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Abstract: While state-of-the-art general object detectors are getting better and
better, there are not many systems specifically designed to take advantage of the
instance detection problem. For many applications, such as household robotics, a
system may need to recognize a few very specific instances at a time. Speed can
be critical in these applications, as can the need to recognize previously unseen
instances. We introduce a Target Driven Instance Detector(TDID), which modifies
existing general object detectors for the instance recognition setting. TDID not
only improves performance on instances seen during training, with a fast runtime,
but is also able to generalize to detect novel instances.
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1 Introduction

Object detection works! Alas, this is not always true, and the specific version of object detection
matters. There have been massive improvements in the accuracy of category-level object detectors
based on deep learning [1, 2]. These require many labeled training examples of bounding boxes for
each category (e.g. mug) in question, use carefully crafted data augmentation approaches to fully
leverage that training data, and can take days or longer to train. This leaves out an important type
of object detection problem where the goal is to detect a precise instance of an object category (e.g.
my mug instead of a mug). This setting applies to real world tasks including fetch and deliver in
household environments, and robotic manipulation in industrial environments, where the objects in
question are often specific instances and not general categories. The instance task does not have
the large intra-class variation of category-level detection, and sometimes only a small number of
training examples for each instance is available.

How can the progress on category-level object detection be harnessed and applied to instance detec-
tion, taking advantage of the specificity of instances and overcoming the challenge of small numbers
of training examples? One approach is to take a small number of example images and artificially
create a large number of detection training examples by artificially composing those examples into
scenes [3, 4]. This still treats instance detection as a category detection problem, but expands a small
number of clean images of an object instance into enough samples to train current category detec-
tors. Another possible approach reduces the training necessary for new targets by preconditioning a
network to be robust to varying views of objects. Recent work by Held et al. [5] has shown good ac-
curacy with such an approach, and that a deep-learning-based method for learning a classifier from
single examples can be more accurate than a wide range of previous template matching approaches.

This paper presents a new approach that goes further than the two above by learning a detector that
directly takes advantage of the uniqueness of instances, and that does not need to be retrained or fine
tuned in order to detect a new target object. This is done by learning an embedding that compares
learned features of the target to learned features at each location in a scene image, and integrating
this into a state-of-the-art detection framework.

Submitted to the 2nd Conference on Robot Learning (CoRL 2018). Do not distribute.



(a)

(b)

(c)

Figure 1: (a) Bottom box is Faster R-CNN’s RPN. Top box is our TDID model. We enrich the
feature representation with a joint embedding. TDID extracts features from scene and target image,
combines those with a novel TDID embedding module, and applies the detection prediction head.
(b) Example of target images, and an input “scene image” that contains the target object in a different
pose, partially occluded, at small scale. The object’s bounding box (in red) for reference. (c) TDID
embedding: given a pair of scene (gray) and target (red) features, makes a joint tensor embedding.
Target features are pooled and then depth-wise correlated with (*) and subtracted from (-) scene
features. In final model scene features (IMG in Table 1, dotted line and white box here) are not
used.

The Target Driven Instance Detection problem is formulated as follows: given an input scene image
S and a number, T , of images of a target object, output a bounding box around the target object in S,
or no box if the object is not present. See Figure 1b for an example with T = 2 target images with
the correct output shown. The Target Driven Instance Detector (TDID) is constructed by augmenting
the internal representation of an object detector by embedding the scene image’s features together
with the target features. This constructs joint embedding features for a scene-target pair, which are
specialized for target instance detection and implicitly compare the target to each location in the
image. The final prediction layers can then use this information as part of end-to-end training of the
detection framework.

The datasets [6, 7, 8] we use to evaluate the Target Driven Instance Detector display a set of object
instances in everyday home environments and exhibit real-world confounding factors such as large
scale variation, small instances, clutter and occlusion. An important aspect of the Active Vision
Dataset [6] (used for test in many experiments) is that it was collected to sample views of household
rooms from every position where a robot could navigate. As a result, many objects are quite small
in some views, perhaps when seen across a room, and are partially occluded in many views.

The objects used in our experiments come from the BigBird and RGB-D Object datasets [9, 8],
and we note that part of the methods success stems from seeing similar objects in training. This is
the same in previous work to which we compare, and is reasonable to expect in real-world mobile
manipulation applications, but it is important to make this clear.

We summarize our contributions as follows: (1) A novel Target Driven Instance Detector (TDID)
model that easily transforms the current state-of-the-art general object detectors into instance detec-
tors, as depicted in Figure 1a. (2) Strong performance improvement on multiple challenging instance
detection scenarios, as demonstrated with experiments. We significantly improve in accuracy over
previous results using general object detectors, while maintaining competitive inference speed. (3)
We compare TDID to previous work on one-shot training for instance classification, and show better
accuracy. By proxy, this shows that TDID provides better accuracy than a range of previous tem-
plate matching techniques. (4) The ability to generalize detection to unseen instances on challenging
datasets without any additional training or fine-tuning.
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2 Related work

We discuss recent history of detectors up to the current state-of-the-art deep-learning-based object
category detectors, then move to instance recognition and briefly touch on some related vision prob-
lems including tracking and navigation.

Traditional methods for object detection in cluttered scenes follow the sliding window based
pipelines where efficient methods for feature computation and classifier evaluation were developed
such as DPM [10]. Examples of using these models in the table top setting include [11, 12]. Object
detection and recognition systems that deal with textured household objects such as Collet et al. [13]
and Tang et al. [14] take advantage of the discriminative nature of local descriptors. A disadvantage
of these local descriptors is that they usually perform poorly in the presence of non-textured objects.
Some of these issues were tackled by [15] which used template based methods to deal with such
texture-less objects. Hand engineered features typically work well in table top settings that contain
a relatively small number of objects at relatively large scale [16]. The authors in [17] introduce an
effective approach to feature learning for simultaneous categorization and pose estimation for single
objects on uniform backgrounds.

General Object Detector State-of-the-art object-category detectors have been improved signifi-
cantly over the last few years in both accuracy and speed. These detectors rely on a backbone
architecture, such as VGG [18] or ResNet [19], to extract features from the image, and then add
a detection module on top of these features. Two-stage detectors, such as Faster R-CNN [1], and
R-FCN [20], rely on an initial region proposal followed by a classification and location regression
of the proposed regions. Recent single-stage detectors: YOLO [21], YOLOv2 [22], and SSD [2]
skip the feature pooling stage and show that fast inference speed can be achieved. Recent work has
added top-down connections [23, 24, 25], which can borrow rich semantic information from deeper
layers and show improvement in accuracy for small objects. though usually at reduced speed.

Instance Recognition Compared to object-category recognition, the specific instance recognition
setting has less intra-class variation and, in practice, is often allowed only a limited number of train-
ing examples. Much work has been done using hand-crafted features and template matching to iden-
tify object instances even since somewhat recent seminal work [26, 27]. More recently hand-crafted
features have been replaced with learned ones in many recognition tasks [28]. The instance recog-
nition dataset BigBIRD [9], which provides dense, individual scans of over 100 object instances on
a turntable has enabled more research on instance recognition. [5] shows that pre-training on Big-
BIRD improves robustness to pose and improves classification performance over hand-crafted and
template matching methods, even if only one image per instance is provided for training.

Instance Detection The recent release of larger scale instance detection datasets like the Active
Vision Dataset(AVD) [6] and GMU Kitchens [7], has enabled more work using deep learning for
instance detection. The GMU Kitchen Dataset has 6,728 images across 9 scenes, and the initial
release of AVD has 17,556 images across 9 scenes. Both datasets feature instances very similar to
those in BigBIRD [9], with GMU featuring 11 such instances and AVD 30. [3, 4] attack the problem
of limited training examples by synthesizing new examples with different background images. In
both of these works general object category detectors such as SSD [2] or Faster R-CNN [1] are still
used to solve the instance detection problem.

Navigation Zhu et al. [29] address a related problem, exploring an environment to reach a target
position. They also input both a target image (of the desired view) and an image from the current
position, and learn an embedding to aid in navigation. It is not straightforward to adapt their method
to the instance detection problem, however, as they aim to move so that the image at the current
position matches the target exactly. The embedding is not designed to localize objects, which is
necessary for detection. Furthermore, the network requires scene-specific layers, while most object
detectors are expected to generalize to unseen environments.

Tracking Given an initial bounding box of an object, the tracking task is to localize the same object
appearing in each subsequent video frame. Correlation is frequently used for estimating similarity
of patches between frames. [30] applies correlation on histogram features. [31] kernelizes the
correlation filter to improve accuracy. [32] targets scale issues by running the correlation filter on
spatial pyramid of features. Recent deep learning methods, such as [33], uses a Siamese network to
measure the similarity in tracking. [34] uses a correlation filter to transform the Siamese network
to be fully convolutional. [35] combines the features of crops from previous and current frames to
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regress the location directly. [36] interprets the correlation filter learner as a differentiable layer and
enables learning deep features that are tightly coupled to the correlation filter. Strong priors on the
object and background exist in tracking, namely that neither changes much frame to frame. These
priors include scale, location, illumination, orientation and viewpoint. Our instance detection setting
requires robustness to larger changes between target and scene.

3 Method

3.1 Problem Formulation

Instance detection requires a system to recognize and localize specific objects in novel images.
Usually these images contain many objects, some of which are instances to be recognized. We will
refer to these images as scene images. Most object detectors work by training on a set of scene
images and ground truth bounding boxes of objects, and then test on novel scene images containing
the same types of objects. General object detectors attempt to find all object instances in a scene
image at once.

Our Target Driven Instance Detector (TDID), takes as input not only a scene image, but also one or
more target images. These target images contain only the instance of interest, see Figure 1b for an
example. TDID attempts to detect only this target instance in the scene image.

3.2 Network Architecture

TDID takes the Region Proposal Network (RPN), the first stage of Faster-RCNN, and adds a tar-
get/scene joint embedding. Figure 1a compares our architecture with that of the RPN. With this joint
embedding we are able to outperform other detectors even without the second stage of the traditional
Faster-RCNN pipeline. This results in an architecture that computes detection outputs in one shot,
with speed close to other one-shot detectors, while achieving better accuracy on various instance
detection tasks than both one and two stage detectors.

The high-level view of our architecture is as follows: Extract features from the target and scene im-
ages using some shared feature extraction network, such as VGG-16[18]. Next, pass both target and
scene image feature maps through our joint embedding. Finally, a set of convolutions predict class
scores and bounding box regression parameters for a set of default anchors boxes (see Figure 1b)
over the embedding feature map. In TDID there are only two classes: target object or background.

Joint Embedding We construct a joint embedding, see Figure 1c, of all input images that can then be
further processed for detection. The joint embedding combines feature correlation and differencing
between the target image(s) and the scene image. The operations and features in the embedding are
described below and Table 1 shows ablation results as different feature combinations are considered.

Cross Correlation is widely used in traditional methods with hand-crafted features for similarity
matching. We started building the joint embedding by applying the cross correlation of target fea-
tures with the scene features, generating a heatmap with only one channel dimension. This method
generates a strong signal for predicting target presence/absence in each spatial location, but drops
rich information from the feature channels. Depthwise-separable correlation applies correlation at
each channel independently. This not only preserves more information for the subsequent instance
localization but also yields high computational efficiency [37, 38]. We use depthwise-separable cor-
relation in our joint embedding, represented as CC in the ablation study, Table 1, and the green box
in Figure 1c.

Feature differencing is another way to measure similarity. Intuitively, a network attempting to learn
a similarity between image features may do something like learn to subtract them. Instead of adding
extra complexity to our framework by learning a similarity, we compute the difference directly and
feed it as a signal to our joint embedding. We first apply global max pooling on the target features to
bring them to 1× 1 spatial resolution. Then we subtract this vector from each spatial location of the
scene features. This feature is represented as DIFF in the ablation study, Table 1, and the purple
box in Figure 1c.

Scene Image Features The features of the scene image from the feature extractor may also provide
useful information for object detection. In the original RPN of Faster-RCNN, these are the features
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Features Used extra small small medium large mAP

IMG 1.9 7.7 5.1 5.3 2.2
CC 23.8 58.5 44.0 50.7 27.7
DIFF 48.0 74.6 72.3 73.2 52.6
IMG+CC 28.0 54.5 51.4 54.8 31.9
IMG+DIFF 46.2 79.2 72.5 71.3 50.9
CC+DIFF 50.3 78.2 75.1 78.2 55.8
IMG + CC + DIFF 48.4 83.0 73.8 77.1 53.3

Table 1: Ablation study of features to be included in TDID embedding. IMG == scene image
features, CC == cross-correlation, and DIFF == difference. Train/Test on AVD split 2. Sizes defined
as in [6].

that are used to predict bounding boxes and potential objects. This feature is represented as IMG
in the ablation study, Table 1, and the white box in Figure 1c.

Ablation Study We run an ablation study to show how using different combinations of features in
our joint embedding affects detection performance. Results are reported for the instance detection
task on split 2 of the AVD dataset. We choose split 2 as the results for split 1 in [6] were lower than
the other splits, and we wanted to see results on a more typical scenario. As expected, using just
scene image features, IMG, fails as there is no information about the target instance. Surprisingly,
using just DIFF features provides a strong signal resulting in high detection performance. The
addition of CC features provides a small boost in performance here, and also proved to be useful
in later experiments so it is included in our final model. IMG features do not provided much new
information from DIFF and CC, while adding extra complexity and parameters to the network.
We do not use these features in the embedding in our final model.

Final Embedding Our final joint embedding first pools the target features to be N ×1×1 where N
is the number of channels in the feature map outputted by the feature extractor. This pooled target
feature vector is then both cross-correlated with, and subtracted from, every location in the scene
image feature map. These features, CC and DIFF , are then each passed through their own 3 × 3
convolution to reduce the feature dimension to N

2 . The IMG features, represented by the dotted
skip connection and white box in Figure 1c, are not used in the final model. The CC and DIFF
features are then concatenated and passed through a final 3× 3 convolution before being sent to the
classification and regression filters.

Figure 1a shows the model for one target image and one scene image. In general, many target
images may be used, providing more views of the target instance. Each target image will generate
its own set of CC and DIFF features, which will all be concatenated before going through their
respective 3× 3 convolutions.

Training To construct the training loss, we follow the region proposal settings in Faster R-CNN.
For box localization regression we use the Smooth L1 error. Each anchor box is matched to the
ground-truth target object box if its intersection-over-union (IoU) with the ground truth is over 0.6
and to background if its IoU is lower than 0.3. Since we are only looking for one object at a time,
there are only two possible classes for each anchor box: target or background.

Inference During inference, we run one input/target pair at a time. In each case we select at most 5
detections after non-maximum suppression with 0.7 IoU threshold. We use IoU=0.5 as the matching
criteria and modify the COCO evaluation parameters1 for our experiments to report accurate mean
Average Precision (mAP) results.

4 Experiments

We evaluate our method on three tasks: object instance detection, one-shot instance classification,
and few-shot object instance detection. For all TDID models we use Pytorch [39], CUDA 8.0, and
cuDNN v6.

1https://github.com/cocodataset/cocoapi
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Method Backbone image size speed

SSD[2] VGG16 512x512 19fps
Faster-RCNN[1] VGG16 600x1000 5fps

TDID VGG16 960x540 12fps
TDID VGG16 720x405 19fps

Table 2: Speed of various object detectors.
Faster-RCNN[1] and SSD[2] speeds are re-
ported in their respective papers.

# of Instances 1 2 5 10

TDID
(960x540) 12fps 10fps 6fps 4fps

TDID
(720x405) 19fps 16fps 10fps 6fps

Table 3: How the inference speed of TDID
changes when detecting multiple instances in
a single scene image, on a TITAN X GPU.

4.1 Object Instance Detection

For all of our object instance detection experiments, we report the same mAP as regular object
detection. Since our system only considers one object at a time, to calculate mAP fairly we test all
pairs of target object and scene image on our system. For example for the AVD dataset there are 30
instances. So for each image in the test set we run our network (or part of it, see below) 30 times,
once for every instance. A general object detector runs once per image, and outputs boxes for every
class. This seems like a big disadvantage for our system, since it is cumbersome to run the network
for every single instance. In fact, this is where our system gains its advantage. In many applications,
the system will only be looking for one, or very few, object(s) at a time. Our network is able to take
advantage of this to greatly increase performance.

It should also be noted that we do not need to run our entire system multiple times for multiple
targets in one scene image. Once the model is trained, all target features through the backbone
feature extractor can be pre-computed and stored. Then features are extracted for each scene image
once, and we only run the joint embedding and detection head of the network for each target. See
Table 3 for a study of how inference time changes as more instances are detected in a single scene
image.

The speed/accuracy trade-off of object detectors has become of great interest in recent years[40] as
general object detectors get better and faster. Table 2 compares the speed of TDID with the reported
speeds of Faster-RCNN and SSD. TDID is a lightweight detector and can achieve speeds much faster
than Faster-RCNN, approaching that of SSD while operating on higher resolution images. As we
show in our experiments, while improving or maintaining speed, TDID can also improve instance
detection performance over these general object detectors. It is well-known that use of various
feature extraction backbone networks can influence detection performance. To keep all comparisons
fair to reported results, we use VGG-16 as the backbone network in our experiments.

4.1.1 Active Vision Dataset

We first evaluate our system on a challenging object instance detection dataset, AVD [6]. We use
two target images (provided on the dataset website) for each instance, picking views to maximize
how much of the object is seen. See Figure 1b for an example of two target images. We choose two
target images because in general it may be impossible to recognize an instance from the back if only
the front view is provided.

We report results for all three train/test splits reported in [6]. We resize all images to 960x540
for training, and supply more training details in the appendix. Table 4 shows that our method
outperforms SSD[2, 6] on this task consistently, over 14 mAP on each split on all boxes (boxes
> 50× 30).

To produce a TDID system that runs at the same frame rate as SSD, we resize all images during
testing to 720x405. We test the same model that was trained on the 960x540 images, and show
results in the TDID(720x405) row in Table 4. We can see TDID still outperforms SSD by an average
of over 5 mAp on all objects, and over 20 mAP on larger objects. We expect training a model at this
resolution could result in even greater accuracy gains, while maintaining speed.
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Method Backbone Box Size Split 1 Split 2 Split 3

SSD[6] VGG16
> 100× 50

39 55 53
TDID(720x405) VGG16 65.6 71.6 72.1
TDID(960x540) VGG16 70.3 75.4 72.7

SSD[6] VGG16
> 50× 30

26 41 42
TDID(720x405) VGG16 35.8 42.7 48.2
TDID(960x540) VGG16 48.9 55.8 56.5

Table 4: Instance detection results (mAP) on the AVD dataset.

Train set Method
coca
cola

honey
bunches

hunt’s
sauce

mahatma
rice

nature
v2

red
bull mAP

Real
Images

Faster
RCNN 57.7 34.4 48.0 39.9 24.6 46.6 41.9

Real
Images TDID 57.4 34.5 73.8 43.3 32.1 57.0 49.7

Real +
Synthetic*

Faster
RCNN 69.9 44.2 51.0 41.8 48.7 50.9 51.1

Real +
Synthetic TDID 69.1 46.9 69.7 43.0 62.4 53.7 57.5
Table 5: Detection performance when train-
ing on GMU Kitchens and testing on AVD.
*Synthetic images used in [3] and ours are
slightly different.

Method Accuracy

Random 0.3
BRISK [41] 9.4
ORB [42] 6.6
SURF [43] 10.8
BOLD [44] 7.4
SIFT [26] 12.9

Line-2D [45] .9
Color Hist [46] 9.2

HMP [47] 25.4
CaffeNet [5] 41.0

CaffeNet+MV[5] 44.1
TDID(ours) 50.5

Table 6: One-shot instance classifica-
tion in a scene.

4.1.2 GMU Kitchens to AVD

We now compare on a different object instance detection task to Faster-RCNN [1]. Dwibedi et al. [3]
explore how to create synthetic training data for instance detection, and evaluate how their synthetic
data can improve a detector’s performance when trained on one dataset, but tested on another. They
train/test on the six instances present in both the GMU Kitchens dataset and AVD. In this task, the
detector is trained on the GMU data, and tested on all images in the initial release of AVD (17,556
images).

First, we train only on the real images from GMU, and test on AVD. We use the same training
hyper-parameters as in the previous instance detection task. On this challenging task TDID is able
to outperform Faster-RCNN by over 8 mAP.

Next, we add synthetic images to training. Dwibedi et al. [3] did not release their synthetic images,
but did release code to generate them. We use their code and settings described in the paper to
generate 5,160 synthetic images ([3] report generating about 6000). Given extra training data, both
Faster-RCNN and TDID improve. TDID retains its advantage over Faster-RCNN by 6 mAP, which
may be further improved with better synthetic data.

4.2 One-Shot Instance Classification

We have shown our method outperforms state-of-the-art general object detectors on multiple in-
stance detection tasks. We now show that we can also surpass other instance recognition and tem-
plate matching work, as well as generalize to unseen target instances. Held et al. [5] classify images
of instances when given only a single image in training. They show a neural network, combined with
some multi-view pre-training, can outperform previous non-deep-learning feature matching meth-
ods. Held et al. [5] use a CaffeNet[48] classification network, pre-trained on ImageNet[49]. They
then perform a multi-view pre-training step on BigBIRD, train on a single example of each instance
in the RGB-D Scenes[8] dataset, and test classification accuracy on crops of instances in RBG-D
Scenes.
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method
coca
cola

coffe
mate

honey
bunches

hunt’s
sauce

mahatma
rice

nature
v1

nature
v2

palmolive
orange

pop
secret

pringles
bbq

red
bull mAP

TDID 30.8 73.8 52.0 24.1 26.7 86.1 82.2 28.3 62.2 26.0 37.9 48.2

Faster-RCNN[3] 88.5* 95.5* 94.1* 88.1* 90.3* 97.2* 91.8* 80.1* 94.0* 92.2* 65.4* 88.8*

Table 7: Few-shot detection performance on GMU Kitchens dataset. None of the instances were
seen as targets during training, though nature v1 and v2 are very similar to those seen in training.
*Faster-RCNN trains on these instances, numbers are just for reference.

We adapt our object detection framework to perform classification, and evaluate this modified net-
work on the same one-shot instance classification task. In this setting, the definition of “target
image” stays the same, but “scene image” is now a classification style image, i.e. a crop around one
object. For TDID to generalize to unseen target instances it must be provided with a large variety
of target instances during training. We construct a training set consisting of over 250 instances from
the BigBIRD dataset and RGB-D Object Dataset. More details on training our detection network
for classification can be found in the appendix.

For a fair comparison, we use AlexNet [28] (extremely similar to CaffeNet[48], same performance
on ImageNet classification) pre-trained on ImageNET as our backbone network. To test how well
our system can generalize to unseen target instances, we do not train on the single example of each
test instance as [5] does. Instead we use the provided example as the target image at test time, never
re-training our network or updating the weights to recognize these new objects. Even without
any fine-tuning on the test objects our method achieves 50.5% classification accuracy, outperforming
the previous deep-learning approach that does train on the test objects, as well as several feature and
template matching methods. See Table 6.

4.3 Few Shot Instance Detection

We next explore few-shot instance detection with two examples of each instance available, one front
view and one back view. In contrast with usual few-shot tasks, we do not train on examples of test
objects. We use the examples as target images at test time, requiring our detector to generalize to
unseen objects without any on-line training or fine-tuning. High performance on this task could be
useful for many applications where the system is given just a few examples of a target object but
does not have time to re-train.

We test on the instances on the entire GMU Kitchens dataset. Though some of these are also present
in the AVD dataset, we do not ever use them as targets. As in the classification task, we construct
a large training set to enable TDID to generalize. We include images from AVD, RGB-D Scenes,
synthetic images using RGB-D Objects, BigBIRD, and [3], as well as the ImageNET VID [49]
dataset. More details can be found in the appendix.

As shown in Table 7, TDID is able to generalize well to these instances, achieving 48.2 mAP. We
also provide the Faster-RCNN results [3] from training/testing on split one of the GMU data as a
sort of upper bound reference, and to show the difficulty of the GMU data relative to other tasks.
This result is particularly exciting as TDID is able to give reasonable performance on a task general
category detectors cannot perform. The ability to detect novel objects quickly, without any new
training, could be very valuable for robots in many applications.

5 Conclusion

We propose a new Target Driven Instance Detection method. Using the target driven approach with
our feature embedding module, we are able to transform methods for category-level detection to a
high performance model for instance detection. We show state-of-the-art performance on multiple
instance detection and classification tasks, as well as promising results on a new few-shot detection
task. The effectiveness of our embedding allows the model to be lightweight, achieving fast run
times without sacrificing accuracy. Future work includes improving generalization to new targets,
allowing a model to be used “off the shelf” without retraining for any new target instances.
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A Appendix Introduction

In this supplementary material, we give more training details for our experiments in Sections 2-4, as
well as a visualization of some networks outputs in Section 5. We have also submitted our code in
the supplementary material.

B Training Details for AVD Experiment (4.1.1)

We set the batch size as five, resizing the images from 1920x1080 to 960x540, with one sample
consisting of two target images and one scene image. We choose training samples such that the
target instance is present in the scene image about 60% of the time. This means in about 40% of
the training samples, the target object is not present in the scene image and all anchor boxes become
negative samples. We start the learning rate as .001, momentum as .9 and weight decay 0.0005 and
train for 40 epochs. We then reduce the learning rate by a factor of 10, and continue training for
another 15 epochs.

C Training Details for One-shot Classification Experiment (4.2)

For TDID to generalize to unseen target instances it must be provided with a large variety of target
instances during training. We construct a training set consisting of over 250 instances from the Big-
BIRD dataset and RGB-D Object Dataset. We are careful to not include any instances in training that
overlap with those in the test set, RGB-D Scenes, excluding any instances from the test categories:
bowl, cap, cereal box, coffee mug, flashlight, soda can. The BigBIRD images are cropped using
the provided segmentation masks to produce classification images. The instances from the RGB-
D dataset are placed against random background images from the background images of RGB-D
Scenes, as in [5].

The instance detection task in previous sections stress finding small objects in large scene images,
while in classification the object of interest fills almost the entire image. To enable TDID to rec-
ognize these relatively large objects, we adjust the default anchor boxes to be very large, covering
almost the entire image. This means instead of predicting classification scores and regression pa-
rameters for a large grid of anchor boxes as in Figure 1a, there exist only a few large anchor boxes
to be classified.

During training, we ignore any loss associated with bounding box regression, and only focus on
classifying the anchor boxes. Since all anchor boxes are large, and the object of interest fills most of
the image, we treat all anchor boxes as positive examples when the target image matches the object
to be classified. We train with a batch size of 128, and sample training examples such that the target
matches the scene image 50% of the time. The learning rate is set at .001, momentum .9 and weight
decay 0.0005 while training for 20,000 iterations. At test time, our classification score for the image
is taken as the maximum score of any anchor box.
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Seen

Unseen

Figure 2: From Left: target images, scene image, VGG activations, our joint representation activa-
tions. The top row shows an example where the target was used in the train set, bottom row shows
a novel target. The model was successful in detection both objects. Ground truth bounding box in
red.

D Training Details for the Few shot detection Experiment (4.3)

In constructing a training set, we use the same instances from BigBIRD and RGB-D Objects as in
the classification task, but instead of creating cropped classification images we use the code from
[3] to synthetically place the objects in the 1449 images from NYUD2[50].

We further increase the number of target instances seen during training by adding in images from
the AVD dataset. In addition to the released bounding box labels for the BigBIRD-like instances, we
take advantage of the structure of the AVD dataset to add more target instances to training. We start
with an image, I , in a scene, S. Using selective search, we can get the bounding box of some object
or region, O, in I . Using the camera locations and depth images provided by AVD, we can project
0 to world coordinates and then project back into every other image in S. This gives us more target
instances almost for free. Unfortunately this setup is still experimental, and is not always robust
to occlusion and other factors. Therefore we only generate samples from two scenes from AVD,
adding a total of about 5000 target/scene image pairs. Future work includes making this process
more robust to hopefully greatly increase the generalizability of TDID.

Finally, we add in the ImageNET VID dataset to further increase variety. This dataset consists of
snippets of video with one or more objects labeled with a bounding box throughout the video. While
training TDID, we first choose a video at random. We then choose an object as the target, and crop
two random frames of the video to get target images. Another random frame of the video is chosen
as the scene image 50% of the time, while a random frame from a random video is chosen the other
50%. This means the target object is visible in the scene image in half of the training examples.

We use the same training hyper-parameters as in the detection experiment on AVD in Section 4.1,
except we cut the learning rate in half to .0005 and train for 150,000 iterations.

E Visualization

Figure 2 shows a visualization of activation responses from hidden layer neurons in our network.
To visualize these activations we take the average value across all channels in each spatial location.
This corresponds to finding locations where a large number of neurons are activated. We analyze
two heatmaps: VGG features (after fine-tuning) from the scene image and the joint representation
that is directly fed into the detection prediction head.

Two scene-target pair cases are demonstrated. In the first case the target was seen during training.
VGG features show that neurons fire in locations where objects are present. Notice how the acti-
vations change when going to the joint representation: a clear peak corresponds to the actual target
location.

The second target was not seen during training. As in the previous case, VGG activations highlight
various objects present in the scene and a medium activation is visible on the actual target. It is
not easy to distinguish between the target and other objects. The joint representation magnifies
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activations on the objects that are similar to the target and the peak activation blob highlights the
actual target, although the difference in activations is expectedly weaker.
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