

LXMERT:

Learning Cross-Modality Encoder Representations from Transformers

Hao Tan, Mohit Bansal

haotan, mbansal@cs.unc.edu

Vision Tasks

Understand Visual Concepts

Image Classification: What is it?

Predict the **class label** of the image.

96%
29%
%
%

3

Object Detection: What and Where are They?

Find the objects and then predict their regions and labels.

Vision-and-Language Tasks

A series of tasks that require both vision and language information to complete.

Image Captioning: Describe the Image

Use one natural-language sentence to describe the content in the image.

An orange cat sits in the suitcase ready to be packed.

-- One of my favorite examples in MS COCO [Lin, ECCV 2009]

Antol et al., ICCV 2015.

Visual Question Answering

Answer a question about the image.

What color are her eyes?Answer: BlackWhat is the mustache made of?Answer: Bananas

Pre-training → Fine-tuning

A general methodology to solve [vision tasks] and [language tasks].

$Pre-training \rightarrow Fine-tuning$

Vision: Pre-training \rightarrow Fine-tuning

Language: Pre-training

Language: Pre-training

Fine-tuning on Vision and Language Tasks?

Fine-tuning on Vision and Language Tasks?

Fine-tuning on Vision and Language Tasks?

Pre-train for Vision and Language jointly?

LXMERT (Learning Cross-Modality Encoder Representations from Transformers)

LXMERT

A pre-training and fine-tuning framework for vision-and-language tasks

Model: BERT

Model: BERT

BERT's language encoder is a stack of self attention layers.

Model: BERT

LXMERT adds a new branch for the visual modality.

Visual encoder is similar to language encoder (with different weights).

1. How to **embed** the images?

Object-Level Image Embedding

2. How to build **connections** between modalities?

Cross-Modality Attention Layers

LXMERT Full Model

BERT Pre-training: Mask and Predict

Input

LXMERT Pre-training: Mask and Predict

LXMERT Pre-training: Mask and Predict

Input

Single-Modality Contextualized Learning

[dog]

Rabbits like eating carrots.

Visual Relationship

Prediction

[carrot]

LXMERT Pre-training: Mask and Predict

LXMERT Pre-training: Cross-Modality Matching

LXMERT Pre-training: Cross-Modality Matching

LXMERT Pre-training: Image-Related Questions

LXMERT Pre-training Method

LXMERT Aggregated Data

Image

Captioning

A classic car sitting beside the road with a surfboard on top.

Related Questions

What is the horizontal bar fixed across the front of the car?

LXMERT Aggregated Data: Amount

Image Split	Images		Senter	Questions	uestions)		
ininge spin	11114905	COCO-Cap	VG-Cap	VQA	GQA	VG-QA	All
MS COCO - VG	72K	361K	-	387K	_	_	0.75M
$MS\:COCO\capVG$	51K	256K	2.54M	271K	515K	724K	4.30M
VG - MS COCO	57K	-	2.85M	-	556K	718K	4.13M
All	180K	617K	5.39M	658K	1.07M	1.44M	9.18M

Number of Images

Number of Sentences

LXMERT Aggregated Data: Comparison

Image Split	Images	Sentences (or Questions)					
ininge spire	11114905	COCO-Cap	VG-Cap	VQA	GQA	VG-QA	All
MS COCO - VG	72K	361K	-	387K	-	_	0.75M
$MS\:COCO\capVG$	51K	256K	2.54M	271K	515K	724K	4.30M
VG - MS COCO	57K	-	2.85M	-	556K	718K	4.13M
All	180K	617K	5.39M	658K	1.07M	1.44M	9.18M

Number of Images

Number of Sentences

ImageNet (ILSVRC2012): 1.2 M Images

BERT: ~3000M Sentences.

Results

Comparing LXMERT to previous works on multiple datasets.

Dataset: Visual Question Answering

Answer a question about the image.

What color are her eyes?Answer: BlackWhat is the mustache made of?Answer: Bananas

Hudson et al., CVPR 2019.

Dataset: GQA

Focus on multi-hop reasoning.

Does the vehicle near the palms look red or blue?

Dataset: Natural Language for Visual Reasoning

The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing.

Answer: True

Method		VQA	A		GQA			NĽ	NLVR ²	
	Binary	Number	Other	Accu	Binary	Open	Accu	Cons	Accu	
Human	-	-	-	-	91.2	87.4	89.3	-	96.3	
Image Only	-	-	-	-	36.1	1.74	17.8	7.40	51.9	
Language Only	66.8	31.8	27.6	44.3	61.9	22.7	41.1	4.20	51.1	
State-of-the-Art	85.8	53.7	60.7	70.4	76.0	40.4	57.1	12.0	53.5	
LXMERT	88.2	54.2	63.1	72.5	77.8	45.0	60.3	42.1	76.2	

+ 2.1% on VQA + 3.2% on GQA + 22.7% on NLVR2

Recent Progress on Visual Question Answering

Recent Progress on Visual Question Answering

Recent Progress on Visual Question Answering

NLVR² Leaderboard

NLVR² presents the task of determining whether a natural language sentence is true about a pair of photographs.

	Rank	Model	Dev. (Acc)	Test-P (Acc)	Test-U (Acc)	Test-U (Cons)	
		Human Performance <i>Cornell University</i> (Suhr et al. 2019)	96.2	96.3	96.1	-	
	1 Aug 20, 2019	LXMERT UNC (Tan and Bansal 2019)	74.9	74.5	76.2	42.1	
Τοι	2 Aug 11, 2019	VisualBERT UCLA & AI2 & PKU Natural	67.4	67.0	67.3	26.9	- Visua
	3 Nov 1, 2018	MaxEnt Corn Richter SC (Suth et al. 2009)	^{54.1}	g ta	sk.	12.0	v locad

	Rank ¢	Participant team 🜲	yes/no ≑	number ¢	other \$	overall \$	Last submission at ¢
NLVR ² Lea	1	MIL@HDU (MCAN)	90.36	59.17	65.75	75.23	3 months ago
NLVR ² present	2	MSM@MSRA	89.81	58.36	65.69	74.89	3 months ago
about a pair of		LXMERT (LXR955, Ensemble)	89.45	56.69	65.22	74.34	3 months ago
Rank	4	AIOZ (AIOZ-QTA)	88.26	55.22	63.63	72.93	3 months ago
	₅ B	est result wit	h sta	anda	rel®v	visua	al feature;
1	6	LXMERT githu Bacico (LXR255, Sng/e (:halle	eng	e ⁷² 20	19days ago
Aug 20, 2019	7	HappyTeam (A-18)	88.24	54.15	62.11	72.08	3 months ago
2 Aug 11, 2019	8	Dream	87.95	54.17	62.05	71.93	7 days ago
Top-1 or	9	BAN (Bilinear Attention Networks (B)	87.22	54.37	62.45	71.84	4 months ago
Nov 1, 2018	Corn <mark>ell</mark> . (Suhr et a	easoning tasl	K.				52

Analysis

Ablation studies and attention graphs.

Analysis: LXMERT Ablation Results

Results of BERT encoder are similar to LSTM for the baseline model.

Method	VQA	GQA	$NLVR^2$
LSTM + BUTD	63.1	50.0	52.6
BERT + BUTD	62.8	52.1	51.9
BERT + 1 CrossAtt	64.6	55.5	52.4
BERT + 2 CrossAtt	65.8	56.1	50.9
BERT + 3 CrossAtt	66.4	56.6	50.9
BERT + 4 CrossAtt	66.4	56.0	50.9
BERT + 5 CrossAtt	66.5	56.3	50.9
Train + BERT	65.5	56.2	50.9
Train + scratch	65.1	50.0	50.9
Pre-train + BERT	68.8	58.3	70.1
Pre-train + scratch	69.9	60.0	74.9

Stacking crossmodality layers helps.

Method	VQA	GQA	NLVR ²
LSTM + BUTD	63.1	50.0	52.6
BERT + BUTD	62.8	52.1	51.9
BERT + 1 CrossAtt	64.6	55.5	52.4
BERT + 2 CrossAtt	65.8	56.1	50.9
BERT + 3 CrossAtt	66.4	56.6	50.9
BERT + 4 CrossAtt	66.4	56.0	50.9
BERT + 5 CrossAtt	66.5	56.3	50.9
Train + BERT	65.5	56.2	50.9
Train + scratch	65.1	50.0	50.9
Pre-train + BERT	68.8	58.3	70.1
Pre-train + scratch	69.9	60.0	74.9

- 1.0% on NLVR2+ 4.5% on GQA+ 3.6% on VQA

Input

A dot [MASK]

watching a

[MASK].

Prediction

A dog is

watching

a rabbit

LXMERT Model

Pre-training boosts

the performance.

[carrot]

Method	VQA	GQA	$NLVR^2$
LSTM + BUTD	63.1	50.0	52.6
BERT + BUTD	62.8	52.1	51.9
BERT + 1 CrossAtt	64.6	55.5	52.4
BERT + 2 CrossAtt	65.8	56.1	50.9
BERT + 3 CrossAtt	66.4	56.6	50.9
BERT + 4 CrossAtt	66.4	56.0	50.9
BERT + 5 CrossAtt	66.5	56.3	50.9
Train + BERT	65.5	56.2	50.9
Train + scratch	65.1	50.0	50.9
Pre-train + BERT	68.8	58.3	70.1
Pre-train + scratch	69.9	60.0	74.9

Input

A dot [MASK]

watching a

[MASK].

Prediction

A dog is

watching

a rabbit

LXMERT Model

Pre-training boosts

the performance.

[carrot]

Pre-train + scratch	69.9	60.0	74.9
Pre-train + BERT	68.8	58.3	70.1
Train + scratch	65.1	50.0	50.9
Train + BERT	65.5	56.2	50.9
BERT + 5 CrossAtt	66.5	56.3	50.9
BERT + 4 CrossAtt	66.4	56.0	50.9
BERT + 3 CrossAtt	66.4	56.6	50.9
BERT + 2 CrossAtt	65.8	56.1	50.9
BERT + 1 CrossAtt	64.6	55.5	52.4
BERT + BUTD	62.8	52.1	51.9
LSTM + BUTD	63.1	50.0	52.6
Method	VQA	GQA	NLVR ²

+ **24.0%** on NLVR2 + **10.0%** on GQA + **4.4%** on VQA

Loading pre-trained BERT weights into LXMERT pre-training **does not help**.

Method	VQA	GQA	NLVR ²
LSTM + BUTD	63.1	50.0	52.6
BERT + BUTD	62.8	52.1	51.9
BERT + 1 CrossAtt	64.6	55.5	52.4
BERT + 2 CrossAtt	65.8	56.1	50.9
BERT + 3 CrossAtt	66.4	56.6	50.9
BERT + 4 CrossAtt	66.4	56.0	50.9
BERT + 5 CrossAtt	66.5	56.3	50.9
Train + BERT	65.5	56.2	50.9
Train + scratch	65.1	50.0	50.9
Pre-train + BERT	68.8	58.3	70.1
Pre-train + scratch	69.9	60.0	74.9

Analysis: Visualizing Attention Graphs

Analysis: Visualizing Attention Graphs

Attention Graphs: Language Encoder

Example: Is it warm enough for him to be wearing shorts?

LXMERT Lang Layer 2: Attend to the **next** words.

BERT Layer 3: Attend to the **next** words.

Attention Graphs: Language Encoder

Example: Is it warm enough for him to be wearing shorts?

LXMERT Lang Layer 4: Attend to the **previous** words. BERT Layer 4: Attend to the **previous** words.

Attention Graphs: Visual Encoder

- The most attended visual objects are:
- A. Separated.B. Lied at the center of semantic regions.

Attention Graphs: Visual Encoder

Attention Graphs: Visual Encoder

LXMERT has less of this issue.

Directly applying self-attention on object sequences would lead to a one-hot attention. [Jinwon An] ⁶⁶

For **Non-plural Nouns**, the attention will focus on the **Articles**!

Can you see the grass?

2

For **Non-plural Nouns**, the attention will focus on the **Articles**!

Articles are possibly serving as special tokens (e.g., [CLS], [SEP]).

What's Next?

The future of vision-and-language pre-training.

Short Sentence

Long Paragraph

Caption, Question, Instruction,

News, Books, Tutorial,

Data

Balanced Data

An orange cat sits in the suitcase ready to be packed.

Unbalanced Data

Sociability

The social behavior of the domestic cat ranges from widely dispersed individuals to feral cat colonies that gather around a food source, based on groups of co-operating females.^[94]65] Within such groups, one cat is usually dominant over the others.^[96] Each cat in a colony holds a distinct territory, with sexually active males having the largest territories, which are about 10 times larger than those of female cats and may overlap with several females' territories. These territories are marked by urine spraving, by rubbing

objects at head height with secretions from facial glands, and by defecation.^[76] Between these territories are neutral areas where cats watch and greet one another without territorial conflicts. Outside these neutral areas, territory holders usually chase away stranger cats, at first by staring, hissing, and growling and, if that does not work, by short but noisy and violent attacks. Despite some cats cohabitring in colonies, they do not have a social survival strategy, or a pack mentality and always hunt alone.^[97]

In wiki/news/tutorial, they usually have long text and only one image.

Limited Aligned Data

(Nearly) Unlimited Unaligned Data

Tasks

Pre-training tasks which capture pairwise nounnoun and noun-verb relationships.

An orange cat sits in the suitcase ready to be packed.

LXR Thanks!!

Code available at: github.com/airsplay/lxmert

Hao Tan, Mohit Bansal haotan, mbansal@cs.unc.edu