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Abstract—In this paper, we present a novel iterative median
filter based strategy to improve the quality of the depth maps
provided by sensors like Microsoft Kinect. The quality of the
depth map is improved in two aspects, by filling holes present
in the maps and by addressing the random noise. The holes are
filled by iteratively applying a median based filter which takes
into account the RGB components as well. The color similarity is
measured by finding the absolute difference of the neighbourhood
pixels and the median value. The hole filled depth map is further
improved by applying a bilateral filter and processing the detail
layer separately using Non-Local Denoising. The denoised detail
layer is combined with the base layer to obtain a sharp and
accurate depth map. We show that the proposed approach is
able to generate high quality depth maps which can be quite
useful in improving the performance of various applications of
Microsoft Kinect such as pose estimation, gesture recognition,
skeletal and facial tracking, etc.

I. INTRODUCTION

Microsoft Kinect was developed to accompany the Xbox
360 video game console as a sensor for motion and gesture
recognition [1]. This device employs natural user interface
using gestures and audio [2]. Kinect is based on a web-
cam style peripheral, which has a color camera and a depth
sensor giving a decent resolution of 480×640. The depth
sensor consists of an infra-red (IR) laser projector and a
monochrome sensor. Although developed for indoor gaming
purposes, Kinect is finding applications in various challenging
problems of 3D computer vision. With an increasing number of
Kinect enthusiasts, new and innovative applications are being
released everyday.

Kinect senses the depth of a scene by projecting a struc-
tured pattern of infra-red light and sensing it with a monochro-
matic CMOS sensor. The main problem with Kinect is the
erroneous noise-ridden depth data. The Kinect depth data has
regions where no depth is measured, which are also known
as holes. The holes and noise in the depth data arise due to
various reasons. The primary ones are listed below.

1) Spatial separation between IR camera and IR projec-
tor which leads to object occlusion,

2) Temporal inconsistencies, and
3) Corruption at object edges.

This paper aims to develop a method to improve the
depth map, addressing all the three aspects of inaccuracies
associated with the depth data. Firstly, the color data is used
as a guide to fill in the holes present in the depth map due to

the reasons listed above. This approach is based on a median
filter to mitigate the spatial inconsistencies in the depth map.
The key idea here is that similar looking pixels have similar
depths i.e. neighboring pixels with similar RGB values tend
to have similar depths. The proposed approach then focuses
on denoising the depth data. We employ a bilateral filter to
preserve strong edges in the depth map [3]. The depth map is
decomposed into base and detail layers using the bilateral filter.
A non-local means denoising algorithm is applied to the detail
layer to further enhance the accuracy at the edges [4]. Finally,
the base layer and the modified detail layer are combined to
obtain the desired more accurate depth map. Image inpainting
allows one to fill missing data from the surrounding regions
[5]. The proposed method is compared qualitatively with the
results obtained by applying inpainting algorithm of Telea
[6] instead of the iterative median filter based hole filling
algorithm step in the proposed approach.

Here are the major contributions of this work.

1) The primary contribution of this paper is a novel
way of using the median filter along with RGB
data for depth restoration. Till now, median filters
were combined with a guiding image using traditional
ways like weighted median filter techniques or by
using a truncated neighbourhood. This paper takes
a different approach and modifies the median filter
suitably to incorporate information in RGB data while
not using computationally expensive techniques like
weighted median filter.

2) Another contribution of this paper is the approach to
conduct hole filling using a single depth image rather
than using motion vectors or confidence maps which
require a series of depth images. This approach gives
a unified method without treating the foreground and
background separately while filling the holes.

3) We also propose to use a combined non-local means
and edge preserving filter based denoising scheme to
achieve better, more accurate depth maps.

The rest of the paper is organized as follows. Section II
discusses some relevant works on Kinect depth data restoration
techniques. Then we discuss the effect of spatial distance
between IR camera and the IR projector in section III-A.
In section III-B, we discuss the inconsistencies observed in
the depth map. Section IV-A introduces the median filter
based hole filling strategy. This is the crucial step of the
proposed algorithm. In section IV-B, we discuss some post-
processing steps using bilateral and non-local means filters to



generate more accurate depth maps. In section V, we present a
comparison between results obtained by the proposed approach
and Telea’s inpainting algorithm. We conclude the paper with
pointers for further improvement of the proposed method.

II. RELATED WORK

The use of an iterative diffusion based method that accounts
for both the known depth values and RGB-D segmentation
results to recover missing depth information was proposed
in [7]. This method used graphical processing units (GPUs)
to take advantage of parallelism in the algorithm. In [8],
Camplani and Salgado explored the sources of noise and found
that the Kinect depth values change drastically even for a static
object. This work used an iterative bilateral filter framework
and a confidence map to get the depth values. Their approach
although novel, is limited by the fact that the scene was
assumed to be static. Also computationally expensive joint
bilateral filter is iteratively employed in this paper, which
results in sub-par performance when one uses this method
for real time applications. When motion in the scene is also
considered, this method may fail.

In [9], Shen et al. assume that the scene can be decomposed
into static background and a dynamic foreground comprising
of multiple objects. They do an initial training using scenes
having only the background. The layers are then labelled using
a probabilistic model. Maximum a posteriori (MAP) estimation
is used for labelling to preserve edges.

In [10], Berdnikov and Vatolin identified two different
causes of holes in depth data and separated these causes
automatically in their scheme. They developed suitable hole
filling algorithms for each case and came up with an adap-
tive algorithm. Although this scheme is better than a naive
approach to use a simple Gaussian filter, it fails to incorporate
edge information provided by the color image. Alternately, a
temporal filtering can be employed on Kinect RGB-D video
data to achieve stable hole filling [11].

In [12], Milani and Calvagno proposed to split the depth
data into different clusters and different segments are restored
by correction followed by interpolation. This method is more
suitable for layered scenes and is not suitable for any general
real world scene. The segmentation into different depth layers
is very difficult in the case of most natural scenes.

In [13], Schmeing and Jiang addressed the jaggedness of
edges in the depth map. They used superpixels to identify cor-
rect edge information in the RGB image and this information is
used as a guide to improve the edges in the depth map. In [14],
Qi et al. use an inpainting algorithm which integrates non-
local filtering. However, a texture-less depth map may prove
to be a problem where termination boundary for the inpainting
algorithm is difficult to estimate.

There are works which combine a high resolution RGB
image with a low resolution depth map to produce a high
resolution depth map using markov random fields (MRF) [15].
Similar MRF approach has been used by defining prior on
RGB and depth data using Field-of-Experts framework based
on natural image statistics to achieve depth inpainting and
upsampling [16].

III. MOTIVATION: ORIGIN OF HOLES

A. Occlusion

The Kinect device has an IR camera and an IR projector
which are spatially separated. Due to this spatial separation,
the projector and the sensor have slightly different views of
the same object. Hence, there are regions which the IR light
cannot reach due to occlusion but the RGB camera can see.
This results in contiguous chunks of pixels where no depth
measurements are available (see Fig. 1(a)). These holes are
the hardest to fill as no depth information is available for large
groups of pixels. These regions can be filled by extending the
depth of similar looking neighbouring pixels whose depth is
known.

(a) (b)

Fig. 1: Holes due to occlusion

B. Spatial and temporal inconsistencies

Fig. 2: Variation of depth value for a static scene at one pixel
location; Correct depth value is 188.

Kinect gives noisy depth maps where neighbouring pixels
are not coherent. Even though two objects are at the same
depth, Kinect depth data may not be the same for them. This
problem is aggravated by Kinect’s temporal inconsistency. As
Camplani et al. identified in [8], for a static scene at the
same point, there is a wide variation of depth detected as
time evolves. These fluctuations seriously impede us from
taking the time variation as additional information to restore
the depth map (see Fig. 2). In the case of a pixel present inside
a hole, the depth is not detected for as long as 20 consecutive
frames. These problems encourage us to use the median of
the neighbourhood of a pixel to restore depth rather than an
iterative joint bilateral filter or a filter which uses temporal
information or a combination of both. Kinect depth maps have



highly irregular and jagged profiles at object edges. Depths of
specular surfaces and black coloured objects in the scene are
also difficult to detect.

IV. PROPOSED APPROACH

The general outline of the proposed approach is shown in
Fig. 3. The iterative median filter based hole filling step is
described in section IV-A. After the holes in the depth image
are filled by an iterative algorithm, the depth image is split
into a base layer and a detail layer using a bilateral filter.
The detail layer contains most of the noise and finer depth
variations. Hence, it is processed using a non-local means filter
to improve the accuracy at the edges. It is then combined with
the base layer to get the final improved depth map. This process
is discussed in detail in section IV-B.

A. Iterative Median filter based hole filling

The median filter is resistant to shot noise and is edge
preserving to some extent. Hence, it is a good choice to fill
the holes described in section III. Though it works well in the
case of spatial inconsistencies while still preserving edges, it
fails to fill holes as no depth value is available for large regions
around the holes. Hence it needs to be modified suitably to fill
the holes.

In our approach, we consider the RGB image as a guide
for detecting object boundaries and to fill the holes. For each
pixel location in the RGB image, we find out the region in its
neighbourhood which is similar to its median value and then
use this information to fill the holes.

Fig. 3: The Proposed Approach

If there are no holes in the depth map provided by Kinect,
the median filter is ideal to mitigate the noise due to temporal
inconsistencies. Hence we would like this algorithm to behave
as a simple median filter in a case where there are no holes. We
shall discuss the proposed algorithm in detail now for a gray-
scale image. In the case of an RGB image, the same process
can be extended using the data in all three channels.

Consider a single channel of an RGB image I(x, y),
where x and y denote pixel co-ordinates in an image grid
Ω. Let NI(x, y) be the neighbourhood for the pixel location
(x, y). We use a neighbourhood of 3× 3 in this work. Hence
NI(x, y) is a 9-dimensional neighbourhood intensity vector
corresponding to each pixel location (x, y). In the following
equations, let MED denote the median of an array of intensity
or depth values.

MI(x, y) = MED(NI(x, y)) (1)

We subtract the median MI(x, y) from each pixel in the
neighbourhood of a pixel at (x, y) . To get a measure of the
similarity, we threshold it with a fixed gray scale threshold Cth.
This results in another 9-dimensional neighbourhood vector
Ns(x, y) which indicates the gray scale similarity.

N ′I(x, y) = |NI(x, y)−MI(x, y)| (2)

Ns(x, y) =

{
1, if N ′I(x, y) < Cth
0, otherwise

(3)

The similarity neighbourhood vector Ns(x, y) is used as
a guide for depth data restoration. Let ND(x, y) denote a
neighbourhood in the depth map D(x, y) constructed for a
pixel (x, y). For a 3 × 3 neighbourhood, ND(x, y) is a 9-
dimensional vector. Now, for every pixel (x, y), we pre-
calculate MD(x, y).

MD(x, y) = MED(ND(x, y)) (4)

This removes any shot noise in the depth image and
MD(x, y) serves as a reference for depth values. Once
MD(x, y) has been calculated for every pixel location (x, y),
we proceed to the next step. For a given pixel location (x, y),
we perform the following operations.

1) We calculate Md(x, y) as below

Md(x, y) = MED(ND(x, y)) (5)

2) For every pixel location (p, q) in the neighbourhood
of (x, y). MD(p, q) is compared with Md(x, y) at
only those points which were marked similar by the
Ns(x, y).

3) If the difference |MD(p, q) − Md(x, y)| is smaller
than the threshold Dth, the pixel D(p, q) is assigned
the value MD(p, q), else D(p, q) is assigned the value
Md(x, y).

Note that Md(x, y) is different from MD(p, q) and
MD(x, y). MD(p, q) and MD(x, y) are both pre-calculated
while Md(x, y) changes as we update D(p, q). Md(x, y) is
therefore the propogating agent for the depth data into the
holes. As the iteration count increases, Cth is progressively
increased by a small value δ to accommodate the higher vari-
ation generally seen in specular surfaces. The hole threshold
Hth acts as the stopping criterion for the iterative algorithm.
This is justified due to the decrease in the percentage of holes
with the number of iterations for a depth map. This rate of
decrease vary widely for different depth maps depending on
the scene. The complete process is explained in Algorithm 1.

B. Bilateral and Non-local means filtering

We propose two types of smoothing to increase the depth
map accuracy. First, we smooth planar regions to make the
depth variation continuous. Second, we smooth the depth map
along the direction of the edge. A bilateral filter blurs less
textured regions while edges are kept intact [3]. This property
of a bilateral filter is particularly helpful at regions where a
hole is inaccurately filled or in the case of inaccurate depth
propagation at the edges. We can speed up the bilateral filter



Algorithm 1 Iterative Median Filter Based Hole Filling
Require: Cth, Dth, Hth, δ, I,D
1: for all (x, y) ∈ Ω do
2: MD(x, y)←MED(ND(x, y))
3: end for
4: while #holes ≥ Hth do
5: for all (x, y) ∈ Ω do
6: Md(x, y)←MED(ND(x, y)
7: MI(x, y)←MED(NI(x, y)),
8: for all (p, q) ∈ Neighbourhood(x, y) do
9: if |MI(x, y)− I(p, q)| ≤ Cth then

10: Ns(p, q)← 1
11: else
12: Ns(p, q)← 0
13: end if
14: end for
15: . This forms the similarity vector Ns.
16: for all (p, q) ∈ Neighbourhood(x, y) do
17: . Now we check similarity flags from Ns.
18: if

(
(Ns(p, q) == 1)&&(D(p, q) == 0)

)
then

19: if |MD(p, q)−Md(x, y)| ≤ Dth then
20: D(p, q)←MD(p, q)
21: else
22: D(p, q)←Md(x, y)
23: end if
24: end if
25: end for
26: end for
27: Cth ← Cth + δ
28: end while

computation by using a faster approximate implementation
such as the ones proposed by Paris and Durand [17], by Porikli
[18] or by Yang et al. [19].

In many cases, the depth edges are not jagged. Some part
of the edge is detected correctly while the rest may have holes.
The approximate nearest neighbour patches are found using a
patch match algorithm proposed in [20]. A non-local means
filter is then employed to operate on similar looking patches
and average over the matched patches [4]. This increases the
accuracy of depth value filled in the holes.

After the bilateral filtering step, the depth image is split
into a base layer and a detail layer. The base layer, which
consists of the bilateral filtered data is denoted by DB .The
detail layer is denoted by DDet and the median filtered depth
data obtained using Algorithm 1 is denoted by Dnew.

DDet = Dnew −DB (6)

The detail layer contains more noise and the texture infor-
mation than the base layer. Since depth in the real world does
not vary drastically in a given neighbourhood, these variations
are considered noise. Hence, we want to attenuate the subtle
variations present in the detail layer. This layer is denoised
using a non-local means filter and then combined with the
base layer to obtain a more accurate depth map without holes
and noise. The equations below explain the process described
above.

DNLM = NLM(DDet) (7)

Dfinal = DNLM +DB (8)

Dfinal is the final depth map which is obtained after
restoration using the proposed approach.

V. RESULTS

To find the effectiveness of this method, the hole filling
step as depicted in Fig. 3 is replaced by Telea’s inpainting

algorithm. For this purpose, we have used the dataset provided
by Silberman et al. [22]. The dataset is already aligned having
a one-to-one correspondence between the depth map and color
channels. Grayscale versions of the color channels were used
in this study. One can use the entire color channel information
by defining a euclidean distance metric in one’s preferred color
space.

(a) (b) (c) (d)

Fig. 4: (a) Original depth image, (b) Iteration = 3, (c) Iteration
= 6, (d) Iteration = 9

We can see the holes progressively getting filled in Fig. 4 as
the number of iterations increase. Fig. 4(a) shows the original
depth map. Fig. 4(b) shows the result of the iterative median
filter algorithm shown in Algorithm 1 after 3 iterations. We can
observe that some of the holes are getting filled. Fig. 4(c,d)
show the results of Algorithm 1 after 6 and 9 iterations
respectively. After 9 iterations, we can observe that almost
all of the holes have been filled (see Fig. 4(d)).

The importance of δ is illustrated by Fig. 5. In the image
shown in Fig. 5 the scene contains a highly reflective surface
at approximately the same depth. However, the intensity is
varying, which is a violation of our assumption that similar
looking objects should have similar depth. A non-zero δ
ensures that even such areas are filled after a certain number
of iterations (see Fig. 5(c)). However when δ = 0, some parts
of the hole remains even after the same number of iterations
(see Fig. 5(d)). The value of δ should be selected properly in
order to make sure that the accuracy is not compromised for
non-specular surfaces.

Fig. 6 shows the comparison between the hole-filling capa-
bilities of the proposed approach and the inpainting approach
[6]. The difference in the hole-filling capability is evident
from Fig. 6 (a-c). Telea’s inpainting algorithm depends on
the information around the holes. This works well when the
holes are in a homogeneous region [6]. As most of the holes
are present at the edges in the Kinect depth data, inpainting
approach is not quite suitable. The outlined areas in Fig. 6
(a-c) are zoomed into and presented in 6 (d-f). The images in
Fig. 6(d-f) illustrate how the proposed method is much better
than an inpainting approach. The level of noise is drastically
reduced when using the proposed approach. The speckle area
introduced by a weighted sum approach is avoided by the
median filter based approach (Algorithm 1). Also, the proposed
approach sticks to the object edges resulting in clear object
boundaries.

Fig. 7 shows the improvement in the depth data at each
step of the proposed approach. Fig. 7 (a, b) are the RGB-
D images provided by Kinect and Fig. 7(c) is the hole filled
image using Algorithm 1. Figs. 7 (d, e) are the binary images
to illustrate the regions improved by the bilateral filter and the
non-local means filter respectively. Notice that the bilateral
filter improves the depth data at homogeneous regions while



(a) (b) (c) (d)

Fig. 5: Effect of δ: (a) Color image, (b) Depth image, (c) δ = 2, (d) δ = 0, With δ = 0, the holes at reflective surfaces remain.

(a) (b) (c)

(d) (e) (f)

Fig. 6: (a) Original depth image, (b) After inpainting step, (c)
After median hole filling step, (d)-(f) are the zoomed versions
of the outlined area in (a)-(c)

non-local means filter predominantly improves the depth data
along the edges where the holes were present.

(a) (b) (c)

(d) (e) (f)

Fig. 7: (a) Original image, (b) Depth image, (c) After median
hole filling, (d) Region improved by bilateral filter, (e) Region
improved by NLM filter, (f) Final result

In Fig. 8 (a-c), we have considered three different scenes
having varying geometry and depth. Comparing the results
obtained, we can see that the our result produces a more

Test case Mean error in gray value
Fronto-parallel, planar 0.39

Non- fronto parallel, planar 1.2
Edges 4.4

Random 1.63

TABLE I: Comparison with ground truth

accurate depth map. Fig. 8 (j-l) show the final result of the
proposed approach and Fig. 8 (g-i) show the results obtained
using inpainting for hole filling. The median based iterative
hole filling procedure followed by non-local denoising step
(section IV-B) provides a better depth map. This method
considers edges from the beginning and hence crisp edges are
maintained. The object boundaries are sharp and consistent
with the real object boundaries. Also notice that in Fig. 8(a)
there are many black objects for which Kinect could not detect
the depth but the proposed approach is successful in restoring
them.

The proposed approach took approximately 300 seconds
to process a RGB-D image of size 480× 640. This time was
measured on a machine with Intel i7 processor, 8GB RAM
and running MATLAB. The number of iterations performed
by the iterative median filter component was 15.

Comparison with ground truth:
The holes filled by the median based hole filling step were
compared with the ground truth. For this purpose, holes were
introduced purposefully in the depth map provided by the
Kinect. This was done to ensure availability of ground truth
data for a large variety of controlled situations. The quality
of data estimated by the median based hole filling step is
analysed for different situations like, fronto-parallel setting,
planar surfaces, non-planar surfaces and edges.

The size of the holes induced in the depth map was 10×
10 pixels. Algorithm 1 was applied to such test cases till all
the holes were removed.The depth maps used were of 8 bits
per pixel. The errors shown in Table I further reduce as we
apply the post processing steps (section IV-B). The error at the
edges is sharply reduced by the non-local means denoising
step. Some of the limitations of the proposed approach are
listed below.

1) Though the proposed approach produces high quality
restored depth maps, the approach is slow for pro-
cessing real-time video. Using faster algorithms for
finding median will be a small step in this direction.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8: (a)-(c) Color images for three different scene,(d)-(f)
Depth images for three different scene, (g)-(i) Hole filling
using Telea’s inpainting, (j)-(l) Proposed approach

2) The proposed approach depends on the value of δ for
fast convergence. Selection of the most appropriate
value for δ corresponding to a given depth map is a
challenge.

VI. CONCLUSION

In this paper, we have introduced a novel concept of using
an iterative median filter with a guiding gray scale image to fill
holes in the corresponding depth map. We improve the depth
map further by applying a non-local means denoising on the
detail layer which is obtained by passing the median filtered
depth map through a bilateral filter. This method is shown to be
successful in filling holes in depth maps obtained from range
sensors like the Kinect. When there are no large contiguous
holes, this filter acts just like a traditional median filter over
the depth map. As the crucial hole filling step proposed in
Algorithm 1 consists of only a comparison in contrast to
weighted sums, this procedure is simple to implement even
on embedded platforms where divisions are costly. This work
opens up new possibilities of computer vision applications with
RGB-D data. The depth map provided by Kinect sensor has
been used in a variety of challenging applications in computer
vision such as pose estimation, skeletal tracking, gesture recog-
nition, 3D reconstruction, etc. The proposed approach will act
as a vital tool in supplying accurate depth maps to enhance
the utility of Kinect sensors in such applications. We believe

that incorporating the temporal information in the proposed
approach can lead to a more robust algorithm in future.

REFERENCES

[1] Z. Zhang, “Microsoft kinect sensor and its effect,” Multimedia, IEEE,
vol. 19, no. 2, pp. 4–10, 2012.

[2] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with
microsoft kinect sensor: A review,” IEEE Transactions on Cybernetics,
2013.

[3] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” Proceedings of the 1998 IEEE International Conference on
Computer Vision, 1998.

[4] A. Buades and B. Coll, “A non-local algorithm for image denoising,”
in In CVPR, 2005, pp. 60–65.

[5] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image in-
painting,” in Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 417–424.

[6] A. Telea, “An image inpainting technique based on the fast marching
method,” Journal of graphics tools, vol. 9, pp. 25 – 36, 2004.

[7] A. Dakkak and A. Husain. (2013) Recovering missing depth information
from microsofts kinect.

[8] M. Camplani and L. Salgado, “Efficient spatio-temporal hole filling
strategy for kinect depth maps,” in IS&T/SPIE Electronic Imaging.
International Society for Optics and Photonics, 2012, pp. 82 900E–
82 900E.

[9] J. Shen and S.-C. S. Cheung, “Layer depth denoising and completion for
structured-light rgb-d cameras,” in IEEE CVPR, 2013, pp. 1187–1194.

[10] Y. Berdnikov and D. Vatolin, “Real-time depth map occlusion filling
and scene background restoration for projected-pattern based depth
cameras,” in Graphic Conf., IETP, 2011.

[11] S. Matyunin, D. Vatolin, Y. Berdnikov, and M. Smirnov, “Temporal
filtering for depth maps generated by kinect depth camera,” in 3DTV
Conference: The True Vision-Capture, Transmission and Display of 3D
Video (3DTV-CON), 2011. IEEE, 2011, pp. 1–4.

[12] S. Milani and G. Calvagno, “Joint denoising and interpolation of depth
maps for ms kinect sensors,” in IEEE ICASSP, 2012, pp. 797–800.

[13] M. Schmeing and X. Jiang, “Color segmentation based depth image
filtering,” in Proc. Int. Workshop on Depth Image Analysis, 2012.

[14] F. Qi, J. Han, P. Wang, G. Shi, and F. Li, “Structure guided fusion for
depth map inpainting,” Pattern Recognition Letters, 2012.

[15] J. Diebel and S. Thrun, “An application of markov random fields to
range sensing,” in Advances in neural information processing systems,
2005, pp. 291–298.

[16] C. D. Herrera, J. Kannala, P. Sturm, and J. Heikkila, “A learned
joint depth and intensity prior using markov random fields,” in 3DTV-
Conference, 2013 International Conference on. IEEE, 2013, pp. 17–24.

[17] S. Paris and F. Durand, “A fast approximation of the bilateral filter
using a signal processing approach,” International Journal of Computer
Vision, vol. 81, no. 1, pp. 24–52, 2009.

[18] F. Porikli, “Constant time o (1) bilateral filtering,” in Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on.
IEEE, 2008, pp. 1–8.

[19] Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time o (1) bilateral filtering,”
in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 2009, pp. 557–564.

[20] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein, “The gen-
eralized patchmatch correspondence algorithm,” in Computer Vision–
ECCV 2010. Springer, 2010, pp. 29–43.

[21] Y. Eshet, S. Korman, E. Ofek, and S. Avidan, “DCSH-Matching Patches
in RGBD Images,” in IEEE ICCV, 2013.

[22] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmen-
tation and support inference from rgbd images,” in ECCV, 2012.


