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Vision Tasks 
 

Understand Visual Concepts 

2 



Image Classification: What is it? 

Predict the class label of 
the image. 

3 https://www.oreilly.com 
 
 



Object Detection: What  
and Where are They? 

Find the objects and then 
predict their regions and 
labels.  
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Label: 
Cat 

Label: 
Cat 

Label: TV 



Vision-and-Language Tasks 
 

A series of tasks that require both  

vision and language information to complete.  
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Image Captioning: Describe the Image 

Use one natural-language 
sentence to describe the 
content in the image. 
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An orange cat sits in the 
suitcase ready to be packed. 
      -- One of my favorite examples in MS 
COCO [Lin, ECCV 2009] 
 



Visual Question Answering 
 

Answer a question about 
the image. 
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Answer: Black 
Answer: Bananas 

Antol et al., ICCV 2015. 



Pre-training → Fine-tuning 
 

A general methodology to solve [vision tasks] and [language tasks]. 
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Pre-training → Fine-tuning 
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Specific 
Tasks 

Large-scale 
Datasets 

Backbone 
Model 

Pre-training: 

Fine-tuning: 

General 
Tasks 

Relative 
Small 

Datasets 

Task-dependent 
Model 



Vision: Pre-training → Fine-tuning 
 

10 

Visual 
Fine-tuning: 

Visual 
Pre-training: 

Image  
Classification 

Object 
Detection 

ImageNet  
[Deng, CVPR 2009] 

 

MS COCO  
[Lin, ECCV 2009] 

 

Faster RCNN 
[Ren, NeurIPS 2015] 

DenseNet 
[Huang,CVPR 2017] 



Language: Pre-training 
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Language 
Pre-training: 

Visual 
Pre-training: 

Image  
Classification 

Language 
Model 



Language: Pre-training 
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Language 
Pre-training: 

Language 
Model 

ELMo  
[Peters, NAACL 2018] 

BERT 
[Devlin, NAACL 2019] 
 



Fine-tuning 
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Language  
Pre-training: 

Visual 
Pre-training: 

Image  
Classification 

Language 
Model 

Detection, Segmentation,  
Identification, ... 

Question Answering, 
Sentiment Analysis, ... 



Fine-tuning on Vision and Language Tasks? 
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Language  
Pre-training: 

Visual 
Pre-training: 

Image  
Classification 

Language 
Model 

Visual Question Answering, 
Navigation, Grounding, ... 

Fusion 
Module 



Fine-tuning on Vision and Language Tasks? 
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Language  
Pre-training: 

Visual 
Pre-training: 

Image  
Classification 

Language 
Model 

Visual Question Answering, 
Navigation, Grounding, ... 

Fusion 
Module 

Pre-trained language  
modules do not help. 



Fine-tuning on Vision and Language Tasks? 
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Language  
Pre-training: 

Visual 
Pre-training: 

Image  
Classification 

Language 
Model 

Visual Question Answering, 
Navigation, Grounding, ... 

Fusion 
Module 

Single-modality pre-training 
is not aware of cross-modality relationships. 



Pre-train for Vision and Language jointly? 
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Pre-training 
Method? 

Model? Data? 



LXMERT (Learning Cross-Modality Encoder 
Representations from Transformers) 
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Pre-training 
Method 

Model Data 



LXMERT 
 

A pre-training and fine-tuning framework 
 for vision-and-language tasks 
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A dog is 
watching  
a rabbit. 

Language 
Encoder 

Model: BERT 
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A dog is 
watching  
a rabbit. 

Language 
Encoder 

Model: BERT 
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Self FC + +

BERT’s language encoder is a stack  
of self attention layers.  



A dog is 
watching  
a rabbit. 

Language 
Encoder 

Model: BERT 
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A dog is 
watching  
a rabbit. 

Visual 
Encoder 

Language 
Encoder 

Cross- 
Modality 
Encoder 

Model: LXMERT 
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LXMERT adds a new branch for the  
visual modality.  



Cross- 
Modality 
Encoder 

Visual 
Encoder 

Model: LXMERT 
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Self FC + +

Visual encoder is similar to language  
encoder (with different weights). 



A dog is 
watching  
a rabbit. 

Visual 
Encoder 

Language 
Encoder 

Cross- 
Modality 
Encoder 

Model: LXMERT 
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1. How to embed the images? 

2. How to build connections  
    between modalities? 



Model: LXMERT 
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1. How to embed the images? 



Object-Level Image Embedding 
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Images are embedded  
with object-level Image  
representation. 

Object Detection 
e.g., Faster RCNN  

[Ren, NeurIPS 2015] 

...... 

Features of  
Objects 
[Anderson,  

CVPR 2017] 



A dog is 
watching  
a rabbit. 

Visual 
Encoder 

Language 
Encoder 

Cross- 
Modality 
Encoder 

Model: LXMERT 
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2. How to build connections  
    between modalities? 



A dog is 
watching  
a rabbit. 

Cross- 
Modality 
Encoder 

Cross-Modality Attention Layers 

29 

FC +

FC +

Self +

Self +

Att +

Att +

The cross-modality encoder  
has attention layers between  
two modalities. 
 



LXMERT Full Model 
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+

RoI Feat 

Pos Feat 

A woman 
riding a bike 

with a dog in a 
basket. 

+

Word Emb 

Idx Emb 

Self FF + + Self Cross + + FF +

Self FF + + Self Cross + + FF +

Vision 
Output 

Language 
Output 

Cross- 
Modality 
Output 

Cross-Modality Encoder Language Encoder 

Object-Relationship Encoder 

N
x

⇥

Nl⇥

Nr⇥



BERT Pre-training: Mask and Predict 

 A dog [MASK] 
watching a 
[MASK].  

 A dog is 
watching 

a rabbit.  

Input Prediction 

BERT 
Model 
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LXMERT Pre-training: Mask and Predict 

 A dog [MASK] 
watching a 
[MASK].  

 A dog is 
watching 

a rabbit.  

Input Prediction 

LXMERT 
Model 

32 

[carrot]	

[dog]	



LXMERT Pre-training: Mask and Predict 

 A dog [MASK] 
watching a 
[MASK].  

 A dog is 
watching 

a rabbit.  

Input Prediction 
Single-Modality 

Contextualized Learning 

Rabbits like eating carrots. 

Grammar 
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[carrot]	

[dog]	

Visual Relationship 



LXMERT Pre-training: Mask and Predict 

 A dog [MASK] 
watching a 
[MASK].  

 A dog is 
watching 

a rabbit.  

Input Prediction Cross-Modality Grounding 
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[carrot]	

[dog]	



LXMERT Pre-training: Cross-Modality Matching 

 A dog [MASK] 
watching a 
[MASK].  

Input Prediction 

LXMERT 
Model 
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Match or not? 
Yes 



LXMERT Pre-training: Cross-Modality Matching 

 A dog [MASK] 
watching a 
[MASK].  

Input Prediction 

LXMERT 
Model 
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Match or not? 
No 



LXMERT Pre-training: Image-Related Questions 

What is [mask] 
color of the 

bike? 

Input Prediction 

LXMERT 
Model 

37 

Black 



LXMERT Pre-training Method 
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+

RoI Feat RoI-Feature 
Regression 

Pos Feat 

 
Who is eating 

the carrot? +

Word Emb 

Idx Emb 

Mask 
Feat 

 [CLS] who 
[MASK] eat -ing 

the [MASK] ? 
[EOS] 

Detected-Label 
Classification 

Masked Cross- 
Modality LM 

Answer? {RABBIT}	
   Match?   {YES}	

{DOG}	
…	

ObjectRel 
Encoder 

Language 
Encoder 

Cross- 
Modality 
Encoder 

 [CLS] who 
is eat -ing  

the carrot ? 
[EOS] 

Cross-Modality 
Tasks 
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A classic car sitting beside the 
road with a surfboard on top. 

What is the horizontal bar fixed 
across the front of the car? 

Captioning 

Related Questions 

Image 

LXMERT Aggregated Data 
 



LXMERT Aggregated Data 
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Questions Captioning 

       MS COCO 

Visual Genome 



Image Split Images Sentences (or Questions)

COCO-Cap VG-Cap VQA GQA VG-QA All

MS COCO - VG 72K 361K - 387K - - 0.75M
MS COCO \ VG 51K 256K 2.54M 271K 515K 724K 4.30M
VG - MS COCO 57K - 2.85M - 556K 718K 4.13M

All 180K 617K 5.39M 658K 1.07M 1.44M 9.18M

Table 1: Amount of data for pre-training. Each image has multiple sentences/questions. ‘Cap’ is caption. ‘VG’ is
Visual Genome. Since MS COCO and VG share 51K images, we list it separately to ensure disjoint image splits.

side helps learn the object relationships, and infer-
ring from the language side helps learn the cross-
modality alignments. Therefore, we perform two
sub-tasks: RoI-Feature Regression regresses the
object RoI feature fj with L2 loss, and Detected-
Label Classification learns the labels of masked
objects with cross-entropy loss. In the ‘Detected-
Label Classification’ sub-task, although most of
our pre-training images have object-level anno-
tations, the ground truth labels of the annotated
objects are inconsistent in different datasets (e.g.,
different number of label classes). For these rea-
sons, we take detected labels output by Faster R-
CNN (Ren et al., 2015). Although detected labels
are noisy, experimental results show that these la-
bels contribute to pre-training in Sec. 5.3.

3.1.3 Cross-Modality Tasks
As shown in the middle-rightmost part of Fig. 2,
to learn a strong cross-modality representation, we
pre-train the LXMERT model with 2 tasks that ex-
plicitly need both language and vision modalities.

Cross-Modality Matching For each sentence,
with a probability of 0.5, we replace it with a mis-
matched2 sentence. Then, we train a classifier to
predict whether an image and a sentence match
each other. This task is similar to ‘Next Sentence
Prediction’ in BERT (Devlin et al., 2019).

Image Question Answering (QA) In order to
enlarge the pre-training dataset (see details in
Sec. 3.2), around 1/3 sentences in the pre-training
data are questions about the images. We ask
the model to predict the answer to these image-
related questions when the image and the ques-
tion are matched (i.e., not randomly replaced in
the cross-modality matching task). We show that

2 We take a sentence from another image as the mis-
matched sentence. Although the sentence and the image still
have chance to match each other, this probability is very low.

pre-training with this image QA leads to a better
cross-modality representation in Sec. 5.2.

3.2 Pre-Training Data
As shown in Table. 1, we aggregate pre-training
data from five vision-and-language datasets whose
images come from MS COCO (Lin et al., 2014)
or Visual Genome (Krishna et al., 2017). Be-
sides the two original captioning datasets, we also
aggregate three large image question answering
(image QA) datasets: VQA v2.0 (Antol et al.,
2015), GQA balanced version (Hudson and Man-
ning, 2019), and VG-QA (Zhu et al., 2016). We
only collect train and dev splits in each dataset to
avoid seeing any test data in pre-training. We con-
duct minimal pre-processing on the five datasets to
create aligned image-and-sentence pairs. For each
image question answering dataset, we take ques-
tions as sentences from the image-and-sentence
data pairs and take answers as labels in the im-
age QA pre-training task (described in Sec. 3.1.3).
This provides us with a large aligned vision-and-
language dataset of 9.18M image-and-sentence
pairs on 180K distinct images. In terms of tokens,
the pre-training data contain around 100M words
and 6.5M image objects.

3.3 Pre-Training Procedure
We pre-train our LXMERT model on the large ag-
gregated dataset (discussed in Sec. 3.2) via the pre-
training tasks (Sec. 3.1). The details about the data
splits are in the Appendix. The input sentences are
split by the WordPiece tokenizer (Wu et al., 2016)
provided in BERT (Devlin et al., 2019). The ob-
jects are detected by Faster R-CNN (Ren et al.,
2015) which is pre-trained on Visual Genome
(provided by Anderson et al. (2018)). We do not
fine-tune the Faster R-CNN detector and freeze
it as a feature extractor. Different from detect-
ing variable numbers of objects in Anderson et al.
(2018), we consistently keep 36 objects for each

LXMERT Aggregated Data: Amount 
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Number of Images Number of Sentences 



Image Split Images Sentences (or Questions)

COCO-Cap VG-Cap VQA GQA VG-QA All

MS COCO - VG 72K 361K - 387K - - 0.75M
MS COCO \ VG 51K 256K 2.54M 271K 515K 724K 4.30M
VG - MS COCO 57K - 2.85M - 556K 718K 4.13M

All 180K 617K 5.39M 658K 1.07M 1.44M 9.18M

Table 1: Amount of data for pre-training. Each image has multiple sentences/questions. ‘Cap’ is caption. ‘VG’ is
Visual Genome. Since MS COCO and VG share 51K images, we list it separately to ensure disjoint image splits.

side helps learn the object relationships, and infer-
ring from the language side helps learn the cross-
modality alignments. Therefore, we perform two
sub-tasks: RoI-Feature Regression regresses the
object RoI feature fj with L2 loss, and Detected-
Label Classification learns the labels of masked
objects with cross-entropy loss. In the ‘Detected-
Label Classification’ sub-task, although most of
our pre-training images have object-level anno-
tations, the ground truth labels of the annotated
objects are inconsistent in different datasets (e.g.,
different number of label classes). For these rea-
sons, we take detected labels output by Faster R-
CNN (Ren et al., 2015). Although detected labels
are noisy, experimental results show that these la-
bels contribute to pre-training in Sec. 5.3.

3.1.3 Cross-Modality Tasks
As shown in the middle-rightmost part of Fig. 2,
to learn a strong cross-modality representation, we
pre-train the LXMERT model with 2 tasks that ex-
plicitly need both language and vision modalities.

Cross-Modality Matching For each sentence,
with a probability of 0.5, we replace it with a mis-
matched2 sentence. Then, we train a classifier to
predict whether an image and a sentence match
each other. This task is similar to ‘Next Sentence
Prediction’ in BERT (Devlin et al., 2019).

Image Question Answering (QA) In order to
enlarge the pre-training dataset (see details in
Sec. 3.2), around 1/3 sentences in the pre-training
data are questions about the images. We ask
the model to predict the answer to these image-
related questions when the image and the ques-
tion are matched (i.e., not randomly replaced in
the cross-modality matching task). We show that

2 We take a sentence from another image as the mis-
matched sentence. Although the sentence and the image still
have chance to match each other, this probability is very low.

pre-training with this image QA leads to a better
cross-modality representation in Sec. 5.2.

3.2 Pre-Training Data
As shown in Table. 1, we aggregate pre-training
data from five vision-and-language datasets whose
images come from MS COCO (Lin et al., 2014)
or Visual Genome (Krishna et al., 2017). Be-
sides the two original captioning datasets, we also
aggregate three large image question answering
(image QA) datasets: VQA v2.0 (Antol et al.,
2015), GQA balanced version (Hudson and Man-
ning, 2019), and VG-QA (Zhu et al., 2016). We
only collect train and dev splits in each dataset to
avoid seeing any test data in pre-training. We con-
duct minimal pre-processing on the five datasets to
create aligned image-and-sentence pairs. For each
image question answering dataset, we take ques-
tions as sentences from the image-and-sentence
data pairs and take answers as labels in the im-
age QA pre-training task (described in Sec. 3.1.3).
This provides us with a large aligned vision-and-
language dataset of 9.18M image-and-sentence
pairs on 180K distinct images. In terms of tokens,
the pre-training data contain around 100M words
and 6.5M image objects.

3.3 Pre-Training Procedure
We pre-train our LXMERT model on the large ag-
gregated dataset (discussed in Sec. 3.2) via the pre-
training tasks (Sec. 3.1). The details about the data
splits are in the Appendix. The input sentences are
split by the WordPiece tokenizer (Wu et al., 2016)
provided in BERT (Devlin et al., 2019). The ob-
jects are detected by Faster R-CNN (Ren et al.,
2015) which is pre-trained on Visual Genome
(provided by Anderson et al. (2018)). We do not
fine-tune the Faster R-CNN detector and freeze
it as a feature extractor. Different from detect-
ing variable numbers of objects in Anderson et al.
(2018), we consistently keep 36 objects for each

LXMERT Aggregated Data: Comparison 
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Number of Images Number of Sentences 
ImageNet (ILSVRC2012): 1.2 M Images BERT: ~3000M Sentences. 



Results 
 

Comparing LXMERT to previous works on multiple datasets. 
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Dataset: Visual Question Answering 
 

Answer a question about 
the image. 
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Answer: Black 
Answer: Bananas 

Antol et al., ICCV 2015. 



Dataset: GQA 
 

Focus on multi-hop 
reasoning. 

45 

Hudson et al., CVPR 2019. 

Does the vehicle near the 
palms look red or blue? 



Dataset: Natural Language for Visual Reasoning 
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Suhr et al., ACL 2019 

The left image contains twice the number 
of dogs as the right image, and at least two 
dogs in total are standing. 

Answer: True 



LXMERT Results 
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Method VQA GQA NLVR2

Binary Number Other Accu Binary Open Accu Cons Accu

Human - - - - 91.2 87.4 89.3 - 96.3
Image Only - - - - 36.1 1.74 17.8 7.40 51.9
Language Only 66.8 31.8 27.6 44.3 61.9 22.7 41.1 4.20 51.1

State-of-the-Art 85.8 53.7 60.7 70.4 76.0 40.4 57.1 12.0 53.5

LXMERT 88.2 54.2 63.1 72.5 77.8 45.0 60.3 42.1 76.2

Table 2: Test-set results. VQA/GQA results are reported on the ‘test-standard’ splits and NLVR2 results are
reported on the unreleased test set (‘Test-U’). The highest method results are in bold. Our LXMERT framework
outperforms previous (comparable) state-of-the-art methods on all three datasets w.r.t. all metrics.

image to maximize the pre-training compute uti-
lization by avoiding padding. For the model archi-
tecture, we set the numbers of layers NL, NX, and
NR to 9, 5, and 5 respectively.3 More layers are
used in the language encoder to balance the visual
features extracted from 101-layer Faster R-CNN.
The hidden size 768 is the same as BERTBASE. We
pre-train all parameters in encoders and embed-
ding layers from scratch (i.e., model parameters
are randomly initialized or set to zero). We also
show results of loading pre-trained BERT parame-
ters in Sec. 5.1. LXMERT is pre-trained with mul-
tiple pre-training tasks and hence multiple losses
are involved. We add these losses with equal
weights. For the image QA pre-training tasks, we
create a joint answer table with 9500 answer can-
didates which roughly cover 90% questions in all
three image QA datasets.

We take Adam (Kingma and Ba, 2014) as
the optimizer with a linear-decayed learning-rate
schedule (Devlin et al., 2019) and a peak learn-
ing rate at 1e � 4. We train the model for 20

epochs (i.e., roughly 670K4 optimization steps)
with a batch size of 256. We only pre-train with
image QA task (see Sec. 3.1.3) for the last 10

epochs, because this task converges faster and em-
pirically needs a smaller learning rate. The whole
pre-training process takes 10 days on 4 Titan Xp.

Fine-tuning Fine-tuning is fast and robust. We
only perform necessary modification to our model
with respect to different tasks (details in Sec. 4.2).
We use a learning rate of 1e� 5 or 5e� 5, a batch
size of 32, and fine-tune the model from our pre-

3If we count a single modality layer as one half cross-
modality layer, the equivalent number of cross-modality lay-
ers is (9 + 5)/2 + 5 = 12, which is same as the number of
layers in BERTBASE.

4For comparison, ResNet on ImageNet classification
takes 600K steps and BERT takes 1000K steps.

trained parameters for 4 epochs.

4 Experimental Setup and Results

In this section, we first introduce the datasets that
are used to evaluate our LXMERT framework and
empirically compare our single-model results with
previous best results.

4.1 Evaluated Datasets
We use three datasets for evaluating our LXMERT
framework: VQA v2.0 dataset (Goyal et al.,
2017), GQA (Hudson and Manning, 2019), and
NLVR2. See details in Appendix.

4.2 Implementation Details
On VQA and GQA, we fine-tune our model from
the pre-trained snapshot without data augmenta-
tion (analysis in Sec. 5.2). When training GQA,
we only take raw questions and raw images as in-
puts and do not use other supervisions (e.g., func-
tional programs and scene graphs). Since each da-
tum in NLVR2 has two natural images img0, img1

and one language statement s, we use LXMERT
to encode the two image-statement pairs (img0, s)

and (img1, s), then train a classifier based on the
concatenation of the two cross-modality outputs.
More details in Appendix.

4.3 Empirical Comparison Results
We compare our single-model results with pre-
vious best published results on VQA/GQA test-
standard sets and NLVR2 public test set. Be-
sides previous state-of-the-art (SotA) methods, we
also show the human performance and image-
only/language-only results when available.

VQA The SotA result is BAN+Counter in Kim
et al. (2018), which achieves the best accuracy
among other recent works: MFH (Yu et al.,

+ 2.1% on VQA          + 3.2% on GQA      + 22.7% on NLVR2 



Recent Progress on Visual Question Answering 

48 

70.35 70.24 

May, 2019 Oct, 2019 May, 2018 
69.87 

70.90 

70.34 

BAN  
[Kim, NIPS18] 

Pythia  
[Jiang, 18] 

MCAN  
[Yu, CVPR19] 

DFAF 
[Gao, CVPR19] 

Cycle-Cons 
[Shah, CVPR19] 

70.28 

MLIN 
[Gao, ICCV19] 

71% 

70% 

72% 

73% 

Vision-and-Language Pre-trained 

Train from scratch 



Recent Progress on Visual Question Answering 

49 

70.35 70.24 

May, 2019 Oct, 2019 May, 2018 
69.87 

72.54 

70.90 

70.34 

BAN  
[Kim, NIPS18] 

Pythia  
[Jiang, 18] 

MCAN  
[Yu, CVPR19] 

DFAF 
[Gao, CVPR19] 

Cycle-Cons 
[Shah, CVPR19] 

LXMERT 
[Tan, EMNLP19] 

70.28 

MLIN 
[Gao, ICCV19] 

71% 

70% 

72% 

73% 

Vision-and-Language Pre-trained 

Train from scratch 

70.92 

ViLBERT 
[Lu, NeurIPS19] 



Recent Progress on Visual Question Answering 

50 

70.35 70.24 

May, 2019 Oct, 2019 May, 2018 
69.87 

70.81 

71.3 

70.83 

71.00 
70.92 

72.54 

70.90 

70.34 

BAN  
[Kim, NIPS18] 

Pythia  
[Jiang, 18] 

MCAN  
[Yu, CVPR19] 

DFAF 
[Gao, CVPR19] 

Cycle-Cons 
[Shah, CVPR19] 

LXMERT 
[Tan, EMNLP19] 

ViLBERT 
[Lu, NeurIPS19] 

VisualBERT 
[Li, 2019] 

MLIN+BERT 
[Gao, ICCV19] 

VL-BERT 
[Su, 2019] 

DFAF+BERT 
[Gao, CVPR19] 

72.46 

UNITER 
[Chen, 2019] 

70.28 

MLIN 
[Gao, ICCV19] 

71% 

70% 

72% 

73% 

Vision-and-Language Pre-trained 

Train from scratch 



LXMERT Results 

51 

Top-1 on Natural Language and Visual 
Reasoning task. 
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Top-1 on Natural Language and Visual 
Reasoning task. 

Best result with standard visual feature; 
3rd in VQA challenge 2019. 
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Top-1 on Natural Language and Visual 
Reasoning task. 

Best result with standard visual feature; 
3rd in VQA challenge 2019. 

Best result with standard visual feature; 
3rd in GQA challenge 2019. 
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Ablation studies and attention graphs. 
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Analysis: LXMERT Ablation Results 
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2018), Pythia (Jiang et al., 2018), DFAF (Gao
et al., 2019a), and Cycle-Consistency (Shah et al.,
2019).5 LXMERT improves the SotA over-
all accuracy (‘Accu’ in Table 2) by 2.1% and
has 2.4% improvement on the ‘Binary’/‘Other’
question sub-categories. Although LXMERT
does not explicitly take a counting module as in
BAN+Counter, our result on the counting-related
questions (‘Number’) is still equal or better.6

GQA The GQA (Hudson and Manning, 2019)
SotA result is taken from BAN (Kim et al., 2018)
on the public leaderbaord. Our 3.2% accuracy
gain over the SotA GQA method is higher than
VQA, possibly because GQA requires more vi-
sual reasoning. Thus our framework, with novel
encoders and cross-modality pre-training, is suit-
able and achieves a 4.6% improvement on open-
domain questions (‘Open’ in Table 2).7

NLVR2 NLVR2 (Suhr et al., 2019) is a chal-
lenging visual reasoning dataset where some ex-
isting approaches (Hu et al., 2017; Perez et al.,
2018) fail, and the SotA method is ‘MaxEnt’ in
Suhr et al. (2019). The failure of existing meth-
ods (and our model w/o pre-training in Sec. 5.1)
indicates that the connection between vision and
language may not be end-to-end learned in a
complex vision-and-language task without large-
scale pre-training. However, with our novel pre-
training strategies in building the cross-modality
connections, we significantly improve the accu-
racy (‘Accu’ of 76.2% on unreleased test set ‘Test-
U’, in Table 2) by 22%. Another evaluation met-
ric consistency measures the proportion of unique
sentences for which all related image pairs8 are
correctly predicted. Our LXMERT model im-
proves consistency (‘Cons’) to 42.1% (i.e., by 3.5

times).9

5 These are state-of-the-art methods at the time of our
EMNLP May 21, 2019 submission deadline. Since then,
there have been some recently updated papers such as
MCAN (Yu et al., 2019b), MUAN (Yu et al., 2019a), and
MLI (Gao et al., 2019b). MCAN (VQA challenge ver-
sion) uses stronger mixture of detection features and achieves
72.8% on VQA 2.0 test-standard. MUAN achieves 71.1%
(compared to our 72.5%).

6Our result on VQA v2.0 ‘test-dev’ is 72.4%.
7Our result on GQA ‘test-dev’ is 60.0%.
8Each statement in NLVR2 is related to multiple image

pairs in order to balance the dataset answer distribution.
9These are the unreleased test set (‘Test-U’) results. On

the public test set (‘Test-P’), LXMERT achieves 74.5% Accu
and 39.7% Cons.

Method VQA GQA NLVR2

LSTM + BUTD 63.1 50.0 52.6
BERT + BUTD 62.8 52.1 51.9

BERT + 1 CrossAtt 64.6 55.5 52.4
BERT + 2 CrossAtt 65.8 56.1 50.9
BERT + 3 CrossAtt 66.4 56.6 50.9
BERT + 4 CrossAtt 66.4 56.0 50.9
BERT + 5 CrossAtt 66.5 56.3 50.9

Train + BERT 65.5 56.2 50.9
Train + scratch 65.1 50.0 50.9
Pre-train + BERT 68.8 58.3 70.1
Pre-train + scratch 69.9 60.0 74.9

Table 3: Dev-set accuracy of using BERT.

5 Analysis

In this section, we analyze our LXMERT
framework by comparing it with some alter-
native choices or by excluding certain model
components/pre-training strategies.

5.1 BERT versus LXMERT
BERT (Devlin et al., 2019) is a pre-trained lan-
guage encoder which improves several language
tasks. As shown in Table 3, we discuss sev-
eral ways to incorporate a BERTBASE pre-trained
model for vision-language tasks and empirically
compare it with our LXMERT approach. Al-
though our full model achieves accuracy of 74.9%
on NLVR2, all results without LXMERT pre-
training is around 22% absolute lower.

BERT+BUTD Bottom-Up and Top-Down
(BUTD) attention (Anderson et al., 2018) method
encodes questions with GRU (Chung et al.,
2015), then attends to object RoI features {fj} to
predict the answer. We apply BERT to BUTD by
replacing its GRU language encoder with BERT.
As shown in the first block of Table. 3, results of
BERT encoder is comparable to LSTM encoder.

BERT+CrossAtt Since BUTD only takes the
raw RoI features {fj} without considering the ob-
ject positions {pj} and object relationships, we
enhance BERT+BUTD with our novel position-
aware object embedding (in Sec. 2.1) and cross-
modality layers (in Sec. 2.2). As shown in the
second block of Table 3, the result of 1 cross-
modality layer is better than BUTD, while stack-
ing more cross-modality layers further improves
it. However, without our cross-modality pre-

Results of BERT  
encoder are similar to  
LSTM for the baseline  
model. 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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2018), Pythia (Jiang et al., 2018), DFAF (Gao
et al., 2019a), and Cycle-Consistency (Shah et al.,
2019).5 LXMERT improves the SotA over-
all accuracy (‘Accu’ in Table 2) by 2.1% and
has 2.4% improvement on the ‘Binary’/‘Other’
question sub-categories. Although LXMERT
does not explicitly take a counting module as in
BAN+Counter, our result on the counting-related
questions (‘Number’) is still equal or better.6

GQA The GQA (Hudson and Manning, 2019)
SotA result is taken from BAN (Kim et al., 2018)
on the public leaderbaord. Our 3.2% accuracy
gain over the SotA GQA method is higher than
VQA, possibly because GQA requires more vi-
sual reasoning. Thus our framework, with novel
encoders and cross-modality pre-training, is suit-
able and achieves a 4.6% improvement on open-
domain questions (‘Open’ in Table 2).7

NLVR2 NLVR2 (Suhr et al., 2019) is a chal-
lenging visual reasoning dataset where some ex-
isting approaches (Hu et al., 2017; Perez et al.,
2018) fail, and the SotA method is ‘MaxEnt’ in
Suhr et al. (2019). The failure of existing meth-
ods (and our model w/o pre-training in Sec. 5.1)
indicates that the connection between vision and
language may not be end-to-end learned in a
complex vision-and-language task without large-
scale pre-training. However, with our novel pre-
training strategies in building the cross-modality
connections, we significantly improve the accu-
racy (‘Accu’ of 76.2% on unreleased test set ‘Test-
U’, in Table 2) by 22%. Another evaluation met-
ric consistency measures the proportion of unique
sentences for which all related image pairs8 are
correctly predicted. Our LXMERT model im-
proves consistency (‘Cons’) to 42.1% (i.e., by 3.5

times).9

5 These are state-of-the-art methods at the time of our
EMNLP May 21, 2019 submission deadline. Since then,
there have been some recently updated papers such as
MCAN (Yu et al., 2019b), MUAN (Yu et al., 2019a), and
MLI (Gao et al., 2019b). MCAN (VQA challenge ver-
sion) uses stronger mixture of detection features and achieves
72.8% on VQA 2.0 test-standard. MUAN achieves 71.1%
(compared to our 72.5%).

6Our result on VQA v2.0 ‘test-dev’ is 72.4%.
7Our result on GQA ‘test-dev’ is 60.0%.
8Each statement in NLVR2 is related to multiple image

pairs in order to balance the dataset answer distribution.
9These are the unreleased test set (‘Test-U’) results. On

the public test set (‘Test-P’), LXMERT achieves 74.5% Accu
and 39.7% Cons.

Method VQA GQA NLVR2

LSTM + BUTD 63.1 50.0 52.6
BERT + BUTD 62.8 52.1 51.9

BERT + 1 CrossAtt 64.6 55.5 52.4
BERT + 2 CrossAtt 65.8 56.1 50.9
BERT + 3 CrossAtt 66.4 56.6 50.9
BERT + 4 CrossAtt 66.4 56.0 50.9
BERT + 5 CrossAtt 66.5 56.3 50.9

Train + BERT 65.5 56.2 50.9
Train + scratch 65.1 50.0 50.9
Pre-train + BERT 68.8 58.3 70.1
Pre-train + scratch 69.9 60.0 74.9

Table 3: Dev-set accuracy of using BERT.

5 Analysis

In this section, we analyze our LXMERT
framework by comparing it with some alter-
native choices or by excluding certain model
components/pre-training strategies.

5.1 BERT versus LXMERT
BERT (Devlin et al., 2019) is a pre-trained lan-
guage encoder which improves several language
tasks. As shown in Table 3, we discuss sev-
eral ways to incorporate a BERTBASE pre-trained
model for vision-language tasks and empirically
compare it with our LXMERT approach. Al-
though our full model achieves accuracy of 74.9%
on NLVR2, all results without LXMERT pre-
training is around 22% absolute lower.

BERT+BUTD Bottom-Up and Top-Down
(BUTD) attention (Anderson et al., 2018) method
encodes questions with GRU (Chung et al.,
2015), then attends to object RoI features {fj} to
predict the answer. We apply BERT to BUTD by
replacing its GRU language encoder with BERT.
As shown in the first block of Table. 3, results of
BERT encoder is comparable to LSTM encoder.

BERT+CrossAtt Since BUTD only takes the
raw RoI features {fj} without considering the ob-
ject positions {pj} and object relationships, we
enhance BERT+BUTD with our novel position-
aware object embedding (in Sec. 2.1) and cross-
modality layers (in Sec. 2.2). As shown in the
second block of Table 3, the result of 1 cross-
modality layer is better than BUTD, while stack-
ing more cross-modality layers further improves
it. However, without our cross-modality pre-

Stacking cross- 
modality layers helps. 

- 1.0%  on NLVR2 
+ 4.5% on GQA 
+ 3.6% on VQA 
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2018), Pythia (Jiang et al., 2018), DFAF (Gao
et al., 2019a), and Cycle-Consistency (Shah et al.,
2019).5 LXMERT improves the SotA over-
all accuracy (‘Accu’ in Table 2) by 2.1% and
has 2.4% improvement on the ‘Binary’/‘Other’
question sub-categories. Although LXMERT
does not explicitly take a counting module as in
BAN+Counter, our result on the counting-related
questions (‘Number’) is still equal or better.6

GQA The GQA (Hudson and Manning, 2019)
SotA result is taken from BAN (Kim et al., 2018)
on the public leaderbaord. Our 3.2% accuracy
gain over the SotA GQA method is higher than
VQA, possibly because GQA requires more vi-
sual reasoning. Thus our framework, with novel
encoders and cross-modality pre-training, is suit-
able and achieves a 4.6% improvement on open-
domain questions (‘Open’ in Table 2).7

NLVR2 NLVR2 (Suhr et al., 2019) is a chal-
lenging visual reasoning dataset where some ex-
isting approaches (Hu et al., 2017; Perez et al.,
2018) fail, and the SotA method is ‘MaxEnt’ in
Suhr et al. (2019). The failure of existing meth-
ods (and our model w/o pre-training in Sec. 5.1)
indicates that the connection between vision and
language may not be end-to-end learned in a
complex vision-and-language task without large-
scale pre-training. However, with our novel pre-
training strategies in building the cross-modality
connections, we significantly improve the accu-
racy (‘Accu’ of 76.2% on unreleased test set ‘Test-
U’, in Table 2) by 22%. Another evaluation met-
ric consistency measures the proportion of unique
sentences for which all related image pairs8 are
correctly predicted. Our LXMERT model im-
proves consistency (‘Cons’) to 42.1% (i.e., by 3.5

times).9

5 These are state-of-the-art methods at the time of our
EMNLP May 21, 2019 submission deadline. Since then,
there have been some recently updated papers such as
MCAN (Yu et al., 2019b), MUAN (Yu et al., 2019a), and
MLI (Gao et al., 2019b). MCAN (VQA challenge ver-
sion) uses stronger mixture of detection features and achieves
72.8% on VQA 2.0 test-standard. MUAN achieves 71.1%
(compared to our 72.5%).

6Our result on VQA v2.0 ‘test-dev’ is 72.4%.
7Our result on GQA ‘test-dev’ is 60.0%.
8Each statement in NLVR2 is related to multiple image

pairs in order to balance the dataset answer distribution.
9These are the unreleased test set (‘Test-U’) results. On

the public test set (‘Test-P’), LXMERT achieves 74.5% Accu
and 39.7% Cons.

Method VQA GQA NLVR2

LSTM + BUTD 63.1 50.0 52.6
BERT + BUTD 62.8 52.1 51.9

BERT + 1 CrossAtt 64.6 55.5 52.4
BERT + 2 CrossAtt 65.8 56.1 50.9
BERT + 3 CrossAtt 66.4 56.6 50.9
BERT + 4 CrossAtt 66.4 56.0 50.9
BERT + 5 CrossAtt 66.5 56.3 50.9

Train + BERT 65.5 56.2 50.9
Train + scratch 65.1 50.0 50.9
Pre-train + BERT 68.8 58.3 70.1
Pre-train + scratch 69.9 60.0 74.9

Table 3: Dev-set accuracy of using BERT.

5 Analysis

In this section, we analyze our LXMERT
framework by comparing it with some alter-
native choices or by excluding certain model
components/pre-training strategies.

5.1 BERT versus LXMERT
BERT (Devlin et al., 2019) is a pre-trained lan-
guage encoder which improves several language
tasks. As shown in Table 3, we discuss sev-
eral ways to incorporate a BERTBASE pre-trained
model for vision-language tasks and empirically
compare it with our LXMERT approach. Al-
though our full model achieves accuracy of 74.9%
on NLVR2, all results without LXMERT pre-
training is around 22% absolute lower.

BERT+BUTD Bottom-Up and Top-Down
(BUTD) attention (Anderson et al., 2018) method
encodes questions with GRU (Chung et al.,
2015), then attends to object RoI features {fj} to
predict the answer. We apply BERT to BUTD by
replacing its GRU language encoder with BERT.
As shown in the first block of Table. 3, results of
BERT encoder is comparable to LSTM encoder.

BERT+CrossAtt Since BUTD only takes the
raw RoI features {fj} without considering the ob-
ject positions {pj} and object relationships, we
enhance BERT+BUTD with our novel position-
aware object embedding (in Sec. 2.1) and cross-
modality layers (in Sec. 2.2). As shown in the
second block of Table 3, the result of 1 cross-
modality layer is better than BUTD, while stack-
ing more cross-modality layers further improves
it. However, without our cross-modality pre-

Pre-training boosts 
the performance. 
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2018), Pythia (Jiang et al., 2018), DFAF (Gao
et al., 2019a), and Cycle-Consistency (Shah et al.,
2019).5 LXMERT improves the SotA over-
all accuracy (‘Accu’ in Table 2) by 2.1% and
has 2.4% improvement on the ‘Binary’/‘Other’
question sub-categories. Although LXMERT
does not explicitly take a counting module as in
BAN+Counter, our result on the counting-related
questions (‘Number’) is still equal or better.6

GQA The GQA (Hudson and Manning, 2019)
SotA result is taken from BAN (Kim et al., 2018)
on the public leaderbaord. Our 3.2% accuracy
gain over the SotA GQA method is higher than
VQA, possibly because GQA requires more vi-
sual reasoning. Thus our framework, with novel
encoders and cross-modality pre-training, is suit-
able and achieves a 4.6% improvement on open-
domain questions (‘Open’ in Table 2).7

NLVR2 NLVR2 (Suhr et al., 2019) is a chal-
lenging visual reasoning dataset where some ex-
isting approaches (Hu et al., 2017; Perez et al.,
2018) fail, and the SotA method is ‘MaxEnt’ in
Suhr et al. (2019). The failure of existing meth-
ods (and our model w/o pre-training in Sec. 5.1)
indicates that the connection between vision and
language may not be end-to-end learned in a
complex vision-and-language task without large-
scale pre-training. However, with our novel pre-
training strategies in building the cross-modality
connections, we significantly improve the accu-
racy (‘Accu’ of 76.2% on unreleased test set ‘Test-
U’, in Table 2) by 22%. Another evaluation met-
ric consistency measures the proportion of unique
sentences for which all related image pairs8 are
correctly predicted. Our LXMERT model im-
proves consistency (‘Cons’) to 42.1% (i.e., by 3.5

times).9

5 These are state-of-the-art methods at the time of our
EMNLP May 21, 2019 submission deadline. Since then,
there have been some recently updated papers such as
MCAN (Yu et al., 2019b), MUAN (Yu et al., 2019a), and
MLI (Gao et al., 2019b). MCAN (VQA challenge ver-
sion) uses stronger mixture of detection features and achieves
72.8% on VQA 2.0 test-standard. MUAN achieves 71.1%
(compared to our 72.5%).

6Our result on VQA v2.0 ‘test-dev’ is 72.4%.
7Our result on GQA ‘test-dev’ is 60.0%.
8Each statement in NLVR2 is related to multiple image

pairs in order to balance the dataset answer distribution.
9These are the unreleased test set (‘Test-U’) results. On

the public test set (‘Test-P’), LXMERT achieves 74.5% Accu
and 39.7% Cons.

Method VQA GQA NLVR2

LSTM + BUTD 63.1 50.0 52.6
BERT + BUTD 62.8 52.1 51.9

BERT + 1 CrossAtt 64.6 55.5 52.4
BERT + 2 CrossAtt 65.8 56.1 50.9
BERT + 3 CrossAtt 66.4 56.6 50.9
BERT + 4 CrossAtt 66.4 56.0 50.9
BERT + 5 CrossAtt 66.5 56.3 50.9

Train + BERT 65.5 56.2 50.9
Train + scratch 65.1 50.0 50.9
Pre-train + BERT 68.8 58.3 70.1
Pre-train + scratch 69.9 60.0 74.9

Table 3: Dev-set accuracy of using BERT.

5 Analysis

In this section, we analyze our LXMERT
framework by comparing it with some alter-
native choices or by excluding certain model
components/pre-training strategies.

5.1 BERT versus LXMERT
BERT (Devlin et al., 2019) is a pre-trained lan-
guage encoder which improves several language
tasks. As shown in Table 3, we discuss sev-
eral ways to incorporate a BERTBASE pre-trained
model for vision-language tasks and empirically
compare it with our LXMERT approach. Al-
though our full model achieves accuracy of 74.9%
on NLVR2, all results without LXMERT pre-
training is around 22% absolute lower.

BERT+BUTD Bottom-Up and Top-Down
(BUTD) attention (Anderson et al., 2018) method
encodes questions with GRU (Chung et al.,
2015), then attends to object RoI features {fj} to
predict the answer. We apply BERT to BUTD by
replacing its GRU language encoder with BERT.
As shown in the first block of Table. 3, results of
BERT encoder is comparable to LSTM encoder.

BERT+CrossAtt Since BUTD only takes the
raw RoI features {fj} without considering the ob-
ject positions {pj} and object relationships, we
enhance BERT+BUTD with our novel position-
aware object embedding (in Sec. 2.1) and cross-
modality layers (in Sec. 2.2). As shown in the
second block of Table 3, the result of 1 cross-
modality layer is better than BUTD, while stack-
ing more cross-modality layers further improves
it. However, without our cross-modality pre-

Pre-training boosts 
the performance. 

+ 24.0% on NLVR2 
+ 10.0% on GQA 
+ 4.4%   on VQA 
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2018), Pythia (Jiang et al., 2018), DFAF (Gao
et al., 2019a), and Cycle-Consistency (Shah et al.,
2019).5 LXMERT improves the SotA over-
all accuracy (‘Accu’ in Table 2) by 2.1% and
has 2.4% improvement on the ‘Binary’/‘Other’
question sub-categories. Although LXMERT
does not explicitly take a counting module as in
BAN+Counter, our result on the counting-related
questions (‘Number’) is still equal or better.6

GQA The GQA (Hudson and Manning, 2019)
SotA result is taken from BAN (Kim et al., 2018)
on the public leaderbaord. Our 3.2% accuracy
gain over the SotA GQA method is higher than
VQA, possibly because GQA requires more vi-
sual reasoning. Thus our framework, with novel
encoders and cross-modality pre-training, is suit-
able and achieves a 4.6% improvement on open-
domain questions (‘Open’ in Table 2).7

NLVR2 NLVR2 (Suhr et al., 2019) is a chal-
lenging visual reasoning dataset where some ex-
isting approaches (Hu et al., 2017; Perez et al.,
2018) fail, and the SotA method is ‘MaxEnt’ in
Suhr et al. (2019). The failure of existing meth-
ods (and our model w/o pre-training in Sec. 5.1)
indicates that the connection between vision and
language may not be end-to-end learned in a
complex vision-and-language task without large-
scale pre-training. However, with our novel pre-
training strategies in building the cross-modality
connections, we significantly improve the accu-
racy (‘Accu’ of 76.2% on unreleased test set ‘Test-
U’, in Table 2) by 22%. Another evaluation met-
ric consistency measures the proportion of unique
sentences for which all related image pairs8 are
correctly predicted. Our LXMERT model im-
proves consistency (‘Cons’) to 42.1% (i.e., by 3.5

times).9

5 These are state-of-the-art methods at the time of our
EMNLP May 21, 2019 submission deadline. Since then,
there have been some recently updated papers such as
MCAN (Yu et al., 2019b), MUAN (Yu et al., 2019a), and
MLI (Gao et al., 2019b). MCAN (VQA challenge ver-
sion) uses stronger mixture of detection features and achieves
72.8% on VQA 2.0 test-standard. MUAN achieves 71.1%
(compared to our 72.5%).

6Our result on VQA v2.0 ‘test-dev’ is 72.4%.
7Our result on GQA ‘test-dev’ is 60.0%.
8Each statement in NLVR2 is related to multiple image

pairs in order to balance the dataset answer distribution.
9These are the unreleased test set (‘Test-U’) results. On

the public test set (‘Test-P’), LXMERT achieves 74.5% Accu
and 39.7% Cons.

Method VQA GQA NLVR2

LSTM + BUTD 63.1 50.0 52.6
BERT + BUTD 62.8 52.1 51.9

BERT + 1 CrossAtt 64.6 55.5 52.4
BERT + 2 CrossAtt 65.8 56.1 50.9
BERT + 3 CrossAtt 66.4 56.6 50.9
BERT + 4 CrossAtt 66.4 56.0 50.9
BERT + 5 CrossAtt 66.5 56.3 50.9

Train + BERT 65.5 56.2 50.9
Train + scratch 65.1 50.0 50.9
Pre-train + BERT 68.8 58.3 70.1
Pre-train + scratch 69.9 60.0 74.9

Table 3: Dev-set accuracy of using BERT.

5 Analysis

In this section, we analyze our LXMERT
framework by comparing it with some alter-
native choices or by excluding certain model
components/pre-training strategies.

5.1 BERT versus LXMERT
BERT (Devlin et al., 2019) is a pre-trained lan-
guage encoder which improves several language
tasks. As shown in Table 3, we discuss sev-
eral ways to incorporate a BERTBASE pre-trained
model for vision-language tasks and empirically
compare it with our LXMERT approach. Al-
though our full model achieves accuracy of 74.9%
on NLVR2, all results without LXMERT pre-
training is around 22% absolute lower.

BERT+BUTD Bottom-Up and Top-Down
(BUTD) attention (Anderson et al., 2018) method
encodes questions with GRU (Chung et al.,
2015), then attends to object RoI features {fj} to
predict the answer. We apply BERT to BUTD by
replacing its GRU language encoder with BERT.
As shown in the first block of Table. 3, results of
BERT encoder is comparable to LSTM encoder.

BERT+CrossAtt Since BUTD only takes the
raw RoI features {fj} without considering the ob-
ject positions {pj} and object relationships, we
enhance BERT+BUTD with our novel position-
aware object embedding (in Sec. 2.1) and cross-
modality layers (in Sec. 2.2). As shown in the
second block of Table 3, the result of 1 cross-
modality layer is better than BUTD, while stack-
ing more cross-modality layers further improves
it. However, without our cross-modality pre-

Loading pre-trained  
BERT weights into  
LXMERT pre-training  
does not help. 

Language 
Encoder 
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Is it warm enough 
for him to be 
wearing shorts? 

Language 
Encoder 

Cross- 
Modality 
Encoder 

Visual 
Encoder 
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Is it warm enough 
for him to be 
wearing shorts? 

Language 
Encoder 

Cross- 
Modality 
Encoder 

Visual 
Encoder 
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Example: Is it warm enough for him to be wearing shorts? 

LXMERT Lang Layer 2: Attend to the next words. BERT Layer 3: Attend to the next words. 

http://exbert.net/ 
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LXMERT Lang Layer 4: Attend to the previous words. BERT Layer 4: Attend to the previous words. 

Example: Is it warm enough for him to be wearing shorts? 

http://exbert.net/ 



Attention Graphs: Visual Encoder 
 
The most attended visual 
objects are: 

A. Separated. 
B. Lied at the center of 

semantic regions. 
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Attention Graphs: Visual Encoder 
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Attention Graphs: Visual Encoder 
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Directly applying self-attention on 
object sequences would lead to a 
one-hot attention. [Jinwon An] 
   

LXMERT has less of this issue. 



Attention Graphs: Cross-Modality Encoder 
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Attention are focusing on  
Nouns and Pronouns. 

Is it warm enough for him to be wearing shorts ? 



Attention Graphs: Cross-Modality Encoder 
 

68 

Can you see the grass ? 
For Non-plural Nouns, the attention 
will focus on the Articles! 



Attention Graphs: Cross-Modality Encoder 
 

69 

For Non-plural Nouns, the attention 
will focus on the Articles! 

What colors are the pole the horse  
is jumping over? 



Attention Graphs: Cross-Modality Encoder 
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What colors are the pole the horse  
is jumping over? Articles are possibly serving as 

special tokens (e.g., [CLS], [SEP]). 



What’s Next? 
 

The future of vision-and-language pre-training. 
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Data 
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Short Sentence Long Paragraph 

Caption, Question,  
Instruction, ……. 

News, Books, 
Tutorial, ……. 



Data 
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Unbalanced Data 

An orange cat sits in the 
suitcase ready to be packed.  

In wiki/news/tutorial, they 
usually have long text and 
only one image. 

Balanced Data 



Data 
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Limited Aligned Data (Nearly) Unlimited 
Unaligned Data 



Tasks 
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An orange cat sits in the 
suitcase ready to be packed. 

Pre-training tasks which 
capture pairwise noun-
noun and noun-verb 
relationships. 



LXR Thanks!! 
 

Code available at: github.com/airsplay/lxmert  
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