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Fig. 1. Top Left : Our prototype cluster built by mounting 10 Go-Pro cameras on a helmet. (1) through (5) denote stereo pairs pointing
forward, right, backward, left, and up, relative to the head of the user. (H) marks a Hi-ball tracking camera, which was used to obtain
ground-truth 6-DOF motion for the device. Bottom: View of the room where our real-world experiments were captured. Middle:
Example stereo pair images for one timepoint of capture from our real-world data. Stereo pair (5) captures a view of the ceiling. Top
right : Illustration of the rolling shutter effect for a single image. Rows of the image are captured sequentially at high frequency. Motion
of the camera during this capture induces distortion in the x-direction of the image plane. Bottom right : Tracking the pixel shift from
row to row in multiple cameras allows us to estimate 6-DOF device motion from one time point (blue) to the next (red) at a much
higher frequency than the camera frame rate.

Abstract—To maintain a reliable registration of the virtual world with the real world, augmented reality (AR) applications require
highly accurate, low-latency tracking of the device. In this paper, we propose a novel method for performing this fast 6-DOF head
pose tracking using a cluster of rolling shutter cameras. The key idea is that a rolling shutter camera works by capturing the rows
of an image in rapid succession, essentially acting as a high-frequency 1D image sensor. By integrating multiple rolling shutter
cameras on the AR device, our tracker is able to perform 6-DOF markerless tracking in a static indoor environment with minimal
latency. Compared to state-of-the-art tracking systems, this tracking approach performs at significantly higher frequency, and it works
in generalized environments. To demonstrate the feasibility of our system, we present thorough evaluations on synthetically generated
data with tracking frequencies reaching 56.7 kHz. We further validate the method’s accuracy on real-world images collected from a
prototype of our tracking system against ground truth data using standard commodity GoPro cameras capturing at 120 Hz frame rate.

Index Terms—High frequency, Visual inside-out tracking, Rolling shutter

1 INTRODUCTION

End-to-end system latency has long been the fundamental challenge
in Augmented Reality / Virtual Reality (AR/VR) applications. A con-
vincing slight-of-hand for AR/VR requires that the basic tasks of the
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system – namely tracking, rendering, and display – be performed at
faster rate than user perception. While all three of these tasks present
their own challenges, obtaining high-quality tracking is a significant
roadblock for system realization, since errors and delay in tracking
necessarily limit the performance of the subsequent steps. This is es-
pecially true for AR scenarios, where users are able to notice even
small misalignments of the virtual world with the external environ-
ment. Tracking solutions in VR devices, too, are still underdeveloped,
and to a large extent there exists no high-quality, low-cost VR tracking
system that works in unrestricted environments. With the increasing
ubiquity of inexpensive VR displays, and with the continual develop-
ment of AR displays, obtaining accurate, low-latency 6-DOF tracking
is one of the most crucial immediate problems for the AR and VR



communities to solve.
In commercially available VR head mounted displays (HMDs) like

the Oculus Rift DK2 and Samsung GearVR, inertial measurement
units (IMUs) are used to estimate the relative 3-DOF rotation of the de-
vice. IMUs such as gyroscopes and accelerometers provide fairly reli-
able rotational measurements with nearly 1000 Hz tracking frequency.
In addition, an external camera might be used to get low frequency po-
sitional tracking, as in Oculus Rift. The recent research has sought to
provide full 6-DOF tracking missing from inertial sensors by relying
on computer vision techniques (visual tracking) that allow for either
inward or outward tracking of the device in relation to the surround-
ing environment. For inward tracking, one or more “inward-looking
cameras” (i.e., cameras situated in the environment and pointed at the
user) track distinct markers on the HMD. Such markers are typically
light sources, e.g., infra-red light emitting diodes (LEDs) on the Ocu-
lus Rift, or large ping-pong-size balls, as on the Sony Move. In an in-
verse configuration, outward tracking techniques use one or more cam-
eras on the AR/VR device to detect markers placed in the surround-
ing environment. The main drawback to these tracking approaches is
they are typically high-latency, high-cost, or both. Moreover, the re-
quirement of cameras or markers placed in the external environment
limits the generality of these systems – that is, 6-DOF tracking of the
AR/VR device is only possible within the small area containing the
cameras/markers. Newer systems based on Simultaneous Localization
And Mapping (SLAM), refer Sec. 2 are being developed to perform
markerless tracking to mitigate this.

Two basic challenges for high-frequency visual tracking are: 1) the
basic assumption of a single pose for each captured image, and 2) the
requirement of multiple frames for reliable pose estimation. Accord-
ingly, multi-frame approaches inject high latency and over-smoothing
of the estimated 6-DOF motion. Moreover, the required tracking fre-
quency for AR/VR is commonly much higher than the frame rate
of the camera. For instance, the human neck can support rotational
speeds of up to 700 deg/s at peak rates and up to 70 deg/s at normal
rates [4], and normal human walking speed is 1.39 m/s (5 km/hr). Ex-
tremely fast tracking is essential to precisely match the motion of a
user’s head.

In this paper, we propose a new markerless approach for outward
visual tracking of AR/VR devices that achieves high accuracy and low
latency without requiring any off-device tracking elements. Our key
insight is that extremely high-frequency image sampling is attainable
using rolling shutter cameras. We treat a rolling shutter camera as a
high frequency 1D sensor capturing H 1D row-images sequentially in
time, rather than a 2D sensor capturing a single H×W 2D frame at
each time-point. This enables us to process the video frame per-row
rather than waiting for the complete image formation. Using a rig of
multiple rolling-shutter stereo pairs, we obtain small-motion pose es-
timates at very high sampling rates entirely from cameras located on
the HMD. We demonstrate this approach can obtain tracking rates as
high as 57 kHz on synthetic data simulating actual user head motion.
We also provide a proof-of-concept real data experiment using a proto-
type model of our rolling shutter tracking system with 5 rolling-shutter
stereo pairs capturing at 120 frame rate. Using this cluster, we are able
to perform tracking at frequencies as large as 80.4kHz on real data.
Fig. 2 shows an overview of our approach.

The rest of this paper is laid out as follows: In Section 2, we dis-
cuss work related to the problem of high-frequency 6-DOF tracking
of AR/VR devices. We proceed in Section 3 to describe our approach
to row-wise rolling-shutter tracking, and we detail our camera cluster
set-up in Section 4. In Section 5, we provide thorough experimental
evaluation of our method on both simulated and real-world data. We
address future work and conclude the paper in Section 6.

2 RELATED WORK

High-frequency throughput has long been a main research thrust in the
three primary technologies (namely tracking, rendering, and display)
of AR/VR [3, 40]. In this section, we provide an overview of related
work that has focused on solving the tracking problem and then discuss
recent research on rolling shutter effect. On a high level, methods in

tracking can be divided into three categories: sensor-based, a hybrid
of sensor- and visual-based, and purely visual-based.
Sensor-based tracking. High-frequency sensor-based tracking sys-
tems have been deployed with some degree of success for many
decades; see [28] for a good review of early methods on this front.
More recently, LaValle et al. [20] have proposed to use only inertial
sensors – such as accelerometers, magnetometers, and gyroscopes –
combined with a predictive system for head pose tracking by assum-
ing constant angular velocity or constant acceleration. Intriguingly,
they also report limited success in positional tracking, in addition to
rotational tracking, using only the inertial sensors. However, the in-
herent limitations of inertial sensors render them ineffective for full
6-DOF tracking, and as such, most recent work has focused on using
sensors and vision systems jointly to perform tracking.
Hybrid tracking. One approach toward hybrid sensor/vision track-
ing is to use inertial sensors as the primary tracking component and
augment them with vision systems to mitigate drift. Klein et al. [18]
used predictions from IMU sensors to account for motion blur and
built a parametric edge detector on video input to prevent drift. In
Persa [26], IMUs and Kalman filtering were used for tracking, and
to correct for drift, the author used GPS in outdoor environments and
fiducial markers in indoor scenes. Both of these systems use the IMU
as the workhorse, and computer vision is a secondary tool.
Visual-based tracking. Visual trackers, which consider cameras as
primary sensors, can be broadly classified into either feature-based or
direct approaches. Whereas the former analyze a set of salient image
keypoints, the latter rely on global image registrations. Many visual-
based tracking systems fall under the category of simultaneous local-
ization and mapping (SLAM) approaches. Regarding feature-based
systems, Ventura et al. [35] used a client-server model, where the
server has a 3D model of the environment constructed offline. A mo-
bile phone acts as the client and runs a SLAM system in local frame
of reference, using the server for global registration and bundle ad-
justment. Forster et al. [12] demonstrated a ‘semi-direct’ approach
running at 300 fps on a consumer laptop. This method uses photomet-
ric error between projections of 3D points in consecutive frames for
motion estimation and employs FAST [29] features for the mapping
stage.

Direct SLAM approaches have also succeeded for both visual track-
ing and scene reconstruction in recent years. The LSD-SLAM algo-
rithm of Engel et al. [9] and its derivatives [5, 10] use direct, semi-
dense image alignment to reconstruct 3D models at nearly the rate of
frame input. Schöps et al. [32] further introduced a direct approach
on a mobile phone using semi-dense depth maps for mesh-based ge-
ometry representation. Their method is hybrid in that they find the
ground plane using data from the built-in accelerometer on the mo-
bile device. Overall, direct SLAM methods have been demonstrated
to work on a large scale with relatively low computational require-
ments, and these systems have been leveraged for pose estimation in
AR systems. However, the key limiting factor preventing these visual
tracking methods from general AR/VR use is they require full camera
video frame inputs, which is a substantial bottleneck for overall sys-
tem latency. Effort by Dahmouche et al. [7] towards this end was to
predict and capture only the regions of interest (ROI) around feature
points as opposed to capturing complete image and then finding the
features. They predicted the ROIs based on previous data under a con-
stant velocity assumption to simultaneously track pose and velocity at
333Hz using a high speed camera. Unlike SLAM systems, our cam-
era tracking system does not build an environmental map. Instead we
rely on scan-line stereo depth variations across time to estimate 6 DOF
motion.

Other feature-based hybrid tracking systems have used strategically
placed fiducial markers for tracking distinct points in the environ-
ment [38, 23]. Typically, Light Emitting Diodes (LEDs), beacons, or
unique texture markers are used in this framework. The Hi-Ball sys-
tem [36] is one such construction, in which blinking LEDs are placed
on the ceiling of a capture environment. A cluster of infrared cameras
(the “Hi-Ball”) observes the blinking pattern of LEDs, and the system
uses strong triangulation constraints combined with motion prediction
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Fig. 2. Overview of our system for simulated experiments: (a) Simulation provides image data for multiple virtual cameras. (b) Our approach
estimates shifts and confidence scores for pose estimation. (c) We compare our tracking results with ground-truth Hi-Ball tracker motion data.

to provide highly accurate 6-DOF pose. The major drawback of using
such fiducial markers is that it becomes cumbersome as well as costly
to place them throughout the environment, and, moreover, the tracking
system is limited to the confines of the area in which the markers have
been installed. To obtain ground truth for our real-world experiments,
we have mounted a Hi-Ball on our prototype camera rig (see Fig. 1,
top left) and use such a system only to validate the accuracy of our
approach.

Current state-of-the-art visual tracking systems, such as the Oculus
Rift, perform rotational and positional tracking of the AR/VR device
using an inward-facing camera focused on the user. Because this ap-
proach involves tracking the user based on fiducial points in the 2D
image plane, the system has a strict lower bound on latency that is
determined by the frame rate of the camera (e.g., 60 Hz). Moreover,
the capture set-up inherently confines the tracking area to the field of
view of the camera. To solve both these problems, we propose to in-
stead perform visual tracking using an outward-view, rolling-shutter
approach, where multiple rolling-shutter camera stereo pairs located
on the device itself are used to recover the motion of the user, without
any specific design for the surrounding environment. In the following,
we provide a brief introduction to rolling-shutter capture.
Rolling Shutter. Traditional film cameras, as well as CCD arrays
in early digital cameras, exposed the entire 2D image space during a
common exposure period; this type of exposure is called global shutter.
With the advent of low-power CMOS camera sensors, rolling-shutter
(RS) cameras (see Fig. 1, top right) have quickly become ubiquitous
for everyday camera-equipped devices. To save space on the silicon
chip, the newer CMOS sensors perform sequential exposure of sensor
rows, which only requires a single, simpler set of holdout circuitry to
read all rows. In this fashion, each individual row of the rolling-shutter
image is actually a snapshot of the scene at a different time instance.
For image captures without significant scene or camera motion, rolling
shutter is often an effective, low-cost imaging technique. However,
when the scene contains a fast-moving object (e.g., the blades of a
fan), or when the camera has fast motion relative to the frame rate of
the camera, artifacts such as wobble skew and other undesirable effects
become apparent [11]. Recent research has focused on modeling RS
effects and solving traditional problems like multiple-view stereo for
RS cameras [30] and bundle adjustment [15]. Albl et al. [2] propose
R6P, which is rolling shutter version of the perspective-n-point (PnP)
problem of finding camera pose from n 2D-to-3D correspondences.
They solve R6P by modeling rolling shutter effect in their linear solver
based on Gröbner basis functions [6] which requires at least 6 corre-
spondences. They propose a linearized camera model around identity
rotation and use the solution from standard P3P [14] as initialization
to provide higher number of inliers in a RANSAC setup. Su and Hei-
drich [34] proposed a method to remove motion blur using a single
rolling shutter image. Their method explicitly models for rolling shut-
ter to estimate the motion during exposure by fitting polynomials to

each degree of freedom of camera motion. Another paper dealing with
motion blur in a RS camera is [22], where the authors demonstrate a
real-time structure-and-motion (SaM) system for RGB-D sensor while
accounting for motion blur by assuming uniform velocity over the im-
age.

Geyer et al. [13] proposed a method to estimate RS line-delay, i.e.,
the time interval between start of capture of two consecutive rows,
using specialized hardware. Oth et al. [24] improved the results while
using only video. They model rolling shutter and use weak motion
prior with a continuous time trajectory model. They parameterize the
pose using fourth order B-spline and iteratively update their model
parameters while minimizing reprojection errors to estimate the line-
delay.

For correct modeling of rolling shutter, one has to consider a (po-
tentially) different pose for each row in the image. Traditionally, such
pose estimation has been employed to correct for motion artifacts, in
an attempt to simulate global shutter exposure. For example, Ringaby
and Forssén [27] parametrized intra-frame rotation with a linear spline
and used this model for image rectification and video stabilization. In
their approach, homographies between images rows are used to recon-
struct the rectified image. We adopt a similar technique in our method
when mapping between image rows. Other works, in particular that of
Ait-Aider et al. [1], have treated a rolling shutter camera as a veloc-
ity sensor to estimate pose and instantaneous velocity of 3D objects.
Instead of serving as a source of error, the rolling shutter effect is a
source of information in their system.

3 TRACKING WITH MULTIPLE ROLLING SHUTTER CAMERAS

In the following, we describe how rolling shutter can be leveraged for
high-frequency tracking. We then introduce our linear model used for
rolling-shutter-based tracking, explain how to search for correspon-
dences between captured rows, and address how to estimate rotational
motion via homographic mappings between video frames. At the end
of this section, we briefly describe corrective measures and confidence
scores that help to maintain stable tracking.
Rolling shutter as a 1D sensor. As in Ait-Aider et al. [1], we exploit
the rolling shutter effect to our advantage to enable high-frequency
tracking. We leverage the fact that each row of a rolling shutter im-
age is shifted in time by a very small offset. We propose to treat a
rolling shutter camera as a high-frequency line sensor where each of
the rows constitutes an individual sample. With this definition, even
an inexpensive smartphone camera with 1000 rows and 30 fps has an
equivalent 1D sampling frequency of 30 kHz. The natural barrier of
camera frame rate, which is the limiting factor for visual tracking ap-
proaches using 2D images, is surpassed by several orders of magni-
tude using our approach. The trade-off we must mitigate is that this
increased sampling comes with a substantial reduction in the vertical
field of view.
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3.1 Our Model
Bishop [4] introduced an inside-out tracker using a cluster of custom-
made 1D sensors capturing line-images at 1000 fps. The proposed
tracker utilized a computationally efficient linear motion estimation
framework under a small-motion assumption. Assuming small motion
results in a simplified model, which reduces the computation time. In
turn, the lower computational burden allows higher sampling frequen-
cies, reinforcing the original small motion assumption. This ‘virtuous’
circle (see Fig. 3) is one of the key enablers of the approach.

In our work, we generalize Bishop’s [4] model to use rolling shut-
ter cameras, with each image row treated as an individual 1D sensor.
This provides us with an array of line sensors per RS camera, each
sampling at the frame rate of the camera (e.g., 120 Hz). Because the
row sampling occurs sequentially, the effective sampling rate of these
line sensors is in the kHz range for a typical HD frame sensor. More-
over, these line sensors are in a fixed configuration with respect to
each other, meaning change in relative pose between camera rows is
entirely governed by the motion of the entire device.

To achieve this high-rate capture, it is necessary to model the set of
line sensors in a manner similar to a single high-frequency sensor, for
which the small motion assumption is trivially valid. For the single-
sensor case, sequential captures are directly comparable because the
same physical sensor array is used for both timepoints. For finding
such correspondences in RS imagery, the key challenge we face is to
hypothesize the image of a line sensor n in the current row as if it had
been captured at the same time – and with its respective 6-DOF pose
at that time – as the previous row. To this end, we use an inter-frame
homography to predict a line n in the current frame by transforming
lines from the previous frame. We follow [4] and measure shifts be-
tween the current row-image and the recreated row-image to quantify
the small motion. The shift between these rows separated in time is
denoted as st .

Given that Bishop’s model requires estimation of depth, cameras
are arranged in stereo pairs in the cluster. A row-wise depth value,
sd , is then estimated by measuring the shift within each stereo pair.
We assume a rigid cluster configuration with known intrinsic and ex-
trinsic camera calibrations, which can be achieved in practice using
calibration methods such as [19, 21]. Due to the relatively small base-
line of our stereo pairs, which leads to poor depth estimates in large,
open spaces, we also assume a static indoor scene for the capture en-
vironment. In our simulation, we use 10 stereo-pairs of RS cameras
looking in all directions, and in our real-world data experiments, we
use 5 stereo pairs.

3.2 Linear Model
Next, we introduce the linear model used in our work. Let Vcam ∈
SE(3) represent the fixed relative pose (cluster-to-camera) of a given
camera relative to the coordinate frame of the cluster center. Consider
a 3D point X t

cam whose coordinates are expressed relative to the ref-
erence frame of camera cam at time t. If Mt represents the change in
camera cluster pose between time-steps t and t+1, we can express the
change in a 3D point’s position relative to a given camera as

Y t+1
cam =VcamMtV−1

camX t
cam, (1)

where Y t+1
cam is the new 3D position of X t

cam relative to the given camera
at time t +1.

The camera model in our case is a 1D rolling-shutter sensor row,
with a sampling rate equal to the frame rate of the imaging device. Let
X̂ t

cam denote the 3D point that projects onto the center pixel of this row.
For a given time point, we can apply Eq. (1) to X̂ t

cam for each camera.
This gives us one independent linear equation for each camera.

Now, the shift from time-point t to t +1 can be expressed in terms
of stereo and temporal disparities. As mentioned previously, let sd
represent the distance, in pixels, between X̂ t

cam and its corresponding
point in the other stereo camera at time t. Let st represent the detected
pixel shift between the X̂ t

cam and Ŷ t
cam when the points are projected

onto the 1D image plane of the camera. (We explain the method for
obtaining this correspondence in the next section.) Then, the homoge-
neous points X̂ t

cam and Ŷ t+1
cam can be expressed in terms of the measured

shifts st and sd as follows:

X̂ t
cam =

[
0 fr(r) − fd(sd) 1

]T (2)

Ŷ t+1
cam =

[
fs(st) � � W

]T
, (3)

where the � denote unknown values that require future row-images
for estimation, and W is simply the homogeneous co-ordinate. As
the � values are only determined by future observations, we do not
make use of them in our model. Here, fd converts the disparity sd into
camera-space distance according to the focal lengths and baseline b
of the stereo pair. Similarly, fr and fs convert the row index r and the
shift due to motion st into camera space.

Motion model. Any general motion M, can be expressed in terms
of translation and rotation in each direction. At high sampling fre-
quencies, the small motion assumption allows us to model rotation as
differential, that is, as a small perturbation from identity. The differ-
ential motion dM takes the following form:

dM =

 1 −θz θy Tx
θz 1 −θx Ty
−θy θx 1 Tz

0 0 0 1

 , (4)

Where the values θ∗ are the (differential) Euler angles while T∗ are
small translations in each direction. If we combine Eq. (1) with
Eqs. (2) and (3), then expand to express in terms of the six unknowns,
we arrive at the over-determined weighted linear system

CAY =CB. (5)

Matrix Y =
[
Tx Ty Tz θx θy θz

]T represents the unknowns,
and C captures our confidence in the shifts st ; see Sec. 3.5 for a de-
scription of C. A is a function of the cluster configuration, row index
r and shifts sd which can be computed form previous data. Since the
vector B is the only part of Eq. (5) that depends upon the shifts st
obtained using current data, the matrix A can be pre-computed.

This is an incremental system which inherently drifts over time. In
the system of [4], the use of beacons placed strategically in the scene
was suggested as a solution. In the case of 1D sensors, the necessity
for this constraint arises because the sensors cannot be used for global
drift correction; hence, beacons are needed to serve as fixed external
references. As we use rolling shutter cameras, we do not have this
limitation, and we can use the 2-D images and the per-row poses as an
input for feature-based systems, which can run at a lower frequency
for global drift correction. We leave it as a future work to employ a
SLAM-type system which would run in parallel to our tracking ap-
proach.

3.3 Shift Estimation
Row Descriptor. So far, we have assumed that we are able to accu-
rately measure the shifts st and sd . We now describe the method we
use to estimate the shifts described above. Bishop [4] highlighted the
importance of a binary descriptor for rows, but the approach was not
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Fig. 4. (a) Original rolling shutter image. (b) Visualization of pixel inten-
sity values for the 200th row of the image. (c) Double derivative of the
smoothed row. (d) Representative binary descriptor.
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Fig. 5. Rotation compensation: A block of rows from the previous frame
are transformed using homography H to predict how the current row i
will appear under the rotation of reference row j.

robust to camera noise patterns. In our system, we adapt Bishop’s rep-
resentation and convolve each row sample with a double derivative of
the Gaussian to obtain a smoothed version of the edge response (see
Fig. 4 as an example). The smoothing provides robustness against
noise, and the double derivative helps us to localize shifts to sub-pixel
accuracy. After this convolution, the resulting values are thresholded
at zero to provide a binary descriptor for each row.
Descriptor Matching. The binary descriptor is used for matching
the rows to estimate shifts st and sd . The Hamming distance is used
for fast computation of the matching cost. The evaluated pixel shifts
st are limited to the range of [−20,20] pixels. We fit a parabola at the
minima to recover a subpixel shift estimate [31]. To estimate the depth
disparity sd , we match the descriptor for a larger range of [10,70] pixel
shifts. We use a lower bound because disparity becomes inaccurate at
very high depths, and we use an upper bound because a very high dis-
parity indicates that the camera is too close to a surface (and hence the
stereo-pair cameras might not observe sufficient structure to produce
an accurate shift).

Row samples of stereo pair

Reconstructed row using homography

Stereo Pair

Binary descriptor

Previous frame Current frames

Binary descriptor

st sd

Fig. 6. Measuring st and sd using rotation compensation (best viewed in
color).

3.4 Rotation Compensation
To estimate the motion-induced shift of a single camera across time,
we compare the pixel content of the currently sensed row-image
against the corresponding content observed on the previous frame. In
practice, the motion between successive frames is dominated by the
rotational component. Hence, in order to justify the use of the small
motion assumption, we compensate for this rotation through an homo-
graphic warping between consecutive frames. We extract a block of
rows from the previous frame and transform them to match the rota-
tion of reference row j occurring some time before the current row i
(see Fig. 5). This rotation compensation is performed using an adap-
tively specified reference row j so that the rotation between row i and
row j does not fall in the magnitude of noise and hence can be esti-
mated reliably. Let us denote the rows which are to be transformed
using a homography as lq, where q is the row index in the image. If
the current frame index is k, row-image i is in kth frame, while row
lq is from the (k− 1)th frame. Let the rotation at row lq be Rq and
the rotation at the jth row be R j. Our adaptive reference scheme (see
Sec. 3.4.1) decides whether row j is from frame k or from frame k−1.
The homography between row j and row lq, given the camera intrinsic
matrix K, can be computed as

H j,q = KR jRT
q K−1. (6)

R j and Rq are known quantities which were previously estimated,
hence it is trivial to compute H j,q. Elimination of the dominant im-
age motion, i.e., rotation, ensures that a large range of motions can be
covered by our system. Fig. 12 shows that we can handle motion as
large as 500 deg/s using this compensation technique.

3.4.1 Adaptive Reference
As implied above, the reference index j need not necessarily be equal
to i−1. We adaptively change the reference index according to the ro-
tation velocities. The pixel shift values between two consecutive rows
of same frame at peak rotational velocities (e.g., 500 deg/s) fall be-
tween the range of −0.5 to 0.5 pixels. For normal motion, they are in
the range of 0.1-pixel shifts. Such a small shift is at the magnitude of
noise and thus cannot be measured accurately. We instead introduce an
adaptive technique that enables us to work at reasonable shifts with-
out violating the small motion assumption. To change the reference
row index j adaptively, we set a maximum allowable rotation between
rows, denoted as dθ . Whenever this threshold is crossed, the reference
index j is updated to a new row where the shifts would not fall below
the magnitude of noise.

3.5 Corrective Measures and Confidence Scores
We employ the widely used disparity confidence measure Peak Ratio
(PKR) [16] to form the diagonal matrix C to weigh each equation in
the linear system according to the confidence in its shift st . For robust
outlier rejection of shifts, we use single exponential smoothing [17]
to predict shift Spred at the current time using previous data. If the
difference between measured shift Smeas and Spred is high, we use the
predicted shifts but give a lower confidence score.

4 CLUSTER SETUP

Synchronization. Previously, we assumed that the cameras in the
cluster are capturing in synchronization. In reality, this is difficult to
achieve without a hardware genlock [37]. As a proof of concept, we
have used GoPro cameras in our experiments which do not expose a
hardware genlock. Here, we describe our approach to achieve syn-
chronization using a few post-processing steps. Additional specific
details are provided in the experiments section.

The GoPro cameras have a vertical rolling shutter. We attach one
red LED per camera so that it occupies the entire vertical field of view.
For synchronization, we feed a square wave signal to all the LEDs.
The peaks of the mean red channel value in the frames enable frame-
level synchronization for each camera. Since the LEDs are blinking at
know frequency, the rolling shutter effect becomes apparent (Fig. 7).



Fig. 7. Red channel image of a blinking red LED showing the rolling
shutter effect.

As the turn-off and turn-on time of a LED is on the order of nanosec-
onds, we can precisely detect which row is at the temporal edge of
the drastic change in light. We detect such rows over a number of
blinks and regress to get accurate row indices. As we know the period
of the square wave, we can match the slopes and extrapolate to any
frames captured after the synchronizing signal is stopped. With this,
we precisely know across all cameras in the cluster, which rows were
exposed at the same instant.
Calibration. While calibration of intrinsic camera parameters and ex-
trinsic stereo pair parameters is nowadays a relatively straightforward
task, it is inherently difficult to calibrate cameras with non-overlapping
views. The method introduced to calibrate non-overlapping view cam-
eras by Li et al.in [21] proved to be insufficiently accurate for our
needs. Moreover, to compare the tracker performance against the
ground-truth data captured from the Hi-Ball tracker [36], we need
to calibrate the cluster with the Hi-Ball, as well. Let Tc2H denote
the transformation from a camera in the cluster to the Hi-Ball coor-
dinate system. To calibrate the entire cluster, we first calibrated the
stereo pairs independently using the traditional checkerboard pattern
and Zhang’s method [39]. Then, we calibrated the left camera of each
stereo pair with the Hi-Ball. The transformation from the cameras to
the Hi-Ball Tc2H follows the Hand Eye Calibration (HEC) problem.
Shah et al. [33] provide a good survey of solving HEC, and we follow
Park and Martin’s method [25] that casts the HEC problem in a least-
squares framework. In HEC, there are two known dynamic poses that
change over time but can be estimated, and there are two unknown
static poses which need to be estimated. To solve for Tc2H , we si-
multaneously capture images of a checkerboard pattern, as well as the
Hi-Ball tracker data, at various poses. In our case, the two known
poses at each time step are the pose of left camera w.r.t. the fixed
checkerboard pattern and the pose of the Hi-Ball w.r.t. to the ceiling.
The two unknown static poses are the unknown Tc2H and the pose of
the checkerboard pattern w.r.t. ceiling.
Number of camera pairs and their layout. As noted in Sec. 3.2, we
get one linear equation of the form Eqn. 1 for each camera. To com-
plete the equation, we need depth, hence we need cameras in stereo-
pairs. For a fully instep genlocked camera cluster, where each camera
captures a row with the same index at the same time, we need atleast
6 stereo-pairs. In our experiments, although we know when each row
was captured for each camera using the synchronization method de-
scribed above, there is a stagger between the rows, e.g., Cam1 captured
row 310, Cam2 captured row 331,. . . at the same instant. Hence we get
one equation from each camera due to row staggering, to give us 10
equations in total from 10 GoPros. We have placed the 5 stereo-pairs
heuristically to minimize overlap between their fields of view. This
ensures that each stereo-pair provides newer information, and reduces
the chance of multiple cameras capturing homogeneous scenes.

5 EXPERIMENTAL RESULTS

To evaluate our approach, we first present rigorous experiments on
rolling shutter (RS) image data using a simulator, which provides us
complete flexibility over camera parameters, their relative positioning,
size of the room in which data is captured, and the ground-truth mo-
tion. For testing, synthetic ground-truth motion is the most suitable in
terms of flexibility, but it may not capture the distinctiveness of real
human motion data. Therefore, we utilize captured human motion us-
ing Hi-Ball tracker [36] system. According to the authors of [36], this
system can record over 2000 pose estimates per second with less than

Fig. 8. Scanned room, with small images showing the RS images cap-
tured by the left camera in each of the stereo pair from the virtual cluster.

1ms latency and less than 0.5mm and 0.03 degrees of absolute error.
To simulate this captured human motion at more than 2000 Hz, we lin-
early interpolate the translation and use spherical linear interpolation
(SLERP) for rotation. We characterize errors in our tracking system
in terms of pixel errors in display of synthetic objects at a distance of
1m away from the user, as done by [4]. We consider an error of 1
pixel display error as permissible. To quantify these errors, we take
the display resolution of the most recent HTC Vive VR device, which
is 1080×1200 pixels per eye 1. In all experiments, we assume that
the motion for the first frame is zero, and hence all rows in this frame
share the same pose. As a result, the first image is essentially a global
shutter image, while the rest are captured using rolling shutter. We
use this assumption because our system is incremental and requires a
reference pose; having a known pose for each row of the initial rolling
shutter frame would also be acceptable We set dθ = 0.06 radian as the
threshold for rotation compensation.
Simulations. We use a simulator written in OpenGL and QT to simu-
late synthetic ground truth motion and capture RS images at very high
frequencies. To simulate a real indoor scene, we use a room mesh ob-
tained from system similar to Dou et al. [8], which we call the scanned
room. For all simulator experiments, we use 10 RS stereo pairs with
a baseline 10cm. Each camera has 640× 480 resolution, 60 degree
vertical FoV, and captures at a frame rate of 120 Hz. The effective RS
sampling frequency is 57600 rows/s.
Experiment 1. In this experiment, we examine the general charac-
teristics shown by our tracker. Fig. 9 shows the tracking results for
Hi-Ball motion tracker data simulated inside the scanned room, where
the X axis is the row-sample index (analogous to time) and the Y-axis
is the estimated variable. The red graph is the ground-truth data ob-
tained from the Hi-Ball tracker, while the blue graph is our tracking
result. Note that in (a) and (b), the scale of the Y axis for each variable
is different. The plots show that the relative error increases when the
variable to be estimated is within the order of noise. Fig. 9 (c) depicts
the confidence as a heat map, where the X axis depicts the camera
number and the Y axis is the row-sample index (time). The color sig-
nifies the confidence level of each camera for a particular row. The
confidence scores indicate that cameras 9, 10, 19, and 20 have low
confidence in measured shifts. Upon further examination, it was found
that these cameras were observing a region with homogeneous color.
Fig. 9(d) highlights the problem of drift, where an error in estimate
is carried over to the next frame and periodically increases. The red
marks at the bottom signify image boundaries.
Experiment 2. In this experiment, we simulate synthetic motion data
with added Gaussian noise to simulate moderate and extremely large
motions. For the moderate motion, we consider a translation velocity
(v) of 1.4 m/s and rotational velocity (ω) as 120 deg/s. As we can see
from the tracking plots in Fig. 10, jumps occur at image boundaries
(480, 960,. . . ) which is also reflected in the confidence score. If all the
confidence scores are less than 1, it implies that we did not measure
shifts correctly, and hence the estimated motion should be ignored.
This occurs because we reconstruct row samples using a homography,
but at the boundary of the image, an insufficient number of rows are
available for accurate prediction. For extreme motion (Fig. 12), we
consider v= 1.4 m/s and ω = 500 deg/s. The error plot shows that even
with sustained extreme motion, the pixel error incurred hovers around
the acceptable limit of 1 pixel but increases at the image boundary. Our
rotation compensation technique (Section 3.4), enables us to track at
these extreme speeds.

1http://www.htcvive.com/us/product/

http://www.htcvive.com/us/product/
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Fig. 9. Comparison of pose estimates versus ground truth for the scanned room simulation, using Hi-Ball motion ground truth. (a) Translation. (b)
Rotation. (c) Confidence score. (d) Pixel error in display. Note that y-axis scales are not the same (best viewed in color).

(a) (b)

(c) (d)

Fig. 10. (a) Translation, (b) Rotation, (c) Confidence score and (d) Pixel error in display, Estimated for Scanned Room, synthetic large motion, note
scales not same ( best viewed in color)

Exp # ERMS Tx (cm) Ty (cm) Tz (cm) θx (rad) θy (rad) θz (rad)
Experiment 3 Linear approximation 0.0841 0.079 0.11 0.000332 0.000253 0.000295

Non-Linear solution 0.07799 0.0898 0.1089 0.000909 0.000499 0.000384
Experiment 4 Motion without blur 0.09573 0.2476 0.2002 0.001269 0.001308 0.001433

Motion with blur 0.10535 0.2429 0.2243 0.001615 0.0016 0.0023

Table 1. RMS error in the estimation variables over 1500 row-samples for v=1.4m/s and ω = 120 deg/s with added Gaussian noise



(a) (b)

Fig. 11. (a) RS image without motion blur, (b) RS image with motion
blur, blur is amplified to test for worst case scenarios

Experiment 3. Now, we study the effect of the linear approximation.
The fundamental assumption in our approach is that between two rows
of RS image, the head motion is linear. We verify how whether this
assumption holds and check how much it differs from the non-linear
solution. We use a non-linear solver to solve the Eqn. 1 with the linear
approximation solution as a starting point for optimization algorithm.
As the Table 1 shows, the difference is in the non-linear vs the linear
approximation solution not discernible.
Experiment 4. Here, we study the effect of motion blur. In gen-
eral, a high-fps camera has shorter exposure and hence lower motion
blur. Since we use commodity RS cameras, we maintain long exposure
times even under the fast sampling of consecutive lines. We simulate
the motion blur in software and use the blurred rows as input to our
system. We exaggerate motion blur so that we can test for the worst
possible conditions. Our approach is robust to motion blur, as high-
lighted by Table 1.
Experiments with real data. For real experiments, we use the camera
rig shown in Fig. 1 with 10 Go-Pro cameras arranged in 5 stereo-pairs.
The rig is moved in a room of size 2.6m×6.4m×2.7m with the Hi-Ball
tracking LEDs on the ceiling to record precise ground truth. We build
the camera cluster using 8 Go-Pro Hero 3+ silver edition and 2 Go-Pro
Hero 4 black edition cameras. The cameras are set at a narrow field
of view (FoV) with a resolution of 1280×720 capturing at 120 fps.
For synchronization, each camera is attached with one red LED so
that it will occupy the entire vertical FoV of the camera. A commod-
ity micro-controller (like Arduino or Raspberry Pi) is used to generate
a square wave. A current of about 10mA is supplied to each LED
so that it can saturate the camera. After the cameras record enough
LED blinks, we turn off the synchronization signal and remove the
LEDs without stopping the recording. This part of the video is used
to synchronize the cameras. After this, we can capture the real data
for carrying out the experiments. For the real data experiments, we
process one row-image per RS camera at a time and hence work at the
highest sampling frequency, which is h×fps. Given that the cameras
need to be rectified, the effective height of the RS image captured by
the camera is reduced to a minimum of 670 pixels. Thus, effective
tracking frequency comes out to be 80.4 kHz at 120 fps. Fig. 13 shows
our tracking results using our camera cluster; note that the results are
noisy. To mitigate this, an exponential smoothing can be employed for
stable tracking at the cost of increased latency (see Fig. 14). We do
not show the error plots for the errors in terms of display pixel errors
in both the cases because they are less than 0.5 pixels and quantize to
zero error.
Effect of noise and scene homogeneity. Noise and homogeneity of
scene adversely affects the tracking accuracy. A combination of both
is seen in real data. Fig. 15 shows tracking results for translation in
X direction for different Gaussian noise with σ = 3,5,10 added to
the simulation images; we exclude other variables as they follow the
same trend. While noise can be mitigated by better lighting conditions
or using quality sensors, it is difficult to overcome scene homogene-
ity. We simulate scene homogeneity by blurring the simulation images
with a Gaussian kernel, σ = 3,5,10. Fig. 16 shows the degradation in
performance due to scene homogeneity, which is characteristically dif-
ferent than noise. While noise is random, scene homogeneity’s effect
on tracking has more structure, where blocks of rows might not pro-
vide correct measurements. At extreme noise levels or homogeneous

scenes we cannot track any motion. Possible future directions to ad-
dress these issues will be to process blocks of rows rather than individ-
ual rows to average out noise, and to use prediction techniques [17, 36]
to mitigate scene homogeneity.
Preconditioning. Now, we examine the stability issues of the linear
system. Eqn. 5 describes a weighted linear system where A is N× 6,
N is the number of cameras in the cluster. When we simplify Eqn. 1
to construct A, the three elements of each row of A are V11,V12 and V13
from camera pose matrix V , which constitute the first row of rotation
matrix of the pose. Hence, the scale of the unknown variables becomes
important as V11, V12, and V13 are guaranteed to be between −1 and
1. Hence, pre-scaling is important where the translation should be in
meters and the rotations should be measured in radians.

6 CONCLUSION

We have presented a markerless, multi-camera, and egocentric visual
tracker that breaks through the frames-per-second (FPS) sampling bar-
rier, by leveraging commodity rolling shutter cameras as dynamic 1D
(e.g., line scan) sensors. Towards this end, we model the spatio-
temporal relationships of a rigid camera cluster in terms of linear
motion approximation and efficient image representations, which are
based on the small-motion assumptions enabled by our kHz sampling
frequencies. Moreover, we have deployed an online prototype system
achieving upwards of 80kHz visual tracking. Also, we have validated
and characterized the performance and limits of our tracking compo-
nents on representative synthetic data. Finally, we have discussed inte-
gration and implementation details critical to system deployment, such
as temporal synchronization and spatial calibration of our setup.

The importance of the proposed approach lies in bridging the sam-
pling frequency gap between inertial (i.e., IMU) and visual sensors,
by enabling visual tracking at frequencies that are orders of magni-
tude greater than the RS camera native FPS. Along these lines, the
long-term potential for a more homogenized sensing frequency land-
scape opens exciting opportunities for novel sensor integration mecha-
nisms. In the short term, research priorities lie on expanding the appli-
cability of our approach through automated synchronization and self-
calibration techniques.
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