
Formalizing Data Management Systems: a Case
Study of Syndicate Protocol

Chun-Kun Wang
Department of Computer Science

Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599, USA

Email: amos@cs.unc.edu

Hao Xu
Data Intensive Cyber Environment Center

Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599, USA

Email: xuh@cs.unc.edu

Abstract—The large volume of data delivers valuable insights
to many fields. A variety of big data database options have
emerged for the purpose of data management. Many legacy data
management systems, however, are written without formalization.
Syndicate is served as a distributed file system that builds a
coherent storage abstraction from already-deployed commodity
components, including cloud storage and dataset providers.
Through Syndicate, users can define their own provider-agnostic
storage functionality to access different databases. Syndicate
that fully decouples applications from underlying components
generalizes the use of data management systems. It is also
driving the need for further specification to guarantee the
consistency and the correctness, such as functional requirements,
data consistency, access control, and fault tolerance. In this paper,
we take initial steps to formalize the Syndicate protocols with the
goal of providing a general solution by using formal methods to
improve the quality of data management systems.

Index Terms—Distributed file system, Concurrent/Parallel pro-
gram, π-calculus.

I. INTRODUCTION

The large volume of data delivers valuable insights to

many fields. A variety of big data database options have

emerged for the purpose of data management. Many legacy

data management systems, however, are written without for-

malization. With increasing use of the cloud, the growing size

and complexity of distributed file systems are driving the need

for further specification toward verifying the consistency and

the correctness.

Syndicate [6] is a scalable software-defined storage sys-

tem for wide-area networks. It creates virtual cloud storage

volumes on top of already-deployed commodity systems, but

while preserving end-to-end domain-specific storage invari-

ants. In doing so, Syndicate fully decouples applications from

providers, allowing applications to implement domain-specific

storage functionality in a provider-agnostic way. Syndicate

generalizes the use of data management systems so that

it encounters several storage design challenges, including

functional requirements, data consistency, access control and

fault tolerance. The provider-agnostic programming model

also makes Syndicate a platform for the generalization of data

management systems. The prototype of Syndicate currently

supports Amazon S3, Dropbox, iRODS, Cyverse Datastore,

FTP Server and local disk.

Mechanical verification of programs is the only known way

to guarantee that a software is free of programming errors.

Among the tools for such verification, interactive theorem

proving is not limited to specific properties or finite state

spaces, compared to other automated tools such as static anal-

ysis and model checkers. Interactive proof assistants require

inductive reasoning that can handle infinite state space systems

directly. This paper adopts a theorem prover to specify the

distributed file system.

Regarding concurrency, programs cannot be verified by a

theorem prover, if they use programming constructs of which

the proof assistant is unaware. Applπ library built on top

of the Coq proof assistant is designed to enable concurrent

programs to be modeled and verified. This library contains a

formalization of a concurrent language based on π-calculus,

and is based on spatial logic and a collection of lemmas for

formal verification. π-calculus is an extension of the process

algebra CCS and is a foundational language for the study of

concurrent systems. It allows channel names to be communi-

cated along the channels themselves. In this paper, we describe

an ongoing effort to formalize the Syndicate protocols with the

goal of providing a general solution by using formal methods

to improve the quality of data management systems.

II. RELATED WORK

Formal reasoning for file systems has been widely adopted

for the purpose of verification. Many specification languages,

such as Coq [1], Isabelle/HOL [2], Athena [3], Alloy [4],

Prototype Verification System (PVS) [5], etc., are broadly used

to certify systems software. The research on formal reasoning

is summarized as follows. Arkoudas et al.(2004) proved the

correctness of a rudimentary file system using Athena, exclud-

ing file permissions, dates, multi-layered directories, and cache

management. Hesselink et al.(2012) verified a hierarchical file

system and used PVS to prove its specification involving a

UNIX-like permission mechanism. In terms of file system

crashes, Crash Hoare logic was later introduced and applied

to the specification of the file system, FSCQ [12], including

crashes. FSCQ guarantees no data loss under any sequence

of crashes followed by reboots. The seL4 project [11] is the

first verified operating-system microkernel using the Isabelle

proof assistant. Since microkernel does not provide high-level

2017 International Conference on Computational Science and Computational Intelligence

978-1-5386-2652-8/17 $31.00 © 2017 IEEE

DOI 10.1109/CSCI.2017.178

1031

abstractions over the hardware, the verification of seL4 does

not include the correctness of a file system.

π-calculus was first introduced by Robin et al. [13]. It is

a type of process calculus designed for representing parallel

computation. Since its introduction, it has been widely used

in many applications. Abadi et al. [15] extended π-calculus

to have more primitives for encryption and decryption. π-

calculus has also been extended to Business Process Modeling

Language (BPML) [16]. Hirchi et al. [19] models RFID proto-

cols using a process algebra and verifies security properties. In

addition, session types has became a popular way to verify the

protocols. The session types is a type π-calculus that describes

communication protocols as a type in which programs can be

checked to see if they conform to protocols either statically

(at compile-time) or dynamically (at runtime).

The Applπ library [7] is introduced with specification and

verification for processes of a π-calculus extension. It uses a

Higher-Order Abstract Syntax representation in the Coq proof

assistant. Affeldt, Reynald, and Kobayashi (2003) [10] first

showed how to use the Applπ library for verifying an existing

concurrent program. The techniques used in the verification

for a SMTP server [8] have become the prototype of the

Applπ library. Affeldt et al.(2005) [9] introduced partial order

reduction for verification of spatial properties of pi-calculus

processes. This work defined the Temporal-Spatial Logic and

a notion of invisible communication for π-calculus. None of

the works above verifies a distributed file system.

III. SYNDICATE ARCHITECTURE

Syndicate [6] is a virtual cloud storage service that builds

a coherent storage abstraction from already-deployed com-

modity components, including cloud storage, edge caches, and

dataset providers. It defines a cloud storage abstraction, called

a Volume, which organizes application data across underlying

storage with a logically centralized control-plane and a dis-

tributed data-plane. Syndicate consists of two components: a

set of peer Syndicate Gateways (SG), and a scalable Metadata

Service (MS). Syndicate’s data-plane is made up of multiple

SGs, which are user-programmable HTTP servers and clients

that send and receive file data to one another, their clients, and

back-end storage systems.

A. Syndicate gateways

SGs are the middleware processes that interface between

Syndicate and the existing storage elements. Figure 1 presents

the logical positioning of all Syndicate Gateways. The SG

comes in three variants, such as User SGs, Replica SGs and

Acquisition SGs. The difference between three SGs depends

on how they interface with the outside world.

User SGs represent interfaces with user/application pro-

cesses. They implement the Volume abstraction to application

read/write requests, i.e. read requests from edge caches, and

read/write requests from peer SGs. Replica SGs are interfaces

with cloud storage providers. They respond to read/write

requests from peer User SGs, but do not generate any requests

of their own. Acquisition SGs are responsible for the interfaces

Fig. 1. Logical positioning of Syndicate Gateways (SGs).

with dataset providers. They map existing data sets into one

or more Volumes as a read-only directory hierarchy. They

respond to read (but not write) requests from peer SGs, but

do not generate any local requests.

The SGs coordinate to meet consistency, security, and

storage policies via a shared MS. This shared MS maintains

the authoritative state of each Volumes metadata and helps the

system scale, tolerate faults, and keep data consistent. The MS

binds each SG to one Volume and helps SGs discover their

peers. An application typically has one MS and places data in

objects distributed into one or more Volumes. Each host runs

an SG locally for each Volume to attach cloud storage and

external datasets.

B. Syndicate protocol

Syndicate protocol is composed of the communication be-

tween SGs and MS. Since MS always keeps object manifests

fresh and consistent, all requests have to visit MS either to get

the latest manifests or update the manifests, regardless of the

requests, i.e. read, write, rename, etc. For instance, the read

operation needs to visit MS first in order to get the manifest

that keeps track of the data object information. After finishing

operations, the read operation has no need to visit MS, while

the write operation has to update the manifest in the MS. The

overall Syndicate protocol can be simply broken down into

three parts: the gateway-to-gateway protocol, the gateway-to-

MS protocol and the gateway-to-driver protocol. In this paper,

we focus on the gateway-to-gateway protocol, which deals

with the requests for accessing the file system from storage,

without considering consistency of the manifest.

IV. METHODOLOGY

A. π-calculus

The π-calculus models the processes, parallel execution and

communication between processes. We follow the notations

defined at [14]. The π-calculus contains two kinds of entities:

processes and channels. Processes, sometimes called agents,

are the active components of a system; they interact through

1032

synchronous channels, also called names. Two processes syn-

chronously exchange a single data value, which could also be

a channel itself. Namely, a name received on a channel can

then be used itself as a channel name for output or input.
We follow the naming conventions and the syntax in which

u, v, w, x, y, z range over channels and A,B,C, · · · range over

agent identifiers. The abstract syntax of an agent in π-calculus

is defined as follows:

P ::= 0 | x(y).P | x̄y.P | (νx)P

| P |Q | !P,

• 0 is termination, meaning that Agent P does not do

anything.

• (νx).P represents restriction that creates a new channel

x and runs P .

• x(y).P means that the free name y is bound in P along

the channel named x and then behaves like P .

Name y is said to be free, if y is not bound. For example,

if y is bound to P , that means y can be only used inside

of P , which y is private to P .

• x̄y.P means that Agent P sends the bound name y out

along channel x and then behaves like P.

• P |Q means that Process P and Agent Q execute in

parallel. P and Q may behave independently or they may

interact with each other.

• !P is called replication and can be thought of as an

infinite composition P |P |P | · · · .
The labeled semantics of the π-calculus is defined by a

set of transition rules which establish the system evolution. A

transition rule is in the form of P
α−→ P ′, which means that

process P evolves to P ′ after performing a computation step
α−→. In labeled semantics of the π-calculus, α is the prefix that

represents four kinds of actions as follows:

α ::= τ silent action

| x(y) input action

| x̄y output action

| νx create action

The prefix x(y) means input some name along the link named

x and call it y. It is also called bound input in which brackets

act as formal binder. For instance, prefix x(y) in x(y).P binds

the free occurrences of y in P . The prefix x̄y means output

the free name y along the link named x. It is also called free
output. The create action has a prefix, νx, that represents the

creation of a new link named x. Besides the prefix x(y), νx
is another formal binder, the restriction operator νy in νy.P .

A restricted name can be sent outside its original scope.
The main reduction rule captures the ability of pro-

cesses to communicate through channels. For example,

x̄z.P |x(y).Q x̄z−→ P |Q[z/y], where Q[z/y] denotes the pro-

cess Q in which the free name z has been substituted for the

free occurrences of y, means that Process P sends name z
out along the channel x, and Process Q receives the value

z along the channel x and substitutes for the name y. More

explanations of reduction rules can be found in [14], [17].

Fig. 2. Three stages of the specification for Syndicate protocol.

Fig. 3. The code diagram of the subsystem of Syndicate connection handler.

B. Formalization

This section introduces the formalization for the Syndicate

protocol. Figure 2 presents the specification overview of Syn-

dicate protocol. First of all, the Syndicate source code, written

in C++, Python and Java, is traced by code tracing tools. Code

tracing tools generate the code diagrams, which are modeled

by π-calculus in the second stage. Figure 3 shows a code

diagram example of the connection handler. The formalization

stage contains all data structure and implementation details

for the next stage. The abstract specification is the main

specification for Syndicate protocol. The concurrent primitives

that the Applπ library provided for π-calculus logic enable

concurrent programs to check the correctness. A basic file

system is also built and specified in Coq. Finally, we are able

to refine the source code or the coverage of code diagrams.

The whole communication of the Syndicate gateway-to-

gateway protocol can be abstracted as three components, such

as client, server and file system. Abstraction of client, server

and file system supports the more generic expression of the

specification. The client is responsible for sending a request

to the server and waiting for the response from the server. The

client is formalized by π-calculus as follows:

Client : C̄ req . C (resp) . 0

Upon receiving the request from clients, the server requires

a random number from the channel Rand and selects a

corresponding file system worker that provides services to

access the distributed file system. It waits for the response

from the file system worker and returns the response back

to the client. The π-calculus formalization of the server is as

follows:

Server : !C (req) . Rand (n) . ¯Cfn freq(req) .

Cfn (fresp) . C̄ resp(fresp) . 0

The file system worker receives the request from the server.

It requires the current file system state from the channel Fst

and accesses the file system. After modifying the file system, a

1033

new file system state may be generated. The worker preserves

the updated file system state by sending it to the channel Fst

and generates the response for the server. The way to preserve

the file system state by using a channel is inspired by the

work [18]. A file system worker is formalized as follows:

FS : !Cfn(freq) . Fst (Fst) . F̄st Fst(freq, Fst) .
¯Cfn fresp(freq, Fst) . 0

The Syndicate client, server and file system worker are

formalized by π-calculus and then encoded by Applπ library.

We translate the π-calculus formalization by using Applπ
library. The complete formalizations and lemmas are shown

in the GitHub; see the link, https://github.com/ChunKunWang/

syndicate-core-logic.

V. CONCLUSION

Syndicate is served as a distributed file system that builds a

coherent storage abstraction from already-deployed commod-

ity components. It fully decouples applications from providers,

allowing applications to implement domain-specific storage

functionality in a provider-agnostic way. With the provider-

agnostic programming model, Syndicate is able to generalize

the use of data management systems. In this paper, we describe

an ongoing effort to formalize the Syndicate protocols with the

goal of providing a general solution to improve the quality of

data management systems. We adopts π-calculus to formalize

Syndicate protocol and shows how the Applπ library specifies

the Syndicate client, server and file system.

This paper is a preliminary work regarding the specification

of one part of the Syndicate protocol. We haven’t finished the

specification for all Syndicate components, including CDNs,

Metadata Service, Edge cache, etc., and haven’t touched the

gateway-to-MS and the gateway-to-driver protocols. More

consideration must be given to the complete specification for

Syndicate as future work.

ACKNOWLEDGMENT

This paper is partially based upon work supported by

the National Science Foundation under Grant Number OAC

1541318 ”CC*DNI DIBBs: Give Your Data the Edge: A

Scalable Data Delivery Platform.” Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the National Science Foundation.

REFERENCES

[1] Chlipala, Adam. Certified programming with dependent types. 2011.
[2] Isabelle/HOL, 2016. Available at: https://isabelle.in.tum.de/dist/library/

HOL/index.html
[3] Athena, 2016. Available at: http://www.proofcentral.org/athena/
[4] Alloy, 2016. Available at: http://alloy.mit.edu/alloy/faq.html
[5] S. Owre, N. Shankar, J. M. Rushby, and D., Version 2.4 System Guide,

Prover Guide, 2001. http://pvs.csl.sri.com/
[6] Nelson, Jude C., and Larry L. Peterson. Syndicate: virtual cloud storage

through provider composition. Proceedings of the 2014 ACM interna-
tional workshop on Software-defined ecosystems. ACM, 2014.

[7] Affeldt, Reynald, and Naoki Kobayashi. A Coq library for verification of
concurrent programs. Electronic Notes in Theoretical Computer Science
199 (2008): 17-32.

[8] Affeldt, Reynald, Naoki Kobayashi, and Akinori Yonezawa. Verification
of concurrent programs using the coq proof assistant: A case study. IPSJ
Digital Courier 1 (2005): 117-127.

[9] Affeldt, Reynald, and Naoki Kobayashi. Partial order reduction for
verification of spatial properties of pi-calculus processes. Electronic
Notes in Theoretical Computer Science 128.2 (2005): 151-168.

[10] Affeldt, Reynald, and Naoki Kobayashi. Formalization and verification
of a mail server in Coq. Software SecurityTheories and Systems.
Springer Berlin Heidelberg, 2003. 217-233.

[11] Klein, Gerwin, et al. seL4: Formal verification of an OS kernel. Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009.

[12] Chen, Haogang, et al. Using Crash Hoare logic for certifying the FSCQ
file system. Proceedings of the 25th Symposium on Operating Systems
Principles. ACM, 2015.

[13] Milner, Robin, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Information and computation 100.1 (1992): 1-40.

[14] Milner, Robin. The polyadic π-calculus: a tutorial. Logic and algebra
of specification. Springer Berlin Heidelberg, 1993. 203-246.

[15] Abadi, Martn, and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Proceedings of the 4th ACM conference on
Computer and communications security. ACM, 1997.

[16] Smith, Howard. Business process managementthe third wave: business
process modelling language (bpml) and its pi-calculus foundations.
Information and Software Technology 45.15 (2003): 1065-1069.

[17] Quaglia, Paola, and BRICS Lecture Series LS. The-calculus: Notes on
labelled semantics. (1998).

[18] Aranda, Jess, et al. On recursion, replication and scope mechanisms in
process calculi. Formal Methods for Components and Objects. Springer
Berlin Heidelberg, 2007.

[19] Hirschi, Lucca, David Baelde, and Stphanie Delaune. A method for
verifying privacy-type properties: the unbounded case. Security and
Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016.

1034

