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Abstract

There is no easy way to scan large-format documents such as
posters, maps, whiteboards, etc. This report describes an im-
plementation of some of the mosaicing techniques described by
[Brown and Lowe 2003] and [Capel and Zisserman 1998] for au-
tomatically constructing panoramas in the hope of applying them
to reconstructing large-format documents from a series of partial
snapshots taken independently or with a video camera.
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1 Introduction

Methods for scanning large-format documents include scanning
them piece-by-piece with a flatbed scanner or scanning them with
a hand-held scanner, then stitching the results. The first approach
gives excellent resolution, but not all documents can be scanned
piece-by-piece. Using the second approach, wall-mounted docu-
ments may also be scanned, but the method requires close con-
tact with the document (the hand-held scanner has to come in con-
tact with the document’s surface), and is often impractical even for
moderately-sized documents.

Moreover, such large-format documents often need not be
scanned at the highest resolution possible, but only at enough reso-
lution to allow reading or performing automatic Optical Character
Recognition on them.

The techniques used in panoramas readily apply themselves to
this problem. Given several snapshots of a large-format document,
taken with a regular camera or a video camera, an image of the
poster can be reconstructed, even at a higher resolution than any of
the input images. While the resolution is not comparable to the one
obtained from using a scanner, the ease of use of this method makes
it suitable for cases when only a low resolution (such as enough to
allow readability) is sufficient.

Stitching several images together, also calledmosaicing, in-
volves registering the images. In the case of scanners, it usually
involves rotations in the same plane. In general, stitching is possi-
ble for images that are related to each other by a global mapping
such as a planar homography. The next sections describe the reg-
istration process. The steps of the process are: feature matching,
image matching, image warping and blending.

2 Feature Matching

Most methods for automatic image matching are based on match-
ing features between the images. Correspondences are established
between points, lines, or other geometrical entities.

The approach used in [Capel and Zisserman 1998] is extracting
Harris corners [Harris and Stephens 1988] and using normalized
cross-correlation of local intensity values to match them. However,
Harris corners are not invariant to scaling, and cross-correlation is
not invariant to rotation.
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For this application I used Scale Invariant Feature Transform
(SIFT) features [Lowe 1999] instead of Harris corners. SIFT fea-
tures are designed as geometrically invariant under similarity trans-
forms and also invariant under affine changes in image intensity.

I first tried to implement the approach from [Lowe 2003] my-
self, and got as far as computing the key locations and magnitudes,
but ran into difficulties when computing the key orientations and
descriptors. I ended up using the implementation made available
online by the authors, which takes a gray-scale image as input and
outputs a text file containing the location, scale, orientation and key
descriptors of the SIFT features.

Figure 1 shows a comparison between the key locations I com-
puted, and the ones computed using the online implementation. The
locations are sometimes different because of the selection criterion:
I selected keys based on thresholding the Difference-of-Gaussian
pyramids, while the online method also uses some other parame-
ters and processes that were not available for comparison.

Figure 1: A comparison between two methods of finding keys:
mine (left) and the one online (right).

Each image typically contains several hundred features. Since
a feature may appear in multiple images, features from different
images must be matched against each other. The key descriptors are
vectors of 128 numbers. This allows an efficient implementation
of the matching that reduces the computation time fromO(n2) to
O(n log n) by constructing a k-d tree with the descriptor values.

The authors of [Beis and Lowe 1997] have shown that given a
key, an approximate matching descriptor can be found faster using
the k-d tree, and the approximation is good enough for practical
applications.

The matching criterion that I used was that the distance from the
key to the closest descriptor in the k-d tree is less than a fraction
(usually 0.6) of the distance from the key to the second closest de-
scriptor in the k-d tree i.e., the key is closer to the match than to any
other descriptors.

The descriptors are indeed very robust: if a match is found be-
tween a pair of SIFT features, it is almost certainly not a spurious
match. Figure 2 shows a few of the computed correspondences be-
tween two images.

3 Image Matching

The next step is matching the images that contain a common subset
of features. Feature matching helped identify the images that have



Figure 2: Correspondences between two images.

a large number of matches between them. The authors of [Brown
and Lowe 2003] derive and use a probabilistic model, whereby two
images match ifNinliers > 5.9+0.22 Noutliers.

They use this criterion to test if pairs of images with many
matches have enough matches that are geometrically consistent
with a RANSAC Homography. I used MLESAC [Torr and Zis-
serman 2000] instead of RANSAC to estimate the homographies
between such pairs of images. Figure 3 shows an example of a ho-
mography used to warp an image so that it overlaps with another
image.

Figure 3: Image warping using a homography (un-warped image
on the left is shown semi-transparently).

This step is useful because it helps eliminate false matches, so
that panoramas can be automatically extracted from arbitrary image
sequences.

4 Bundle Adjustment

Note : I have not finished implementing this yet.
Concatenation of pairwise homographies usually cause accumu-

lated errors. To solve this problem, bundle adjustment can be used
to solve for all of the camera parameters jointly, given a set of geo-
metrically consistent matches between pairs of images. Images are
added to the bundle adjuster one by one, with the best matching im-
age (maximum number of matches) being added at each step. The
new image is initialized with the same rotation and focal length
as the image to which it best matches. Then the parameters are
updated using Levenberg-Marquardt [Kanzow et al. 2002]. The
objective function we use is a robustified sum squared projection
error. That is, each feature is projected into all the images in which
it matches, and the sum of squared image distances is minimized
with respect to the camera parameters.

5 Multi-band Blending

Note : I have not finished implementing this yet.

Due to changes in aperture/exposure time, vignetting (intensity
decreases towards the edge of the image), parallax effects due un-
wanted motion of the optical center, and any mis-registration errors
due to mis-modelling of the camera, radial distortion etc., pixels
from different images that represent the same location in space do
not have the same intensity in different images. A simple approach
would be to perform a weighted sum of the image intensities along
each ray using some weight functions that take into account con-
tributions from all images that overlap an area. However, this can
cause blurring of high frequency detail. To prevent this, the authors
of [Brown and Lowe 2003] suggest a multi-band blending strategy
developed by Burt and Adelson [Burt and Adelson 1983].

The idea behind multi-band blending is to blend low frequen-
cies over a large spatial range, and high frequencies over a short
range. This can be performed over multiple frequency bands us-
ing a Laplacian Pyramid. According to the authors of [Brown and
Lowe 2003], even a simple 2 band scheme is sufficient to yield
good results. A low pass image is formed with spatial frequencies
of wavelength greater than 2 pixels relative to the rendered image,
and a high pass image with spatial frequencies less than 2 pixels.
The low frequency information is blended using a linear weighted
sum, and the high frequency information is selected from the image
with the maximum weight.

6 Discussion and Future Work

There are a number of unanswered questions when applying
panorama techniques to posters.

First, I have no sense of what would be the best way to take the
snapshots to ensure the best possible result. A possible sequence
would be to take an overview snapshot, then zoom in to capture the
details.

Second, there is no obvious way to choose the surface on which
all images are projected. Detecting the document’s corners (assum-
ing it is rectangular) and warping the initial overview snapshot to a
rectangle would probably be a good initial step. However, the detail
images may not map so well to this warped version.

Third, the level of detail of the final image should be at least
as high as to capture the highest level of detail available from the
input images, if not more. However, picking a level of detail from
the beginning, or refining it during the process is not an obvious
choice, as both may work equally well (or equally bad) in different
cases.

Fourth, documents with parts that look similar will pose another
problem: there is not enough information in a detail image to be
able to accurately place it in the result. This is where other knowl-
edge should come into play: it need not be assumed, as in [Brown
and Lowe 2003], that the captured images can be in any order. In
reality, temporal coherence is the rule, not the exception, and it pro-
vides valuable information that should be used, not ignored.

Finally, I haven’t even begun to explore the second part of what
would help make these techniques suitable for everyday scanning:
super-resolution. The authors of [Capel and Zisserman 1998] sug-
gest the use of ML and MAP estimators both for achieving super-
resolution from multiple images, and for the improving the esti-
mates of the homographies between the images. I suspect that the
sequence of image acquisition that I suggested earlier, combined
with a good method of exploiting this knowledge of temporal co-
herence may help yield better results.



7 Conclusion

In retrospective, a fully-functional large-format document scanner
was an overly-ambitious goal for a semester project (maybe a team
of a few students would have been appropriate). I ended up imple-
menting parts of the process using code from VXL [Mundy et al.
2003] and double-checking with short MatLab [MathWorks, Inc.
1984–2002] programs. VXL is a great resource, but its lack of doc-
umentation makes it difficult to use. I also had to modify the library
code in some places to account for degenerate cases that were gen-
erating errors.

I have tried the elements I implemented on regular photographs
(the figures in this report use two images from [Brown and Lowe
2003]) and on snapshots of posters, with similar results. Surpris-
ingly enough, poster snapshots taken with small angle changes (that
is, always having the camera approximately perpendicular to the
poster plane) yielded more numerical errors in computing the ho-
mographies than snapshots taken from the same point, but at differ-
ent angles.

The main conclusion of this experiment is that it is feasible to
use panorama techniques for scanning large-format documents, but
a robust implementation is non-trivial.
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