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Abstract—The ubiquity of multi- and many-core processors
means that many general purpose programmers are beginning
to face the difficult task of using runtime systems designed for
large-scale parallelism. Not only do they have to deal with finding
and exploiting irregular parallelism through Tasking, but they
have to deal with runtime systems that require an expert tuning
of task granularity and scheduling for performance.

This paper provides hands-on experiences to help program-
mers to select an appropriate tasking model and design programs.
It investigates the scheduling strategies of three different runtime
tasking models: Cilk, OpenMP and High Performance ParalleX
(HPX-5). Six different simple benchmarks are used to expose how
well each runtime performs when provided untuned implementa-
tions of irregular code fragments. The benchmarks, which have
irregular and dynamic structures, provide information about the
pros and cons of each system’s runtime model, particularly the
differences to the programmer between help-first and work-first
scheduling.

Index Terms—Tasking Model; Parallel Programming; Cilk;
OpenMP; HPX-5

I. INTRODUCTION

The increasing complexity of multi- and many-core proces-

sors has made it difficult to achieve both high performance

and reasonable programming productivity. Not only do they

have to deal with finding and exploiting irregular parallelism

through Tasking, but they have to deal with runtime systems

that require an expert tuning of task granularity and scheduling

for performance. This paper provides practical observations

for programmers to determine an appropriate tasking model

according to their application.

The runtime system schedules tasks efficiently to complete

different sized units of work. Through runtime scheduling,

tasking is able to balance workloads and keep all processors

working. There are many parallel programming models that

address some of the barriers to large-scale performance, like

C++, Fortran, Chapel, MPI, OpenMP [1], and the HPX-5

library [3]. This paper investigates the scheduling strategies

of three different runtime tasking models: Cilk, OpenMP, and

High Performance ParalleX (HPX-5).

The OpenMP tasking model, first introduced in OpenMP

3.0, allows users to exploit the parallelism of irregular and

dynamic program structures. Although OpenMP 4.0 supports

expressing task dependences, this work focuses on OpenMP

3.0 since expressing task dependences requires more expertise.

Cilk provides the user some keywords to implement task par-

allelism. (Here, Cilk refers to Cilk Plus, implemented by Intel

Corp.) HPX-5, developed by CREST (Indiana University),

is a state-of-the-art distributed programming model that is

designed according to the ParalleX execution model [4].

A variety of well-known benchmarks can be run to com-

pare parallel computing performance, including PARSEC,

SPLASH-2, and NAS Parallel Benchmarks. In this paper,

all systems are tested using benchmark sets designed for

OpenMP. There are no recent well-known benchmark sets for

HPX-5. Cilk and OpenMP have similar execution models and

frameworks; thus, benchmark sets that can be used with the

OpenMP framework can also be used with the Cilk framework.

HPX-5 is tested using the same OpenMP benchmark sets. The

HPX-5 runtime system is relatively similar to the benchmark

designed for the OpenMP tasking model used in the Barcelona

OpenMP Tasks Suit (BOTS) evaluations [5]. BOTS evaluation

benchmarks, which are based on task parallelism, are used to

test all the systems mentioned except for OmpSCR [6] and

PARSEC.

This paper examines the difference between the design prin-

ciples and throughput of Cilk, OpenMP, and HPX-5 runtime

systems. Six representative benchmarks are applied, including

Fibonacci, Knight, Pi, Sort, N-Queens, and Unbalanced-Tree-
Search, in three distinct versions. These benchmarks have

the coding patterns that are used by most general purpose

programmers. This paper also discusses the pros and cons

of each runtime system, particularly the differences to the

programmer between help-first and work-first scheduling.

The remainder of this work is structured as follows. Other

works relevant to ours are introduced in Section II. Section III

presents the design principles of the Cilk, OpenMP, and HPX-

5 runtime systems. Section IV introduces the benchmarks and

shows the results. Finally, observations and conclusions are

provided in Section V.

II. RELATED WORK

Task-scheduling strategies fall into two broad groups: help-

first schedulers and work-first schedulers. Cilk [2], provided by

Intel, applies a work-first scheduler and uses a work-stealing
technique. Work-first scheduling follows the serial execution

path in choosing new tasks. Processors that are looking for

tasks “steal” continuations for additional sequential tasks that
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haven’t begun yet. OpenMP builds on this, attempting to add

Intel’s work-queueing model for dynamic task generation. The

OpenMP tasking model, which was officially introduced to

OpenMP language in Ayguade [8].

Several papers have studied how to schedule tasks. Korch et

al. [9] discuss task-based algorithms and describe the imple-

mentation of different task pools for shared-memory multipro-

cessors. Duran [10] evaluates different scheduling strategies,

including centralized breadth-first and fully-distributed depth-

first work-stealing schedulers, and compares OpenMP and

Cilk’s results.

OpenMP and Cilk have been widely studied. In contrast,

HPX-5 is a relatively modern parallel runtime system that

has not yet been carefully investigated. Firoz et al. [11]

compare three different single-source shortest-path algorithms

running on two recent asynchronous many-task runtime sys-

tems: AM++ and HPX-5. In Zhang [12], the Fast Multipole

Method [14] is implemented into four versions including Cilk,

C++11, HPX-5, and OpenMP.

HPX-5 provides not only help-first schedulers but work-

first schedulers. However, none of the studies above explore

how HPX-5 performs compared to applications that combine

runtime systems and tasking strategies, such as Cilk and

OpenMP. Although some work has studied both tasking and

runtime systems, these studies each targeted one specific

program for testing; these types of studies cannot explain

the comprehensive differences between runtime systems. The

goal in this work is to investigate the pros and cons of

different runtime systems and provide hands-on experiences

for programmers.

III. RUNTIME SYSTEM

A runtime system principally serves to implement the

parallel execution model, and performance varies according

to how different strategies are used in the design pattern.

The OpenMP tasking model is presented in Section III-A.

Section III-B explores the strategies of the Cilk runtime

system. Section III-C reveals the design philosophy of HPX-5

and gives an example of how to make an HPX-5 program.

A. OpenMP Tasking Model

The OpenMP tasking model allows users to exploit par-

allelism in irregular and dynamic program structures, such as

conditional loops, recursive algorithms, and producerconsumer

patterns. The syntax of the OpenMP task construct includes

clauses and select task regions. The supported data clauses,

which control the data-sharing attributes of the variables, are

shared, private, firstprivate, and default. Users need to select

task regions and insert proper task constructs to enclose the

chosen task regions. In other words, users are responsible for

utilizing OpenMP’s task model correctly, a problem that is

well-discussed in Wang [15].

Besides data clauses, OpenMP provides tied and untied
directives to illustrate a task’s affinity for a particular thread.

A tied task is one that is always executed by the same

thread upon its resumption from the status of being suspended.

Otherwise, it is an untied task. One key difference is that

untied tasks may be interrupted at arbitrary points in execution

while tied tasks suspend only at a specific point. OpenMP also

provides the taskwait construct to synchronize the execution

of tasks and to preserve dependent relationships among tasks.

B. Cilk Tasking Model

Cilk supports nested data and task parallelism; it provides

three keywords (cilk spawn, cilk for, and cilk sync) that de-

velopers can use to specify task parallelism. Unlike OpenMP,

users are not required to specify the data-sharing attributes of

the variables; users are, however, responsible for specifying

cilk spawn to a function call, which is allowed to execute

in parallel. cilk sync requires that all spawned calls in a

function finish before execution continues. But whether or

not a function called with cilk spawn runs asynchronously is

determined by the Cilk runtime system.

Cilk runtime scheduler follows a work-first policy, which

allows tasks to be stolen by other processors. When a thread

has no tasks in its work queue, it can steal a task from the

local work queue (last-in, first-out) or from another thread pool

(first-in, first-out).

C. HPX-5 Tasking Model

The architecture of the HPX-5 runtime system includes

several components: localities, global memory, lightweight

threads and actions, LCOs (Lighted Control Objects), and

parcels. Actions are accessed and executed by HPX-5

lightweight threads. The lightweight threads are usually des-

tined to execute a process that changes a local address to a

specific global address. That allows HPX5 runtime to send an

action to the physical location in which data is located. Oth-

erwise, synchronization and communication between actions

are carried out by LCOs. The design of LCOs permits actions

to proceed with their execution as far as possible—in other

words, to be event-driven. Thread execution is not required

to wait for particular blocking operations, like busy-waits and

polling, to finish.

An HPX-5 thread manager compiles several scheduling

policies, including work-first, help-first, and hybrid policies,

which provide users the freedom to configure the scheduling

of the HPX-5 runtime system. The thread manager implements

a work queue-based execution strategy with work stealing and

the default scheduling policy is a hybrid policy. Whether newly

generated parcels will be executed using work-first or help-first

is controlled by the –hpx-sched-wfthreshold parameter. When

the number of tasks is under the threshold, the scheduling

policy is help-first; when it exceeds the threshold, it is work-

first.

HPX-5 also supports both random and hierarchical policies.

During work stealing, a random policy means that a worker

will select a random victim from the rest of the workers in

its locality from which to steal tasks. The hierarchical policy,

in contrast, dictates that the worker first attempt to steal one

parcel from another worker within the local NUMA node, then
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TABLE I
CONFIGURATION OF THE EXPERIMENTAL ENVIRONMENT

Item Value

Hardware CPU Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz
(20 cores in total)

Cache L1: 32 KB, L2: 256 KB, L3: 25 MB
Bandwidth 68GB/s
Memory DDR4 64GB with 4 memory channels

Software OS CentOS release 6.6 (kernel: 2.6.32)
Compiler icc 14.0.2 with ”-O3” option

attempt to steal a much larger number of parcels from a worker

in a different NUMA node.

IV. EVALUATION

In this section, the differences between the OpenMP, Cilk,

and HPX-5 runtime systems are explored. Section IV-A de-

scribes applications that are used to test the scalability of

runtime systems. Section IV-B shows the experiment setup,

including hardware and software specifications. Finally, the

results are shown in Section IV-C.

A. Benchmarks

In order to evaluate runtime systems’ tasking models, some

untuned benchmarks have been selected, the parallelisms of

which are frequently adopted by most general-purpose pro-

grams. Many were chosen from BOTS [5] and one from Omp-

SCR [6]. Based on the OpenMP versions, these benchmarks

were designed to be used with the parallel frameworks of both

Cilk and HPX-5. So that all applications are compared based

on the same foundation, all benchmarks have the same parallel

task regions and the same points for synchronization. All

benchmarks are identical from the point of view of algorithms

and parallelism. For all OpenMP versions, the default task

directive that uses tied tasks is adopted.

B. Experimental Setup

This paper evaluates the runtime systems of OpenMP, Cilk,

and HPX-5 by running the experiments on an Intel Haswell

machine. Table I lists the configuration of the experimental

environment. The OpenMP benchmarks were compiled using

Intel icc 14.0.2; the Cilk benchmarks were compiled using

Intel Cilk++ 1.0 (based on icc 14.0.2), for comparison with the

OpenMP implementation; and the HPX-5 benchmarks adopted

HPX-5 v2.2.0, compiled with icc 14.0.2. The ”O3” option

is always used. Unless otherwise mentioned, reported results

represent the average of 10 trials.

C. Results

Figure 1 shows the performance of the three runtime sys-

tems on the six untuned benchmarks. The speed-up on the

Fibonacci, Knight, and Pi benchmarks indicates that the par-

allel version runs slower than sequential versions. None of the

runtime systems is capable of obtaining a reasonable speed-up.

N-Queens, Sort, and UTS demonstrate more information about

runtime systems. The N-Queens benchmark shows an 11X

Fig. 1. Performance comparisons on the six benchmarks of OpenMP, Cilk,
and HPX-5 runtime systems, as run on the system described in Table I.
Each benchmark has its own sequential version as the baseline for speed-
up. Fibonacci computes to the 50th Fibonacci number; Knight has a board
size of 7 by 7; Pi calculates π to the accuracy of 104; N-Queens finds all
solutions on a 16x16 chessboard; Sort sorts a random list of size 109; and
UTS explores 1.6 billion nodes in an unbalanced tree.

speed-up using HPX-5, whereas OpenMP has approximately

a 3X speed-up. On the other hand, in the Sort benchmark,

Cilk achieves a 4X speed-up—more advantageous than either

OpenMP or HPX-5. Some benchmarks have no bar because

either a) the runtime system cannot handle the problem size

(Cilk is not available to run UTS when the tree size is large),

or b) the performance is so low (slowdown) that no bar is

visible. The following provides insight into each benchmark

individually.

1) Fibonacci: The Fibonacci benchmark uses a recursive

parallelism on a simple test case of a deep tree. As shown

in Figure 2, none of the runtime systems do well under the

naive circumstance, regardless of their scheduling policies and

system design; this is because the benchmark is composed of

very fine-grained tasks with very little real work done. When

the Fibonacci number is 50, the difference in average time

among the three runtime systems ranges from 8% to 20%.

The OpenMP version runs faster than others.

Figure 2 also reveals the overhead of all runtime systems.

When input is below 35, all runtime systems run slower than

they should in theory. Surprisingly, the OpenMP version runs

faster with an input of 20 than it does with an input of 15.

Overall, the overhead of HPX-5 is less than that of OpenMP.

In a simple program like Fibonacci, the overhead is still

noticeable.

2) Pi and Knight: The Knight and Pi benchmarks have

similar program structures and outcomes, and will therefore

be discussed together. Figure 3 presents how the different

runtime systems perform in executing the Pi program. Since

the Pi program calls itself recursively to the desired depth,

Cilk and OpenMP finish all work with the same levels of

accuracy, although Cilks work-first policy has an advantage

given Pi’s parallelism. Initially, Cilk finishes the work in

the smallest execution time; after the accuracy point of 104,

however, Cilk is not available. Like Cilk, OpenMP does not
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Fig. 2. The average execution time of the nth Fibonacci number.

Fig. 3. The average execution time of various runtime systems for different
desired precisions on the Pi program.

allow the program to generate tasks recursively with unlimited

depth. Infinitely recursive function calls not only blow up the

stack size, but also break the balance between reasonable depth

and memory usage. The HPX-5 runtime system virtualizes all

memory access, so it is limited by the program stack size. It

turns out that HPX-5 creates spawns as deep as possible until

it runs out of memory and gets killed by the operating system.

3) N-Queens: Figure 4 shows the runtime systems’ average

speed-ups for N-Queens on a 16 by 16 chessboard. Both Cilk

and OpenMP versions have poor speedup; HPX-5 achieves an

11X speed-up. The program architecture of N-Queens repre-

sents an individual node as one task or spawn that it is able to

Fig. 4. The speed-up on N-Queens using the different task implementations
of OpenMP, Cilk, and HPX-5. We use a chessboard of size 16 by 16 in
the experiment. The performance of the sequential version is the comparison
baseline.

execute in parallel, and tree depth is determined by whether

N-Queens can position queens. N-Queens generates a flat,

shallow tree architecture that does not benefit Cilk’s work-first

policy. It turns out that the victim node (the shallowest node)

provides an insufficient workload; Cilk therefore displays no

speed-up. According to Duran [10], a work-first policy with

tied tasks severely degrades performance; this performance

decay can be mitigated by using untied tasks.

The help-first policy applied by both OpenMP and HPX-

5 is good for traversing a broad, shallow tree structure, and

this accounts for their performance increases. The difference

in performance improvements between HPX-5 and OpenMP

comes from the different implementations of these two runtime

systems. OpenMP adopts heavyweight POSIX threading that

causes much overhead in generating new tasks. By contrast,

the lightweight threading applied by HPX-5 significantly re-

duces the overhead of generating tasks. For these reasons, the

HPX-5 runtime system on the N-Queens benchmark shows a

progressive speed-up when the number of threads increases.

4) Sort: The Sort benchmark performance comparison re-

sults are shown in Figure 5. The baseline for comparison was

the performance of the sequential version. In the experiment,

two versions of HPX-5 are implemented: one is HPX-5, which

is the basic HPX-5 application, and the other is HPX-5 Cut,
which applies a cut-off strategy that reduces degradation in

the obtained performance.

When the sorted number goes above 105, HPX-5 starts

to slow down, but the speed-up of HPX-5 Cut continues

to grow, because HPX-5 Cut avoids the overhead of gen-

erating overwhelming spawns. Even though HPX-5 applies

lightweight threading, the overhead of creating spawn must

still be an issue taken into consideration. OpenMP has no

significant speed-up; no matter the size of the input number.

Compared to OpenMP, HPX-5, which does not control the

depth of generating spawn, achieves 2.5X speed-up when the

size is 105. Cilk’s performance seems relatively sound and

sustainable, since the way Cilk generates spawn does not

require support from the operating system.
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Fig. 5. The average execution time of Sort of various runtime systems for
different sizes of sequences. The performance of the sequential version is the
comparison baseline. HPX-5 Cut stands for the HPX-5 version with a cut-off
mechanism.

Sort does not require sufficient parallelism to be a good

test. Besides the recursive function, the only bottleneck in Sort
is the work of partition. According to Brent’s theorem, the

speedup of parallel computing is bound by step-complexity.

Sort’s performance is limited by the sequential partition.

5) UTS: UTS generates an unbalanced tree with enormous

variance in subtree sizes. UTS challenges the runtime sys-

tems’ load balancing, since the distribution of subtree sizes

follows a power law. The purpose of the work-stealing policy

is to balance workload between processes. Load-balancing

operations, however, incur overhead costs, leading to poor

performance. Hence, it is difficult to tune UTS’ performance

for improvement.

Figure 6 shows the performance of the three runtime sys-

tems. Regarding the missing data points for Cilk, the curve

of the Cilk version is unavailable because of Cilk’s limited

spawn depth. The Intel worker’s deque is hard coded to 1024

entries. Given a small input size, the Cilk version runs fastest

among the tested runtime systems. When input size reaches

100 million nodes, the HPX-5 version requires less time to

finish jobs than OpenMP does, because HPX-5 provides an

Active Global Address Space, which benefits work stealing

and memory moving. The HPX-5 version fails at an input

size of 2 billion nodes, because it runs out of memory and

is killed by the operating system. This occurs because HPX-5

needs more memory space to sustain its Active Global Address

Space, which produces a trade-off between memory usage and

need. Although the OpenMP version is able to survive when

the total number of tree nodes is 2 billion, its performance

suffers because of the overhead produced by context-switching

and cache miss, demanding more execution time.

Even though UTS has an unbalanced program structure, it

can still benefit from the scheduling strategies of the runtime

Fig. 6. The average execution time of Unbalanced-Tree-Search for various
runtime systems on different tree sizes.

Fig. 7. Speed-up comparison of the six permutations of scheduling policies for
HPX-5 on the Unbalanced-Tree-Search benchmark. hybrid+h means hybrid
policy with help-first, and hybrid+w represents hybrid policy with work-
first. The rest are random policy set and hier (hierarchical) policy set. As
a comparison base, the default scheduling strategy, which is hybrid+h, is
used.

system. HPX-5 provides hybrid, random, and hierarchical

(denoted as hier in Figure 7) policies. The default scheduling

strategy, hybrid+h is used as a basis for comparison and the

results show other scheduling strategies (except random+h)

have better performance.

V. DISCUSSION AND CONCLUSION

This section offers further insights into the experimental

results given in the previous section. The experimental envi-

ronment has been built on the hardware architecture of a single

node. The HPX-5 runtime system does not have to distribute

a workload across all nodes, so it avoids the overhead of

communication between nodes. All runtime systems run their

programs in shared memory architecture.
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Fine-grained parallelism, like that required by Fibonacci,
Knight, and Pi, limits the ability of runtime systems’ acceler-

ation; so, their program structures should be modified to elim-

inate this parallelism for further performance improvements.

Fine-grained parallelism also tends to cause the Cilk runtime

system to abort its application because of its limited depth of

tasks. Cilks work-first policy is supposed to have an advantage

in executing programs with a narrow, deep tree structure;

but, its unexpected overhead from spawn generation reduces

performance gains. Indeed, Cilk performs much slower than

its sequential version on this benchmark.

The overall speed-up of OpenMP and HPX-5 on all bench-

marks is compared in Figure 1. HPX-5 runtime systems gen-

erally perform better, but OpenMP and HPX-5 show similar

speed-up trends because they use help-first scheduling policies.

HPX-5, however, displays higher speed-ups than OpenMP

because it has lower overhead in task creation and in task

stealing. Although shared memory architecture provides the

same data scope to multi-threading, OpenMP threading still

must copy task-related data from the task pool to thread local

storage, allowing it to generate or steal tasks. HPX-5 leaves

task-related data in the memory space managed by the runtime

system. Its threading can recreate or steal a task by accessing

the memory space where the task-related data is, without the

overhead of moving data. In a nutshell, HPX-5 sends work

to data, not vice versa. If a sufficient amount of memory

needs to be copied for generating or stealing tasks, the cost

of moving the memory weakens the performance of OpenMP.

Because HPX-5 has less overhead when creating and stealing

tasks, it does make high demands on memory use. UTS reveals

the disadvantage of HPX-5: it demands much more memory

from the system than the others do. UTS’s large tree sizes

also weaken the Cilk runtime system severely. Besides the

memory demand, OpenMP and HPX-5 can scale applications

in a large-scale computing environment.

Cilk differs most significantly from the other systems be-

cause it uses a work-first scheduling policy rather than a help-

first scheduling policy. Tasking with a work-first policy keeps

data in contiguous memory and achieves better data locality.

Cilk has relatively better speed-up in Sort, and also generates

spawn without the demand of numerous operating system

resources. Work-first scheduling policies become clumsy if the

task held by one thread cannot bring a sufficient workload.

Cilk’s limitation of spawn depth also keeps it from being

scalable to large-scale-level performance.

A cut-off mechanism is one practical solution that reduces

performance degradation. When applying a cut-off mechanism

in the HPX-5 benchmark of Sort, its performance dominated

all other versions of the application. Whether the size of

task granularity is fine-grained depends on plenty of factors

associated with hardware and software architecture, like cache

size, bandwidth, disk layout, programming language, overhead

of function calls, etc. A certain threshold cannot be broadly

applied because it varies with different problem sizes and

hardware platforms.

Help-first policies work better than work-first policies if the

pattern of program structure is, as in the N-Queens benchmark,

a broad, shallow tree. Work-first policies are best suited to

work on programs structured like narrow, deep trees, such as

the Fibonacci, Knight, and Pi benchmarks. The executions of

Knight and Pi show no difference between parallel programs

and sequential programs; the speed-ups on the Fibonacci,
Knight, and Pi benchmarks unexpectedly show no perfor-

mance gains from Cilk’s work-first scheduling policy. This is

because their executions suffer from overwhelming overhead

created by spawn generation.
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