anytime. The latter part contains
some helpful hints on getting the most out of the CSD.

For additional information and to download jGRASP, please visit our web site at the
following URL. http://www.jgrasp.org

2

http://www.jgrasp.org/

Installing jGRASP

1 Installing jGRASP
Currently, jGRASP is available from http://www.jgrasp.org in four versions: two are self-
extracting for Microsoft Windows, one is for Mac OS X, and the fourth is a generic ZIP
file. Although the generic ZIP file can be used to install jGRASP on any system, it is
primarily intended for Linux and UNIX systems. If you are on a Windows machine,
either (1) or (2) below is strongly recommended.

jGRASP exe (2.3 MB) – Windows self-extracting exe file. The full Java 2 SDK
(J2SDK) must be installed in order to run jGRASP and compile and run Java programs.

jGRASP JRE exe (13.5 MB) – Windows self-extracting exe file with JRE. Since this
includes a copy of the JRE, no Java installation is required to run jGRASP itself;
however, the JRE does not include the Java compiler. If you will be compiling and
running Java programs, you must also install the full J2SDK. The jGRASP JRE version
of jGRASP is convenient if you will be compiling programs in languages other than Java.

jGRASP pkg.tar.gz (2.1 MB) – Mac OS X tarred and gzipped package file (requires
admin access to install). J2SDK is preinstalled on Mac OS X machines.

jGRASP (2.1 MB) – Zip file. After unzipping the file, refer to README file for
installation instructions. The full J2SDK must be installed in order to run jGRASP and to
compile and run Java programs.

For Windows 95/98/2000/XP - After downloading (1) or (2) above, simply double click
on the .exe file, and the script will take you through the steps for installing jGRASP. If
you are uncertain about a step, you should accept the default by pressing ENTER. When
you have completed the installation, you should find the jGRASP icon on your desktop.
jGRASP should also be listed on the Window’s Start – Programs menu.

Compilers - Although jGRASP includes settings for a number of popular compilers, it
does not include any compilers. Therefore, if the compiler you need is not already
installed on your machine, it must be installed separately. Since these are generally
rather large files, the download time may be quite long. If a compiler is available to you
on a CD (e.g, with a textbook), you may save yourself time by installing it from the CD
rather than attempting to download it.

jGRASP includes settings for the following languages/compilers. The default compiler
settings are underlined. Note that links for those that can be freely downloaded are
included for your convenience.

Ada (GNAT)

ftp://cs.nyu.edu/pub/gnat/3.14p/winnt/(e.g., gnat-3.14p-nt.exe)

C, C++ (GNU/Cygnus, Borland, Microsoft)

http://sources.redhat.com/cygwin/

http://www.borland.com/bcppbuilder/freecompiler/cppc55steps.html

3

http://www.jgrasp.org/
ftp://cs.nyu.edu/pub/gnat/3.14p/winnt/
http://sources.redhat.com/cygwin/
http://www.borland.com/bcppbuilder/freecompiler/cppc55steps.html

Installing jGRASP

FORTRAN (GNU/Cygnus)

Included with Cygwin, see (2) above. Note that FORTRAN is currently treated as
Plain Text so there is no CSD generation.

Java (J2SDK, Jikes)

http://java.sun.com/j2se/1.4/download.html

Assembler (MASM)

Note that assembler is treated as Plain Text so there is no CSD generation.

After you have installed the compiler(s) of your choice, you will be ready to begin
working with jGRASP. If you are not using the default compiler for a particular
language (e.g., J2SDK for Java), you may need to change the Compiler Settings as by
clicking on Settings – Compiler Settings – Global (or Workspace). Select the
appropriate language, and then select the environment setting that most nearly matches
the compiler you have installed. Finally, click Use on the right side of the Settings
dialog. For details see Compiler Environment Settings in Part 2 – Reference of the
jGRASP Handbook, or see this topic in jGRASP Help.

You can start jGRASP by double clicking on the icon.

jGRASP

4

http://java.sun.com/j2se/1.4/download.html

Getting Started

2 Getting Started
Java will be used in the examples in this section; however, the information applies to all
supported languages for which you have installed a compiler (e.g., Ada, C, C++, Java)
unless noted otherwise. In any of the language specific steps below, simply select the
appropriate language and source code. For example, in the “Creating a New File” below,
you may select C++ as the language instead of Java, and then enter a C++ example. If
you have installed jGRASP on your own PC, you should see the jGRASP icon in the
Windows desktop.

Objectives – When you have completed this tutorial, you should be comfortable with
editing, compiling, and running Java programs in jGRASP. In addition, you should be
familiar with the pedagogical features provided by the Control Structure Diagram (CSD)
window, including generating the CSD, folding your source code, numbering the lines,
and stepping through the program in the integrated debugger.

The details of these objectives are captured in the hyperlinked topics listed below.

2.1 Starting jGRASP

2.2 Quick Start - Opening a Program, Compiling, and Running

2.3 Generating a Control Structure Diagram

2.4 Folding a CSD

2.5 Line Numbers

2.6 Creating a New File

2.7 Saving a File

2.8 Compiling a Program – A Few More Details

2.9 Running a Program - Additional Options

2.10 Using the Debugger

2.11 Opening a File – Additional Options

2.12 Closing a File

2.13 Exiting jGRASP

2.14 Exercises

2.15 Review and Preview of What’s Ahead

5

Getting Started

2.1 Starting jGRASP
If you are working in a Microsoft Windows environment, you can start jGRASP
by double clicking its icon on your Windows desktop. If you are working on a
PC in a computer lab, you may not see the jGRASP icon on the desktop. Try
the following: click Start -- Programs – jGRASP

P

jGRAS
Depending on the speed of your computer, jGRASP may take between 10 and 30 seconds
to start up. The jGRASP virtual Desktop, shown below, is composed of a Control Panel
with a menu across the top plus three panes. The left pane has tabs for Browse, Find,
Debug, and Workbench (Project tab is combined with the Browse tab in version 1.7).
The large right pane is for UML and CSD Windows. The lower pane with tabs for
jGRASP messages, Compile messages, and Run Input/Output.

Figure 1. The jGRASP Virtual Desktop

CSD and UML
Windows

Message
Tab Pane

Browse
Tab Pane
6

Getting Started

2.2 Quick Start - Opening a Program, Compiling, and Running
Example programs are available in the jGRASP folder in the directory where it was
installed (e.g., c:\program files\jgrasp\examples\tutorial_examples). If jGRASP was
installed by a system administrator, you may not have write privileges for these files so
you may need to copy the tutorial_examples folder to one of your personal folders (e.g.,
in your My Documents folder).

The files shown initially in the Browse tab will most likely be in your home directory.
However, regardless of the opening default directory, you can navigate to the appropriate
directory by double-clicking on a folder in the list of files or by clicking on the up-arrow
as indicated in the figure below. The “R” refreshes the Browse pane. In the example, the
Browse tab is displaying the contents of tutorial_examples.

Figure 2. The jGRASP Virtual Desktop

To open a
folder

To
the directory

 move up in

To open a
file

Figure 2. The jGRASP Virtual Desktop

To open a
folder

To
the directory

 move up in

To open a file, double click on
the file name

To open a
folder

To open a file, double click on
the file name

To
the directory

 move up in

To open a
folder

To open a file, double click on
the file name

To move up in the directory
click on the UP arrow

To open a folder
double-click on the file name

To open a file
double click on the file name

Figure 2. The jGRASP Virtual Desktop

7

Getting Started

Double-clicking on the HelloProject folder, then the Hello.java file, as shown in Step 1
below, opens the program in a CSD Window. The CSD Window is a full-featured editor
for entering and updating your programs. Notice the CSD Window has its own menu and
toolbar icons across the top. Once you have opened a program or entered a new program
(File – New File – Java) and saved it, you are ready to compile the program and run it.
To compile the program, click on the Compile menu, then select Compile. Alternatively,
you can click on the Compile icon indicated by Step 2 below. After a successful
compilation (no error messages in the Run I/O tab), you are ready to run the program by
clicking on the Run icon as shown in Step 3 below, or you can click the Run menu and
select Run. The standard input and output for your program will be in the Run I/O tab of
the message pane.

Step 1. Open file

Double-click file name

Step 2. Compile program

Step 3. Run program

Figure 3. After loading file into CSD Window
8

Getting Started

2.3 Generating a Control Structure Diagram
You can generate a Control Structure Diagram in the CSD Window whenever you have a
syntactically correct program. Generate the CSD for the program by doing one of the
following:

Clicking the Generate CSD icon

or Clicking View -- Generate CSD on the menu

or Pressing F2

If your program is syntactically correct, the CSD will be generated as shown in the figure
below. After you are able to successfully generate a CSD, go on to the next section
below.

Figure 4. After CSD is generated

9

Getting Started

Otherwise, if a syntax error is detected during the CSD generation, jGRASP will
highlight the vicinity of the error and describe it in the message window.

If you do not find an error in the highlighted line, be sure to look for the error in the line
just above it. For example in Figure 5, the semi-colon was omitted at the end of the
println statement. As you gain experience, these errors will become easier to spot.

If you are unable find and correct the error, you should try compiling the program since
the compiler usually provides a more detailed error message (see Compiling_a_Program
below).

You can remove the CSD by doing one of the following:

Clicking the Remove CSD icon

or Clicking View -- Remove CSD on the menu

or Pressing Shift-F2

Figure 5. Syntax error detected
10

Getting Started

Remember, the purpose of using the CSD is to improve the readability of your program.
While this is may not be obvious on a small simple program like the example, it should
become apparent as the size and complexity of your programs increase.

TIP: As you enter a program, try to enter it in “chucks” that are syntactically correct. For
example, the following is sufficient to generate the CSD.

 public class Hello

{
}

As soon as you think you have entered a syntactically correct chuck, you should generate
the CSD. Not only does this update the diagram, it catches your syntax errors early.

2.4 Folding a CSD
“Folding” is another feature that many users find useful, especially as programs get
larger. After you have generated the CSD, you can fold your program based on its
structure.

For example, if you double-click on the class iconÏÕÖ×, the entire program is folded
(Figure 6). While double-clicking on the class icon again will unfold the program
completely, if you double-click on the “plus” icon, the first layer of the program is
unfolded. You can continue to unfold the program layer by layer as needed.

Figure 6. Folded CSD

11

Getting Started

Although the example program has no loops or conditional statements, these may be
folded by double-clicking the corresponding CSD control constructs. For other folding
options, see the View – Fold menu.

2.5 Line Numbers
Line numbers can be very useful when referring to specific lines or regions of a program.
Although not part of the actual program, they are displayed to he left of the source code
as indicated in Figure 7.

Line numbers can be generated by clicking the line number icon on the CSD
Window toolbar, and removed by clicking the icon again. Line numbers can also be
generated/removed via the View menu.

With Line numbers turned on, new line numbers are inserted and/or added to the end
each time you press “ENTER” on the keyboard. If you insert a line in the code, all line
numbers below the new line are incremented.

You may “freeze” the line numbers to avoid the incrementing by clicking on the
Freeze Line Numbers icon. To unfreeze the line number, click the icon again. This
feature is also available on the View menu.

Figure 7. Line numbers in the CSD Window

12

Getting Started

2.6 Creating a New File
To create a new Java file within the Desktop, click on File -- New File -- Java. Note that
the list of languages displayed by File – New File will vary with your use of jGRASP. If
the language you want is not listed, click Other to see all available languages. The
languages for the last 25 files opened will be displayed in the list; the remaining available
languages will be under Other.

After you click on File -- New File -- Java, a CSD Window is opened in the right pane of
the Desktop as shown in Figure 8 below. Notice the title for the frame, jGRASP CSD
(Java), indicates the CSD Window is Java specific. If Java is not the language you intend
to use, you should close the window and then open a CSD Window for the correct
language. Also, a button with the file name on it appears below the CSD window in an
area called the windowbar (similar to a taskbar in the Windows OS environment). Later
when you have multiple files open, the windowbar will be quite useful.

In the upper right corner of the CSD Window are three buttons that control its display:

The first button iconifies the CSD Window. The second either maximizes the CSD

Figure 8. Opening a CSD Window for Java

13

Getting Started

Window relative to the jGRASP Desktop, or if it is already maximized, the button
restores the CSD Window to its previous size. The third button closes the CSD Window.
You may also make the Desktop full screen by clicking the appropriate icon in the upper
corner of it.

Figure 11 shows the CSD Window maximized within the virtual Desktop.

HINT: If you want all of your CSD Windows to be maximized automatically when you
open them, click Settings -- Desktop, then turn on the option called Open CSD
Windows Maximized (indicated by a check mark).

Figure 11. CSD Window expanded in Desktop

14

Getting Started

Type in the following Java program in the CSD Window, exactly as it appears.
Remember, Java is case sensitive.
 public class Hello2
 {
 public static void main(String[] args)
 {
 System.out.println ("Hello world!");
 System.out.println ("Welcome to jGRASP!");
 }
 }

After you have entered the program, your CSD Window should look similar to the
program shown in Figure 12.

Figure 12. CSD Window with program entered

15

Getting Started

2.7 Saving a File
Save the program as "Hello2.java" by clicking the Save icon on the tool bar of the CSD
Window, or you can click File -- Save on the CSD Window menu (not the Desk Top
menu).

After you click on Save, the Save dialog box pops with the name of the file already set to
the name of the class file. Note, in Java, the file name must match the class name (i.e.,
class Hello2 must be saved as Hello2.java). Be sure you are in the correct directory. If
you need to create a new directory, click the folder icon on the top row of the Save As
dialog.

When you are in the proper directory and have the correct file name indicated, click the
Save button on the dialog. After your program has been saved, it will be listed in the
browse pane. If the program is not listed in browse pane, be sure the browse pane is set
to the directory where the file was saved.

HINT: You can also use the Save icon on the toolbar.

Figure 13. Saving a file from the CSD Window

16

Getting Started

2.8 Compiling a Program – A Few More Details
When you have a program in the CSD Window, either by loading a file or typing it in and
saving it, you are ready to compile the program. If you are compiling a language other
than Java, you will need to “compile and link” the program.

 Compile a Java program in jGRASP by clicking the Compile icon or by clicking on
the Compiler menu: Compiler -- Compile (Figure 14).

 Compile and Link the program (if you are compiling a language other than Java) by
clicking on the Compile and Link icon or by clicking on the Compiler menu: Compiler –
Compile and Link. Note, these options will not be visible on the tool bar and menu in a
CSD Window for a Java program.

In the figure below, also note that Debug Mode is checked ON. This should be always
be left on so that the .class file created by the compiler will contain information about
variables in your program that can be displayed by the debugger and Object Workbench.

Figure 14. Compiling a program
17

Getting Started

The results of the compilation will appear in the Compile Messages tab in the lower
window of the Desktop. If your program compiled successfully, you should see the
message “operation complete” with no errors reported, as illustrated in Figure 15, and
you are now ready to "Run" the program (see next section).

Figure 15. A successful compilation

Error Messages
If you receive an error message indicating “file not found,” this generally means jGRASP
could not find the compiler. For example, if you are attempting to compile a Java
program and the message indicates that “javac” was not found, this usually means the
Java compiler (javac) was not installed properly. Go back to Section 1, Installing
jGRASP, and be sure you have followed all the instructions. Once the Java SDK
compiler is properly installed and set up, any errors reported should be about your
program.

18

Getting Started

If your program does not compile, the errors reported by the compiler will be displayed in
the Compile Messages window (Figure 16). The description of first error detected will
be highlighted, and jGRASP automatically scrolls the CSD Window to the line where the
error most likely occurred and highlights it.

Even if multiple errors are indicated, as soon you correct the first error reported, you
should attempt to compile the program again. Sometimes a single error causes a cascade
of reported errors.

Only after you have “fixed” all these reported errors will your program actually compile,
and the program must compile before you can “Run” the program as described in the next
section.

Figure 16. Compile time error reported

19

Getting Started

2.9 Running a Program - Additional Options
At this point you should have successfully compiled your program. Two things indicate
this. First, there should be no errors reported in the Compile Messages window. Second,
you should have a Hello2.class file listed in the Browse pane, assuming the pane is set to
list “All Files.”

To run the program, click Run – Run on the CSD Window tool bar (Figure 17). The
options on the Run menu allow you to run your program as an application (Run), as an
Applet (Run as Applet), as an application debug mode (Debug), as an Applet in debug
mode (Debug as Applet). Other options allow you to pass Run arguments and Run in an
MS-DOS window rather than the jGRASP Run I/O message pane.

You can also run the program by clicking the Run icon on the tool bar. .

Figure 17. Running a program

20

Getting Started

Output
When you run your program, the Run I/O tab in the lower pane pops to the top of the
Desktop. The results of running the program are displayed in this pane as illustrated in
Figure 18.

Figure 18. Output from running the program

21

Getting Started

2.10 Using the Debugger
jGRASP provides an easy-to-use visual Debugger that allows you to set one more
breakpoints, then step through a program statement by statement. To set a breakpoint,
left-click on the statement where you want your program to stop, then right-click and
select Toggle Breakpoint (Figure 19). You should see the red octagonal breakpoint
symbol appear to the left of the line. The statement you select must be an executable
statement (i.e., one that causes the program to do something). You can also set a
breakpoint by hovering the mouse over the leftmost column of the line where you want to
set the breakpoint. When you see the red breakpoint symbol, left-click the mouse to set
the breakpoint.

In the Hello2 program below, a breakpoint has been set on the first of the two
System.out.println statements, which are the only statements that allow a breakpoint in
this program.

Figure 19. Setting a breakpoint

22

Getting Started

After setting the breakpoint, click Run – Debug (Figure 20). This should raise the
Debug tab pane (in place of the Browse tab pane), and your program should stop at the
breakpoint. The highlighted statement is the one about to be executed. To step the
program, click on the “down-arrow” at the top of the Debug pane. Each time you click
on the “down-arrow”, your program should advance to the next statement. After stepping
all the way through your program, the Debug tab pane will go blank to signal the debug
session has ended.

In the example below, the program has stopped at the first output statement. When the
step button (down-arrow) is clicked, this statement will be executed and “Hello world!”
will be printed standard out and shown in the Run I/O tab pane. Clicking the step button
again will output “Wecome to jGRASP!” on the next line. The third click on the step
button will end the program, and the Debug tab pane should go blank as indicated above.

Figure 20. Starting the Debugger

23

Getting Started

2.11 Opening a File – Additional Options
A file can be opened in a CSD Window in a variety of ways. Each of these is described
below.

(1) Browse Tab - If the file is listed in jGRASP Browse pane, you can simply double
click on the file name, and the file will be opened in a new CSD Window. We did
this back in section 2.1 Quick Start.

(2) Desktop Menu - On the Desktop menu, click File – Open as illustrated in Figure 21.
This will bring up the Open File dialog.

Figure 21. Opening a file from the Desktop

24

Getting Started

(3) CSD Window Menu - If you have a CSD Window open, click File – Open as shown
in Figure 22. This will open the Open File dialog box, which will allow you browse
up and down directories until you locate the file you want to open.

Figure 22. Opening a file from the CSD Window

(4) Windows File Browser - If you have a Windows file browser open (e.g., Windows
Explorer, My Computer, or My Documents), and the file is marked as a jGRASP file,
you can just double click the file name.

(5) Windows File Browser (drag and drop) - If you have a Windows file browser open
(e.g., Windows Explorer or My Computer), you can drag-and-drop a file to the
jGRASP Desktop canvas where the CSD Window will be displayed. However, files
usually open more quickly by double-clicking (option 4 above) rather than using the
drag-and-drop option.

25

Getting Started

In all cases above, if a file is already open in jGRASP, the CSD Window containing it
will be popped to the top of the Desktop rather than jGRASP opening a second CSD
Window with the same file.

Multiple CSD Windows
You can have multiple CSD Windows open, each with a separate file. Each program can
be compiled and run from its respective CSD Window. In Figure 18, two CSD Windows
have been opened. One contains Hello.java and the other contains Hello2.java. If the
window you want to work in is visible, simply click the mouse on it to bring it to the top.
Otherwise, click the Window menu on the upper tool bar, and a drop down menu will list
all of the open files. However, the easiest way to keep track of your open CSD windows
is by clicking the window’s button on the windowbar below the CSD Window. In Figure
23, the windowbar has buttons for Hello and Hello2. Notice that the Hello2 button is
underlined to indicate that it is currently the top window. Hello2 is also underlined in the
Browse tab.

Figure 23. Multiple files open
26

Getting Started

2.12 Closing a File
The open files in CSD Windows can be closed in several ways. In each of the scenarios
below, if the file has been modified and not saved, you will be prompted to Save and
Exit, Discard Edits, or Cancel before continuing. After the files are closed, your Desktop
should look like the figure below.

(1) The X Button - You can close the file the file by clicking the Close button (X) in the

upper right corner of the CSD Window.

(2) Desktop File Menu – From the Desktop File menu, click File – Close All Files.

(3) Desktop Window Menu – From the Desktop Window menu, click Window – Close
All Windows.

(4) CSD Window File Menu – From any CSD Window, click File – Clear.

Figure 24. Desktop with all CSD Windows closed
27

Getting Started

2.13 Exiting jGRASP
When you have completed you session with jGRASP, you should “exit” (or close)
jGRASP rather than leaving it open for Windows to close when you log out or shut down
your computer. When you exit jGRASP normally, it saves its current state and closes all
open files. If a file was edited during the session, it prompts you to save or discard the
changes. The next time you start jGRASP, it will open your files, and you will be ready
to begin where you left off. For example, open the Hello.java file and then exit jGRASP
by one of the methods below. After jGRASP closes down, start it up again and you
should see the Hello.java program open in a CSD Window.

(1) The X Button - You can exit jGRASP by clicking the Close button (X) in the upper
right corner of the Desktop.

(2) Desktop File Menu – From the Desktop File menu, click File – Exit jGRASP.

2.14 Exercises

(1) Create your own program then save, compile, and run it.

(2) Generate the CSD for your program. On the View menu, turn on Auto Generate
CSD.

(3) Display the line numbers for your program.

(4) Fold up your program then unfold it in layers.

(5) On the Compiler menu, set the Debug Mode ON (with check box), if it is not already
ON. [We recommend that this be left ON.] Recompile your program.

(6) Set a breakpoint on the first executable line of your program then run it with the
debugger. Step through each statement, checking the Run I/O window for output.
[Note: Make sure you have compiled your program with Debug Mode checked ON;
see the Compiler menu.]

(7) If you have other Java programs available, open one or more of them then repeat
steps (1) through (5) above for each program.

28

Getting Started

2.15 Review and Preview of What’s Ahead
As a way of review and also to look ahead, let’s take a look at the CSD Window toolbar.
Hovering the mouse over an icon on the toolbar will provide a “tool hint” to help
remember is function. Also, View – Toolbar Buttons will allow you to display labels
(text) for each icon.

While most of the icons are self explanatory, two deal with projects (Generate UML class
diagrams and Generate Documentation). Projects, UML class diagrams, the Object
Workbench, and the Debugger are covered in sections 4, 5, 6, and 7. Section 3 provides
an in depth look at the CSD, which can be read at any time, but is most relevant when
control structures are studied (e.g., selection, iteration, try-catch, etc).

Generate CSD

Remove CSD

Number Lines (on/off)

Generate Complexity Profile Graph

Generate UML Class Diagram for project

Generate Documentation for project

Open File Save File Set Browse Tab to current file Print

 Compile Run Run Applet Debug Debug Applet

Cut Copy Paste Undo

29

Getting Started with Objects

3 Getting Started with Objects

If you have had experience working with any IDE, this tutorial can be done without
having done the previous section, Getting Started. However, at some point you should
make sure you can do the exercises at the end of the previous section.

Objectives – When you have completed this tutorial, you should be able to use projects,
UML class diagrams, and the Object Workbench in jGRASP. These topics are especially
relevant for an objects first or objects early approach to learning Java.

The details of these objectives are captured in the hyperlinked topics listed below.

3.1 Starting jGRASP

3.2 Navigating to Our First Example

3.3 Opening a Project and UML Window

3.4 The UML Window

3.5 Exploring the Features of the UML Window

3.5.1 Viewing the source code for a class

3.5.2 Displaying class information

3.5.3 Displaying Dependency Information

3.6 Viewing the Source Code

3.7 Compiling and Running the Program

3.8 Generating Documentation for the Project

3.9 Using the Object Workbench

3.10 Invoking a Method

3.11 Invoking Methods with Parameters

3.12 Invoking Methods on Object Fields

3.13 Invoking Inherited Methods

3.14 Running the Debugger on Invoked Methods

3.15 Creating Instance from the Java Class Libraries

3.16 Exiting the Workbench

3.17 Closing a Project

3.18 Exiting jGRASP

3.19 Exercises

30

Getting Started with Objects

3.1 Starting jGRASP
A Java program consists of one or more class files, each of which defines a set of objects.
During the execution of the program objects can be created and then manipulated, using
the methods provided by their respective classes, toward some useful purpose. In this
tutorial, we’ll examine a simple program called PersonalLibrary that consists of five class
files. In jGRASP, these five class files are organized as a project.

You can start jGRASP by double clicking on the icon. If you are working on a
PC in a computer lab and you don’t see the jGRASP icon on the desktop, try the
following: click Start -- Programs – jGRASP P

jGRAS
Depending on the speed of your computer, jGRASP may take between 10 and 30 seconds
to start up. The jGRASP virtual Desktop, shown below, is composed of a Control Panel
with a menu across the top plus three panes. The left pane has tabs for Browse, Find,
Debug, and Workbench (Project tab is combined with the Browse tab in version 1.7).
The large right pane is for UML and CSD Windows. The lower pane has tabs for
jGRASP messages, Compile messages, and Run Input/Output.
Figure 25. The jGRASP Virtual Desktop

CSD and UML
Windows

Browse, Find, Debug,
and Workbench Tabs Message

Tab Pane
31

Getting Started with Objects

3.2 Navigating to Our First Example
Example programs are available in the jGRASP folder in the directory where it was
installed (e.g., c:\program files\jgrasp\examples\tutorial_examples). If jGRASP was
installed by a system administrator, you may not have write privileges for these files. If
this is the case, you should copy the tutorial_examples folder to one of your personal
folders (e.g., in your My Documents folder).

The files shown initially in the Browse tab will most likely be in your home directory.
You can navigate to the appropriate directory by double-clicking on a folder in the
Browse tab or by clicking on the up-arrow as indicated in the figure below. The left-
arrow and right-arrow allow you to navigate back and forward to directories that have
already been visited during the session. The “R” refreshes the Browse pane. In the
example below, the Browse tab is displaying the contents of tutorial_examples.

Figure 5. The jGRASP Virtual Desktop

To open a
folder

To move up in
the directory

To open a
file

Figure 2. The jGRASP Virtual Desktop

To open a
folder

To move up in
the directory

To open a file, double click on
the file name

To open a
folder

To open a file, double click on
the file name

To move up in
the directory

To open a
folder

To open a file, double click on
the file name

To move up in the directory
click on the UP arrow

To open a folder
double-click on the file name

To open a file
double click on the file name

Figure 26. The jGRASP Virtual Desktop

32

Getting Started with Objects

3.3 Opening a Project and UML Window
After double-clicking the PersonalLibraryProject folder, the Java source files in the
project as well as the jGRASP project file are displayed in the Browse tab. To open the
project and make it active, double-click on the project file (PersonalLibraryProject.gpj),
as shown in Step 1 below. After the project is opened, the Browse tab is split into two
sections, the upper for files and the lower for open projects as indicated below.

We are now ready to open a UML Window and generate the class diagram for the
project. As indicated in Step 2 below, simply double-click on the UML icon shown
beneath the project name in the open projects section of the Browse tab. Alternatively,
on the desktop menu you can click Project – Active Project – Generate/Update UML.

After you have opened the UML Window, you can compile and run your program in the
traditional way. However, from an objects first perspective, you can also create objects
directly from your classes and place them on the Workbench and then invoke their
methods.

Figure 27. After loading file into CSD Window

Step 1. Open Project
Double-click project file name

Step 2. Open UML Window
Double-click UML icon
33

Getting Started with Objects

3.4 The UML Window
In the figure below, the UML window has been opened for the PersonalLibraryProject
and the class diagram has been generated. Notice the UML Window has its own set of
menus across the top as well as its own toolbar with icons for launching operations.
Below the toolbar is a panning rectangle, a set of scaling buttons, and an Update button to
regenerate the diagram in the event any of the classes in the project are modified outside
of jGRASP (e.g., edited or compiled). Just below the UML window is the windowbar.
Anytime a UML or CSD window is opened, a button for it is placed on the windowbar.
Clicking the button pops its window to the top. Windowbar buttons can be reordered by
dragging them around on the windowbar.

Windowbar Panning Rectangle Scaling Buttons Update Button

Figure 28. After opening the UML Window

34

Getting Started with Objects

3.5 Exploring the Features of the UML Window
Once you have a UML Window open with your class diagram, you are ready to do some
exploring. The steps below are intended to give you a semi-guided tour of some of the
features available from the UML Window.

3.5.1 Viewing the source code for a class
1. In the UML diagram, double-click on the PersonalLibrary class. This should

open in the source file in a CSD window. Notice a button for CSD window is
added to the windowbar. You should also see a button for the UML window.

2. Review the source code in the CSD window; generate the CSD; fold and unfold
the CSD; turn line numbers on and off. [See next page or Sec 2.3-2.5 for details.]

3. On the windowbar, click the button for the UML window to pop it to the top.
Remember to do this anytime you need to view the UML window.

4. View the source code for the other classes by: (1) double-clicking on the class in
the UML diagram, (2) double-clicking on the class in the Open Projects section of
the Browse tab, or (3) double-clicking on the file name in the upper section of the
Browse tab.

5. Close one or more of the CSD windows by clicking the X in the upper right
corner of the CSD window.

3.5.2 Displaying class information
1. In the UML window, select the Fiction class by left-clicking on it.

2. Right-click on it and select Show Class Info. This should pop the UML Info tab
to the top in the left pane of the Desktop, and you should be able to see the fields,
constructors, and methods of the Fiction class.

3. In the UML Info tab, double-click on the getMainCharacter() method. This
should open a CSD window with the first executable line in the method
highlighted.

4. Close the CSD window by clicking the X in the upper right corner.

3.5.3 Displaying Dependency Information
1. In the UML window, select the arrow between PersonalLibrary and Fiction by

left-clicking on it.

2. If the UML Info tab is not showing in the left pane of the desktop, right-click on
the arrow and select Show Dependency Info. Alternatively, you can click the
UML Info tab near the bottom of the left pane.

3. Review the information listed in the UML tab. As the arrow in the diagram
indicates, PersonalLibrary uses a constructor from Fiction as well as the
getMainCharacter() method.

4. Double-click on the getMainCharacter method. This should open a CSD window
for PersonalLibrary with the line highlighted where the method is invoked.

35

Getting Started with Objects

3.6 Viewing the Source Code
To view the source code for a class in the UML diagram, simply double-click on the class
symbol, or double-click the file name in the Browse tab under files or open projects.
Each of these will open the Java file in a CSD Window, which is a full-featured editor for
entering and updating your program. Notice the CSD Window has its own set of menus
and toolbar icons across the top. These include Generate CSD, Remove CSD, and
Number Lines as well as icons for the traditional Compile and Run.

Generate a Control Structure Diagram (CSD)

 Remove CSD Compile

 Number Lines (on/off) Run

Figure 29. After the CSD is generated
36

Getting Started with Objects

3.7 Compiling and Running the Program
You can compile the files in the UML window by clicking the green plus as indicated in
Step 3 below. If at least one the classes in the diagram has a main method, you can also
run the program as shown by Step 3. When you compile or run the program, the
Compile Messages and/or Run I/O Tabs pop open to show the results.

Step 3. Compile program

Step 4. Run program

Figure 30. After loading file into CSD Window
37

Getting Started with Objects

3.8 Generating Documentation for the Project
With your Java files organized as a project, you have the option to generate project level
documentation for your Java source code, i.e., an application programmer interface
(API). To begin the process of generating the documentation, click on Desktop menu
Project -- Active Project <PersonalLibraryProject> -- Generate Documenation). Or
click the Generate Documentation icon on the UML window toolbar. This will bring up
the “Generate Documentation for Project” dialog, which asks for the directory where the
generated HTML files are to be stored. The default directory name is the name of the
project with “_doc” appended to it. Thus, for the example, the default will be
PersonalLibaryProject_doc. Using the default name is recommended so that your
documentation directories will have a standard naming convention. However, you are
free to use any directory as the target. When you click Generate on the dialog, jGRASP
calls the javadoc utility, included with the J2SDK, to create a complete hyper-linked
document. The documentation generated for PersonalLibaryProject is shown below.

Figure 31. After generating documentation for PersonalLibaryProject
38

Getting Started with Objects

3.9 Using the Object Workbench
Now we are ready to begin exploring the Object Workbench. The figure below shows
the PersonalLibraryProject loaded in the UML window. Above, we learned how to run
the program in the traditional way as an application. Since main is a static method, we
can also invoke it directly from the class diagram by right-clicking on PersonalLibary and
selecting Invoke Method. When the Invoke Method dialog pops up, select and invoke
main (with or without parameters). Try this now.

The focus of this and the next several sections is on creating objects and placing them on
the workbench. We begin by right clicking on the Fiction class in the UML diagram, and
then selecting Create New Instance, as shown in the figure below. A list of constructors
will be displayed in a dialog box.

If a parameterless constructor is selected as shown in Figure 33, then clicking Create will
immediately place the object on the workbench. However, if the constructor requires
parameters, the dialog will expand to display the individual parameters as shown in
Figure 34. The values for the parameters) should be filled in prior to clicking create.

Figure 32. Creating an Object for the Workbench

39

Getting Started with Objects

In either case above, the user can set the name of the
the default assigned by jGRASP. Also, the “stick-pi
dialog can be used to make the Create dialog rema
creating multiple instances of the same class.

Figure 33. Selecting a constructor

In Figure 35, the Workbench tab is shown after two ins
have been created. The first object, fiction_1, has
(mainCharacter, author, title, and pages) can be view
instances of the String class, they to can also be exp
mainCharacter is color coded green since it is the onl
The other fields are color coded orange to indicate t
which in this case was Book.

40

Figure 34. Constructor with
parameters
object being constructed or accept
n” located in the upper left of the
in open. This is convenient for

tances of Fiction and one of Novel
been expanded so that the fields

ed. Since the first three fields are
anded. You should also note that
y field declared locally in Fiction.
hey were inherited from a parent,

Getting Started with Objects

Figure 35. Workbench with two instances of Fiction

Figure 36. Selecting a method

3.10 Invoking a Method
To invoke a method for an object on the
workbench, select the object, right click,
and then select Invoke Method. In
Figure 35, fiction_2 has been selected,
followed by a right mouse click, and then
Invoke Method has been selected. A list
of local methods will be displayed in a
dialog box as shown in Figure 36. You
may also display inherited methods by
selecting the appropriate parent. After
one of the methods is selected and the
parameters filled in as necessary, then
click Invoke. This will execute the
method and display the return value (or
void) in a dialog, as well as display any

41

Getting Started with Objects

output in the usual way. If the method updates a field (e.g., setMainCharacter()), the
effect of the invocation is seen in appropriate object field in the Workbench tab. The
“stick-pin” located in the upper left of the dialog can be used to make the Invoke Method
dialog remain open. This is useful when invoking multiple methods for the same object.

As indicated above, perhaps one of the most compelling reasons for using the workbench
approach is that it allows the user to create an object and invoke each of its methods in
isolation. Thus, with an instance of Fiction on the workbench, we can invoke each of its
three methods: getMainCharacter(), setMainCharacter(), and toStirng(). By carefully
reviewing the results of the method invocations, we can informally test the class without
the need for a driver with a main() method.

3.11 Invoking Methods with Parameters
In the example above, we created two instances of Fiction. Instances of any class in the
UML diagram can be created and placed on the workbench. If the constructor requires
parameters that are primitive types and/or strings, these can be entered directly, with any
strings enclosed in double quotes. However, if a parameter requires an object, then you
must create an object instance for the workbench first. Then you can simple drag the
object (actually a copy) from the workbench to the parameter field in the Invoke Method
dialog. You can also use the new operator when entering the value of a parameter.

3.12 Invoking Methods on Object Fields
If you have an object in the Workbench tab pane, you can expand it to reveal its fields.
Recall, in Figure 35, fiction_1 had been expanded to show its fields (mainCharacter,
author, title, and pages). Since the field mainCharacter is itself object of the class String,
you can invoke any of the String methods. For example, right-click on mainCharacter,
select Invoke Method. When the dialog pops up (Figure 37), scroll down and select the
first toUpperCase() method and click Invoke. This should pop up the Result dialog with

Figure 37. Invoking a String method

Figure38. Result of
fiction_1.mainCharacter.
toUpperCase()

42

Getting Started with Objects

“NONE” as the return value (Figure 38). This
method call has no effect on the value of the field
for which it was called; it simply returns the string
value converted to uppercase.

3.13 Invoking Inherited Methods
The methods we have invoked thus far were
declared in the class from which we created the
object. An object also inherits methods from its
parents. We now consider an instance of the Novel
class, which inherited several methods from the
Book class in our example. If we right-click on the
novel_1 in the Workbench tab pane (shown below
fiction_2 in Figure 35) and select Invoke Method,
the dialog in Figure 39 pops up. However, only the
toString() method is listed because it is the only one
declared in Novel. To view inherited methods, find
the pull-down menu located above the list. Notice it
is currently set to “Declared in Novel”. Right-
clicking on the menu reveals all of the superclasses
of Novel (Figure 40). Selecting “Declared in
superclass Fiction” lists all methods inherited from
Fiction (Figure 41). Notice the orange color coding in
fields on the workbench. However, in this case, toStr

overridden
by the

toString()
method

declared in
Novel.

43

Figure 39. Invoking a method
for novel_1
dicating “inherited” similar to the
ing() is gray to indicate it has been

Figure 40. Viewing superclasses
for novel_1

Figure 41. Viewing superclasses
for novel_1

Getting Started with Objects

3.14 Running the Debugger on Invoked Methods
When objects are on the workbench, the workbench is running Java in debug mode.
Thus, if you set a breakpoint in a method and then invoke the method from the
workbench, the CSD window will pop to the top when the breakpoint is reached. When
this occurs, you can single step through the program, examine fields, resume, etc. in the
usual way. See the Tutorial entitled “The Integrated Debugger” for more details.

3.15 Creating Instance from the Java Class Libraries
You can create an instance of any class that is available
to your program, which includes the Java class libraries.
Find the Workbench menu at the top of the UML
window. Click Workbench – Create New Instance of
Class. In the dialog that pops up, enter the name of a
class such as java.lang.String and click OK. This
should pop up a dialog containing the constructors for
String. Select an appropriate constructor, enter the
argument(s), and click Create. This places the instance
of String on the workbench where you can invoke any
of its methods as described earlier.

3.16 Exiting the Workbench
The workbench is running whenever you
have objects on it or if you have invoked
main() directly from the class diagram. If
you attempt to do an operation that
conflicts with workbench (e.g., recompile
a class, switch projects, etc., jGRASP will
prompt you with a message indicating that
the workbench process is active and ask
you if it is is it OK to end the process
(Figure 43). The prompt is to let you
know that the operation you are about to
perform will clear the workbench. You
can also clear or exit the workbench by
right-clicking in the Workbench tab pane
and selecting Clear/Exit Workbench.

Figure 43.
exit

44

Figure 42. Creating an
instance of String
Making sure it is okay to

Getting Started with Objects

3.17 Closing a Project
If you leave one or more projects open when you exit jGRASP, when you restart
jGRASP, they will be opened again. You should close any projects you are not using to
reduce clutter in the Open Projects section of the Browse tab.

Here are three ways to close a project:

(1) From the Desktop toolbar - Click Project – Close All Projects.

(2) From the Desktop toolbar - Click Project – Active Project < > -- Close.

(3) From the Browse Tab – Right-click on the project file name in the Open Projects
section of the Browse tab and select Close.

After closing all projects, Project: [default] should be displayed at the top of the
Desktop. All project information is saved when you close the project, as well as when
you exit jGRASP.

3.18 Exiting jGRASP
When you have completed you session with jGRASP, you should “exit” (or close)
jGRASP rather than leaving it open for Windows to close when you log out or shut down
your computer. When you exit jGRASP, it saves its current state and closes all open
files. If a file was edited during the session, it prompts you to save or discard the
changes. The next time you start jGRASP, it will open your files, and you will be ready
to begin where you left off.

Here are two ways to close or exit jGRASP:

(1) The X Button - You can exit jGRASP by clicking the Close button (X) in the upper
right corner of the Desktop.

(2) Desktop File Menu – From the Desktop File menu, click File – Exit jGRASP.

When you try to exit jGRASP while a process such as the workbench is still running, you
will be prompted to make sure it is okay to quit jGRASP.

Figure 44. Making sure it is okay to exit
45

Getting Started with Objects

3.19 Exercises
(1) Create a new project (Project – New) named PersonalLibraryProject2 in the same

directory folder as the original PersonalLibraryProject. During the create step, add
the file Book.java to the new project.

a. After the new project is created, add the other Java files in the directory to the
project. Do this by dragging each file from the Files section of the Browse tab
and dropping it in PersonalLibraryProject2 in the open projects section.

a. Remove a file from PersonalLibraryProject2. After verifying the file was
removed, add it back to the project.

(2) Generate the documentation for PersonalLibraryProject2. After the Documentation
Viewer pops up:

a. Click the Fiction class link in the API (left side).

b. Click the Methods link to view the methods for the Fiction class.

c. Visit the other classes in the documentation for the project.

(3) Close the project.

(4) Open the project by double-clicking on the project file in the files section of the
Browse tab.

(5) Generate the UML class diagram for the project.

a. Display the class information for each class.

b. Display the dependency information between two classes by selecting the
appropriate arrow.

c. Compile and run the program using the icons on the UML toolbar.

d. Invoke main() directly from the class diagram.

e. Create three instances of Fiction and two of Novel.

f. Invoke some of the methods for one or more of these instances.

(6) Open the CSD window for PersonalLibrary.

a. Set a breakpoint on the first executable statement.

b. From the UML window, start the debugger by clicking the Debug icon.

c. Step through the program, watching the objects appear in the Debug tab as
they are created.

d. Restart the debugger. This time click “step in” instead of “step”. This should
take you into the constructors, etc.

(7) If you have other Java programs available, repeat steps (1), (2), (5), and (6) above for
each program.

46

Projects

4 Projects
A project in jGRASP is essentially a user designated group of files, which may be located
in different directories. When a “project” is created, all information about the project,
including project settings and file locations, is stored in a project file with the .gpj
extension. If you have not created a project, Project: [default] should be displayed at
the top of the Desktop, which indicates the jGRASP default project file is being used.

To use the UML and Object Workbench features of jGRASP, you must organize your
Java files in a Project. UML generation and the Object Workbench are discussed in
Sections 5 and 6. However, projects can be used independently of UML and Object
Workbench features.

4.1 Creating a Project
On the Desktop toolbar, click Project – New Project… (Figure 45) to open the New
Project dialog.

Figure 45. Creating a Project
47

Projects

Within the New Project dialog (Figure 46), notice the two check boxes (Add Files Now
and Open UML Window). Normally, you would want to have the Add Files Now checked
ON so that as soon as you click the Create button, the Add Files dialog will pop up. If
you are working in Java, you may also want to check ON the Open UML Window option.
This will generate the UML class diagram and open the UML Window (see Section 5 for
details).

 Navigate to the directory where you want the project to reside, and enter the project file
name. It is recommended that the project file be stored in the same directory as the file
containing main. A useful naming convention in Java is ClassnameProject where
Classname is the name of the class that contains main. For example, since the
PersonalLibrary class contains main, an appropriate name for the project file would be
PersonalLibaryProject.

After entering the project file name, click Create to save the project file. Notice the .gpj
extension is automatically appended to the file name. As soon as the project is created, it
becomes the current project, and the new project name replaces “[default]” at the top of
the Desktop.

If Add Files Now was checked ON when you created the project, the Add Files dialog
will pop up. As files are added to the project, they will appear under the project name in
the Open Projects section of the Browse tab. When you have finished adding files, click
the Close button on the dialog.

Figure 46. New Project window

48

Projects

4.2 Adding files to the Project
Beginning with v1.7, the Browse tab is split to show the current file directory in the top
part and the open projects in the lower part as shown in Figure 47. After a project has
been created, there are several ways to add Java files to it using the Browse tab.

(1) In Browse Tab - Drag the file (left click and hold) from directory at top to Open
Project below.

(2) From Browse Tab - Drag the file from directory at top to UML Window (Section 5).

(3) In Browse Tab - Right click on the file and select Add to Active Project – Relative
Path. (Figure 47).

(4) From CSD window – Click File – Add to Active Project – Relative Path.

Repeat this for each file to be added. You can also select multiple files (holding down
the shift or control key), and add or drag the highlighted files all at once. To see the list
of files in the project, select Project from among the tabs for Browse, Project, Find, and
Debug at the bottom the left pane of the Desktop.

Figure 47. Adding a file to the Pro

s

Browse Tab
Files
Browse Tab
Open Project
ject

49
Adding files to active project
by right-clicking on file name

Projects

4.3 Removing files from the Project
You can remove files from the project by selecting one or more files in the Open Projects
section of the Browse tab, then right clicking and selecting Remove from Project(s) as
shown in Figure 48. You can also remove the selected file(s) by pressing Delete on the
keyboard. Note that removing a file from a project does not delete the file from its
directory, only from the project. However, you can delete a file by selecting it the files
section of the Browse tab and then pressing the Delete key.

Figure 48. Removing a file from the Project

50

Projects

4.4 Generating Documentation for the Project (Java only)
Now that you have established a project, you have the option to generate project level
documentation for your Java source code, i.e., an application programmer interface
(API). To begin the process of generating the documentation, click on Desktop menu as
shown in the Figure 49 below (Project – Active Project <PersonalLibraryProject> --
Generate Documenation). This will bring up the “Generate Documentation for Project”
dialog, which asks for the directory where the generated HTML files are to be stored.
The default directory name is the name of the project with “_doc” appended to it. So for
the example, the default will be PersonalLibaryProject_doc. Using the default name is
recommended so that your documentation directories will have a standard naming
convention. However, you are free to use any directory as the target. Click Generate to
start the process. jGRASP calls the javadoc utility, included with the J2SDK, to create a
complete hyper-linked document within a few seconds.

This can be done on a file-by-file basis or for a complete project as shown in Figure 50
below. Note that in this example, even though no JavaDoc comments were included in
the source file, the generated documentation is still quite useful. However, for even more

Figure 49. Generating Documentation for the Project

51

Projects

useful results, JavaDoc formal comments should be included in the source code. When
the documentation is generated for an individual file, it is stored in a temporary directory
for the duration of the jGRASP session. When generated for a project, the documentation
files are stored in a directory that becomes part of the project, and therefore, persists from
one jGRASP session to the next. If any changes are made to a project source file (and the
file is resaved), jGRASP will indicate that the documentation needs to be regenerated;
however, the user may choose to view the documentation files without updating them.

Figure 50. Project documentation

52

Projects

4.5 Jar file Creation and Extraction
jGRASP provides a utility for the creation and extraction of Java Archive files (JAR) for
your project. The “Create Jar File for Project” option, which is found on the Project
menu, allows you to create a single compressed file containing your entire project.

The “Jar/Zip Extractor” option enables you to extract the contents of a JAR or ZIP
archive file.

These topics are described in more detail in the jGRASP Handbook, Part 2 – Reference,
and in jGRASP Help.

4.6 Active Project vs. Open Projects
Beginning with version 1.7, jGRASP allows you to have multiple projects open, but only
one is designated as active. The small black square on the project icon in the project
section of the Browse tab indicates the active project. By default, the last project you
open is the active one. If you initiate your project operations from the Browse tab or
from the UML window, it makes little difference which open project is active. However,
if a Java file is in more than one open project and a project operation is initiated at the file
level (e.g., from the CSD Window), the project settings, if any, from the active project
will be used during the operation.

To change the active status from one project to another, right-click on the project name in
the open projects section of the Browse tab and select Make Active. Of course, if you
create a new project or open an existing project, then this project becomes the active one
and its name is displayed at the top of the Desktop.

To open an existing project:

(1) From the Desktop toolbar - Click Project – Open Project.

(2) From the Browse Tab – Double-click on a project file in the files section of the
Browse tab.

4.7 Closing a Project
(4) From the Desktop toolbar - Click Project – Close All Projects.

(5) From the Desktop toolbar - Click Project – Active Project < > -- Close.

(6) From the Browse Tab – Right-click on the project file name in the Open Projects
section of the Browse tab and select Close.

After closing a project, Project: [default] should be displayed at the top of the Desktop.
All project information is saved when you close the project, as well as when you exit
jGRASP.

53

Projects

4.8 Exercises

(8) Create a new project called PersonalLibraryProject2 in the same directory folder as
the original PersonalLibraryProject. During the create step, add the file Book.java to
the new project.

(9) After the new project is created, add the other Java files in the directory to the project
by dragging each file from the Files section of the Browse tab and dropping the files
in PersonalLibraryProject2 in the open projects section.

(10) Remove a file from PersonalLibraryProject2. After verifying the file was
removed, add it back to the project.

(11) Generate the documentation for PersonalLibraryProject2. After the
Documentation Viewer pops up:

a. Click the Fiction class link in the API (left side).

b. Click the Methods link to view the methods for the Fiction class.

c. Visit the other classes in the documentation for the project.

(12) Close the project.

(13) Open the project by double-clicking on the project file in the files section of the
Browse tab

54

UML Class Diagrams

5 UML Class Diagrams
Java programs usually involve multiple classes, and there can be many dependencies
among these classes. To fully understand a multiple class program, it is necessary to
understand the interclass dependencies. Although this can be done mentally for small
programs, it is usually helpful to see these dependencies in a class diagram. jGRASP
automatically generates a class diagram based on the Unified Modeling Language
(UML). The jGRASP project file is used to determine which user classes to include in
the UML class diagram.

In order to generate a UML diagram, you must create a jGRASP project file (.gpj), as
described in the previous section, if you haven’t already done so. The project should
include all of your source files (.java), and you may optionally include other files (e.g.,
.class, .dat, .txt, etc.). You may create a new project file, then drag and drop files from
the Browse tab pane to the UML window.

To generate the UML, jGRASP uses information from both the source (.java) and byte
code (.class) files. Recall, .class files are generated when you compile your Java program
files. In particular, you must compile your .java files in order to see the dependencies
among the classes in the UML diagram. Note that the .class files do not have to be in the
project file, but they should be in the same directory as the .java files.

The remainder of this section assumes you have created a project file, and that you have
compiled your program files.

5.1 Opening the Project
If your project is not currently open, you need to open it by doing one of the following:

(1) On the Desktop tool bar, click Project – Open Project, and then select the project
from the list of project files displayed in the Open Project dialog.

(2) Alternatively, in the files section of the Browse tab, double-click the project file.

When opened, the project and its contents appear in the open projects section of the
Browse tab, and the project name is displayed at the top of the Desktop. If you additional
help with opening a project, review the previous section.

5.2 Generating the UML
In Figure 34 below, PersonalLibraryProject is shown in the open projects section of the
Browse tab along a UML icon and the files in the project. To generate the UML class
diagram, double-click the UML icon. Alternatively, on the Desktop menu, click on
UML, then Generate/Update Class Diagram for Active Project.

55

UML Class Diagrams

The UML Window should open with a diagram of all class files in the project as shown
in Figure 50. You can select one or more of the class symbols and drag them around in
the diagram. In the figure, the class containing main has been dragged to the upper left in
the diagram and the legend has been dragged to the lower center.

The UML Window is divided into three panes. The top pane contains a panning
rectangle that allows you to reposition the entire UML diagram by dragging the panning
rectangle around. To the right of the panning rectangle are the buttons for scaling the
UML: divide by 2 (/2), divide by 1.2 (/1.2), no scaling (1), multiply by 1.2 (*1.2), and
multiply by 2 (*2). In general, the class diagram is automatically updated as required;
however, the user can force an update by clicking the Update button.

If your project includes class inheritance hierarchies and/or other dependencies as in the
example, then you should see the appropriate red and black dependency lines. Next, you

Figure 51. Generating the UML
56

UML Class Diagrams

will need to learn how to indicate which objects and dependencies you want in your
UML diagram. However, if you are okay with the classes and dependencies shown in the
diagram, then go to the next section and begin laying out your diagram.

Figure 52. UML Window after initial Generate

57

UML Class Diagrams

5.3 Determining the Contents of the Class Diagram
jGRASP provides two approaches to controlling the contents/display of your UML
diagram. The first (Edit – UML Generation Settings) allows you to control the
contents of the diagram by excluding certain categories of classes (e.g., external
superclasses, external interfaces, and all other external references). After you
generated/updated the diagram based on these exclusions, the second approach (View --)
allows you to make visible (or hide) certain categories of classes and dependencies in the
UML diagram. Both approaches are described below.

Suppose you want to include the JDK classes (gray boxes) in your UML diagram (the
default is to exclude them). Then you will need to edit the UML generation settings in
order to not exclude these items from the diagram. Also, if you do not see the red and
black dependency lines expected, then you may need to change the View settings. These
are described below.

Excluding (or not) items from the diagram - On
the UML window menu, click on Edit –
Settings…, which will bring up the UML
Settings dialog. For example, to not exclude all
JDK classes, under Exclude by Type of Class,
uncheck (turn OFF) the checkbox that excludes
JDK Classes, as shown in Figure 39. Note,
synthetic classes are created by the Java compiler,
and are usually not included in the UML diagram.
After checking (or unchecking) the items you
want excluded (or not), click the OK button,
which should close the dialog and update the
diagram. All JDK classes used by the project
classes should now be visible in the diagram as
gray boxes. This is shown in Figure 53 after the
JDK classes have been dragged around. To
remove them from the diagram, you would need
to turn on the exclude option and update the
diagram again. If you want to leave them in the
diagram but not display them see the next
paragraph. For more information see UML
Settings in the Reference section.

Making objects visible in the diagram - On the UM
Visible Objects, then check or uncheck the items on
for the JDK classes and/or other classes outside
References must be checked ON. Clicking (checki
the Visible Objects list simply displays them or not,
when they are redisplayed. In general, you probab
checked on as shown in Figure 54. Note that if

58
Figure 53. Editing the UML
Settings
L window menu, click on View –
 the list as appropriate. For example,
the project to be visible, External
ng) ON or OFF any of the items on
 and their previous layout is retained
ly want all of the items on the list

items have been excluded from the

UML Class Diagrams

diagram, as described above, then making them visible will have no effect since they are
not part of the diagram. For more information see View Menu in the Reference section.

Figure 54. Making objects visible

59

UML Class Diagrams

Making dependencies visible - On the UML window menu, click on View – Visible
Dependencies, then check or uncheck the items on the list as appropriate. The only two
categories of dependencies in the example project are Inheritance and Other.
Inheritance dependencies are indicated by black lines with closed arrowheads that point
from child to the parent to from an is-a relationship. Red dashed lines with open
arrowheads indicate other dependencies. These include the has-a relationship that
indicates a class includes one or more instances of another class. If a class references an
instance variable or method of another class, the red dashed arrow is drawn from the class
where the reference is made to the class where the referenced item is defined. In general,
you probably want to make all dependencies visible. as indicated in Figure 55.

Displaying the Legend - On the UML window menu, click on View – Legend, then set
the desired options. Typically, you will want the following options checked on: Show
Legend, Visible Items Only, and Small Font. Notice, the legend has been visible in the

Figure 55. Making dependencies visible

60

UML Class Diagrams

all of UML figures. Before the JDK classes were excluded (Figure 54), they were
included in the legend, but not after the Update. When you initially generate your UML
diagram, you may have to pan around it to locate the legend. Scaling the UML down
(e.g., dividing by 2) may help. Once you locate it, just select it and drag to the location
where you want it as described in the next section.

5.4 Laying Out the UML Diagram
Currently, jGRASP has limited automatic layout capabilities. However, manually
arranging the class symbols in the diagram is straightforward, and once this is done,
jGRASP remembers your layout from one generate/update to the next.

To begin, locate the class symbol that contains main. In our example, this would be the
PersonalLibrary class. Remember the project name should reflect the name of this class.
Generally, you want this class near the top of the diagram. Left click on the class symbol
and then while holding down the left mouse button, drag the symbol to the area of the
diagram you want it, and then release the mouse button. Now repeat this for the other
class symbols until you have the diagram looking like you want it. Keep in mind that
class–subclass relationships are indicated by the inheritance arrow and that these should
be laid out in a tree-down fashion. You can do this automatically by selecting all classes
for a particular class–subclass hierarchy (hold down SHIFT and left-click each class).
Then, on UML window menu, click on Layout – Tree Down to perform the operation,
or right-click on a selected class then on the pop up menu select Layout – Tree Down.

With a one or more classes selected, you can move them as a group. Figure 55 shows the
UML diagram after the PersonalLibrary class has been repositioned to the top left and the
JDK classes have been dragged as a group to the lower part of the diagram. You can
experiment with making these external classes visible by going to View – Visible
Objects – then uncheck External References.

Here are several heuristics for laying out your UML diagrams:

(1) The class symbol that contains main should go near the top of the diagram.

(2) Classes in an inheritance hierarchy of should be laid out tree-down, and then
moved as group.

(3) Other dependencies should be laid out with the red dashed line pointing
downward.

(4) JDK classes, when included, should be toward the bottom of the diagram.

(5) Line crossings should be minimized.

(6) The legend is usually below the diagram.

61

UML Class Diagrams

5.5 Displaying the Members of a Class
If you are working with an example laying out your UML diagram as described in the
section above, when you select a class, you may have noticed that the class members
(fields, constructors, and methods) were displayed in Info tab of the left pane of the UML
Window. In Figure 56, class Fiction has been selected and its fields, constructors, and
methods are displayed in the left pane. This information is only available when the source
code for a class in the project. In the example below, the System class from package
java.lang is an external class so selecting it would result in a “no data” message.

Figure 56. Displaying class members
62

UML Class Diagrams

5.6 Displaying Dependencies Between Two Classes
An arrow or edge between two classes in the UML diagram indicates that there are one or
more dependencies in the direction of the arrow. In Figure 57, the edge drawn from
PersonalLibrary to Fiction has been selected, indicated by the large arrorhead. The list of
dependencies in the Info tab of the left pane includes one constructor (Fiction) and one
method (getMainCharacter). These are the resources that PersonalLibrary uses from
Fiction. Reviewing all of the dependencies among the classes in your object-oriented
program will usually prove insightful and provide you with a more in-depth
understanding of the source code.

Figure 57. Displaying the dependencies between two classes

63

UML Class Diagrams

5.7 Finding a Class in the UML Diagram
Since a UML diagram can contain many classes, it may be difficult to locate a particular
class. In fact, the class may be off the screen. The Goto tab in the left pane provides the
list of classes in the project. Clicking on a class in the list brings it to the center of the
UML diagram.

5.8 Opening Source Code from UML
The UML diagram provides a convenient way to open source code files. Simply double-
click on a class symbol, and the source code for the class is opened in a CSD Window.
For example, when the PersonalLibrary class is double-clicked, the corresponding CSD
Window is opened on the Desktop as shown in Figure 58.

Figure 58. Opening CSD Window from UML

64

UML Class Diagrams

5.9 Saving the UML Layout
When you close a project, change to another project, or simply exit jGRASP, your UML
layout is automatically saved in the project file (.gpj). The next time you start jGRASP,
open the project, and open the UML window, you should find your layout intact.

If the project file is created in the same directory as the .java and .class files, and if you
added the source files with relative paths, then you should be able to ship the files around
(e.g., email them to your instructor).

5.10 Printing the UML Diagram
On UML window menu, click on Print – Print Preview to see show your diagram will
look on the printed page. If okay, click the Print button in the lower left corner of the
Print Preview window. Otherwise, if the diagram is too small or too large, you may want
to go back and scale it using the scale factors near the top right of the UML window, and
then preview it again.

For details see UML Class Dependency Diagrams in the jGRASP Handbook, Part 2 –
Reference, or in jGRASP Help.

65

Object Workbench

6 The Object Workbench
Beginning with Version 1.6, jGRASP provides an Object Workbench that works in
conjunction with the UML class diagram, as well as the integrated debugger. The Object
Workbench is a useful approach for learning the fundamental concepts of classes and
objects. The user can create instances of any class in the UML diagram as well as
instances of any Java class. When an object is created, it appears on the workbench
where the user can select it and invoke any of its methods. The user can also invoke class
or static methods directly from the class without creating an instance of the class. One of
the most compelling reasons for using the workbench approach is that it allows the user
to create an object and invoke each of its methods in isolation. That is, without the need
for a driver program intended to test each method.

6.1 Invoking Static Methods
We begin with a typical first program, Hello.java, which has a main method. We have
created a project file, HelloProject, added Hello.java to the project, then generated the
UML class diagram. Also, we have elected to display the Java classes used by the Hello
class (Edit -- Settings -- uncheck “Exclude JDK classes”) as shown in Figure 59.

Figure 59. Creating an Object for the Workbench
66

Object Workbench

Since main is a static method, it is associated
with the class rather than an instance of the
class. Therefore, we right-click on the Hello
class symbol, then select Invoke Method
(Figure 60). This pops up the Invoke Method
dialog which lists the static method main. After
selecting main, the dialog expands to show the
available parameters (Figure 61). We can leave
the java.lang.String[] args blank since our main
method is not expecting any command line
arguments to be passed into it.

Now you are ready to invoke the main method
by clicking Invoke in the lower left corner of
the dialog. Figure 62 shows the results of the
invocation. First, notice that a dialog pops up
entitled, “Result of Hello.main…” with the

Figure 61. Invoking main

Figure 60. Invoking a static method from a class

67

Object Workbench

message “Method invocation successful (void return type).” You will see a Result dialog
each time you invoke a method from the workbench. In most cases it will contain an
actual value of either a primitive type or reference type since most methods do not have a
return type of “void” as does our main method.

Figure 62. Invoking a static method from a class

In addition to a return value, a method invocation may produce standard output or even
pop up a GUI frame of its own. In our example, main produces standard output with the
statement, System.out.println(“Hello, world”), so these results can be seen in the Run I/O
pane in the lower part of the jGRASP desktop.

As stated at the beginning of this section, static methods are associated with a particular
class rather than a specific object of the class. Hence, static methods are invoked by
selecting a class in the UML diagram. If you attempt to invoke a method for a class that
has no static methods, the Invoke Method dialog will indicate this. When a class has no
static methods, but rather has instance methods, you will need to create an instance of the
class. In the next several sections, you will learn how to create instances or objects of a
class from the UML diagram and then how invoke a particular object’s methods from the
Workbench tab pane by selecting the newly created object.

68

Object Workbench

6.2 Creating an Object for the Workbench
Now we move to a more interesting example which contains multiple classes. Figure 52
shows the PersonalLibraryProject loaded in the UML window. We could invoke main by
following the procedure described in the preceding section (i.e.., right-clicking on
PersonalLibary and selecting Invoke Method, then selecting and Invoking main).
However, the focus of this section is to create an object for the workbench. So we begin
by right clicking on the Fiction class in the UML diagram, and then selecting Create
New Instance, as shown in Figure 63. A list of constructors will be displayed in a dialog
box.

If a parameterless constructor is selected as shown in Figure 64, then clicking Create will
immediately place the object on the workbench. However, if the constructor requires
parameters, the dialog will expand to display the individual parameters as shown in
Figure 65. The arguments (values of the parameters) should be filled in prior to clicking
create.

Figure 63. Creating an Object for the Workbench

69

Object Workbench

In either case above, the user can set the name of the
the default assigned by jGRASP. Also, the “stick-pi
dialog can be used to make the Create dialog remain
multiple instances of the same class.

Figure 64. Selecting a constructor

In Figure 66, the Workbench tab is shown after two ins
have been created. The first object, fiction_1, has
(mainCharacter, author, title, and pages) can be view
instances of the String class, they to can also be exp
mainCharacter is color coded green since it is the onl
The other fields are color coded orange to indicate t
which in this case was Book.

70

Figure 65. Constructor with
parameters
object being constructed or accept
n” located in the upper left of the
 open. This is handy for creating

tances of Fiction and one of Novel
been expanded so that the fields

ed. Since the first three fields are
anded. You should also note that
y field declared locally in Fiction.
hey were inherited from a parent,

Object Workbench

Figure 66. Workbench with two instances of Fiction

Figure 67. Selecting a method

6.3 Invoking a Method
To invoke a method for an object on the
workbench, select the object, right click,
and then select Invoke Method. In
Figure 66, fiction_2 has been selected,
followed by a right mouse click, and then
Invoke Method has been selected. A list
of local methods will be displayed in a
dialog box as shown in Figure 67. You
may also display inherited methods by
selecting the appropriate parent. After
one of the methods is selected and the
parameters filled in as necessary, then
click Invoke. This will execute the
method and display the return value (or
void) as well as output, if any, in the

71

Object Workbench

usual way. If the method was to update a field (e.g., setMainCharacter()), the effect of
the invocation would be seen in appropriate object field in the Workbench tab. The
“stick-pin” located in the upper left of the dialog can be used to make the Invoke Method
dialog remain open. This is useful for invoking multiple methods for the same object.

As indicated above, perhaps one of the most compelling reasons for using the workbench
approach is that it allows the user to create an object and invoke each of its methods in
isolation. Thus, with an instance of Fiction on the workbench, we can invoke each of its
three methods: getMainCharacter(), setMainCharacter(), and toStirng(). By carefully
reviewing the results of the method invocations, we are essentially testing our program.

6.4 Invoking Methods with Parameters
In the example above, we created two instances of Fiction. Instances of any class in the
UML diagram can be created and placed on the workbench. If the constructor requires
parameters of that are primitive types and/or strings, these can be entered directly, with
any strings enclosed in double quotes. If a parameter requires an object, then you must
create an object instance for the workbench first. Then you can simple drag the object
(actually a copy) from the workbench to the parameter field in the Invoke Method dialog.

6.5 Invoking Methods on Object Fields
If you have an object in the Workbench tab pane, you can expand it to reveal its fields.
Recall, in Figure 66, fiction_1 has been expanded to show its fields (mainCharacter,
author, title, and pages). Since the field mainCharacter is itself object of the class String,
you can invoke any of the String methods. For example, right-click on mainCharacter,
select Invoke Method. When the dialog pops up (Figure 68), scroll down and select the
first toUpperCase() method and click Invoke. This should pop up the Result dialog with
“NONE” as the return value (Figure 69). This method call has no effect on the value of
the field for which it was called; it simply returns the string value converted to uppercase.

72

Figure 69. Result of
fiction_1.mainCharacter.
toUpperCase()

Figure 68. Invoking a String method

Object Workbench

Figure 70. Invoking a method
for novel_1

6.6 Invoking Inherited Methods
The methods we have invoked thus far were
declared in the class from which we created the
object. An object also inherits methods from its
parents. We now consider an instance of the
Novel class, which inherited several methods
from the Book class in our example. If we right-
click on the novel_1 in the Workbench tab pane
(shown below fiction_2 in Figure 66) and select
Invoke Method, the dialog in Figure 70 pops up.
However, only the toString() method is listed
because it is the only one declared in Novel. To
view inherited methods, find the pull-down menu
located above the list. Notice it is currently set to
“Declared in Novel”. Right-clicking on the menu
reveals all of the superclasses of Novel (Figure
71). Selecting “Declared in superclass Fiction”
lists all methods inherited from Fiction (Figure
72). Notice the orange color coding indicating
“inherited” similar to the fields on the workbench.
However, in this case, toString() is gray to
indicate it has been overridden by the toString()
method declared in Novel.

Figure 71. Viewing superclasses for
novel_1

Figure 72. Viewing superclasses
for novel 1

73

Object Workbench

6.7 Running the Debugger on Invoked Methods
When objects are on the workbench, the workbench is running Java in debug mode.
Thus, if you set a breakpoint in a method and then invoke the method from the
workbench, the CSD window will pop to the top when the breakpoint is reached. At this
time, you can single step through the program, examine fields, resume, etc. in the usual
way. See the Tutorial on “Debugging” for more details.

6.8 Exiting the Workbench
The workbench is running whenever you have objects on it. If you attempt to do an
operation that conflicts with workbench (e.g., recompile a class, switch projects, etc.,
jGRASP will prompt you with a message indicating that the workbench process is active
and ask you if it is is it OK to end the process (Figure 73). When you try to exit
jGRASP, you will get a similar message (Figure 74). These prompts are to let you know
that the operation you are about to perform will clear the workbench. You can also clear
or exit the workbench by right-clicking in the Workbench tab pane and selecting
Clear/Exit Workbench.

Figure 73. Making sure it is okay to exit

Figure 74. Making sure it is okay to exit

74

Debugger

7 The Integrated Debugger
Your skill set for writing programs would not be complete without knowing how to use a
debugger. While the connotation of a debugger is that its purpose is to assist in finding
bugs, it can also be used as a general aid for understanding your program as you develop
it. jGRASP provides a highly visual debugger for Java, which is tightly integrated with
the Desktop and which includes all of the traditional features expected in a debugger.

If the example program used in this section is not available to you, or if you do not
understand it, simply substitute your own program in the discussion.

7.1 Preparing to Run the Debugger
In preparation to use the debugger, click Compiler on the menu of the CSD Window to
be sure Debug Mode is checked. If the box in front of Debug Mode is not checked, click
on the box. When you click on Compiler again, you should see that Debug Mode is
checked. When you compile your program in Debug Mode, information about the
program is included in the .class file that would normally be omitted. This allows the
debugger to display useful details as you execute the program. If your program has not
been compiled with Debug Mode checked, you should recompile it before proceeding.

7.2 Setting a Breakpoint
In order to examine the state of your program at a particular statement, you need to set a
breakpoint. The statement you select
must be “executable” rather than a
simple declaration. To set a
breakpoint in a program, move the
mouse to the line of code and left-click
the mouse to move the cursor there.
Then right-click to display a set of
options that includes Toggle
Breakpoint. For example, in Figure
48 the cursor is on the first executable
line in main (which declares Book
hemingway …), and after Toggle
Breakpoint is selected in the options
popup menu, a small red stop sign
symbol appears in the left margin of
the line to indicate that a breakpoint
has been set. To remove a breakpoint,
you repeat the process since this is a
toggle action. You may set as many
breakpoints as needed.

In order to examine the state of your prog
breakpoint. The statement you select
declaration. To set a breakpoint in a pro
left-click the mouse to move the cursor th

Figure 75. Setting a breakpoint
ram at a particular statement, you need to set a
 must be “executable” rather than a simple
gram, move the mouse to the line of code and
ere. Then right-click to display a set of options

75

Debugger

that includes Toggle Breakpoint. For example, in Figure 75 the cursor is on the first
executable line in main (which declares Book hemingway …), and after Toggle
Breakpoint is selected in the options popup menu, a small red stop sign symbol appears in
the left margin of the line to indicate that a breakpoint has been set. To remove a
breakpoint, you repeat the process since this is a toggle action. You may set as many
breakpoints as needed. You can also set a breakpoint by hovering the mouse over the
leftmost column of the line where you want to set the breakpoint. When you see the red
octagonal breakpoint symbol, you just left-click the mouse to set the breakpoint.

7.3 Running a Program in Debug Mode
After compiler your program in Debug Mode and setting one or more breakpoints, you
are ready to run your program with the debugger. You can start the debugger in one of
two ways:

(1) click Run – Debug on the CSD Window menu, or

(2) click the debug symbol on the toolbar.

After you start the debug session, several things happen. In the Run window near the
bottom of the Desktop, you should see a message indicating the debugger has been
launched. In the CSD Window, the line with the breakpoint set is eventually highlighted,
indicating that the program is stopped at the breakpoint, and finally, on the left side of the
jGRASP desktop the debugger pane is popped to the top. Each of these can be seen in
Figure 50. Notice the debugger pane is further divided into three subpanes labeled
Threads, Call Stack, and Variables/Settings. Each of the debugger subpanes can be
resized by selecting and dragging one of the horizontal or vertical borders. This has been
done in some the figures that follow. The Threads subpane lists all of the active threads
running in the program. In the example, the red thread icon indicates the program is
stopped in main, and green indicates a thread is running. Beginners and intermediate
users can ignore the thread pane. However, advanced users should find it quite useful for
starting and stopping individual threads in their programs. The Call Stack subpane is
useful to all levels of users since is shows the current call stack and allows the user to
switch from one level to another in the call stack. When this occurs, the CSD Window
that contains the source code associated with a particular call is popped to the top of the
desktop. The Variables/Settings subpane shows the details of the current state of the
program. Finally, when a line of source code is highlighted, it means that the line is
about to be executed.

76

Debugger

7.4 Stepping Through a Program
 After the program stops at the breakpoint (Figure 76), the you can use the icons at the
top of the debug pane to single step, step into a method call, step out of a method, run to
the cursor, pause the current thread, resume, and suspend new thread, while watching the
call stack and contents of variables change dynamically. The integrated debugger is
especially useful for watching the creation of objects as the user steps through various
levels of constructors. The jGRASP debugger can be used very effectively to explain
programs, since a major part of understanding a program is keeping track (mentally or
otherwise) of the state of the program as one reads from line to line. .

We will make two passes through the example program as we explain it. During the first
Figure 76. Desktop after debugger is started
77

Debugger

pass, we will “step” through the program without “stepping into” any of the method calls,

and we will concentrate on the Variable section. Initially, Variables/Settings pane
indicates no local variables have been declared. Figure 77 shows the results of
“stepping” to the next statement. Notice that under Locals in the Variable/Settiings
pane, we now have an instance of Book called hemingway. Objects, represented by a
colored square, can be opened and closed by clicking the “handle” in front of the square
object. Primitives, like the integer pages, are represented by colored triangles. In Figure
77, hemingway has been opened to show the author, title, and pages fields. Each of the
String instances (e.g., author) can be opened to view the individual characters. Notice
that all the fields in hemingway are green, which indicates they were declared in the class
Book.

Figure 77. Desktop after hemingway (Book) object is created

78

Debugger

When an array is opened in the debugger, only the first ten elements (indexed 0 to 9) are
displayed. To see other elements, left-click the array to select it, then click one more
time. Note, this is not a double-click, but rather two single clicks. The first time you do
this there may be a short delay, but a slider bar will popup that allows you to display a
range of any ten items.

After executing the next statement, Figure 78 shows an instance of the Fiction class
called clancy that has been created. In the figure, clancy has been opened to reveal its
fields. The field “mainCharacter” is green, indicating it is defined in Fiction. The other
fields (author, title, and pages) are amber, which indicates these fields were inherited
from Book.

Figure 78. After next step and "clancy" created

79

Debugger

As you continue to step though your program, you should see output of the program
displayed in the Run I/O window in the lower half of the Desktop. Eventually, you
should reach the end of the program and see it terminate. When this occurs, the debug
pane and its subpanes should become blank, indicating that the program is no longer
running.

Now we are ready to make a second pass and “step in” to the methods called. Tracing
through a program by following the calls to methods can be quite instructive in the
obvious way. In the object-oriented paradigm, it is quite useful for illustrating the
concept of constructors. As before, we need to run the example program in the debugger
by clicking Run – Debug on the CSD Window menu or by clicking the debug symbol on
the toolbar. After arriving at the breakpoint, we “step in” and the constructor for class
Book pops up in the CSD Window (Figure 79). You can then step through this method in

Figure 79. After next stepping into the Book constructor

80

Debugger

the usual way, eventually returning to the statement in the main program that called the
constructor.

There are many other scenarios where this approach of tracing through the process of
object construction is useful and instructive. For example, consider the case where the
Fiction constructor for “clancy” is called and it in turn calls the super constructor located
in Book. By stepping into each call, you can see not only how the program proceeds
through the constructor’s code, but also how fields are initialized.

Another even more common example is when the toString method of an object is invoked
indirectly in a print statement (System.out.println). The debugger actually takes the user
to the object’s respective toString method.

7.5 Debugging a Program
You have, no doubt, noticed that the previous discussion was only indirectly related to
the activity of actually finding and removing bugs from your program. It was intended to
show you how to set and unset breakpoints and how to step through your program.
Typically, to find a bug in your program, you need to have an idea where in the program
things are going wrong. The strategy is to set a breakpoint on a line of code prior to the
line where you think the problem occurs. When the program gets to the breakpoint, you
must ensure that the variables have the correct values. Assuming the values are okay,
you can begin stepping through the program, watching for the error to occur. Of course, if
the value of one or more of the variables was wrong at the breakpoint, you will need to
set the breakpoint earlier in the program.

For additional details, see Integrated Java Debugger in the jGRASP Handbook, Part 2 –
Reference, or in jGRASP Help.

81

Control Structure Diagram

8 The Control Structure Diagram (CSD)
The Control Structure Diagram (CSD) is an algorithmic level diagram intended to
improve the comprehensibility of source code by clearly depicting control constructs,
control paths, and the overall structure of each program unit. The CSD is an alternative to
flow charts and other graphical representations of algorithms. The major goal behind its
creation was that it be an intuitive and compact graphical notation that was easy to use
manually and relatively straightforward to automate. The CSD is a natural extension to
architectural diagrams, such as data flow diagrams, structure charts, module diagrams,
and class diagrams.

8.1 An Example to Illustrate the CSD
Figure 80 shows the source code for a Java method called binarySearch. The method
implements a binary search algorithm by using a while loop with an if..else..if statement
nested within the loop. Even though this is a simple method, displayed with colored
keywords and traditional indentation, its readability can be improved by adding the CSD.
In addition to the while and if statements, we see the method includes the declaration of
primitive data (int) and two points of exit. The CSD provides visual cues for each of
these constructs.

Figure 80. binarySearch method without CSD

82

Control Structure Diagram

Figure 81 shows the binarySearch method after the CSD has been generated. Although
all necessary control information is in the source text, the CSD provides additional visual
stimuli by highlighting the sequence, selection, and iteration in the code. The CSD
notation begins with symbol for the method itself Þßà followed by the individual
statements coming off the stem as it extends downward. The declaration of primitive
data is highlighted with special symbol í appended to the statement stem. The CSD
constructs for the while statement is represented by the double line “loop” (with break at
the top), and the if statement uses the familiar diamond icon from traditional flowcharts.
Finally, the two ways to exit from this method are shown explicitly with an arrow drawn
from inside the method through the method stem to the outside.
Figure 81. binarySearch with CSD
While this is a small piece of code, it does illustrate the basic CSD constructs. However,
the true utility of the CSD can be realized best when reading or writing larger, more
complex programs, especially when control constructs become deeply nested. A number
of studies involving the CSD have been done and others are in progress. In one of these,
CSD was shown to be preferred significantly over four other notations: flowchart, Nasi-
Schneiderman chart, Warnier-Orr diagram, and the action diagram [Cross 1998]. In a
several later studies, empirical experiments were done in which source code with the
CSD was compared to source code without the CSD. In each of these studies, the CSD
was shown provide significant advantages in numerous code reading activities [Hendrix
2002]. In the following sections, the CSD notation is described in more detail.

83

Control Structure Diagram

8.2 CSD Program Components/Units
The CSD includes graphical constructs for the following components or program units:
class, abstract class, method, and abstract method. The construct for each component
includes a unit symbol, a box notation, and a combination of the symbol and box
notation. The symbol notation provides a visual cue as to the specific type of program
component. It has the most compact vertical spacing in that it retains the line spacing of
source code without the CSD. The box notation provides a useful amount of vertical
separation similar to skipping lines between components. The symbol and box notation
is simply a combination of the first two. Most of the examples in this handbook use the
symbol notation because of its compactness. CSD notation for program components is
illustrated in the table below.

Component Symbol Notation Box Notation Symbol and Box
Notation

class

or

Ada package

ÏÕÖ×
ÏÏ§{
ÏÏ©}

Ï¡¥¥¥¥¥¥¥¥¥
Ï¢
Ï£¤¦¦¦¦¦¦¦¦
ÏÏ§{
ÏÏ©}

Ï¡¥¥¥¥¥¥¥¥¥
ÕÖ×
Ï£¤¦¦¦¦¦¦¦¦
ÏÏ§{
ÏÏ©}

abstract class

ÏØÓì
ÏÏ§{
ÏÏ©}

Ï¡¥¥¥¥¥¥¥¥¥
Ï¢Ï
Ï£¤¦¦¦¦¦¦¦¦
ÏÏ§{
ÏÏ©}

Ï¡¥¥¥¥¥¥¥¥¥
ØÓì
Ï£¤¦¦¦¦¦¦¦¦
ÏÏ§{
ÏÏ©}

method

or

function

or

procedure

ÏÞßà
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

Ï¬¹¹¹¹¹¹¹¹¹
Ï§
ÏªË¹¹¹¹¹¹¹¹
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

Ï¬¹¹¹¹¹¹¹¹¹
Þßà
ÏªË¹¹¹¹¹¹¹¹
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

abstract
method

Ï ÛÜÝ

Ï¬¹¹¹¹¹¹¹¹¹
Ï§
Ïª¹¹¹¹¹¹¹¹¹

Ï¬¹¹¹¹¹¹¹¹¹
ÛÜÝ
Ïª¹¹¹¹¹¹¹¹¹

84

Control Structure Diagram

8.3 CSD Control Constructs
The basic CSD control constructs for Java are grouped in the following categories:
sequence, selection, iteration, and exception handling, as described in the table below.
Note, the semi-colons in the examples are placeholders for statements the language.

Sequence

ÏÏ¨¹¹Ï;
ÏÏ¨¹¹Ï;
ÏÏ¨¹¹Ï;

Sequential flow is represented in the
CSD by a vertical stem with a small
horizontal stem for each individual
statement on a particular level of
control.

Selection
if

if..else

if..else..if

¹³´if (cond)
Ï¶¾¹¹Ï;

¹³´if (cond)
Ï6¾¹¹Ï;
Ïö´else
ÏÈ¾¹¹Ï;

¹³´if (cond)
Ï6¾¹¹Ï;
Ï÷´else if (cond)
Ï6¾¹¹Ï;
Ïö´else
ÏÈ¾¹¹Ï;

For selection statements, the
True/False condition itself is marked
with a small diamond, just as in a flow
chart. The statements to be executed if
the condition is true are marked by a
solid line leading from the right of the
decision diamond.

The control path for a false condition
is marked with a dotted line leading
from the bottom of the diamond to
another decision diamond, an else
clause, a default clause, or the end of
the decision statement.

By placing the second if on the same
line with the first else, the unnecessary
indentation of nested if statements is
avoided. However, if the deep nesting
effect is desired, the second if can be
placed on the line after the else.

85

Control Structure Diagram

Selection
(cont’d)

switch

switch

(when break is
omitted)

¹¹´switch(item)
ÏÏ§{
ÏÏ÷¹¹´case a:
ÏÏ6ÏÏ¨¹¹Ï;
Â¹½ÏÏ¾¹¹Ïbreak;
ÏÏ÷¹¹´case b:
ÏÏ6ÏÏ¨¹¹Ï;
Â¹½ÏÏ¾¹¹Ïbreak;
ÏÏ÷¹¹´default:
ÏÏ6ÏÏ¾¹¹Ï;
ÏÏ¶}

¹¹´switch (expr)
ÏÏ§{
ÏÏ÷¹¹´case 1:
ÏÏ6ÏÏ¨¹¹Ï;
Â¹½ÏÏ¾¹¹Ïbreak;
ÏÏ÷¹¹´case 2:
ÏÏ6ÏÏ¨¹¹Ï;
ÏÏ6ÏÏ¨¹¹Ï;
ÏÏ÷¹¹Ãcase 3:
ÏÏ6ÏÏ¨¹¹Ï;
ÏÏ6ÏÏ¨¹¹Ï;
ÏÏ÷¹¹Ãcase 4:
ÏÏ6ÏÏ¨¹¹Ï;
ÏÏ6ÏÏ¾¹¹Ï;
ÏÏ¶}

The semantics of the switch statement
are different from those of if
statements. The expr (of integral type:
int, char) is evaluated, and then
control is transferred to the case label
matching the result or to the default
label if there is no match. If a break
statement is placed at the end of the
sequence within a case, control passes
“out” (as indicated by the arrow) and
to the end of the switch statement after
the sequence is executed. Notice the
similarity of the CSD notation for the
switch and if statements when the
break is used in this conventional
way. The reason for this is that,
although different semantically, we
humans tend to process them the same
way (e.g., if expr is not equal to case
1, then take the false path to case 2
and see if they are equal, and so on).
However, the break statement can be
omitted as illustrated next.

When the break statement is omitted
from end of the sequence within a
case, control falls through to the next
case. In the example at left, case 1 has
a break statement at the end of its
sequence, which will pass control to
the end of the switch (as indicated by
the arrow).

However, case 2, case 3, and case 4 do
not use the break statement. The CSD
notation clearly indicates that once the
flow of control reaches case 2, it will
also execute the sequences in case 3
and case 4. The diamonds in front of
case 3 and case 4 have arrows pointing
to each case to remind the user that
these are entry points for the switch.
When the break statement precedes
the next case (as in case 1), the arrows
are unnecessary.

86

Control Structure Diagram

Iteration

while loop
(pre-test)

for loop
(discrete)

do loop
(post-test)

break in loop

¹¹±while(cond)
ÏÏ5{
ÏÏ7¹¹Ï;
ÏÏ°}

¹¹±for(i=0;i<j;i++)
ÏÏ5{
ÏÏ7¹¹Ï;
ÏÏ°}

¹¹®do
ÏÏ5{
ÏÏ7¹¹Ï;
ÏÏ5}
ÏÏòwhile(cond);

¹¹±while (cond)
ÏÏ5{
ÏÏ7¹¹Ï;
ÏÏ7¹³´if (cond)
Â¹ÇÏ¶¾¹¹Ïbreak;
ÏÏ7¹¹Ï;
ÏÏ°}

The CSD notation for the while
statement is a loop construct
represented by the double line, which
is continuous except for the small gap
on the line with the while. The gap
indicates the control flow can exit the
loop at that point or continue,
depending on the value of Boolean
condition. The sequence within the
while will be executed zero or more
times.

The for statement is represented in a
similar way. The for statement is
designed to iterate a discrete number
of times based on an index, test
expression, and index increment. In
the example at left, the for index is
initialized to 0, the condition is I < j,
and the index increment is i++. The
sequence within the if will be
executed zero or more times.

The do statement is similar to the
while except that the loop condition is
at the end of the loop instead of the
beginning. As such, the body of the
loop is guaranteed to execute at least
once.

The break statement can be used to
transfer control flow out of any loop
(while, for, do) body, as indicated by
the arrow, and down to the statement
past the end of the loop. Typically,
this would be done in conjunction
with an if statement. If the break is
used alone (e.g., without the if
statement), the statements in the loop
body beyond the break will never by
executed.

87

Control Structure Diagram

Iteration
(cont’d)

continue

¹¹®do
ÏÏ5{
ÏÏ7¹¹Ï;
ÏÏ7¹³´if (cond)
ÏÏÔ¹¶¾¹¹Ïcontinue;
ÏÏ7¹¹Ï;
ÏÏ5}
ÏÏòwhile (cond);

The continue statement is similar to
the break statement, but the loop
condition is evaluated and if true, the
body of the loop body is executed
again. Hence, as indicated by the
arrow, control is not transferred out of
the loop, but rather to top or bottom of
the loop (while, for, do).

Exception
Handling

With a return

¹¹´try
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ§}
ÏÏ§Ïðîìcatch(E)
ÏÏ§ÏÏ§{
ÏÏ§ÏÏ¨¹¹Ï;
ÏÏ§ÏÏ©}
ÏÏ§finally
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

¹¹´try
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ¨¹¹Ï;
ÏÏA¹¹Ïreturn;
ÏÏ=}
ÏÏ=Ïðîìcatch(E)
ÏÏ=ÏÏ§{
ÏÏ=ÏÏ¨¹¹Ï;
ÏÏ=ÏÏ©}
ÏÏ?finally
ÏÏ§{
ÏÏ¨¹¹Ï;
ÏÏ©}

In Java, the control construct for
exception handling is the try..catch
statement with optional finally clause.
In the example at left, if stmt1
generates an exception E, then control
is transferred to the corresponding
catch clause. After the catch body is
executed, the finally clause (if
present) is executed. If no exception
occurs in the try block, when it
completes, the finally clause (if
present) is executed.

The try..catch statement can have
multiple catch clauses, one for each
exception to be handled.

By definition, the finally clause is
always executed not matter how the
try block is exited. In the example at
left, a return statement causes flow of
control to leave the try block. The
CSD indicates that flow of control
passes to the finally clause, which is
executed prior to leaving the try block.
The CSD uses this same convention
for break and continue when these
cause a try block to exited.

When try blocks are nested and break,
continue, and return statements occur
at the different levels of the nesting,
the actual control flow can become
quite counterintuitive. The CSD can
be used to clarify the control flow.

88

Control Structure Diagram

8.4 CSD Templates
In Figure 82, the basic CSD control constructs, described above, are shown in the CSD
Window. These are generated automatically based on the text in the window. In addition
to being typed or read from a file, the text can be inserted from a list of templates by
selecting Templates on the CSD Window tool bar.

Figure 82. CSD Control Constructs generated in CSD Window

89

Control Structure Diagram

8.5 Hints on Working with the CSD
The CSD is generated based on the source code text in the CSD Window. When you
click View --Generate CSD (or press F2), jGRASP parses the source code based on a
grammar or syntax that is slightly more forgiving that the Java compiler. If your program
will compile okay, the CSD should generate okay as well. However, the CSD may
generate okay even if your program will not compile. Your program may be
syntactically correct, but not necessarily semantically correct. CSD generation is based
on the syntax of your program.

Enter code in syntactically correct chunks - To reap the most benefit from using the
CSD when entering a program, you should take care to enter code in syntactically correct
chunks, and then regenerate the CSD often. If an error is reported, it should be fixed
before you move on. If the error message from the generate step is not sufficient to
understand the problem, compile your program and you will get a more complete error
message.

“Growing a program” is described it the table below. Although the program being
“grown” does nothing useful, it is both syntactically and semantically correct. More
importantly, it illustrates the incremental steps that should be used to write your
programs.

Step Code to Enter After CSD is generated

1. We begin by
entering the code for
a Java class. Note,
the file should be
saved with the name
of the class, which in
this case is MyClass.

public class MyClass

{

}

ÏÕÖ×public class MyClass
ÏÏ§{
ÏÏ©}

2. Now, inside the
class, we enter the
text for a method
called myMethod,
and then re-generate
the CSD by pressing
F2.

public class MyClass

{

 myMethod()

 {

 }

}

ÏÕÖ×public class Hello
ÏÏ§{
ÏÏ§ÏÞßàmyMethod()
ÏÏ§ÏÏ§{
ÏÏ§ÏÏ©}
ÏÏ©}

90

Control Structure Diagram

3. Next, inside
myMethod, we enter
a while loop with an
empty statement, and
then re-generate the
CSD by pressing F2.

public class MyClass
{
 myMethod()
 {
 while (true)
 {
 ;
 }
 }
}

ÏÕÖ×public class MyClass
ÏÏ§{
ÏÏ§ÏÞßàmyMethod()
ÏÏ§ÏÏ§{
ÏÏ§ÏÏ¨¹¹±while (true)
ÏÏ§ÏÏ§ÏÏ5{
ÏÏ§ÏÏ§ÏÏ7¹¹Ï;
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§ÏÏ©}
ÏÏ©}

8.6 Reading Source Code with the CSD
The CSD notation for each of the control constructs has been carefully designed to aid in
reading and scanning source code. While the notation is meant to be intuitive, there are
several reading strategies worth pointing out, especially useful with deeply nested code.

Reading Sequence
The visualization of sequential control
flow is as follows. After statement s(1) is
executed, the next statement is found by
scanning down and to the left along the
solid CSD stem. While this seems trivial,
its importance becomes clearer with the if
statement and deeper nesting.

Ï¨¹¹Ïs(1);
Ï¨¹¹Ïs(2);
Ï¨¹¹Ïs(3);

Reading Selection
Now combining the sequence with
selection (if.. else), after s(1), we enter the
if statement marked by the diamond. If
the condition is true, we follow the solid
line to s(2). After s(2), we read down and
to the left (passing through the dotted line)
until we reach the next statement on the
vertical stem which is s(4). If the
condition is false, we read down the
dotted line (the false path) to the else and
then on to s(3). After s(3), again we read
down and to the left until we reach the
next statement on the stem which is s(4).

Ï§
Ï¨¹¹Ïs(1);
Ï¨¹³´if (cond)
Ï§Ï6¾¹¹Ïs(2);
Ï§Ïö´else
Ï§ÏÈ¾¹¹Ïs(3);
Ï¨¹¹Ïs(4);
Ï§

91

Control Structure Diagram

Reading Selection with Nesting
As above, after s(1), we enter the if
statement and if cond1 and cond2 are true,
we follow the solid lines to s(2). After
s(2), we read down and to the left (passing
through both dotted lines) until we reach
to the next statement on the stem which is
s(4). If the cond1 is false, we read down
the dotted line (the false path) to s(4). If
cond2 is false, we read down the dotted
line to the else and then on to s(3). After
s(3), again we read down and to the left
until we reach to the next statement on the
stem which is s(4).

Ï§
Ï¨¹¹Ïs(1);
Ï¨¹³´if (cond1)
Ï§Ï6¾¹³´if (cond2)
Ï§Ï6ÏÏ6¾¹¹Ïs(2);
Ï§Ï6ÏÏö´else
Ï§Ï¶ÏÏÈ¾¹¹Ïs(3);
Ï¨¹¹Ïs(4);
Ï§

Reading Selection with
Even Deeper Nesting

If cond1, cond2, and cond3 are true, we
follow the solid lines to s(2). Using the
strategy above, we immediately see the
next statement to be executed will be s(7).

If cond1 is true but cond2 is false, we can
easily follow the flow to either s(4) or s(5)
depending on the cond4.

If s(4) is executed, we can see
immediately that s(7) follows.

In fact, from any statement, regardless of
the level of nesting, the CSD makes it
easy to see which statement is executed
next.

Ï§
Ï¨¹¹Ïs(1);
Ï¨¹³´if (cond1)
Ï§Ï6¾¹³´if (cond2)
Ï§Ï6ÏÏ6¾¹³´if (cond3)
Ï§Ï6ÏÏ6ÏÏ6¾¹¹Ïs(2);
Ï§Ï6ÏÏ6ÏÏö´else
Ï§Ï6ÏÏ6ÏÏÈ¾¹¹Ïs(3);
Ï§Ï6ÏÏö´else
Ï§Ï6ÏÏ¸¾¹³´if (cond4)
Ï§Ï6ÏÏ¸ÏÏ6¾¹¹Ïs(4);
Ï§Ï6ÏÏ¸ÏÏö´else
Ï§Ï6ÏÏÈÏÏÈ¾¹¹Ïs(5);
Ï§Ïö´else
Ï§ÏÈ¾¹¹Ïs(6);
Ï¨¹¹Ïs(7);
Ï§

92

Control Structure Diagram

Reading without the CSD
It should be clear from the code at right
that following the flow of control without
the CSD is somewhat more difficult.

For example, after s(3) is executed, s(7) is
next. With the CSD in the previous
example, the reader can tell this at a
glance. However, without the CSD, the
reader may have to read and reread to
ensure that he/she is seeing the
indentation correctly.

While this is a simple example, as the
nesting becomes deeper, the CSD
becomes even more useful.

In addition to saving time in the reading
process, the CSD aids in interpreting the
source code correctly, as seen in the
examples that follow.

 s(1);
 if (cond1)
 if (cond2)
 if (cond3)
 s(2);
 else
 s(3);
 else
 if (cond4)
 s(4);
 else
 s(5);
 else
 s(6);
 s(7);

Reading Correctly with the CSD

Consider the fragment at right with s(1)
and s(2) in the body of the if statement.

After the CSD is generated, the reader can
see how the compiler will interpret the
code, and add the missing braces.

 s(1);
 if (cond)
 s(2);
 s(3);

 ¨¹¹Ïs(1);
Ï ¨¹³´if (cond)
Ï §Ï¶¾¹¹Ïs(2);
Ï ¨¹¹Ïs(3);

93

Control Structure Diagram

Here is another common mistake made
glaring by the CSD.

Most likely, the semi-colon after the
condition was unintended. However, the
CSD shows what there rather than what
was intended.

 if (cond);
 s(2);
 s(3);

Ï ¨¹(¹if (cond);
Ï ¨¹¹Ïs(2);
Ï ¨¹¹Ïs(3);

Similarly, the CSD provides the correct
interpretation of the while statement.

 Missing braces . . .

.

 while (cond)
 s(2);
 s(3);

Ï §
ÏÏ¨¹¹±while (cond)
ÏÏ§ÏÏÐ¹¹Ïs(2);
ÏÏ¨¹¹Ïs(3);
ÏÏ§

Similarly, the CSD provides the correct
interpretation of the while statement.

 Unintended semi-colon . . .

 while (cond);
 s(2);
 s(3);

 Ï§
ÏÏ¨¹¹#while (cond);
ÏÏ¨¹¹Ïs(2);
ÏÏ¨¹¹Ïs(3);
ÏÏ§

As a final example of reading source code with the CSD, consider the following program,
which is shown with and without the CSD. FinallyTest illustrates control flow when a
break, continue, and return are used within try blocks that each have a finally clause.
Although the flow of control may seem somewhat counterintuitive, the CSD should make
it easier to interpret this source code correctly.

94

Control Structure Diagram

First read the source code without the CSD. Recall that by definition, the finally clause is
always executed not matter how the try block is exited. Refer to the output if you need a
hint. The output for FinallyTest is as follows:

ÏÏfinally 1
ÏÏi 0
ÏÏfinally 2
ÏÏi 1
ÏÏfinally 2
ÏÏfinally 3

Try-Finally with break, continue, and return statements

public class FinallyTest {

 public static void main(String[] args) {
 b:
 try {
 break b;
 }
 finally {
 System.out.println("finally 1");
 }

 try {
 for(int i = 0; i < 2; i++) {
 System.out.println("i " + i);
 try {
 if(i == 0) {
 continue;
 }
 if(i < 0)
 continue;

 return;
 }
 finally {
 System.out.println("finally 2");
 }
 }
 }
 finally {
 System.out.println("finally 3");
 }
 }

};

ÏÕÖ×public class FinallyTest {
ÏÏ§
ÏÏ§ÏÞßàpublic static void main(String[] args) {
ÏÏ§ÏÏ§b:
ÏÏ§ÏÏ¨¹¹´try {
ÏÏ§ÏÏ§Â¹A¹¹Ïbreak b;
ÏÏ§ÏÏ§ÏÏ=}
ÏÏ§ÏÏ§ÏÏ?finally {
ÏÏ§ÏÏ§ÏÏ¨¹¹ÏSystem.out.println("finally 1");
ÏÏ§ÏÏ§ÏÏ©}
ÏÏ§ÏÏ§
ÏÏ§ÏÏ¨¹¹´try {
ÏÏ§ÏÏ§ÏÏ¨¹¹±for(int i = 0; i < 2; i++) {
ÏÏ§ÏÏ§ÏÏ§ÏÏ7¹¹ÏSystem.out.println("i " + i);
ÏÏ§ÏÏ§ÏÏ§ÏÏ7¹¹´try {
ÏÏ§ÏÏ§ÏÏ§ÏÏ5ÏÏ¨¹³´if(i == 0) {
ÏÏ§ÏÏ§ÏÏ§ÏÏÔ¹ÏA¹6¾¹¹Ïcontinue;
ÏÏ§ÏÏ§ÏÏ§ÏÏ5ÏÏ=Ï¶Ï}
ÏÏ§ÏÏ§ÏÏ§ÏÏ5ÏÏ>¹³´if(i < 0)
ÏÏ§ÏÏ§ÏÏ§ÏÏÔ¹Ï@¹¶¾¹¹Ïcontinue;
ÏÏ§ÏÏ§ÏÏ§ÏÏ5ÏÏ=
ÏÏ§Â¹ÄÏÏA¹Ï5ÏÏ@¹¹Ïreturn;
ÏÏ§ÏÏ§ÏÏ=ÏÏ5ÏÏ=}
ÏÏ§ÏÏ§ÏÏ=ÏÏ5ÏÏ?finally {
ÏÏ§ÏÏ§ÏÏ=ÏÏ5ÏÏ¨¹¹ÏSystem.out.println("finally 2");
ÏÏ§ÏÏ§ÏÏ=ÏÏ5ÏÏ©}
ÏÏ§ÏÏ§ÏÏ=ÏÏ°}
ÏÏ§ÏÏ§ÏÏ=}
ÏÏ§ÏÏ§ÏÏ?finally {
ÏÏ§ÏÏ§ÏÏ¨¹¹ÏSystem.out.println("finally 3");
ÏÏ§ÏÏ§ÏÏ©}
ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ©};

In our experience, this code is often misinterpreted when read without the CSD, but
understood correctly when read with the CSD.

95

Control Structure Diagram

8.7 References
[Cross 1998] J. H. Cross, S. Maghsoodloo, and T. D. Hendrix, "Control Structure
Diagrams: Overview and Initial Evaluation," Journal of Empirical Software Engineering,
Vol. 3, No. 2, 1998, 131-158.

[Hendrix 2002] T. D. Hendrix, J. H. Cross, S. Maghsoodloo, and K. H. Chang,
“Empirically Evaluating Scaleable Software Visualizations: An Experimental
Framework,” IEEE Transactions on Software Engineering, Vol. 28, No. 5, May 2002,
463-477.

96

Control Structure Diagram

97

	Overview of jGRASP and the Tutorials
	Installing jGRASP
	Getting Started
	Starting jGRASP
	Quick Start - Opening a Program, Compiling, and Running
	Generating a Control Structure Diagram
	Folding a CSD
	Line Numbers
	Creating a New File
	Saving a File
	Compiling a Program – A Few More Details
	Running a Program - Additional Options
	Using the Debugger
	Opening a File – Additional Options
	Closing a File
	Exiting jGRASP
	Exercises
	Review and Preview of What’s Ahead

	Getting Started with Objects
	Navigating to Our First Example
	Opening a Project and UML Window
	The UML Window
	Exploring the Features of the UML Window
	Viewing the source code for a class
	Displaying class information
	Displaying Dependency Information

	Viewing the Source Code
	Compiling and Running the Program
	Generating Documentation for the Project
	Using the Object Workbench
	Invoking a Method
	Invoking Methods with Parameters
	Invoking Methods on Object Fields
	Invoking Inherited Methods
	Running the Debugger on Invoked Methods
	Creating Instance from the Java Class Libraries
	Exiting the Workbench
	Closing a Project
	Exiting jGRASP
	Exercises

	Projects
	Creating a Project
	Adding files to the Project
	Removing files from the Project
	Generating Documentation for the Project (Java only)
	Jar file Creation and Extraction
	Active Project vs. Open Projects
	Closing a Project
	Exercises

	UML Class Diagrams
	Opening the Project
	Generating the UML
	Determining the Contents of the Class Diagram
	Laying Out the UML Diagram
	Displaying the Members of a Class
	Displaying Dependencies Between Two Classes
	Finding a Class in the UML Diagram
	Opening Source Code from UML
	Saving the UML Layout
	Printing the UML Diagram

	The Object Workbench
	Invoking Static Methods
	Creating an Object for the Workbench
	Invoking a Method
	Invoking Methods with Parameters
	Invoking Methods on Object Fields
	Invoking Inherited Methods
	Running the Debugger on Invoked Methods
	Exiting the Workbench

	The Integrated Debugger
	Preparing to Run the Debugger
	Setting a Breakpoint
	Running a Program in Debug Mode
	Stepping Through a Program
	Debugging a Program

	The Control Structure Diagram (CSD)
	An Example to Illustrate the CSD
	CSD Program Components/Units
	CSD Control Constructs
	CSD Templates
	Hints on Working with the CSD
	Reading Source Code with the CSD
	References

