
EFFICIENT DESIGN, ANALYSIS, AND IMPLEMENTATION OF
COMPLEX MULTIPROCESSOR REAL-TIME SYSTEMS

Cong Liu

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
2013

Approved by:

James H. Anderson

Sanjoy K. Baruah

Kevin Jeffay

Ketan Mayer-Patel

Jasleen Kaur

Steve Goddard

©2013
Cong Liu

ALL RIGHTS RESERVED

ii

ABSTRACT

CONG LIU: Efficient Design, Analysis, and Implementation of Complex Multiprocessor Real-Time
Systems

(Under the direction of Prof. James H. Anderson)

The advent of multicore technologies is a fundamental development that is impacting software

design processes across a wide range of application domains, including an important category of

such applications, namely, those that have real-time constraints. This development has led to much

recent work on multicore-oriented resource management frameworks for real-time applications.

Unfortunately, most of this work focuses on simple task models where complex but practical runtime

behaviors among tasks do not arise. In practice, however, many factors such as programming

methodologies, interactions with external devices, and resource sharing often result in complex

runtime behaviors that can negatively impact timing correctness. The goal of this dissertation is to

support such more realistic and complex applications in multicore-based real-time systems. The

thesis of this dissertation is:

Capacity loss (i.e., over provisioning) can be significantly reduced on multiprocessors

while providing soft and hard real-time guarantees for real-time applications that

exhibit complex runtime behaviors such as self-suspensions, graph-based precedence

constraints, non-preemptive sections, and parallel execution segments by designing

new real-time scheduling algorithms and developing new schedulability tests.

The above thesis is established by developing new multiprocessor scheduling algorithms and

schedulability tests that are sufficient to provide real-time guarantees for task systems containing

each of the above mentioned complex runtime behaviors individually and in combination.

First, we present several efficient multiprocessor schedulability tests for both soft and hard

real-time sporadic self-suspending task systems. For the past 20 years, the unsolved problem of

supporting real-time systems with suspensions has impeded research progress on many related

iii

research topics such as analyzing and implementing I/O-intensive applications in multiprocessor

systems. The impact of this work is demonstrated by the fact that it provides a first set of practically

efficient solutions that can fundamentally solve this problem.

To better handle graph-based precedence constraints, we propose a scheduling algorithm that can

achieve no capacity loss for scheduling general task graphs on a multiprocessor while providing soft

real-time correctness guarantees. We also extend this result to support task graphs in a distributed

system containing multiple multiprocessor-based clusters. The impact of this work is demonstrated

by the fact that we closed a problem that stood open for 12 years. By achieving no capacity loss, our

research results can provide a set of analytically correct and practically efficient methodologies to

designers of real-time systems that execute task graphs, such as signal processing and multimedia

application systems.

Furthermore, besides handling runtime behaviors such as self-suspensions and graph-based

precedence constraints independently, we also investigate how to support sophisticated real-time task

systems containing mixed types of complex runtime behaviors. Specifically, we derive a sufficient

schedulability test for soft real-time sporadic task systems in which non-preemptive sections, self-

suspensions, and graph-based precedence constraints co-exist. We present a method for transforming

such a sophisticated task system into a simpler sporadic task system with only self-suspensions.

The transformation allows maximum response-time bounds derived for the transformed sporadic

self-suspending task system to be applied to the original task system.

Finally, we present schedulability analysis for sporadic parallel task systems. The proposed

analysis shows that such systems can be efficiently supported on multiprocessors with bounded

response times. In particular, on a two-processor platform, no capacity loss results for any parallel

task system. Despite this special case, on a platform with more than two processors, capacity loss

is fundamental. By observing that capacity loss can be reduced by restructuring tasks to reduce

intra-task parallelism, we propose optimization techniques that can be applied to determine such a

restructuring.

iv

ACKNOWLEDGEMENTS

My dissertation and graduation as a Ph.D would not have been possible without the help of many

people.

I am deeply grateful to my advisor, Jim Anderson, for educating, guiding, and helping me over

the past five years. First of all, I am indebted to Jim for supporting me as an RA and working with

me when I first came to UNC. Ever since, it has been a great pleasure working with Jim and learning

from him. His thoroughness, sharpness of intellect, genuine care and concern for his students are

admirable. I also greatly appreciate Jim for many of his impromptu discussions over half-baked ideas

and fresh insights. I would like to thank Jim in particular for being patient with some of my sloppy

writing, getting those fixed, and teaching me to write in the process. For every paper Jim writes with

his students, he always spends a great amount of time providing careful and prompt feedback on

drafts. That is perhaps the reason why papers submitted by his students to various conferences and

journals consistently get high review scores in the category of presentation. Last but not the least, I

want to thank Jim for pointing out and reminding me my weakness in doing research: always having

a tendency to go too fast and publish more papers. Jim, I will always keep your counsel in mind. In

my upcoming academic career as an independent researcher, I promise, I will not let you down!

I would also like to thank my dissertation committee: Sanjoy Baruah, Kevin Jeffay, Ketan

Mayer-Patel, Jasleen Kaur, and Steve Goddard. I learned quite a lot from Sanjoy on how to be a good

presenter, and I am indebted to Steve for his valuable comments on my research work, particularly

my work on PGM graph scheduling. I want to thank Kevin and Don Smith for performing mock

faculty interviews with me. They reposed a lot of confidence (which is very much needed) in me

during that tough period of time.

I also owe much to many colleagues in the real-time systems group: Andrea Bastoni, Aaron

Block, Bjorn Brandenburg, John Calandrino, Ben Casses, Bipasa Chattopadhyay, Glenn Elliott,

Jeremy Erickson, Zhishan Guo, Jonathan Herman, Haohan Li, Chris Kenna, Alex Mills, Mac

Mollison, and Bryan Ward. I especially want to thank Mac and Bryan for giving valuable suggestions

v

on my job talk, and Hennadiy and Alex for sharing their insights on my research. I also want to thank

Zhishan for driving me to the airport many times during the past few months.

I would like to take this opportunity to extend my thanks to the administrative and technical

staff of the Computer Science Department. Special thanks go to Janet Jones, Dawn Andres, Jodie

Turnbull, and Tim Quigg for their help and kindness to me over the past five years.

I would also like to thank people at places where I did my two summer internships in 2010 and

20011: IBM research T. J. Watson center and IBM research Austin Laboratory. My collaborators

Jian Li, Wei Huang, and Even Speight at IBM research Austin lab deserve a large amount of credit

for working with me on interesting projects over the summer, 2011. I hope I will have collaboration

opportunities with you again in the near future.

Foremost, I thank my parents for their unwavering support and utmost care. Mom, although I

have never had the courage to say this to you, you are the greatest mother in this universe, and I love

you! I promise some day soon I will make you proud!

Finally, I want to thank QianWen, for all her love, for her patience, for her positive, optimistic,

and happy attitudes, for her enormous support during the dark times of my life. Without you, I would

not be able to finish this dissertation and find a job. Although I feel fortunate enough, I would be

more pleased if I had met you much earlier in my life! I love you so much and I will be loving you

all my life.

vi

TABLE OF CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xxi

1 Introduction . 1

1.1 What is a Real-Time System? . 2

1.2 Classical Real-Time System Model . 3

1.2.1 Sporadic Task Model . 3

1.2.2 Hard and Soft Temporal Constraints . 6

1.2.3 Resource Model . 7

1.3 Real-Time Scheduling Algorithms and Schedulability Tests . 8

1.3.1 Concepts and Metrics . 9

1.4 The Divergence of Theory and Practice . 10

1.4.1 Limitations of the Sporadic Task Model . 10

1.4.2 Limitations of the State-of-the-Art . 12

1.5 Research Overview . 13

1.6 Thesis Statement . 14

1.7 Contributions . 14

1.7.1 Multiprocessor SRT Schedulability Test for Globally-Scheduled
Self-Suspending Task Systems . 15

1.7.1.1 The First SRT Suspension-Aware Global Schedulability Test 15

1.7.1.2 An Improved Utilization Constraint . 16

1.7.1.3 An O(m) Analysis Technique . 16

vii

1.7.2 Multiprocessor HRT Schedulability Tests for Self-Suspending
Task Systems . 17

1.7.3 Multiprocessor Scheduling of SRT Task Graphs . 17

1.7.3.1 Supporting PGM Task Systems on Multiprocessors 18

1.7.3.2 Supporting PGM Task Systems in a Distributed System
under Clustered Scheduling . 18

1.7.4 Multiprocessor SRT Scheduling of Complex Task Graphs Contain-
ing Non-Preemptive Sections and Self-Suspensions . 19

1.7.5 A Tardiness Bound for Multiprocessor Real-Time Parallel Tasks 20

1.8 Organization . 20

2 Background and Prior Work . 22

2.1 Real-Time Task Models . 22

2.1.1 The Non-Recurrent Task Model . 22

2.1.2 The Non-Recurrent Self-Suspending Task Model . 23

2.1.3 The Sporadic Task Model . 25

2.1.4 The Sporadic Self-Suspending Task Model . 25

2.1.5 The RB Task Model . 26

2.1.6 The DAG-based RB Task Model . 28

2.1.6.1 The Processing Graph Method . 30

2.1.7 The DAG-based RB Self-Suspending Task Model . 32

2.1.8 The Parallel Task Model . 32

2.2 Common Definitions . 34

2.3 Prior Work . 36

2.3.1 Real-Time Scheduling of Sporadic Task Systems . 36

2.3.1.1 Uniprocessor Scheduling . 36

2.3.1.2 Multiprocessor Scheduling . 39

2.3.1.3 Clustered Scheduling . 45

2.3.2 Real-Time Self-Suspending Task Scheduling . 45

2.3.2.1 Negative Results . 45

viii

2.3.2.2 Self-Suspending Task Scheduling on Uniprocessors 47

2.3.3 Real-Time Task Graph Scheduling . 51

2.3.3.1 Uniprocessor PGM Scheduling . 51

2.3.3.2 Other Prior Work on Real-Time Task Graph Scheduling 53

2.3.4 Dealing with Non-Preemptive Sections . 54

2.3.5 Real-Time Parallel Task Scheduling . 55

2.4 Summary . 56

3 Scheduling SRT Self-Suspending Tasks . 57

3.1 System Model . 57

3.2 First SRT Schedulability Test . 59

3.2.1 Upper Bound . 61

3.2.2 Lower Bound . 65

3.2.3 Determining x . 73

3.2.4 A Counterexample. 74

3.2.5 Experimental Evaluation . 75

3.3 An Effective Technique to Improve Schedulability . 82

3.3.1 Linear Programming Approach . 84

3.3.2 An Optimal Polynomial-Time Algorithm . 85

3.3.3 Tardiness Bound. 88

3.3.4 Experimental Evaluation . 88

3.4 An O(m) Schedulability Test . 100

3.4.1 Schedulability Analysis . 101

3.4.2 New O(m) Analysis Technique . 102

3.4.3 Lower Bound . 111

3.4.4 Upper Bound . 112

3.4.5 Determining x . 115

3.4.6 Theoretical Dominance over Prior Tests . 115

ix

3.4.7 Experiments . 116

3.5 Chapter Summary . 121

4 Scheduling HRT Self-Suspending Tasks . 122

4.1 GTFP. 123

4.2 GEDF . 134

4.2.1 Upper-Bounding
∑

τi∈τ W (τi) . 136

4.2.2 Finding Values of ξl and sl,j . 141

4.2.3 Schedulability Test . 142

4.2.4 Experiments . 143

4.3 Chapter Summary . 147

5 Multiprocessor Scheduling of PGM Graphs . 149

5.1 Supporting PGM-Specified Systems on Multiprocessors. 151

5.1.1 Representing PGM Graphs by DAG-based RB Task Systems 151

5.1.2 Transforming τRB to τ . 155

5.1.3 Tardiness Bound for τRB . 158

5.1.4 Improving Job Response Times by Early-Releasing . 164

5.1.5 Case Study . 164

5.1.6 Summary . 167

5.2 Scheduling SRT PGM in a Distributed System . 168

5.2.1 System Model . 169

5.2.2 Algorithm CDAG . 170

5.2.3 Assignment Phase . 171

5.2.4 Scheduling Phase . 178

5.2.5 Tardiness Bound. 180

5.2.6 Improving Job Response Times . 186

5.2.7 Experiments . 186

5.3 Chapter Summary . 191

x

6 Multiprocessor Scheduling of SRT Tasks with Non-Preemptive Sections, Self-
Suspensions, and Graph-based Precedence Constraints . 192

6.1 System Model . 193

6.2 Transformation. 194

6.2.1 Transforming τNGS to τGS . 194

6.2.2 Transforming τGS to τ S . 196

6.3 A Tardiness Bound . 196

6.4 Chapter Summary . 197

7 A Response Time Bound for Scheduling Real-Time Parallel Tasks on a Multiprocessor. . . . 198

7.1 System Model and Notation . 199

7.2 Response Time Bound . 200

7.2.1 Upper Bound . 202

7.2.2 Lower Bound . 204

7.2.3 Determining x . 212

7.2.4 A Case with No Utilization Loss . 213

7.2.5 Cases with Utilization Loss . 213

7.2.6 Optimization . 214

7.2.7 Experimental Evaluation . 220

7.3 Chapter Summary . 226

8 Conclusions and Future Work . 227

8.1 Summary of Results . 227

8.1.1 Multiprocessor Schedulability Tests for Globally-Scheduled Self-
Suspending Task Systems . 228

8.1.2 Multiprocessor Scheduling of SRT PGM Task Systems . 230

8.1.3 Multiprocessor SRT Scheduling of Task Systems with Mixed
Types of Complex Runtime Behaviors . 230

8.1.4 A Tardiness Bound for Multiprocessor Real-Time Parallel Tasks 231

8.2 Future Work . 231

xi

8.2.1 General Results on Scheduling Real-Time Task Systems with
Complex Runtime Behaviors . 232

8.2.2 Improved Multiprocessor Schedulability Tests for HRT Sporadic
Self-Suspend- ing Task Systems . 232

8.2.3 Supporting Practical Suspending Task Models on Multiprocessors 232

8.2.4 Supporting DAGs with Mixed Timing Constraints on Multiprocessors 233

8.2.5 Scheduling Heterogeneous Multiprocessor DAG-based Systems 234

8.2.6 Reducing the Magnitude of Tardiness Bounds . 234

8.2.7 Innovations in Many-Core Real-Time Systems . 235

8.2.8 Supporting Data-Intensive Workloads in Networked Real-Time Systems 236

BIBLIOGRAPHY . 237

xii

LIST OF TABLES

2.1 Summary of our notation and the sporadic task models constraints. 25

3.1 Per-job suspension-length ranges. 76

3.2 Per-job suspension-length ranges. 89

3.3 Average tardiness bounds under O(m), SC, and LA when m = 4. The
labels “u-L” /“u-M”/“u-H” indicate light/medium/ heavy task utilizations,
respectively. Within the row “O(m),” the three sub-rows “n-O(m)” /“n-
SC”/“n-LA” represent the average tardiness bound achieved by O(m)
as computed for all task sets that can be successfully scheduled under
O(m)/SC/LA, respectively. The rows “SC”/“LA” represent the average
tardiness bound achieved by SC/LA as computed for all task sets that can
be successfully scheduled under SC/LA, respectively. All time units are in ms. 120

5.1 Summary of notation. 152

5.2 Case study results. 166

5.3 Total communication cost. 190

5.4 Runtime performance. 190

7.1 Summary of notation. 200

xiii

LIST OF FIGURES

1.1 Illustration of a constrained-deadline sporadic task τi. The job τi,j is pre-
empted twice by higher-priority jobs (which are not depicted). Therefore,τi,j
migrates twice: it first migrates from processor 1 to processor 2, and then
back to processor 1. 4

1.2 Illustration of symmetric multiprocessor architecture (a) without and (b)
with a shared cache. 8

1.3 Pervasive self-suspension behaviours. 12

1.4 Example real-time video processing system. 12

2.1 Illustration of real-time task models considered in this dissertation. For
each pair of connected task models, the successor (lower) generalizes its
predecessor (upper). For example, the sporadic task model generalizes the
non-recurrent task model. 23

2.2 An example non-recurrent task τ1 with a release time at time 2, a deadline
at time 10, and a WCET of five time units. 24

2.3 Illustration of the non-recurrent self-suspending task model. 24

2.4 Illustration of the sporadic self-suspending task model. 26

2.5 (a) Sporadic and (b) RB releases. 27

2.6 (a) Example DAG-based RB task system and (b) GEDF schedule of this
example system. 29

2.7 Example PGM graph. 31

2.8 Example parallel task τi. It has five segments where the second and
fourth segments are parallel segments and contain three and two threads,
respectively. This task has a WCET of 23 time units, a period of 10 time
units, and thus a utilization of 2.3. 33

2.9 Illustration of Definitions 2.1-2.3. 34

2.10 Uniprocessor schedules under (a) EDF, (b) RM, and (c) LLF for an
example task system with two sporadic tasks τi(e1 = 3, p1 = 5) and
τ2(e2 = 4, p2 = 10). 39

2.11 (a) Partitioning, (b) global scheduling, and (c) clustered scheduling 41

xiv

2.12 Example two-processor G-EDF schedule of the task set that consists of five
sporadic tasks: τ1(3, 10), τ2(2, 7), τ1(1, 5), τ1(3, 9) and τ1(5, 13), where
the notation τi(ei, pi) is used. As we can observe in the schedule, jobs are
allowed to be preempted and migrate among processors at any time due to GEDF. . . . 42

2.13 A counterexample showing that SRPTF is not competitive for the non-
recurrent self-suspending task model. The example task set contains n+ 1
task. The first task τ1 releases a job that arrives at time 0 and has a deadline
at time D − 1, where D is an arbitrary large number. It contains only one
computation phase of one time unit. For each other task τi (2 ≤ i ≤ n),
it releases a job that has a release time at i − 1, an absolute deadline at
D + i− 2. Each job τi first executes for one time unit, then self-suspends
for D − 2 time units, and finally executes for another time unit. As seen
in inset (a), n out of n+ 1 deadlines are missed under SRPTF, while all
deadlines are met under an optimal scheduling algorithm. If D becomes
large enough, this task set has an arbitrarily small utilization. Therefore,
we have an instance with an arbitrarily small utilization such that SRPTF is
not competitive to minimize the number of tardy tasks if they are allowed
to self-suspend at most once. Nevertheless, an optimal schedule exists for
this tast set, as shown in inset (b). 48

2.14 A counterexample showing that EDF is not optimal for scheduling non-
recurrent suspending task systems even with a k-speed processor, for any
positive integer k. The non-recurrent task set contains two tasks that
release jobs both arriving at time 0. τ1 executes for 2k time units, and
has an absolute deadline at 4k − 1. τ2 first executes for one time unit,
then self-suspend for 4k − 2 time units, and finally executes for another
time unit. τ2 has an absolute deadline at 4k. Inset (a) shows a feasible
schedule of this task set under a 1-speed processor. Inset (b) shows the
corresponding EDF schedule, but under a k-speed processor, where k can
be arbitrarily large. As seen, the deadline of τ2 is missed under EDF even
with such a k-speed processor due to self-suspensions. 50

3.1 Subcase 2.2. 68

3.2 Subcase 2.3. 69

3.3 Presence intervals within [ts, tp]. 70

3.4 Tardiness growth rates in counterexample. 75

3.5 Light per-task utilizations, relatively infrequent suspensions . 77

3.6 Light per-task utilizations, moderately frequent suspensions . 77

3.7 Light per-task utilizations, frequent suspensions . 78

3.8 Medium per-task utilizations, relatively infrequent suspensions . 78

3.9 Medium per-task utilizations, moderately frequent suspensions . 79

xv

3.10 Medium per-task utilizations, frequent suspensions . 79

3.11 Heavy per-task utilizations, relatively infrequent suspensions . 80

3.12 Heavy per-task utilizations, moderately frequent suspensions . 80

3.13 Heavy per-task utilizations, frequent suspensions . 81

3.14 Soft real-time schedulability results for uniform light task utilization dis-
tributions. Relatively infrequent suspensions are assumed. 91

3.15 Soft real-time schedulability results for uniform light task utilization dis-
tributions. Moderately frequent suspensions are assumed. 91

3.16 Soft real-time schedulability results for uniform light task utilization dis-
tributions. Frequent suspensions are assumed. 92

3.17 Soft real-time schedulability results for bimodal light task utilization dis-
tributions. Relatively infrequent suspensions are assumed. 92

3.18 Soft real-time schedulability results for bimodal light task utilization dis-
tributions. Moderately frequent suspensions are assumed. 93

3.19 Soft real-time schedulability results for bimodal light task utilization dis-
tributions. Frequent suspensions are assumed. 93

3.20 Soft real-time schedulability results for uniform medium task utilization
distributions. Relatively infrequent suspensions are assumed. 94

3.21 Soft real-time schedulability results for uniform medium task utilization
distributions. Moderately frequent suspensions are assumed. 94

3.22 Soft real-time schedulability results for uniform medium task utilization
distributions. Frequent suspensions are assumed. 95

3.23 Soft real-time schedulability results for bimodal medium task utilization
distributions. Relatively infrequent suspensions are assumed. 95

3.24 Soft real-time schedulability results for bimodal medium task utilization
distributions. Moderately frequent suspensions are assumed. 96

3.25 Soft real-time schedulability results for bimodal medium task utilization
distributions. Frequent suspensions are assumed. 96

3.26 Soft real-time schedulability results for uniform heavy task utilization
distributions. Relatively infrequent suspensions are assumed. 97

3.27 Soft real-time schedulability results for uniform heavy task utilization
distributions. Moderately frequent suspensions are assumed. 97

3.28 Soft real-time schedulability results for uniform heavy task utilization
distributions. Frequent suspensions are assumed. 98

xvi

3.29 Soft real-time schedulability results for bimodal heavy task utilization
distributions. Relatively infrequent suspensions are assumed. 98

3.30 Soft real-time schedulability results for bimodal heavy task utilization
distributions. Moderately frequent suspensions are assumed. 99

3.31 Soft real-time schedulability results for bimodal heavy task utilization
distributions. Frequent suspensions are assumed. 99

3.32 Transformation intervals with respect to Mk. 103

3.33 Defining th and ri,v−c in the transformation method. 104

3.34 Switch: switch the computation of τi originally executed on Mk′ to Mk. 104

3.35 Move: move the computation of tasks other than τi from Mk to some idle
processor Mk′ . 105

3.36 Convert: convert the suspensions of all jobs of τi that are enabled within
[Aqk, B

q
k) (i.e., τi,v−c, ..., τi,v) into computation within all non-busy time

intervals on Mk in [Aqk, B
q
k). 107

3.37 Example schedule transformation. 109

3.38 An example task system containing three tasks, τ1 and τ2 of utilization
0.5, and τ3 of utilization 0.6. All three tasks have a period of 10 time
units. (a) shows the PS schedule PS for this system where each task
executes according to its utilization rate when it is active. Assume that in
the transformed schedule S for this system, three time units of suspensions
of τ3,2 are turned into computation, which causes the utilization of τ3 to
increase to 0.9 in τ3,2’s job execution window [r3,2, d3,2) = [10, 20). (b)
shows the corresponding schedule PS after this transformation. As seen,
in PS, task τ3 executes with a rate of 0.9 in [10, 20). 110

3.39 GEDF schedule of the counterexample. 116

3.40 m = 4 and light per-task utilizations are assumed. 117

3.41 m = 8 and light per-task utilizations are assumed. 118

3.42 m = 4 and medium per-task utilizations are assumed. 118

3.43 m = 8 and medium per-task utilizations are assumed. 119

3.44 m = 4 and heavy per-task utilizations are assumed. 119

3.45 m = 8 and heavy per-task utilizations are assumed. 119

4.1 The maximal job τl,j of task τl becomes eligible at te. to is the earliest time
instant before te such that at any time instant t ∈ [to, te) all processors are
occupied by tasks with equal or higher priority than τl,j . 124

xvii

4.2 Computing ωnc(τi, L). 125

4.3 Computing ωc(τi, L). 126

4.4 A job τl,j of task τl becomes eligible at te and misses its deadline at td by
more than λl. to is the earliest time instant at or before te such that there
is no idleness in [to, te). 135

4.5 DBF for self-suspending tasks. 137

4.6 Computing Wc(τi). 140

4.7 HRT results. ui ∈ [0.01, 0.3], di ∈ [max(0.7 · pi, ei + si), pi]. 145

4.8 SRT results. ui ∈ [0.01, 0.3], di ∈ [max(0.7 · pi, ei + si), pi]. 146

4.9 HRT results compared with BC.. 147

4.10 HRT results compared with GY. 148

5.1 Example DAG. 150

5.2 Roadmap. 151

5.3 RB counterpart of the PGM graph in Figure 2.7. 154

5.4 Extended snapshot sequence of releases. 154

5.5 Redefining job releases according to (5.18) – (5.5). 156

5.6 Three cases in Theorem 5.5. 161

5.7 Early-releasing example. 165

5.8 Case study. 166

5.9 Example system used throughout this section. 171

5.10 Psuedocode of the assignment algorithm. 175

5.11 Example worst-case scenario where all edges of ϕ− 1 DAGs contribute to
the total communication cost. 178

5.12 Illustrating various ideas on redefining job releases for DAG τ2 in Figure 5.9. 181

5.13 Schedulability results: light per-task utilization distribution. 188

5.14 Schedulability results: medium per-task utilization distribution. 188

5.15 Schedulability results: heavy per-task utilization distribution. 189

5.16 Schedulability results: uniform per-task utilization distribution. 189

xviii

6.1 Example NGS task system. 194

6.2 Modeling NP-blocking as suspension. 195

7.1 PS schedule for a task system containing two tasks. Task τ1 has a period of
10 time units and a utilization of 1.5. Task τ2 has a period of 20 time units
and a utilization of 0.5. As seen in the PS schedule, intra-task parallelism
is not considered and each job completes exactly at its deadline. 201

7.2 Definition of tn. 202

7.3 Illustration of a preemption. Job τ1,1 has one segment with three parallel
threads, executed on two processors. In inset (a), although τ1,3

1,1 is enabled
but does not execute at time t, τ1,1 is not preempted at t since both proces-
sors are executing threads of τ1,1. In inset (b), τ1,1 is preempted by τ2,1 at
t. 205

7.4 Subcase 2.1 . 207

7.5 Subcase 2.2 . 209

7.6 Subcase 2.3 . 210

7.7 The worst-case parallel task set. 214

7.8 Algorithm Q-Optimization. 217

7.9 Function SPLIT. 218

7.10 Function Combine. 218

7.11 Illustration of the optimization algorithm. 219

7.12 Schedulability: m = 4, low parallelism. 222

7.13 Schedulability: m = 6, low parallelism. 222

7.14 Schedulability: m = 8, low parallelism. 222

7.15 Schedulability: m = 4, high parallelism. 223

7.16 Schedulability: m = 6, high parallelism. 223

7.17 Schedulability: m = 8, high parallelism. 223

7.18 Schedulability: m = 4, random parallelism. 224

7.19 Schedulability: m = 6, random parallelism. 224

7.20 Schedulability: m = 8, random parallelism. 224

7.21 Response time bounds: low parallelism. 225

xix

7.22 Response time bounds: high parallelism. 225

7.23 Response time bounds: random parallelism. 225

xx

LIST OF ABBREVIATIONS

DAG Directed Acyclic Graph

DBF Demand Bound Function

DM Deadline Monotonic

EDF Earliest-Deadline-First

FIFO First-In-First-Out

GEDF Global Earliest-Deadline-First

GEPPF Global Earliest-Priority-Point-First

GFIFO Global First-In-First-Out

GPU Graphics Processing Unit

GSA Generic Scheduling Algorithm

GTFP Global Task-level Fixed-Priority

HRT Hard Real-Time

I/O Input/Output

ILP Integer Linear Programming

JDP Job-level Dynamic-Priority

JFP Job-level Fixed-Priority

LASM Logical Application Stream Model

LHS Left Hand Side

LLF Least-Laxity-First

LP Linear Programming

MAD Monotonic Absolute Deadline

PDM Partitioned Deadline Monotonic

PGM Processing Graph Method

PS Processor Sharing (schedule)

RB Rate-Based

RBE Rate-Based Execution

RHS Right Hand Side

RM Rate Monotonic

xxi

RTA Response-Time Analysis

SDF Synchronous DataFlow

SMP Symmetric (shared-memory) MultiProcessor

SRPTF Shortest-Remaining-Processing-Time-First

SRT Soft Real-Time

S.W.A.P. Size, Weight, and Power

TFP Task-level Fixed-Priority

WCET Worst-Case Execution Time

xxii

CHAPTER 1

Introduction

Given the need to achieve higher performance without driving up power consumption and

heat, most chip manufacturers have shifted to multicore architectures. Current in-market systems

commonly contain chips with four, ten, and even 32 cores. Per-chip core counts are expected to

further increase significantly in the near future. Indeed, Intel and Tilera have both recently released

chips with 80 and 100 cores [33, 47].

With the growing prevalence of multicore platforms, software design processes across a wide

range of application domains are being impacted. One important category of such applications is

real-time applications that must satisfy temporal constraints in order to be deemed correct; examples

include stock trading, avionics, real-time scoring of bank transactions, live video processing, real-time

sensing, etc. Such applications range from desktop-level systems to systems that require significant

computational capacity. As an example of the latter, systems processing time-sensitive business

transactions have been implemented by Azul Systems [94] on top of the highly-parallel Vega3

platform, which consists of up to 864 cores.

These developments have spurred much recent research on multiprocessor real-time systems.

Unfortunately, to a large extent, existing research has been limited to systems supporting simple tasks

that do not exhibit complex runtime behaviors; this limits the practical applicability of such research.

In practice, real-time applications often exhibit rather complex runtime behaviors besides performing

computation on a CPU. For example, an application might be suspended by the operating system

while waiting for some interaction to occur, such as interactions with humans or external devices.

Also, many applications such as multimedia and signal processing applications are implemented

using processing graph implementation methodologies [51], where data communications or logical

dependencies exist among stages of such applications. Other complex runtime behaviors include

those due to resource sharing and the use of parallel programming paradigms.

Recently, this limitation of existing research has become even more evident and significant, due

to the emerging embedded system design trend towards building complex cyber-physical systems

(CPSs). Such systems often integrate and coordinate multiple networked computational and physical

elements. Examples include self-driving vehicles, high-confidence healthcare devices, smart power

grids, and autonomous military combat systems. Different types of runtime behaviors often arise

in CPSs. For instance, many CPSs such as self-driven vehicles have multiple dependent network-

connected components, each of which implements a specific functionality. Moreover, CPSs are

expected to actively interact with the environment, human beings, and other external devices. These

properties often result in complex runtime behaviors. For example, consider two common tasks

in driving an autonomous vehicle: environmental sensing and navigation control. Data/logical

dependencies exist between these two tasks: the navigation control task can execute only after

receiving needed data from the environmental sensing task.

Unfortunately, inherent limitations and assumptions existing in today’s theoretical foundations

for real-time systems (i.e., the inability to efficiently handle complex runtime behaviors) cause many

such systems to be built and supported in an inefficient way. In practice, these runtime behaviors are

currently dealt with by over-provisioning systems, which is an economically wasteful practice. The

goal of this dissertation is thus aimed at bridging this gap between practice and theory. Specifically,

the goal of the research discussed herein is to enable multiprocessor real-time systems that support

real-world applications with common types of complex runtime behaviors to be efficiently designed

and built. To further motivate this research, we provide an introduction to real-time systems below.

This is followed by an overview of this dissertation.

1.1 What is a Real-Time System?

Different from non-real-time systems, the distinguishing characteristic of a real-time system is the

inclusion of temporal constraints in its specification. That is, the correctness of a real-time system

depends not only on the correctness of the logical results produced by the system, but also on the

time at which such results are produced. In other words, a real-time system is required to execute

2

applications and produce correct results within specific time frames. Real-time systems are pervasive

often without being noticed. Such systems range from portable devices such as heart rate monitors,

to large stationary installations like traffic lights, to systems controlling nuclear power plants.

Temporal constraints of activities in real-time systems are often specified as deadlines. The key

requirement for building a real-time system is to guarantee that all temporal constraints are satisfied.

In other words, programs must complete their execution by specified deadlines. For instance, for

an anti-lock braking system, if the driver presses the brake pedal, the car must respond within a

specific time frame (e.g., within ten milliseconds). Since many real-time systems are safety-critical,

designers also need to guarantee that all required temporal constraints can be satisfied at runtime in

a predictable manner. This notion of predicatability as it pertains to temporal correctness defines

another important characteristic of real-time systems and is the subject of concentration of this

dissertation. Predicability can be ensured by proving at design time that all temporal constraints are

always met subject to any permitted runtime scenario.

Guaranteeing the temporal correctness of a real-time system is typically achieved by (i) formally

modeling the system, (ii) selecting an appropriate real-time scheduling algorithm, and (iii) deriving

schedulability tests to validate temporal correctness at design time. The next two sections explain

these three steps in detail.

1.2 Classical Real-Time System Model

To predictably guarantee the temporal correctness of a real-time system, a priori knowledge of

applications (i.e., tasks) running in the system and available resources is necessary. Real-time task

models are designed to mathematically describe real-time applications and their associated temporal

constraints, while a resource model is used to formally describe available hardware resources. In this

section, we describe the widely studied sporadic task model as well as the categories of temporal

constraints and the resource model considered in this dissertation.

1.2.1 Sporadic Task Model

The sporadic task model [88] is a well-studied and simple recurrent task model. Under the sporadic

task model, each task is a sequential program that is repeatedly invoked in response to external

3

Towards Efficient Real-Time Multicore Computing Systems

sporadic

1

migration

Time

Ƭi
preempted

ri,j fi,j di,j ri,j+1

Ri,j

di

pi

release deadline completion
scheduled on
processor 1

scheduled on
processor 2

Figure 1.1: Illustration of a constrained-deadline sporadic task τi. The job τi,j is preempted twice by
higher-priority jobs (which are not depicted). Therefore,τi,j migrates twice: it first migrates from
processor 1 to processor 2, and then back to processor 1.

events such as device interrupts or expiring timers. When a task is invoked in response to an event, it

releases a job to process the event. Note that a recurrent task can be invoked an infinite number of

times, i.e., can generate jobs indefinitely. Next, we provide a detailed definition of the sporadic task

model; later, in Chapter 2, more sophisticated and practical real-time task models are considered

that are based upon the sporadic task model defined here. An example sporadic task is shown in

Figure 1.1. Note that the symbols shown at the top of this figure will be used in subsequent figures

throughout this dissertation to denote job releases, deadlines, and completions, respectively. We will

omit some of these legends in later figures.

A real-time system can be sometimes modeled as a set of n sporadic tasks τ = {τ1, τ2, ..., τn}.

Each sporadic task τi is characterized by three parameters (ei, di, pi), where ei > 0 denotes its

per-job worst-case execution time (WCET), di ≥ ei denotes its relative deadline, and pi ≥ ei (often

called the task’s period) denotes its minimum job inter-arrival time. That is, τi can release its first job

at any time, but can release any two consecutive jobs only at least pi time units apart. Each released

job executes for at most ei time units, and each job should complete no more than di time units

after its release. Note that di and pi are platform-independent since they are associated with the task.

4

In contrast, ei depends upon characteristics of the underlying hardware platform such as processor

speeds.

The sporadic task model was introduced by Mok in 1983 [88]. It generalizes the earlier periodic

task model [84]. For a periodic task, its period parameter defines the exact separation between any two

consecutive job releases. A periodic task thus releases jobs on a more regular basis. The motivation

behind the sporadic task model is to allow tasks to experience inter-arrival delays so that scenarios

where tasks might become inactive in the absence of triggering events can be accommodated.

The jth released job of task τi is denoted τi,j . Each job τi,j is eligible to execute at or after its

release time ri,j , where ri,j ≥ 0. As constrained by the task period, ri,j+1 ≥ ri,j + pi holds for any

consecutive jobs τi,j and τi,j+1. Each job τi,j executes for at most ei time units and finishes at time

fi,j . Sporadic tasks are sequential, that is, job τi,j+1 can start execution only after the finish time of

τi,j , even if ri,j+1 ≤ fi,j . Job τi,j has a response time Ri,j = fi,j − ri,j , which defines the duration

from its release to its finish time. A task τi’s response time Ri equals the maximum job response

time among all of its released jobs. Note that Ri might not be well-defined in cases where response

times of τi’s jobs grow unboundedly.

The relative deadline parameter di specifies the temporal constraint of task τi. Specifically, it

defines the range of acceptable response times for a task. Each job τi,j has an absolute deadline

di,j = ri,j + di. If a job τi,j finishes later than time di,j , then it is tardy. A job τi,j’s tardiness is the

extent of the deadline miss, which is given by max(0, fi,j − di,j). Depending on the relationship

between di and pi, there are three categorizes of sporadic tasks. A task τi is said to be an implicit-

deadline sporadic task if di = pi, a constrained-deadline sporadic task if di ≤ pi, or an arbitrary-

deadline sporadic task if di may be of any value (e.g., different from pi). In this dissertation, we

assume implicit-deadline tasks unless noted otherwise.

Utilizations. Another important parameter pertaining to a sporadic task is its utilization, which

defines the task’s required long-term processor demand. Specifically, a task τi’s utilization is given

by ui =
ei
pi

, which describes the fraction of one processor τi requires. The utilization parameter is

meaningful because it quantitatively defines the maximum rate of execution required for a task to

receive enough processor capacity to execute its released jobs in the long-term. It also provides a

way to determine whether a system is overloaded. The total utilization of a task set τ is defined as

5

Usum =
∑

τi∈τ ui. A system is said to be overloaded if the total utilization of all tasks exceeds the

number of available processors m. For a constrained-deadline sporadic task τi, a useful parameter

is its density, which is given by δi =
ei
di

. The total density of a task set τ is thus defined as

δsum =
∑

τi∈τ δi. As a notational convenience, we let umax and δmax denote the maximum

utilization and density of tasks in τ , respectively.

1.2.2 Hard and Soft Temporal Constraints

There are mainly two categories of real-time temporal constraints: hard real-time (HRT) and soft

real-time (SRT). A task is referred to as a HRT task if none of its released jobs may ever miss

its deadline, that is, fi,j ≤ di,j must hold for any job τi,j . A HRT system solely consists of HRT

tasks. On the other hand, for SRT tasks, deadline misses are allowed. However, any such deadline

misses must be bounded by a constant, that is, fi,j − di,j ≤ C must hold for any job τi,j , for some

constant C. Similarly, a SRT system solely consists of SRT tasks. This notion of a SRT constraint is

well-studied [25, 39, 76] and the one considered in this dissertation. Note that other notions of SRT

constraints exist, including: a specified percentage of deadlines must be met [57], and x out of every

y consecutive jobs of each task must meet their deadlines [54, 67, 116].

In practice, both HRT and SRT systems widely exist in many application-specific domains. In

general, a HRT system is one whose violation may lead to catastrophic consequences such as loss of

life. Military combat, industrial process-control, automotive control, and air-traffic control systems

are some examples of HRT systems. In contrast, a SRT system is less critical, as deadline misses may

lead to degraded quality of service, but not system failure. Multimedia systems, computer vision and

image processing systems, and mobile computing systems are some examples of systems with SRT

constraints. Moreover, in many systems, HRT and SRT constraints co-exist in different components.

For instance, in an avionics system, the flight management system has HRT constraints while the

on-board entertainment system only requires SRT constraints.

Temporal correctness. Constrained by either HRT or SRT requirements, a real-time task’s temporal

correctness essentially depends upon its maximum response time. Since a job’s response time

necessarily depends on the underlying scheduling algorithm, temporal correctness is defined with

6

respect to a given scheduling algorithm. The following definitions formally define HRT and SRT

correctness.

Definition 1.1. A task set τ is HRT schedulable under a scheduling algorithm A iff Ri ≤ di holds

for each τi ∈ τ .

Definition 1.2. A task set τ is SRT schedulable under a scheduling algorithm A iff there exists a

constant C such that Ri ≤ di + C holds for each τi ∈ τ .

1.2.3 Resource Model

In this dissertation, we consider real-time task systems running on an identical multiprocessor

platform comprised of a set of m ≥ 1 identical unit-speed processors. As its name suggests, all

processors of an identical multiprocessor have the same characteristics. For example, in the absence

of contention, they have uniform access times to memory. To realize uniform memory access

times, a multiprocessor architecture with a centralized memory that is shared among processors

is often implemented. This architecture is commonly referred to as a symmetric (shared-memory)

multiprocessor (SMP).

Figure 1.2 illustrates example SMP architectures. As shown in Figure 1.2 (a), each processor

can have one or more private caches to reduce memory access times. In this dissertation, we assume

that each job is allowed to execute on any processor except that it can occupy at most one processor

at any point of time (except for the parallel task model given in Chapter 7). We say that a job (task)

migrates if it executes on different processors. A job migration may incur migration overheads due

to the reloading of job-related instructions and data into a local cache. Techniques exist that can

lower or eliminate migration overheads. For example, one technique is to restrict the execution of a

task or a job to one or a subset of processors. Moreover, for current multicore architectures, different

cores on the same die often share a cache at some level, as illustrated in Figure 1.2 (b). Such shared

caches are able to reduce migration overheads in many cases, e.g., when task-related instructions are

not loaded from memory after a migration.

Accounting for overheads. Besides migration overheads, task preemptions and context switches,

and the act of scheduling may also incur system overheads that take processor time from tasks.

Thus, to guarantee temporal correctness, any temporal validation approaches must take into account

7

Processor Processor.Processor

Multi-level
cache:

L1, L2, ...

Memory bus interconnect

Multi-level
cache:

L1, L2, ...

Multi-level
cache:

L1, L2, ...

Memory

Processor Processor.Processor

L1

Memory bus interconnect

Memory

(a) (b)

L1

Shared L2 cache

L1

Figure 1.2: Illustration of symmetric multiprocessor architecture (a) without and (b) with a shared
cache.

processor time lost due to overheads. To account for overheads, a common approach is to charge

each extrinsic activity (e.g., preemptions, migrations, or scheduler invocations) to each job. This is

achieved by inflating each task’s WCET by the maximum total time required for all such extrinsic

activities charged to any of its released jobs. Throughout this dissertation, we will assume that all

system overheads are included in the WCETs of tasks using efficient charging methods [25, 39].

Therefore, the WCET of a task depends on the implementation platform, application characteristics,

and the scheduling algorithm.

1.3 Real-Time Scheduling Algorithms and Schedulability Tests

As mentioned in Section 1.1, after formally modeling a real-time system as described in the previ-

ous section, we need to utilize real-time scheduling algorithms and derive schedulability tests to

validate temporal correctness. (A detailed review of existing real-time scheduling algorithms and

schedulability tests designed for the real-time sporadic task model is presented in Chapter 2.) A

scheduling algorithm determines when to execute which task on which processor. It determines the

specific execution-time intervals and processors for each job while considering any restrictions, such

as precedence constraints among jobs and tasks. Different from other non-real-time systems where

performance optimization is a major concern, in a real-time system, algorithmic design pertaining to

processor-allocation strategies is mainly driven by the need to guarantee temporal correctness. Before

discussing in detail existing scheduling algorithms and schedulability tests, we first introduce a few

8

key concepts and metrics that are commonly used in describing properties of real-time scheduling

algorithms and in comparing different algorithms.

1.3.1 Concepts and Metrics

As defined in Definitions 1.1 and 1.2, a real-time task system is schedulable iff its temporal constraints

will always be satisfied (either in a HRT or SRT sense). Two concepts of importance are feasibility

and optimality, which are both defined in terms of schedulability. Intuitively, a task set is feasible if

there is a possibility to schedule it and a scheduling algorithm is optimal if all feasible task sets are

schedulable under it. These concepts are formally defined as follows.

Definition 1.3. A task set τ is HRT (respectively, SRT) feasible iff there exists at least one scheduling

algorithm A such that τ is HRT (respectively, SRT) schedulable under A.

Definition 1.4. A scheduling algorithm A is optimal iff every task set τ that is HRT (respectively,

SRT) feasible is HRT (respectively, SRT) schedulable under A.

To check whether a given real-time sporadic task system is feasible, a straightforward feasibility

test is given by the system’s total utilization. As defined in Section 1.2, a task τi’s utilization ui

specifies the fraction of a processor the task requires. Therefore, this implies that the total utilization

of a task set cannot exceed the total number of processors, for otherwise the total processor demand

could exceed the available supply, which causes tasks to violate their temporal constraints.

Lemma 1.1. A real-time sporadic task set is feasible on m processors only if Usum ≤ m.

The above lemma formally gives a necessary utilization-based feasibility condition for sporadic

task sets. In the context of a set of non-recurrent tasks, a necessary feasibility condition that implies

Lemma 1.1 was proven by Horn [55].1 Leung and Merrill [79] showed that Usum ≤ m is a necessary

feasibility condition for implicit-deadline periodic task sets. For sporadic tasks, a formal proof of

Lemma 1.1 for the case m = 1 was given by Baruah et al. [14], which can easily be generalized

to m > 1. Note that Lemma 1.1 can be applied equally to HRT and SRT feasibility. For HRT

implicit-deadline sporadic task sets, Lemma 1.1 can be strengthened to an equivalence, as given by

the following lemma.

1Note that in this case, a task’s utilization is defined to be its WCET divided by its deadline.

9

Lemma 1.2. [11, 79, 84] A real-time implicit-deadline sporadic task set is HRT feasible on m

processors iff Usum ≤ m.

Capacity loss. The above constraint on total utilization (given our focus on implicit deadlines)

implies that any task set with total utilization not exceeding the total processor capacity m should

be schedulable. In practice, fully allocating all processor capacity to real-time tasks is not always

possible, i.e., task systems with total utilization less than m may not be schedulable on m processors.

One primary cause of such capacity loss is due to the choice of scheduling algorithm. If a non-optimal

scheduling algorithm is used, then a feasible task set may not be schedulable due to algorithmic

capacity loss. In this dissertation, our goal is to design new scheduling algorithms and derive better

schedulability tests (as described below) to minimize capacity loss for scheduling complex real-time

task systems on multiprocessors.

Schedulability tests. A schedulability test serves the purpose of determining a priori whether a

real-time task set will be schedulable under a scheduling algorithm A, either in a HRT or SRT sense.

Many existing schedulability tests are only sufficient but not necessary (i.e., are not exact tests). This

implies that such sufficient tests can be pessimistic, that is, they may incorrectly consider a task set

to be unschedulable while the task set is in fact schedulable.

1.4 The Divergence of Theory and Practice

As will be discussed in Chapter 2, real-time scheduling under the sporadic task model on both

uniprocessors and multiprocessors has received much attention over the past 40 years. Although

significant research progress on this topic has been made, the practical applicability of such research

is quite limited due to limitations of the sporadic task model, which we discuss next.

1.4.1 Limitations of the Sporadic Task Model

As defined in Section 1.2, an application that is modeled as a sporadic task triggers a piece of

computation recurrently. Unfortunately, several inherent limitations make it inappropriate for

modeling many real-world applications. We identify four major limitations of the sporadic task

model as listed below.

10

1. Tasks are computation-only and do not self-suspend: released jobs of a task only request

processor (CPU) capacity and are always ready to execute when allocated a processor by the

scheduler; no interaction between the task and external devices such as disks could exist.

2. Tasks are totally independent: no precedence constraint exists among tasks.

3. Tasks are purely sequential: a job is completely sequential and thus can only be executed on

one processor at any point of time.

4. Tasks are fully preemptive: released jobs do not access any critical sections that must be

accessed non-preemptively.

However, in practice, tasks may incur complex runtime behaviours that violate these assumptions.

For example, a task may need to access external devices during its execution, such as to read/write

data, wait for keyboard input, or access graphics processing units (GPUs). Such interactions with

external devices cause the execution of tasks to be suspended (i.e., blocked) by the operating system

on CPUs, as illustrated in Figure 1.3. A task is said to self-suspend when it incurs such interactions.

Task execution on a CPU may be resumed only after the suspending interval ends. The duration

of a suspension interval of a task is often called suspension delay. Such suspension delays could

range from a few nanoseconds to several seconds depending on task characteristics. For instance,

delays introduced by disk I/O range from 15ns (for NAND flash) to 15ms (for magnetic disks) per

read [63, 74]. Even longer delays are possible when accessing special-purpose devices such as

digital signal processors or GPUs [44]. Tasks that may self-suspend cannot be accurately modeled as

sporadic tasks.

Besides self-suspensions, tasks may exhibit other types of runtime behaviours, including inter-

task data communications, critical section accesses, and parallel code execution segments. Consider

a simple real-time video processing system that decodes incoming video streams and then displays

them.2 This system thus naturally consists of two real-time tasks: video decoder and video display,

as illustrated in Figure 1.4. Different types of runtime behaviors may be incurred in this system. For

instance, graph-based precedence constraints exist between these two tasks because the video display

2Such a system could conceivably be applied in a wide range of application domains. For example, it could be applied
in an airline entertainment system, or in a surveillance system that must process multiple video streams.

11

When accessing external devices, the task is
suspended (blocked) by operating system on CPU

Computation
CPU

Computation
self-suspension

Let’s take a look at an example system where various application runtime behaviors may arise.
Here shows an Unmanned aerial vehicle built by Northrop Grumman. Much of my research work is
in fact motivated by the joint work between our research group at UNC and Northrop Grumman on
this UAV. Real-time performance must be guaranteed in this system because an UAV is expected
to autonomously gather environmental data, perform route planning and even combating actions,
all in a real-time fashion.

Figure 1.3: Pervasive self-suspension behaviours.

 UNC Chapel Hill C. Liu

 Supporting Complex Time-Sensitive Applications with Dependencies in Multicore-based Systems

SensorsSensors

Video decode

Display
Fram

e queue

An example: video processing

31

Suspensions due to disk I/O
for the video file

Suspensions due to synchronization
with the graphical display

Figure 1.4: Example real-time video processing system.

task cannot start execution until receiving decoded video frames from the video decoder task. Also,

both tasks may self-suspend at runtime due to disk I/O for the video file and synchronization with

the graphical display, respectively. Obviously, the sporadic task model, which assumes that such

complex runtime behaviors do not arise, is incapable of modeling such tasks.

Due to the limitations of the sporadic task model as discussed above, current research on the

real-time scheduling of sporadic tasks on multiprocessors cannot be applied to efficiently support

many real-world applications in real-time systems. In the rest of this section, we discuss how

various complex runtime behaviors are currently supported by applying state-of-the-art scheduling

techniques, and the resulting pessimism.

1.4.2 Limitations of the State-of-the-Art

The general problem of supporting real-time task systems containing complex runtime behaviors

(e.g., self-suspensions, precedence constraints, non-preemptive sections, and parallel execution

12

segments) on multiprocessors is known to be hard and remains largely open. Some prior work has

been done on scheduling and analyzing task systems containing different complex runtime behaviors.

However, such analysis [22, 65, 73, 96, 97, 101, 107, 108, 114, 119] is rather pessimistic and only

applies to uniprocessor platforms. We will review such work in detail in Section 2. In the context of

multiprocessor scheduling, not much work has been done on supporting real-time task systems with

complex runtime behaviors. In practice, such behaviors are currently dealt with by over-provisioning

systems, which may cause significant capacity loss. Over-provisioning implies that in order to

guarantee temporal correctness, system designers have to utilize more hardware components (e.g.,

CPUs) than necessary, largely due to the inefficiency and pessimism of current real-time scheduling

algorithms and schedulability tests. System over-provisioning is also an economically wasteful

practice. With each added component, overall system complexity as well as size, weight, and power

consumption (S.W.a.P.) of the system can grow significantly. Moreover, in many safety-critical

real-time domains such as avionics, systems have stringent space and energy constraints and thus

over-provisioning is problematic. With the rising complexity of networked real-time embedded

systems, over-provisioning has led to an increasingly unmanageable proliferation of such systems,

to the effect that some modern cars contain over one hundred processors. Therefore, reducing the

number of hardware components is highly desirable. Instead of embedding hundreds of networked

uniprocessors inside a car, it would be much more desirable to use fewer, but more powerful multicore

processors that are highly utilized.

1.5 Research Overview

This dissertation is thus aimed at bridging this gap between practice and theory in the design of

multiprocessor real-time systems. Specifically, our goal is to enable practical real-time applications

with common types of complex runtime behaviors to be efficiently supported on multiprocessors. By

designing new real-time scheduling algorithms and schedulability tests for such applications, this

dissertation seeks to avoid over-provisioning systems and to reduce the number of needed hardware

components to the extent possible while providing temporal correctness guarantees. Motivated by

limitations seen in current research, this dissertation specifically addresses the problem of efficiently

supporting the following four common types of complex runtime behaviors:

13

1. Self-suspensions: Self-suspensions usually occur when a task is blocked, waiting for some

interaction to occur, such as interactions with humans or external devices, resources sharing,

etc.

2. Graph-based precedence constraints: Many tasks such as multimedia and signal processing

tasks are implemented using processing graph implementation methodologies, where data

communications or logical dependencies exist between stages of such tasks.

3. Mixed types of complex runtime behaviors: In practice, many applications may have several

mixed types of complex runtime behaviors, including self-suspensions, graph-based precedence

constraints, and non-preemptivity. For example, consider a pipelined real-time computation

where some tasks may require disk accesses and non-preemptivity arises due to system calls or

critical sections

4. Parallel execution segments: Parallel programming techniques such as OpenMP [28] and

MapReduce [36] are commonly used to explicitly express parallelism for certain program

segments (i.e., allowing multiple threads to exist within the context of a single job).

1.6 Thesis Statement

The main thesis to be supported by this dissertation is the following.

Capacity loss can be significantly reduced on multiprocessors while providing SRT

and HRT guarantees for real-time applications that exhibit complex runtime behav-

iors such as self-suspensions, graph-based precedence constraints, non-preemptive

sections, and parallel execution segments by designing new real-time scheduling

algorithms and developing new schedulability tests.

1.7 Contributions

In the following, we briefly summarize the contributions presented in the subsequent chapters.

14

1.7.1 Multiprocessor SRT Schedulability Test for Globally-Scheduled Self-Suspending

Task Systems

The first set of contributions we discuss is two multiprocessor global earliest-deadline-first (GEDF)

(defined in Section 2.3.1.2 of Chapter 2) schedulability tests proposed in [81, 83] for SRT self-

suspending task systems. The approach presented in [83] was the first to be proposed for dealing with

self-suspensions on globally-scheduled (defined in Section 2.3.1.2 of Chapter 2) SRT multiprocessors.

1.7.1.1 The First SRT Suspension-Aware Global Schedulability Test

Prior work showed that suspension delays quite negatively impact schedulability in real-time sys-

tems if deadline misses cannot be tolerated [105]. Thus, we focus on investigating whether, on

multiprocessor platforms, such negative impacts can be ameliorated if task deadlines are soft.

Perhaps the most commonly used approach for dealing with suspensions is the suspension-

oblivious analysis [86], which simply integrates suspensions into per-task WCET requirements.

However, unless the number of tasks is small and suspension delays are short, this approach may

sacrifice significant system capacity. The alternative is to explicitly consider suspensions in the task

model and corresponding schedulability analysis; this is known as suspension-aware analysis. To

improve upon the suspension-oblivious approach, we present the first multiprocessor suspension-

aware analysis for globally scheduled SRT sporadic self-suspending task systems.

Specifically, we show in Section 3.2 that GEDF’s ability to guarantee bounded tardiness in such

systems hinges upon a task parameter that we call the “maximum suspension ratio,” denoted ξmax,

with range [0,1]. (A task’s suspension ratio represents the ratio of its suspension length divided by

the sum of its suspension length and execution length.) We present a general tardiness bound, which

is applicable to GEDF, that expresses tardiness as a function of ξmax and other task parameters. This

bound shows that task systems consisting of both self-suspending tasks and ordinary computational

tasks that do not suspend can be supported with bounded tardiness if

ξmax < 1− U ssum + U cL
m

, (1.1)

15

where U ssum is the total utilization of all self-suspending tasks in the system, and U cL is the total

utilization of the m− 1 computational tasks of highest utilization.

1.7.1.2 An Improved Utilization Constraint

Using the above approach [83], significant capacity loss may occur when ξmax is large. Unfortunately,

it is unavoidable that many self-suspending task systems will have large ξmax values. Thus, the

utilization bound can be improved if the value of ξmax can be decreased. Motivated by this, we show

in Section 3.3 that ξmax can be effectively decreased by treating partial suspensions as computation.

That is, we consider intermediate choices between the two extremes of treating all (as is done

in suspension-oblivious analysis) or no (using the analysis in [83]) suspensions as computation.

Our technique can find the amount of the suspension time of each task that should be treated

as computation in order for the task system to satisfy the utilization constraint and thus become

schedulable.

1.7.1.3 An O(m) Analysis Technique

Although the above suspension-aware schedulability test (as presented in Section 3.2) can improve

upon the suspension-oblivious approach for many task systems, it may still cause significant capacity

loss. A main reason is because this analysis does not fully address the root cause of pessimism due

to suspensions. A key step in this suspension-aware analysis involves bounding the number of tasks

that have ready jobs (i.e., eligible for executing or suspending) at a specifically defined non-busy

time instant t (i.e., at least one processor is idle at t). For ordinary task systems without suspensions,

this number of tasks can be safely upper-bounded by m− 1, where m is the number of processors,

for otherwise, t would be busy. For self-suspending task systems, however, non-busy instants can

exist due to suspensions even if m or more tasks have ready jobs. The worst-case scenario that serves

as the root source of pessimism in prior analysis is the following: all n self-suspending tasks have

jobs that suspend at some time t simultaneously, thus causing t to be non-busy.

By exploiting this observation, we derive a much improved schedulability test in Section 3.4 that

shows that any given sporadic self-suspending task system is schedulable under GEDF scheduling

with bounded tardiness if Usum+
∑m

i=1 v
j ≤ m holds, where vj is the jth maximum ratio of a task’s

suspension length over its period among all tasks (formal defintions of these terms can be found in

16

Section 2.1). We show that our derived schedulability test theoretically dominates the suspension-

oblivious approach [86], and our previously proposed suspension-aware analysis [83] if every task in

the system is a self-suspending task. Moreover, we show via a counterexample that task systems that

violate our utilization constraint may have unbounded tardiness. As demonstrated by experiments,

our proposed test significantly improves upon prior methods with respect to schedulability, and is

often able to guarantee schedulability with little or no capacity loss while providing low predicted

tardiness.

1.7.2 Multiprocessor HRT Schedulability Tests for Self-Suspending Task Systems

Although the analysis presented in Chapter 3 can handle the SRT case, how to support HRT self-

suspending task systems on multiprocessors (other than using the suspension-oblivious approach)

remains as an open issue. As the first attempt at solving this problem, we present in Chapter 4 global

suspension-aware multiprocessor schedulability analysis techniques for HRT arbitrary-deadline

sporadic self-suspending task models under both GEDF and global task-level fixed-priority (GTFP)

(defined in Section 2.3.1.2 of Chapter 2) scheduling (note that this analysis can also be applied to

uniprocessors). Our analysis is based upon identifying sufficient conditions for ensuring that each

task in any given task system cannot miss any deadlines. These conditions must be checked for each

task in the task system. Our analysis shows that schedulability is much less impacted by suspensions

than computation on multiprocessors (which is seen in prior uniprocessor analysis [86]). For any job,

suspensions of jobs with higher priorities do not contribute to the competing work that may prevent

the job from executing (while computation does). Indeed, as shown by experiments, schedulability

tests based on our new analysis proved to be superior to the suspension-oblivious method of treating

all suspensions as computation.

1.7.3 Multiprocessor Scheduling of SRT Task Graphs

Another major contribution of this dissertation is a new (also the first) global scheduling algorithm

and corresponding schedulability test for supporting SRT acyclic processing graph method (PGM)

graphs on multiprocessors. PGM [69] is a particularly expressive and widely used graph-based

formalism that captures graph-based precedence constraints in a general way. One unique property

of PGM is that it allows data communications among graph nodes to be specifically modeled. A

17

producing node produces and transports a certain amount of data to a consuming node. In 1998,

Goddard and Jeffay showed how to support real-time PGM graphs on an uniprocessor (we will review

such prior work in Chapter 2 in detail). In the 12 years that followed, the problem of supporting

PGM graphs in multiprocessor systems remained unsolved, due to the additional complexities that

arise in that setting.

1.7.3.1 Supporting PGM Task Systems on Multiprocessors

Goddard and Jeffay showed that on a single processor, PGM graphs can be supported by EDF with

no capacity loss. Motivated by this, in Section 5.1, we propose a variant of EDF that can be used on

multiprocessor platforms as the underlying scheduling algorithm. The associated analysis shows that

the main complicating factor in supporting graph-based dependencies in a multiprocessor setting

is workload burstiness, which may cause deadline burstiness. (Deadline burstiness also serves as

a complicating factor in the uniprocessor case, as shown in [51].) Thus, we propose a technique

that effectively postpones deadlines of certain tasks to avoid such burstiness without affecting SRT

correctness. We show that the proposed solution is able to achieve no capacity loss for executing

PGM task graphs in multiprocessor systems while providing SRT guarantees. That is, any PGM task

system τ is SRT schedulable if Usum ≤ m holds.

1.7.3.2 Supporting PGM Task Systems in a Distributed System under Clustered Scheduling

We also show in Section 5.2 how to extend the above PGM approach for application in distributed

systems comprised of clusters of processors, where scheduling within each cluster is global. Our

main contribution in that work is to develop a method for assigning tasks to clusters so as to minimize

the amount of data movement across clusters. Once tasks are so assigned, those in each cluster can be

scheduled globally as described above (with some slight adjustments due to potential dependencies

across clusters). Note that this same task-assignment method can be applied in a fully partitioned

system (where each cluster is just one processor), in which case Goddard and Jeffay’s original work

(with some slight modifications) can be applied on each processor. Although our focus in this work is

distributed systems, the same techniques can be applied to schedule tasks on a (large) multiprocessor

platform in a clustered fashion.

18

1.7.4 Multiprocessor SRT Scheduling of Complex Task Graphs Containing Non-

Preemptive Sections and Self-Suspensions

Besides handling runtime behaviors such as self-suspensions and graph-based precedence constraints

independently, in this dissertation, we also investigate how to support sophisticated real-time task

systems containing mixed types of complex runtime behaviors. Specifically, we consider this issue

in the context of SRT sporadic task systems in which non-preemptive sections, self-suspensions, and

graph-based precedence constraints co-exist.

Any one of these kinds of runtime behaviors can cause a task system to be difficult to analyze

from a schedulability perspective. For instance, non-preemptive sections may cause scheduling

anomalies (e.g., shortening a job’s execution time may actually increase some job’s response time

[86]) and suspensions may cause unbounded job response times even in lightly-loaded systems [83].

Still, situations may exist in which all three kinds of dependencies are present. Consider, for example,

a pipelined real-time computation where some tasks may require disk accesses and non-preemptivity

arises due to system calls or critical sections. The timing correctness of such a system may be

quite difficult to analyze, particularly if deadline misses cannot be tolerated. However, we show in

Chapter 6 that the situation is not nearly so bleak, if bounded deadline tardiness is acceptable.

Specifically, we address the problem of deriving conditions under which bounded tardiness

can be ensured when all of the above-mentioned behaviors—non-preemptive sections, graph-based

precedence constraints, and self-suspensions—are allowed. In considering this problem, we focus

specifically on GEDF. Our main result is a transformation process that converts any implicit-deadline

sporadic task system with self-suspensions, graph-based precedence constraints, and non-preemptive

sections into a simpler system with only suspensions. In the simpler system, each task’s maximum

job response time is at least that of the original system. This result allows tardiness bounds to be

established by focusing only on the impacts of suspensions. It thus enables our prior results on

systems with suspensions [82, 83] to be applied to derive tardiness bounds for more complex systems,

as scheduled by GEDF.

19

1.7.5 A Tardiness Bound for Multiprocessor Real-Time Parallel Tasks

The final contribution of this dissertation is a tardiness bound established for GEDF-scheduled

sporadic parallel task systems on multiprocessors. Parallel task models pose new challenges to

scheduling since intra-task parallelism has to be specifically considered. Recent papers [70, 109] on

scheduling real-time periodic and sporadic parallel tasks have focused on providing HRT guarantees

under GEDF or partitioned deadline-monotonic (PDM) scheduling (defined in Section 2.3.1.1 of

Chapter 2). However, viewing parallel tasks as HRT may be overkill in many settings and furthermore

may result in significant schedulability-related capacity loss. Thus, our focus is to instead ensure

bounded response times in supporting parallel task systems by applying SRT scheduling analysis

techniques. Specifically, we schedule parallel tasks using GEDF, but in contrast to previous work

[70, 109], we allow deadlines to be missed provided such misses are bounded (hence response times

are bounded as well).

As presented in Chapter 7, our analysis shows that on a two-processor platform, no capacity

loss results for any parallel task system. Despite this special case, on a platform with more than

two processors, utilization constraints are needed. To discern how severe such constraints must

fundamentally be, we present a parallel task set with minimum utilization that is unschedulable

on any number of processors. This task set violates our derived constraint and has unbounded

response times. The impact of utilization constraints can be lessened by restructuring tasks to reduce

intra-task parallelism. We propose optimization techniques that can be applied to determine such a

restructuring.

1.8 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents the real-time task models

considered in this dissertation and reviews prior work on the scheduling of real-time task systems

containing common types of complex runtime behaviors. Multiprocessor schedulability tests for SRT

and HRT self-suspending task systems are derived in Chapters 3 and 4, respectively. Techniques for

supporting SRT PGM task graphs on multiprocessors and distributed systems are then presented

in Chapter 5. The issue of handling mixed types of runtime behaviors including non-preemptive

20

sections, self-suspensions, and graph-based precedence constraints is addressed in Chapter 6. A

tardiness bound for GEDF-scheduled sporadic parallel task systems on multiprocessors is derived

in Chapter 7. Chapter 8 concludes with a summary of the work presented in this dissertation and a

discussion of interesting future work motivated by this dissertation.

21

CHAPTER 2

Background and Prior Work

In this chapter, we first define the real-time task models that are considered in this dissertation

(Section 2.1). Then we review relevant prior work on the scheduling of real-time task systems con-

taining complex runtime behaviors. We specifically review prior work on handling self-suspensions

(Section 2.3.2), graph-based precedence constraints (Section 2.3.3), non-preemptive sections (Sec-

tion 2.3.4), and parallel execution segments (Section 2.3.5).

2.1 Real-Time Task Models

In this section, we present a number of real-time task models that are considered in this dissertation.

For readability, we progress from simpler models to more sophisticated ones. A summary of our

considered task models and the relationships among them is illustrated in Figure 2.1. We assume

that time is integral in this dissertation (as will be discussed in more detail in Section 2.2). Note that

there is much flexibility in defining what constitutes a “time unit”—e.g., it could be based on “time”

as defined by a hardware clock or “time” as maintained (in software) by the operating system as it

responds to periodic clock interrupts.

2.1.1 The Non-Recurrent Task Model

Under the non-recurrent task model, a task releases exactly one job, which has a specified release

time, deadline, and worst-case execution time (WCET). A job’s release time specifies the earliest

time it is allowed to execute, and its WCET defines the maximum time that it will execute on a

dedicated processor. For conciseness, we let τi denote both a non-recurrent task and its released

job, and let ri,1 (di,1) denote the job’s release time (deadline). An example non-recurrent task is

illustrated in Figure 2.2. In practice, this simple task model is insufficient due to the fact that activities

Non-recurrent

Sporadic

RBSporadic self-suspending Parallel

DAG-based RB

Non-recurrent self-
suspending

(Section 2.1.1)

(Section 2.1.2) (Section 2.1.3)

(Section 2.1.4) (Section 2.1.5)

(Section 2.1.8)

(Section 2.1.6)

DAG-based RB
self-suspending (Section 2.1.7)

Figure 2.1: Illustration of real-time task models considered in this dissertation. For each pair of
connected task models, the successor (lower) generalizes its predecessor (upper). For example, the
sporadic task model generalizes the non-recurrent task model.

in many real-time systems are recurrent in nature, that is, such activities may not terminate during

normal operation of the system. For example, in the autonomous driving system described earlier in

Chapter 1, the environmental sensing task will be recurrently invoked (e.g., every 10 milliseconds) in

order to gather real-time environmental data for making safe driving instructions autonomously. In

Section 2.1.3, we present a well-studied recurrent task model, namely, the sporadic task model.

2.1.2 The Non-Recurrent Self-Suspending Task Model

As discussed in Chapter 1, one complex runtime behaviour that often arise in practice is self-

suspensions, which are caused by interactions with external devices such as disks. Based upon

the non-recurrent task model, the non-recurrent self-suspending task model has been proposed

and studied in prior work (which will be reviewed in Section 2.3.2). Under this model, each self-

suspending task is defined to have a deterministic suspending pattern. That is, each task only releases

one job, which has exactly two computation phases separated by one suspension phase. An example

23

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22

computation suspension

computation job release job deadline

Figure 2.2: An example non-recurrent task τ1 with a release time at time 2, a deadline at time 10,
and a WCET of five time units.

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22

computation suspension

computation job release job deadline

Figure 2.3: Illustration of the non-recurrent self-suspending task model.

non-recurrent self-suspending task is illustrated in Figure 2.3. This model is not sufficient to model

suspensions in practice, largely due to the unpredictability of I/O operations. In other words, it

is often unrealistic to predict when and how frequently I/O operations may occur. As defined in

Section 2.1.4, our proposed sporadic self-suspending task model is more general and takes the

unpredictability of I/O into consideration.

Independent suspension assumption. In all of the self-suspending task models we consider in this

dissertation, it is assumed that each task’s suspensions are simply upper-bounded and will not be

interfered with by other tasks’ suspensions. As discussed in Section 8.2.3, an interesting avenue

for future work is to consider a more sophisticated self-suspending task model where tasks need to

compete with each other for accessing shared external devices. Under this model, a task’s suspension

length is dependent upon other tasks’ suspensions. Note that solutions on dealing with independent

suspensions derived in this dissertation can still be applied to handle the dependent suspension model

assuming upper bounds in suspension lengths that factor in contention have been determined.

24

Notation Interpretation definition/constraint
Ƭ A task set Ƭ = {Ƭ1, Ƭ2, ..., Ƭn}
Ƭi ith sporadic task 1 ≤ i ≤ n
Ƭi,j jth job of Ƭi j ≥ 1
ei WCET of Ƭi ei > 0
di Relative deadline of Ƭi di ≥ ei

pi Period of Ƭi; minimum separation between job releases pi ≥ ei

ui Utilization of Ƭi ui = ei / pi

Density of Ƭi = ei / min(di, pi)
ri,j Release time of Ƭi,j ri,j ≥ ri,j-1 + pi

di,j Absolute deadline of Ƭi,j di,j = ri,j + di

fi,j Completion time of Ƭi,j fi,j > ri,j

Ri,j Response time of Ƭi,j ri,j = fi,j-1 – ri,j

Ri Response time of Ƭi Ri = maxj{ri,j}

Usum Total utilization of Ƭ

Total density of Ƭ

�i �i

�sum �sum =

nX

i=1

�i

Usum =

nX

i=1

ui

So what is a real time system?

A real time systems is the kind of system where correctness depends not only on the logical results of the computation but also on the time at
which the results are produced. Such systems are required to make the right move at the right time. Here shows an airbag system that needs to
pop out the air bag when needed in a real-time fasion, for example, within a few miliseconds in order to avoid injury.

For such a safety critical real time system, we need to guarantee at design time that it will work correctly at runtime. The concept of predictability
is a key element in real time systems design.

Table 2.1: Summary of our notation and the sporadic task models constraints.

2.1.3 The Sporadic Task Model

The sporadic task model [88] is a well-studied and simple recurrent task model. Detailed descriptions

of this model and the related periodic task model were given in Section 1.2.1 (and will not be

repeated here). Table 2.1 summarizes our notation for sporadic tasks. Due to the fact that the more

sophisticated task models presented in later sections are all based upon the sporadic task model,

much of the notation shown in Table 2.1 is reused to denote task parameters under other task models.

2.1.4 The Sporadic Self-Suspending Task Model

The sporadic self-suspending task model extends the sporadic task model by allowing tasks to

self-suspend. Similar to sporadic tasks, a sporadic self-suspending task releases jobs sporadically,

with each invocation called a job. Jobs alternate between computation and suspension phases. We

assume that each job of τl executes for at most el time units (across all of its execution phases) and

25

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22

Ƭ1,1 Ƭ1,2

Figure 2.4: Illustration of the sporadic self-suspending task model.

suspends for at most sl time units (across all of its suspension phases). We place no restrictions

on how these phases interleave (a job can even begin or end with a suspension phase). We also

do not restrict any task’s suspension length, other than upper-bounding it. Note, in particular, that

zero-length computation phases are allowed in our model. The circumstances under which a zero-

length computation phase can commence execution are just like with any other computation phase.

However, a 0-length computation phase that commences execution at time t finishes execution at

time t.

The jth job of τl, denoted τl,j , is released at time rl,j and has a deadline at time dl,j . Associated

with each task τl is a period pl, which specifies both the minimum time between two consecutive job

releases of τl and the relative deadline of each such job, i.e., dl,j = rl,j + pl. The utilization of a task

τl is defined as ul = el/pl, and the utilization of the task system τ as Usum =
∑

τi∈τ ui. We require

el + sl ≤ pl, ui ≤ 1, and Usum ≤ m; otherwise, tardiness can grow unboundedly. Given that a task

may have multiple computation and suspension phases, we sometimes use τl(ea, sb, ec, sd, ..., p) to

denote the exact sequence of τl’s phases. For example, τ1(e2, s1, e3, 10) denotes that task τ1 with

a period of ten time units first executes for up to two time units, then suspends for up to one time

unit, and finally executes for up to three time units. Note that this notation is only used in subsequent

examples for conciseness purposes. According to our model, different jobs of the same task can have

different computation and suspension behaviors. An example sporadic self-suspending task is shown

in Figure 2.4.

2.1.5 The RB Task Model

The rate-based (RB) task model is a general task model in which each task τi is specified by four

parameters: τi(xi, yi, di, ei). The pair (xi, yi) represents the maximum execution rate of an RB task:

26

0 4 8 12 16

Ƭ11(1,4, 4,2)

(a) Sporadic releases.

(b) Rate-based releases.

time

Ƭ11(1,4, 4,2)

parameter meaning
massy

Figure 2.5: (a) Sporadic and (b) RB releases.

xi is the maximum number of invocations of the task in any interval [j · y, (j + 1) · yi) (j ≥ 0) of

length yi; such an invocation is called a job of the task. xi and yi are assumed to be non-negative

integers. Additionally, d is the task’s relative deadline, and ei is its WCET. The utilization of an RB

task is e · xi
yi

. It is required that ei ·
xi
yi
≤ 1, for otherwise, the system may become overloaded and

tasks may have unbounded response times. The sporadic task model is a special case of the RB task

model. In the sporadic task model, a task is released no sooner than every pi time units, where pi is

the task’s period. In the RB task model, the notion of a “rate” is much more general.

Note that the RB task model proposed in this dissertation is similar to the RBE task model

proposed by Jeffay and Goddard [61], except that (i) the RBE task model assumes that xi is the

number of executions expected to be requested in any interval of length yi, and (ii) the RBE task

model specifies a minimum separation between consecutive job deadlines of the same task (our RB

model does not require such a minimum separation). We elaborate on this point further in Chapter 5.

Example. Figure 2.5 shows job release times and deadlines for a task τ1(1, 4, 4, 2). In inset (a),

jobs are released sporadically, once every four time units in this case. Inset (b) shows a possible

job-release pattern that is not sporadic. As seen, the second job is released at time 7 while the third

job is released at time 9. The separation time between these jobs is less than seen in the sporadic

schedule.

27

2.1.6 The DAG-based RB Task Model

The DAG-based RB task model extends the RB task model by allowing precedence constraints to

exist among tasks/jobs. The exact manner in which such constraints arise is motivated by those seen

in acyclic PGM specifications,1 as we shall see in Section 2.3.3.

A DAG-based RB task system is comprised of a set τRB = {τ1, ..., τn} of n independent DAG-

based RB tasks, which we assume are to be scheduled on m ≥ 2 identical processors. A z-node

DAG-based RB task, τl, consists of z connected RB tasks (or nodes), τ1
l , ...τ

z
l , which may have

different execution rates. (If z = 1, then τl is an ordinary RB task.) Each DAG τl has a source node

τ1
l . Between any two connected nodes is an edge. A node can have outgoing or incoming edges. A

source node, however, can only have outgoing edges. We assume that any DAG τl is fully-connected,

i.e., any node τhl (h > 1) is reachable from the source node τ1
l . As before, an RB task τhl is released

at most xhl times in any interval [j · yhl , (j + 1) · yhl) (j ≥ 0), with each such invocation called a job.

The jth job of τhl in DAG τl, denoted τhl,j , is released at time rRB(τhl,j) and has a deadline at time

dRB(τhl,j). (Note that the notation for job release times and deadlines used here is different from that

used in other task models with no graph-based precedence constraints, including the sporadic task

model, the RB task model, and the sporadic self-suspending task model.) The relative deadline of

τhl , denoted dhl , is yhl /x
h
l . Thus, for any job τhl,j ,

dRB(τhl,j) = rRB(τhl,j) + dhl . (2.1)

The utilization of each RB task τhl in τl, denoted uhl , is ehl ·
xhl
yhl

. The utilization of the task system

τRB is Usum =
∑

τi∈τRB

∑
τ ji ∈τi

uji . We define the depth of a task to be the number of edges on the

longest path between this task and the source task of the corresponding DAG.

example Figure 2.6(a) shows an example DAG-based RB task system with one DAG τ1 containing

four tasks. τ1
1 is the source node. τ2

1 and τ3
1 are depth-1 tasks while τ4

1 is a depth-2 task. τ1
1 has two

outgoing edges to τ2
1 and τ3

1 , and τ4
1 has two incoming edges from τ2

1 and τ3
1 . For this system, the

total utilization is u1
1 + u2

1 + u3
1 + u4

1 = 1/2 + 1/3 + 2/3 + 1/2 = 2.

1The graph-based precedence constraints considered in this dissertation are acyclic and expressed using PGM. Since
PGM graph can be naturally represented by a DAG-based RB task set [51], we first present the DAG-based RB model. An
overview of PGM is presented in Section 2.3.3

28

0 4 8 12 16

(a) (b)

(1,4,4,2)

(4,12,3,2)

(2,12,6,3)

(4,12,3,1)

0 4 8 12 16 20 24 28

(b)

T1
1

T1
2

T1
3

T1
4

0 4 8 12 16

T1
1

T1
2

T1
3

T1
4

20

release deadline

1
1,1

2
4,1

1
2,1

1
3,1

2
2,1

2
3,1

3
1,1

3
2,1

3
3,1

3
4,1

4
1,1

4
2,1

2
1,1

precedence

missed
deadlines

1
1

1 1
1
2
1
3
1

4
1

4
1,1

2
1

3
1

4
1

Figure 2.6: (a) Example DAG-based RB task system and (b) GEDF schedule of this example system.

Consecutively-released jobs of the same task must execute in sequence (this is the precedence

constraint enforced by the RB task model). Also, precedence constraints exist among tasks/jobs

within a DAG. Edges represent potential precedence constraints among connected tasks. If there is

an edge from task τkl to task τhl in the DAG τl, then τkl is called a predecessor task of τhl . We let

pred(τhl) denote the set of all predecessor tasks of τhl .

A job τhl,j may be restricted from beginning execution until certain jobs of tasks in pred(τhl) have

completed. We denote the set of such predecessor jobs as pred(τhl,j). Defining pred(τhl,j) precisely

requires that job precedence constraints be specified. However, for a general DAG-based RB task

system, this is not so straightforward. This is because RB tasks may execute at different rates, and

their job release times are not specifically defined (only maximum rates are specified). However, the

release time of a job can clearly be no earlier than the release time of any of its predecessor jobs.

That is, for any job τhl,j and one of its predecessor jobs, τwl,v, we have

rRB(τhl,j) ≥ rRB(τwl,v). (2.2)

As we shall see later in Chapter 5, under PGM, job precedence constraints can be explicitly determine.

If a job τhl,j completes at time t, then its tardiness is defined as max(0, t− dRB(τhl,j)). A DAG’s

tardiness is the maximum of the tardiness of any job of any of its tasks. We require uhl ≤ 1 and the

total utilization of τRB not to exceed m, i.e., Usum ≤ m; otherwise, tardiness can grow unboundedly.

29

Note that, when a job of a task misses its deadline, the release time of the next job of that task is not

altered. Despite this, it is still required that a job cannot execute in parallel with any of its predecessor

jobs or the prior job of the same task.

Under GEDF, released jobs are prioritized by their deadlines. Throughout this dissertation, we

let ≺ denote the priority relationship among jobs, regardless of the scheduling algorithm: τwi,v ≺ τ ca,b
denotes that job τwi,v has higher priority than τ ca,b. We assume that jobs released by DAG-based

RB tasks are ordered by deadline as follows: τwi,v ≺ τ ca,b iff dRB(τwi,v) < dRB(τ ca,b) or dRB(τwi,v) =

dRB(τ ca,b) ∧ (i = a) ∧ (w < c) or dRB(τwi,v) = dRB(τ ca,b) ∧ (i < a).

Example. Figure 2.6(b) shows a two-processor GEDF schedule of the example DAG-based RB task

system shown in Figure 2.6(a). Regarding the release pattern, note that each task τk1 releases at most

xk1 jobs within any time interval [j · yk1 , (j + 1) · yk1) (j ≥ 0). Regarding job precedence constraints,

it is assumed in this example that τ1
1,1 = pred(τ2

1,1) = pred(τ2
1,2) = pred(τ3

1,1) = pred(τ3
1,2),

τ1
1,2 = pred(τ2

1,3) = pred(τ3
1,3), τ1

1,3 = pred(τ2
1,4) = pred(τ3

1,4), pred(τ4
1,1) = {τ2

1,2, τ
3
1,2}, and

pred(τ4
1,2) = {τ2

1,4, τ
3
1,4}. As seen in the schedule, jobs τ3

1,4 and τ4
1,2 miss their deadlines by one

time unit. Moreover, τ4
1,2 can only start execution at time 15 although it is released at time 11. This is

because one of its predecessor jobs, τ3
1,4, completes at time 15. This causes τ4

1,2 to miss its deadline.

2.1.6.1 The Processing Graph Method

Like a DAG-based RB task system, an acyclic PGM graph [69] consists of a set of connected nodes.

Each directed edge in a PGM graph is a typed first-in-first-out (FIFO) queue, and (as before) all nodes

in a DAG are assumed to be reachable from the DAG’s source node. A producing node transports

a certain number of tokens (i.e., some amount of data) to a consuming node, as indicated by the

data type of the queue. Tokens are appended to the tail of the queue by the producing node and read

from the head by the consuming node. A queue is specified by three attributes: a produce amount,

threshold, and consume amount. The produce amount specifies the number of tokens appended to the

queue when the producing node completes execution. The threshold specifies the minimum number

of tokens required to be present in the queue in order for the consuming node to process any received

data. The consume amount is the number of tokens dequeued when processing data. We assume

in this dissertation that the queue that stores data is associated with the consuming node. That is,

30

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22

Ƭ1,1 Ƭ1,2

G11

G14

G12 G13

G1
⇢1!2
1 = 4 ⇢1!3

1 = 4

⇢2!4
1 = 1 ⇢3!4

1 = 2

'1!2
1 = 7 '1!3

1 = 5

'2!4
1 = 3 '3!4

1 = 6

c1!2
1 = 3 c1!3

1 = 3

c2!4
1 = 2 c3!4

1 = 4

Figure 2.7: Example PGM graph.

data is stored in memory local to the corresponding consuming node.2 The only restriction on queue

attributes is that they must be non-negative integral values and the consume amount must be at most

the threshold. In PGM, a node is eligible for execution when the number of tokens on each of its

input queues is over that queue’s threshold. Overlapping executions of the same node are disallowed.

For any edge ejki connecting nodes Gji and Gki in a PGM graph Gi, we let ρk←ji denote its produce

amount, ϕk←ji denote its threshold, and ck←ji denote the consume amount. In the PGM framework, it

is often assumed that each source node executes according to a rate-based pattern. Note that, even if

all source nodes execute according to a periodic/sporadic pattern, non-source nodes may still execute

following a rate-based pattern. We show in Chapter 5 that an acyclic PGM graph can be naturally

represented by a DAG-based RB task.

Example. Figure 2.7 shows an example PGM graph G1 containing four nodes. As an example of the

notation, each invocation of G1
1 appends four tokens to the queue shared with G2

1. G2
1 may execute,

consuming three tokens, when at least seven tokens are in this queue.

2It is more reasonable to associate a queue with the corresponding consuming node than with the producer node because
this enables the consumer to locally detect when the queue is over threshold and react accordingly.

31

2.1.7 The DAG-based RB Self-Suspending Task Model

The DAG-based RB self-suspending task model extends the DAG-based RB task model by allowing

tasks/jobs to self-suspend and have non-preemptive sections. The only difference between these

two models is that a job released by a DAG-based RB task has only a single computation phase,

which is fully-preemptive, while a job released by a DAG-based RB self-suspending task can have

interleaving computation and suspension phases (as defined by the sporadic self-suspending task

model shown in Section 2.1.4) and computation phases are also allowed to contain non-preemptive

code segments. Thus, one notational difference between these two models is that under the DAG-

based RB self-suspending task model, each job of a task τhl of the DAG τl executes for at most ehl

time units (across all of its execution phases) and suspends for at most shl time units (across all of

its suspension phases). Moreover, the maximum duration of any non-preemptive segment of τhl is

denoted bhl , and the maximum such value taken over all tasks is denoted bmax.

2.1.8 The Parallel Task Model

Under the parallel task model, each parallel task τi is a sequence of si segments, where the jth

segment τ ji contains a set of vji threads (vji > m is allowed). The kth (1 ≤ k ≤ vji) thread τ j,ki in

segment τ ji has a WCET of ej,ki . For notational convenience, we order the threads of each segment

τ ji of each parallel task τi in largest WCET order. Thus, thread τ j,1i has the largest WCET among all

threads in any segment τ ji . For any segment τ ji , if vji > 1, then the threads in this segment can be

executed in parallel on different processors. The threads in the jth segment can execute only after all

threads of (j − 1)th segment (if any) have completed. We let vmaxi denote the maximum number of

threads in any segment of task τi.

The WCET of any segment τ ji is defined as eji =
∑vji

k=1 e
j,k
i (when all threads execute se-

quentially). The WCET of any parallel task τi is defined as ei =
∑si

j=1 e
j
i (when all threads in

each segment of the task execute sequentially). In our analysis, we also make use of the best-case

execution time of τi on m processors (when τi is the only task executing on m processors), denoted

emini . In general, for any parallel task τi, if we allow vmaxi ≥ m and threads in each segment

have different execution costs, then the problem of calculating emini is equivalent to the problem of

minimum makespan scheduling [56], where we treat each thread in a segment as an independent job

32

τi1,1

τi2,1

τi2,2

τi2,3

τi3,1 τi5,1

period pi=10

2

τi4,1

τi4,2
ei1,1=2

ei2,1=1

ei2,2=3

ei2,3=5

ei3,1=4

ei4,1=2

ei4,2=3

ei5,1=3

Figure 2.8: Example parallel task τi. It has five segments where the second and fourth segments are
parallel segments and contain three and two threads, respectively. This task has a WCET of 23 time
units, a period of 10 time units, and thus a utilization of 2.3.

and seek to obtain the minimum completion time for executing all such jobs on m processors. This

gives us per-segment best-case execution times, which can be summed to yield emini . Unfortunately,

this problem has been proven to be NP-hard [56]. This problem can be solved using a classical

dynamic programming-based algorithm [56], which has exponential time complexity with respect

to the per-segment thread count. However, for some special cases where certain restrictions on the

task model apply, we can easily calculate emini in linear time. For example, when vmaxi ≤ m holds,

emini =
∑si

j=1 e
j,1
i since in this case all threads of each segment of τi can be executed in parallel on

m processors and thread τ j,1i has the largest execution cost in each segment τ ji . Moreover, when

all threads in each segment have equal execution costs, emini =
∑si

j=1

∑dvji /me
k=1 ej,1i , because the

execution of each segment τ ji can be viewed as the executions of dvji /me sequential sub-segments,

each with an equal execution cost of ej,1i .

Each parallel task is released repeatedly, with each such invocation called a job. The kth job of

τi, denoted τi,k, is released at time ri,k. Associated with each task τi is a period pi, which specifies

the minimum time between two consecutive job releases of τi. We require emini ≤ pi for any task τi;

otherwise, response times can grow unboundedly. The utilization of a task τi is defined as ui = ei/pi,

and the utilization of the task system τ as Usum =
∑

τi∈τ ui. We require Usum ≤ m; otherwise,

response times can grow unboundedly. For any job τi,k of task τi, its uth segment is denoted τui,k,

and the vth thread of this segment is denoted τu,vi,k . An example parallel task is shown in Figure 2.8.

33

jlr , jld ,

Ti is active

Ti,j is pending

Ti,j is enabled

The end time of the
last execution
phase of Ti,j The end time of the

last execution or
suspension phase

of Ti,j

Being preempted

1, jlr 1, jld
.

preempted

1, jl

jlr ,
jld ,

- - - - - -
suspended

- - - - - -
suspended

jl,

τi is active

τi,j is pending

τi,j is enabled

The last
execution phase
of τi,j completes

Figure 2.9: Illustration of Definitions 2.1-2.3.

2.2 Common Definitions

The following definitions and concepts are used throughout this dissertation.

We assume that time is integral. Thus, a job that executes or suspends at time instant t executes

or suspends during the entire time interval [t, t+1). The time interval [t1, t2), where t2 > t1, consists

of all time instances t, where t1 ≤ t < t2, and is of length t2 − t1. For any time t > 0, the notation

t− is used to denote the time t − ε in the limit ε → 0+, and the notation t+ is used to denote the

time t+ ε in the limit ε→ 0+.

Definition 2.1. A task τi is active at time t if there exists a job τi,v of τi such that ri,v ≤ t < di,v.

Definition 2.2. A job is considered to be completed if it has finished its last phase (be it suspension

or computation). Job τi,v is enabled at t if t ≥ ri,v, τi,v has not completed by t, and its predecessor

τi,v−1 (if any) has completed by t. Job τi,v is ready at t if t ≥ ri,v, τi,v has not completed by t, its

predecessor τi,v−1 (if any) has completed by t, and τi,v is not suspending at t.

Definition 2.3. Job τi,v is pending at time t if t ≥ ri,v and τi,v has not completed its last computation

phase by t. Note that τi,v is not pending at t if it has completed all its execution phases by t but not

all of its suspension phases.

The above three definitions are illustrated in Figure 2.9.

34

Definition 2.4. A time instant t is busy for a job set J if all m processors execute jobs in J at t. A

time interval is busy for J if each instant within it is busy for J .

LAG-based Analysis The schedulability tests derived in Sections 3.2, 3.4, and 7.2 are based upon a

lag-based analysis framework. To avoid repetition in later sections, we present the concepts of lag

and LAG below.

LetA(τi,j , t1, t2, S) denote the total allocation to the job τi,j in an arbitrary schedule S in [t1, t2).

Then, the total time allocated to all jobs of τi in [t1, t2) in S is given by

A(τi, t1, t2, S) =
∑

j≥1

A(τi,j , t1, t2, S).

Definition 2.5. For any given task system τ , a processor share (PS) schedule is an ideal schedule

where each task τi executes with a rate equal to ui when it is active (which ensures that each of its jobs

completes exactly at its deadline). Note that complex runtime behaviors including self-suspensions,

precedence constraints, non-preemptive sections, and parallel execution segments are not considered

in the PS schedule. A valid PS schedule exists for τ if Usum ≤ m holds.

Consider a PS schedule PS. By Definition 2.5, in such a schedule, if τi is active throughout

[t1, t2), then

A(τi,j , t1, t2, PS) = (t2 − t1)ui. (2.3)

The difference between the allocation to a job τi,j up to time t in a PS schedule and an arbitrary

schedule S, denoted the lag of job τi,j at time t in schedule S, is defined by

lag(τi, t, S) =
∑

j≥1 lag(τi,j , t, S)

= A(τi,j , 0, t, PS)−A(τi,j , 0, t, S). (2.4)

The concept of lag is important because, if lags remain bounded, then tardiness is bounded as

well. The LAG for a finite job set J at time t in the schedule S is defined by

LAG(J, t, S) =
∑

τi,j∈J lag(τi,j , t, S)

=
∑

τi,j∈J(A(τi,j , 0, t, PS)−A(τi,j , 0, t, S)). (2.5)

35

2.3 Prior Work

In this section, we first review a number of existing scheduling algorithms and associated schedula-

bility tests designed for sporadic task systems. Then we review relevant prior work on the schedul-

ing of real-time task systems containing complex runtime behaviors including self-suspensions

(Section 2.3.2), graph-based precedence constraints (Section 2.3.3), non-preemptive sections (Sec-

tion 2.3.4), and parallel execution segments (Section 2.3.5).

2.3.1 Real-Time Scheduling of Sporadic Task Systems

We first review a number of existing scheduling algorithms and associated schedulability tests

designed for the sporadic task model. Since job releases are not known a priori, pre-computing

schedules off-line is impossible for sporadic task systems. Therefore, existing scheduling algorithms

make online scheduling decisions, which is typically achieved by assigning different priorities to

released jobs dynamically. We will consider uniprocessor scheduling first and then multiprocessor

scheduling.

2.3.1.1 Uniprocessor Scheduling

To schedule a set of real-time sporadic tasks on an uniprocessor, existing scheduling algorithms

can be divided into two major categories depending on how priorities are assigned: (i) job-level

fixed-priority (JFP) scheduling, (ii) job-level dynamic-priority (JDP) scheduling, and (ii) task-level

fixed-priority (TFP) scheduling.

JFP scheduling. Under JFP scheduling, each job has a unique priority that is fixed throughout

its execution. The most important JFP scheduling algorithm is the earliest-deadline-first (EDF)

scheduler, which assigns higher priorities to jobs with earlier absolute deadlines. If two jobs have

the same absolute deadlines, then we assume that the job with a smaller corresponding task ID has

higher priority. EDF is significant due to its optimality on a uniprocessor [38, 68, 80, 84]. That is,

every feasible sporadic task set can be scheduled by EDF.3 For an implicit-deadline sporadic task set

τ , all deadlines can be met by EDF iff Usum ≤ 1 [80, 84]. In contrast, if Usum > 1, then some tasks

3Note that EDF is also optimal for scheduling non-recurrent tasks and periodic tasks on a uniprocessor.

36

in τ will have unbounded tardiness (and hence response times as well). This implies that the notions

of HRT and SRT schedulability are the same for implicit-deadline task sets scheduled under EDF on

a uniprocessor.

JDP scheduling. Unlike JFP schedulers, a JDP scheduling algorithm assigns a priority to each

job that can dynamically change over time. It is easy to see from their denitions that JDP is a

generalization of JFP scheduling. Least-laxity-first (LLF) [88] is a well-known JDP scheduling

algorithm, which gives higher priorities to jobs with smaller slack times. The slack time of a job

at any given time is the difference betewen the amount of time remaining until the job’s deadline

and its remaining execution requirement. Like EDF, LLF is also optimal for sporadic task systems

on a uniprocessor. Note that most JFP and TFP schedulers such as EDF and rate-monotonic (RM)

are event-driven, that is, such schedulers react to events such as job releases and completions, and

reschedule immediately when required. In contrast, LLF is a quantum-driven scheduler, which only

makes scheduling decisions at times that are integer multiples of a scheduling quantum Q. In other

words, the scheduler is invoked strictly every Q time units.

TFP scheduling. Under TFP scheduling, a fixed priority is assigned to all the jobs of each task.

From the definitions, we can see that JFP and JDP are generalizations of TFP scheduling. The

most well-known and widely used TFP scheduling algorithm is the RM scheduler, introduced by

Liu and Layland in their seminal work on uniprocessor real-time scheduling [84]. Under RM

scheduling, tasks are prioritized in the order of increasing periods, that is, tasks with smaller periods

are assigned higher priorities. We assume that any ties in period are broken by comparing task IDs (a

job with a smaller task ID has higher priority). As proved by Liu and Layland [84], RM is in fact

not optimal on a uniprocessor even for implicit-deadline periodic tasks. They also derived a HRT

schedulability test showing that an implicit-deadline periodic task set τ is HRT schedulable under

RM if Usum ≤ n · (21/n − 1) holds, where n is the number of tasks. When n → ∞, the bound

n · (21/n − 1) → ln2 ≈ 0.69. Moreover, Liu and Layland further showed that RM scheduling is

optimal on a uniprocessor for periodic task systems with respect to TFP schedulers. That is, any

task set that is schedulable under some TFP scheduler is also schedulable under RM scheduling.

Therefore, any periodic task set with total utilization greater than 0.69 (approximately) is deemed

unschedulable under RM or any TFP scheduler. Note that this schedulability test is only a sufficient

37

test, which implies that higher-utilization task sets exist that are in fact schedulable under RM

scheduling. For example, two implicit-deadline sporadic tasks with parameters ei = 1 and pi = 2

are schedulable under RM scheduling, yet their total utilization is 1 > 2 · (21/2 − 1) ≈ 0.83.

Another widely studied TFP scheduling algorithm is the deadline-monotonic (DM) scheduler.

Leung and Whitehead [37] (1982) showed that DM is optimal for constrained-deadline sporadic task

sets on a uniprocessor. Since pi = di holds for implicit-deadline tasks, DM scheduling generalizes

RM scheduling.

Joseph and Pandya later derived an exact schedulability test for constrained-deadline tasks under

TFP scheduling [62] by computing an upper bound on the maximum response time for each task

explicitly. The resulting HRT schedulability test due to such response time bounds is given in the

following theorem.

Theorem 2.1. [62] A constrained-deadline sporadic task set τ is HRT schedulable under TFP

scheduling (i.e., under any priority assignment) if Ri ≤ di holds for each task τi ∈ τ , where Ri ≥ ei
is the smallest value satisfying the following equation:

Ri = ei +
i−1∑

h=1

⌈
Ri
ph

⌉
· eh.

EachRi can be iteratively computed by using ei as an initial value and by repeatedly re-evaluating

the above equation until the left-hand side and the right-hand side converge. It has also been proved

that convergence is guaranteed if Usum ≤ 1 [62]. According to our definition of SRT schedulability

defined in Definition 1.2, Theorem 2.1 also implies that TFP scheduling is optimal on a uniprocessor

with respect to SRT schedulability since any task set with utilization exceeding one is infeasible on a

uniprocessor.

In general, establishing HRT schedulability based upon deriving response time bounds is called

response time analysis (RTA). The result presented in Theorem 2.1 was later extended to be applicable

to arbitrary-deadline task sets, where response time bounds are derived for arbitrary-deadline tasks

[75].

Summary on uniprocessor real-time scheduling. Under uniprocessor real-time scheduling, EDF

and LLF are optimal for sporadic task systems (non-recurrent and periodic task systems as well)

38

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22
(a)

Ƭ2

.

.

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22
(b)

Ƭ2

.

.

Time

Ƭ1

0 2 4 6 8 10 12 14 16 18 20 22
(c)

Ƭ2

.

.

computation

Figure 2.10: Uniprocessor schedules under (a) EDF, (b) RM, and (c) LLF for an example task system
with two sporadic tasks τi(e1 = 3, p1 = 5) and τ2(e2 = 4, p2 = 10).

with respect to both HRT and SRT schedulability, while TFP scheduling is optimal for sporadic task

systems only with respect to SRT schedulability. Partial schedules of an example task set scheduled

under EDF, RM, and LLF are shown in Figure 2.10.

2.3.1.2 Multiprocessor Scheduling

In this section, we discuss multiprocessor real-time scheduling in some detail. Multiprocessor

scheduling algorithms can be divided into three major categories: (i) partitioning, (ii) global schedul-

ing, and (iii) clustered scheduling, as illustrated in Figure 2.11 (a), (b), and (c), respectively.4 In the

following sections, we will discuss each category in some detail. Note that similar to the categoriza-

4Another category of multiprocessor scheduling algorithms is called semi-partitioned scheduling that serves as a
compromise between pure partitioned and global scheduling, first proposed by Anderson et al. [1]. In a semi-partitioned
scheduling algorithm, most tasks are statically assigned to a processor and only a few tasks migrate among processors (as
under global scheduling).

39

tion under uniprocessor scheduling, global scheduling algorithms can be divided into three major

categories: GTFP scheduling, global JFP (GJFP) scheduling, and global JDP (GJDP) scheduling.

Partitioning. Under partitioning, tasks are statically partitioned among processors, that is, each task

is bound to execute on a specific processor and will never migrate to another processor. Different

processors can apply different scheduling algorithms. The algorithm that partitions tasks among

processors should ensure that the total utilization of tasks assigned to a processor satisfies the

schedulability condition of the corresponding scheduler used on that processor.

Several well-known bin-packing heuristics [32] such as first-fit, best-fit, and worst-fit can be

applied to partition tasks among processors. It has been shown in [87] that an implicit-deadline task

set τ is HRT schedulable on m processors if Usum ≤
m+ 1

2
when using either the first-fit, best-fit,

or worst-fit decreasing heuristic for partitioning and EDF scheduling on each processor. For TFP

scheduling, it has been shown in [3] that an implicit-deadline task set τ is HRT schedulable on m

processors if Usum ≤
m

2
when using common bin-packing heuristics and TFP scheduling on each

processor.

Global TFP scheduling. In contrast to partitioning, under global scheduling, a single global ready

queue is used for storing ready jobs. Jobs are allowed to migrate from one processor to another at any

point of time. At any time instant, at most m ready jobs with the highest priority among all jobs in

the global ready job queue execute on the m processors. Under GTFP scheduling, tasks are assigned

fixed priorities and jobs inherit the priority of the task to which they belong.

Global TFP scheduling was first considered by Dhall and Liu [42] who showed that RM is not

optimal for scheduling HRT periodic tasks on a multiprocessor. They specifically presented HRT

task sets of total utilization approaching one that are unschedulable under RM on m > 1 processors.

This is known as the Dhall effect. This result is rather pessimistic since it implies that RM scheduling

can cause algorithmic capacity loss approaching m− 1.5

In the context of SRT schedulability with bounded tardiness, Devi [39] showed by means of

a counterexample that global RM scheduling does not necessarily ensure bounded tardiness. A

counterexample task set has also been constructed in [39] to prove this negative claim. Moreover,

no provably optimal TFP scheduler or exact feasibility test for GTFP scheduling is known [35].

5Note that this negative result also holds for GEDF scheduler (defined in the following section).

40

.

.

.

Task
Partitions

. . . .

Per-Processor Scheduler Processors Per-Processor Ready Job Queue

. . . .

. . . .

(a)

. . . . (b)

.

.

.

.

.

.

.

.

.

Global Ready Job Queue Global Scheduler

Processors

.

.

.

Task
Partitions

. . . .

Per-Cluster SchedulerPer-Cluster Ready Job Queue

. . . .

.

.

.

.

.

.

(c)

Processors

...

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2.11: (a) Partitioning, (b) global scheduling, and (c) clustered scheduling

41

Time

Ƭ5

0 2 4 6 8 10 12 14 16 18 20 22

Ƭ4

Ƭ3

Ƭ2

Ƭ1

scheduled on processor 1 scheduled on processor 2

Figure 2.12: Example two-processor G-EDF schedule of the task set that consists of five sporadic
tasks: τ1(3, 10), τ2(2, 7), τ1(1, 5), τ1(3, 9) and τ1(5, 13), where the notation τi(ei, pi) is used. As
we can observe in the schedule, jobs are allowed to be preempted and migrate among processors at
any time due to GEDF.

Nevertheless, multiprocessor response-time analysis can be applied to derive an upper bound on

response times for GTFP scheduling with a given priority assignment [35].

In this dissertation, we are more interested in GJFP scheduling since global scheduling is most

compelling in the context of SRT constraints. In particular, in an SRT context, GTFP scheduling

does not ensure bounded tardiness in all cases [39] while GEDF scheduling, which is GJFP, does

[39, 41]. We thus focus on GJFP, particularly GEDF scheduling, which we describe next.

GJFP scheduling. Similar to GTFP scheduling, currently there does not exist an exact HRT feasibil-

ity test for GJFP scheduling. Among GJFP scheduling algorithms, GEDF is the most widely-studied

one and also the one that we focus on in this dissertation. Under GEDF scheduling, jobs are priori-

tized by EDF and the min(m,α) jobs with the highest priorities are selected to execute, where α is

the number of ready jobs. An example GEDF schedule is shown in Figure 2.12. Several well-known

SRT and HRT schedulability tests have been derived based on GEDF. We review them next.

SRT schedulability tests for GEDF. In 2005, Devi and Anderson first proved in their seminal work

[41] that any sporadic task set with total utilization up to m can be scheduled on m processors

under both GEDF and non-preemptive GEDF6 with bounded tardiness. Therefore, GEDF is SRT

optimal because any feasible sporadic task set that does not over-utilize the system has bounded

6Under non-preemptive GEDF, jobs are scheduled according to GEDF but execute non-preemptively.

42

tardiness under GEDF. Later, this result was extended to prove that the same SRT schedulability can

be ensured under a large class of schedulers, namely window-constrained schedulers [76, 78]. Under

a window-constrained scheduler, each job is prioritized by a time point that can vary at runtime but

has to remain within a constant-sized interval in which the job’s release time resides. A wide range of

scheduling algorithms such as GEDF and global first-in-first-out (GFIFO) 7 belongs to the category

of window-constrained schedulers.

HRT schedulability tests for GEDF. Several well-known HRT schedulability tests have been

derived for GEDF, including the density test [21, 52], Baker’s test [7], Bertogna and Cirinei’s

multiprocessor response-time analysis [18], and Baruah’s test [10].

Density test. In 2003, Goossens et al. first derived a HRT GEDF schedulability test showing that an

implicit-deadline periodic task set τ is HRT schedulable under GEDF if Usum ≤ m− (m−1) ·umax
holds [52]. Later this result was extended in [21] to be applicable to arbitrary-deadline sporadic task

sets by substituting utilization with density. The resulting schedulability test is often referred to as

the density test [21, 52]: an aribitrary-deadline sporadic task set τ is HRT schedulable under GEDF

on m processors if δsum ≤ m− (m− 1) · δmax holds.

Baker’s test. In 2003, Baker developed a seminal analysis framework that has since enabled several

influential results, including multiprocessor response-time analysis and Baruah’s test discussed in the

reminder of this section. Baker’s proposed analysis strategy can be summarized from a high-level

point of view as follows. For a given GEDF schedule of a task set τ to be analyzed, suppose that

job τi,k is the first job that misses its deadline. First we compute an upper bound on the amount of

work that GEDF can be required to execute over a specifically defined interval [to, di,k), where to is

a specifically defined point of time and di,k is the deadline of τi,k. A straightforward choice of to

could be ri,k, the release time of τi,k. Then, by setting this bound to be large enough to force τi,k to

miss its deadline, that is, to deny τi,k’s ei units of execution over its scheduling window [ri,k, di,k),

we can derive a schedulability condition. It turns out that in the case of implicit-deadline sporadic

task sets, Baker’s test is equivalent to the density test [17]. But in the case of constrained- and

arbitrary-deadline task sets, these two tests are incomparable.

7GFIFO prioritize jobs according to their releases.

43

Multiprocessor response time analysis. In 2005, Baker’s analysis framework was adopted by

Bertogna, Cirinei, and Lipari to develop a series of less pessimistic schedulability tests for constrained-

deadline sporadic tasks [18, 20, 21]. Among these tests, Bertogna and Cirinei’s multiprocessor

response-time analysis [18] dominates the other two tests [17]. Although response-time analysis

can be less pessimistic than either the density test or Baker’s test [17], it is incomparable to both

tests. In other words, there exist task sets that pass the density test or Baker’s test that are deemed

unschedulable under multiprocessor response-time analysis.

Baruah’s test. In 2007, Baruah proposed an improved schedulability test based upon Baker’s proof

technique for constrained-deadline task sets. The key observation made by him is that by smartly

defining the analyzed interval [to, di,k), scheduability can be significantly improved. Due to the way

to is defined in Baker’s test, Baker’s test is based upon examining a “worst-case” scenario in which

each of the n tasks in the system carry work into [to, di,k) (i.e., all n tasks have pending jobs at to)

that must be considered. This results in over-estimation of the cumulation of such “carry-in” work,

which further causes pessimism in upper-bounding the amount of work that GEDF can be required

to execute over [to, di,k). Therefore, to reduce such over-estimation, Baruah extended the analyzed

interval to an earlier time instant such that the number of tasks with carry-in work can be bounded by

min(n,m− 1). This significantly reduces the number of such tasks and thus reduces the pessimism

in the resulting schedulability test.

GJDP scheduling. In 1996, Baruah et al. [11] proposed the first global multiprocessor real-time

scheduling algorithm, namely proportionate fair (pfair), that is HRT optimal for implicit-deadline

periodic tasks. Pfair scheduling is a quantum-driven scheduler, which significantly differs from

most conventional event-driven real-time scheduling algorithms such as EDF and RM. Under Pfair

scheduling, tasks are broken into quantum-length8 subtasks and these subtasks are scheduled only at

quantum boundaries. Later, Pfair scheduling was extended to more general task models including the

sporadic task model [112, 113] and to implement a more efficient variant called the PD2 scheduling

algorithm [2].

8The time between integer multiples of scheduling quantum Q is called a quantum; the points in time separating quanta
are called quantum boundaries.

44

2.3.1.3 Clustered Scheduling

Under global scheduling, tasks are scheduled from a single ready queue and may migrate across

processors; in contrast, under partitioning, tasks are statically bound to processors and per-processor

schedulers are used. Partitioning is susceptible to bin-packing-related schedulability limitations,

which global approaches can avoid. Indeed, as discussed above, if bounded tardiness is the temporal

constraint of interest, then global approaches can be preferable on multiprocessor platforms. However,

the virtues of global scheduling come at the expense of higher runtime overheads because jobs are

allowed to migrate among different processors. Clustered scheduling, which combines the advantages

of both global and partitioned scheduling, has been suggested as a compromise [15, 27]. Under

clustered scheduling, tasks are first partitioned onto clusters of processors, and intra-cluster scheduling

is global. Specifically, m processors are split into m
c clusters of c processors each, where c divides

m. Tasks are first partitioned to clusters during an offline partitioning phase. At runtime, a global

scheduler such as GEDF is used for each cluster. Note that different clusters can use different global

scheduling algorithms. As a result, jobs do not migrate across clusters but can migrate within their

assigned clusters. In this dissertation, we design a new clustered scheduling algorithm to schedule

task graphs in a distributed real-time system, as will be discussed in Section 5.2.

2.3.2 Real-Time Self-Suspending Task Scheduling

The general problem of dealing with self-suspensions in real-time systems is known to be hard. In the

following sections, we first review several well-known negative results showing the hardness of this

problem. Then we describe existing related work in the context of uniprocessor and multiprocessor

scheduling.

2.3.2.1 Negative Results

Ridouard at el. [106] showed that well-known scheduling policies such as EDF and RM are not

efficient for scheduling HRT self-suspending task systems on an uniprocessor, even under the simple

non-recurrent self-suspending task model (presented in Section 2.1.2). Negative results on the

complexity and the competitive analysis (defined later in this section) in this context were also shown

45

by them. Note that all the negative results on dealing with self-suspensions discussed in this section

(Section 2.3.2.1) were presented in [106].

Complexity. The feasibility problem of scheduling non-recurrent real-time tasks is shown to be

NP-hard in the strong sense. The proof is by transforming the problem from 3-Partition, which is

known to be strongly NP-Complete. Moreover, it is shown that there is no universal scheduling

algorithm9 that can successfully schedule real-time self-suspending tasks, unless P = NP.

Negative results for scheduling self-suspending tasks under well-known algorithms. It is also

shown in [106] that several well-known scheduling algorithms, which are competitive (defined below)

for non-recurrent task systems (defined in Section 2.1.1), are not competitive for non-recurrent self-

suspending task systems (defined in Section 2.1.4), as discussed below.

A common way to compare the schedulability of different scheduling algorithms is by conducting

competitive analysis, which can determine the performance guarantee of an on-line algorithm. The

strategy is to compare a given algorithm to an optimal clairvoyant algorithm, often called the

adversary. An algorithm that minimizes an objective function is said to be c-competitive if the value

of the targeted objective function obtained by the algorithm is no greater than c times the optimal

value obtained by the adversary. An algorithm is competitive if there exists a constant c so that the

algorithm is c-competitive.

For non-recurrent task systems without suspensions, there does not exist any competitive al-

gorithms, but competitive algorithms exist for special cases. Baruah et al. [13] showed that no

competitive on-line scheduling algorithm exists that maximizes job completions for uniprocessor

systems. But for special cases, the following positive result given in Theorem 2.2 exist for ordinary

task systems without suspensions.

Definition 2.6. A non-recurrent task system is said to be monotonic absolute deadline (MAD) if

di,1 < dj,1 holds for any two tasks τi and τj in the system where ri,1 < rj,1.

Definition 2.7. Shortest remaining processing time first (SRPTF) is an online algorithm that allocates

the processor at any time to the task that has the shortest remaining processing time.

9A scheduling algorithm is said to be universal if it makes each scheduling decision in polynomial time (with respect to
the length of the input).

46

Theorem 2.2. [13] For non-recurrent task systems with the MAD property, SRPTF is 2-competitive

to minimize the number of tardy tasks. Moreover, SRPTF is the best possible on-line algorithm.

Unfortunately, it is shown in [106] that if a task is allowed to self-suspend just once, then this

result no longer holds. That is, SRPTF is not competitive to minimize the number of tardy tasks if

each task is allowed to self-suspend at most once. This is proved by showing a counterexample, as

illustrated in Figure 2.13. Using the same counterexample, this negative result for SRPTF can be

extended for EDF, RM, LLF, and DM. That is, the scheduling algorithms EDF, RM, DM, and LLF

are not competitive to minimize the number of tardy tasks if each non-recurrent task is allowed to

self-suspend at most once.

Negative results with respect to resource augmentation. The technique of resource augmentation

is often used to improve the competitive ratio by giving a faster processor to the online algorithm

while the adversary still runs on a unit speed processor. In [100], it is proven that for non-recurrent

task systems, EDF is still optimal even under overloaded conditions if it is run on a two-speed

processor while the optimal algorithm runs on a unit speed processor. In other words, EDF has

a resource augmentation bound of 2 under overloaded conditions. However, if tasks are allowed

to self-suspend at most once, then EDF cannot define a feasible schedule even under a k-speed

processor, where k can be an arbitrarily large constant, while there exists a feasible schedule under

a unit speed processor. This is proved in [106] by showing another counterexample, as illustrated

in Figure 2.14. Therefore, allocating faster processors does not help to define a simple on-line

scheduling policy for the simple self-suspending task model.

2.3.2.2 Self-Suspending Task Scheduling on Uniprocessors

In work pertaining to supporting self-suspending tasks on uniprocessors (and by extension multi-

processors scheduled via partitioning), the common suspension-oblivious analysis technique treats

all suspensions as computation [86]. That is, when a task self-suspends, the processor is deemed

to be busy as if the task executed. Thus, by treating all suspensions as computation, a sporadic

self-suspending task system can be transformed into a sporadic task system with no suspensions. The

downside of this approach is that it may cause severe capacity loss.

47

Time0 D

computation suspension

D-1

.

.

.

. . .
 . . .

 . . .
. . .

 . . .
 . . .

D+n-1

Time0 DD-1 D+n-1

. . .
 . . .

 . . .
. . .

 . . .
 . . .

(a) SRPTF

(b) Optimal scheduler

Ƭ1

Ƭ2

Ƭ3

Ƭn+1

.

.

.

Ƭ1

Ƭ2

Ƭ3

Ƭn+1

Figure 2.13: A counterexample showing that SRPTF is not competitive for the non-recurrent self-
suspending task model. The example task set contains n+ 1 task. The first task τ1 releases a job that
arrives at time 0 and has a deadline at time D − 1, where D is an arbitrary large number. It contains
only one computation phase of one time unit. For each other task τi (2 ≤ i ≤ n), it releases a job
that has a release time at i− 1, an absolute deadline at D + i− 2. Each job τi first executes for one
time unit, then self-suspends for D− 2 time units, and finally executes for another time unit. As seen
in inset (a), n out of n + 1 deadlines are missed under SRPTF, while all deadlines are met under
an optimal scheduling algorithm. If D becomes large enough, this task set has an arbitrarily small
utilization. Therefore, we have an instance with an arbitrarily small utilization such that SRPTF is
not competitive to minimize the number of tardy tasks if they are allowed to self-suspend at most
once. Nevertheless, an optimal schedule exists for this tast set, as shown in inset (b).

48

Several HRT schedulability tests have been presented for analyzing periodic tasks that may

self-suspend at most once on uniprocessors. Tests presented in [65, 96, 97, 101, 114] involve

straightforward execution control mechanisms, which modify task deadlines. For instance, a self-

suspending task that suspends once can be divided into two subtasks with appropriately shorted

deadlines and modified release times. Such a method is able to transform a sporadic self-suspending

task into two independent periodic subtasks without any suspension. As long as we can meet

the modified deadlines of these subtasks, we guarantee meeting the deadline of the original self-

suspending task. This approach is often known as the end-to-end approach [86].10 This approach

unfortunately suffers from significant capacity loss due to the artificial shortening of deadlines.

For TFP task systems, several tests have been derived based upon the computation of worst-case

response times by Kim et al. [65], Liu [86], and Lakshmanan et al. [71]. Note that same techniques

presented in [86] can also be applied for EDF scheduling [40].

In [65], the end-to-end approach as discussed above is used. Periodic tasks that may self-suspend

at most once are considered in this work. Under this approach, each self-suspending task τi is

divided into two independent subtasks τ1
i and τ2

i with modified deadlines and release offsets. Then

a worst-case response time is derived for each subtask, denoted R1
i and R2

i , using uniprocessor

RTA under either EDF or TFP scheduling as described in Section 2.3.1.1, respectively. The given

self-suspending task system τ is HRT schedulable if for each task τi ∈ τ , R1
i + si +R2

i ≤ di holds,

where si and di denote the suspension length and the relative deadline of τi, respectively. Similar

techniques of viewing suspensions as release offsets have been applied in by Palencia and Harbour in

[97, 96].

In [86], a schedulability test is derived by calculating the blocking time due to self-suspension

and higher-priority tasks.11 This approach first calculates the extra delay suffered by a self-suspending

task τi due to its own self-suspension and the suspension of higher-priority tasks. This delay is

called the blocking time of τi. The first component of the blocking time of τi is due to its own

suspension, which is clearly no more than si. Moreover, the blocking time due to the suspension

10The name of this scheduling approach originates from the classical end-to-end principle of designing computer
networks, which states that if application-specific functions can be implemented completely and correctly in the end
hosts of a network, then they should reside in the end hosts rather than in intermediate nodes. Similarly, the end-to-end
scheduling approach ensures the deadline of a task to be met by meeting deadlines of all intermediate subtasks.

11The simple self-suspending task model is also assumed here where each task may self-suspend at most once.

49

Time0 4k4k-1

(a) A feasible schedule under a 1-speed processor

Ƭ2 Ƭ1 Ƭ2

Time0 4k4k-1

(b) An EDF schedule under a k-speed processor

Ƭ1 Ƭ2 Ƭ2

1 2k+1

2 2+1/k 4k+1/k

Figure 2.14: A counterexample showing that EDF is not optimal for scheduling non-recurrent
suspending task systems even with a k-speed processor, for any positive integer k. The non-recurrent
task set contains two tasks that release jobs both arriving at time 0. τ1 executes for 2k time units, and
has an absolute deadline at 4k−1. τ2 first executes for one time unit, then self-suspend for 4k−2 time
units, and finally executes for another time unit. τ2 has an absolute deadline at 4k. Inset (a) shows a
feasible schedule of this task set under a 1-speed processor. Inset (b) shows the corresponding EDF
schedule, but under a k-speed processor, where k can be arbitrarily large. As seen, the deadline of τ2

is missed under EDF even with such a k-speed processor due to self-suspensions.

of a higher-priority task τk depends upon two cases: (i) τi cannot be delayed by τk for more than

ek because τi can be scheduled (or partially scheduled) during the suspension of τk, and (ii) the

blocking time cannot be more than sk if sk < ek. Therefore, the blocking time of τi due to each

higher-priority task τk is at most min(ek, sk). Finally, the total blocking time of τi can be obtained

by ei +
∑i−1

k=1min(ek, sk). After obtaining this extra blocking time due to tasks’ self-suspensions,

standard RTA can be then applied with the consideration of this blocking term. The same technique

of obtaining the blocking time due to self-suspensions has been applied in [40] for EDF scheduling.

In [71], Lakshmanan and Rajkumar consider the general sporadic self-suspending task model

(defined in Section 2.1.4). It is shown by them that the critical scheduling instant characterization is

easier in the context of sporadic real-time tasks than periodic ones. A critical scheduling instant of

self-suspending tasks is an instance of job releases that results in the worst-case interference from

higher-priority non-suspending tasks. Note that this critical scheduling instant is with respect to a

50

system where there is only one self-suspending task.12 With this assumption, a pseudo-polynomial

exact-case response-time test is then derived based upon the identified critical scheduling instant.

Then, the authors prove that the interference from self-suspending tasks on lower-priority tasks is no

worse than their non-suspending counterparts (with all suspension phases removed). Therefore, the

obtained pseudo-polynomial response-time test can also be applied to general task systems that may

contain multiple self-suspending tasks.

Our contributions. To the best of our knowledge, globally-scheduled multiprocessor systems that

allow suspensions to be expressed have not been considered before. Thus, how to support real-time

self-suspending task systems on multiprocessors under global scheduling was an open problem.

As mentioned Section 2.3.1.2, for SRT sporadic multiprocessor task systems, global scheduling

can ensure bounded tardiness with no ulitzation loss. Thus, global scheduling algorithms have the

potential of also efficiently scheduling real-time self-suspending task systems on multiprocessors.

Motivated by this, our contributions made in this dissertation with respect to the suspension problem

is the following: we derive a set of multiprocessor schedulability tests for globally-scheduled HRT

and SRT sporadic self-suspending task systems.

2.3.3 Real-Time Task Graph Scheduling

In this dissertation, we consider a particularly expressive directed-acyclic-graph-based (DAG-based)

formalism, the processing graph method (PGM) [69]. To our knowledge, PGM has not been

considered before in the context of global real-time scheduling algorithms. However, the issue of

scheduling PGM graphs on a uniprocessor was extensively considered by Goddard in his dissertation

[51]. Since his work inspired the research done on multiprocessor PGM graph scheduling in this

dissertation, we provide a detailed review on Goddard’s work in the following.

2.3.3.1 Uniprocessor PGM Scheduling

Among models that allow the DAG-based precedence constraints to be expressed, the processing

graph method (PGM) [69] is of great interest and importance. First developed by the U.S. Navy,

PGM has been widely used in many signal processing applications such as radar sensing [51, 69].

12The task system considered in [71] is assumed to have only one self-suspending task, with the rest being ordinary
sporadic tasks with no suspensions.

51

PGM generalizes common forms of DAG-based dependencies and considers data communications

among nodes (as discussed in Section 2.3.3).

HRT PGM scheduling on uniprocessors. The issue of scheduling HRT PGM task systems on a

uniprocessor was extensively considered by Goddard in his dissertation [51]. A major emphasis of

his dissertation is schedulability analysis pertaining to uniprocessor PGM task systems. To derive

such analysis, Goddard applied a two-phase approach. First, according to the PGM specification [69],

non-source nodes in a PGM graph execute following a rate-based pattern (as defined in Section 2.1.5),

regardless of whether the source node executes according to a rate-based pattern (i.e., the source

node could execute according to periodic or sporadic pattern). Goddard presented techniques for

computing the execution rates (as defined below) for nodes in a PGM graph. Second, he presented

conditions for verifying the schedulability of the resulting task set under a rate-based, EDF scheduler.

More specifically, Goddard first showed that according to PGM, the execution relationship

between connected nodes in a PGM graph can be specified by execution rates that represent a

rate-based execution pattern (defined in Section 2.1.5). Moreover, in order to avoid data loss, an

execution of a node in a PGM graph must be valid. An execution of a node is valid iff (i) the

corresponding task executes only when it is eligible for execution and no two executions of the same

node overlap, (ii) each input queue has its tokens atomically consumed after each output queue has

its tokens atomically produced, and (iii) tokens are produced at most once on an output queue during

each node execution. An execution of a PGM graph is valid iff all of its nodes have valid execution

rates and no data loss occurs.

After computing the execution rates for PGM nodes, Goddard further showed that a PGM

graph can be implemented as a rate-based DAG (defined in Section 2.1.6). After implementing

PGM graphs in a given PGM task system as RBE tasks, Goddard then presented conditions for

verifying the schedulability of the resulting task set under a rate-based, EDF scheduler. Specifically,

prior schedulability analysis pertaining to the RBE task model [61] was directly applied to derive

schedulability conditions. This schedulability analysis established a schedulability condition for an

RBE task set that can be evaluated in pseudo-polynomial time if the total utilization of the task set

does not exceed one. Moreover, for the special case where di = yi holds for every RBE task τi, the

52

schedulability condition evaluation can be reduced to the polynomial-time schedulability condition
∑n

i=1

xi
yi
· ei ≤ 1.

2.3.3.2 Other Prior Work on Real-Time Task Graph Scheduling

There are two processing graph models that are similar to PGM: the synchronous dataflow (SDF)

graph model [73] and the logical application stream model (LASM) [29, 30]. Although we focus on

PGM graphs in this dissertation, our results can also be applied to these graph models.

SDF. The SDF graph model was first proposed by Lee and Messerschmitt [73] to develop signal

processing applications. The SDF graph model is in fact a subset of the PGM graph model. The

main difference between PGM graphs and SDF graphs is that a queue’s threshold value must equal

its consume value in an SDF graph, whereas PGM only requires that the consume amount must

be at most the threshold. For uniprocessor platforms, several efforts [22, 73, 107, 108, 119] have

been made to minimize memory usage by creating various online scheduling algorithms. The online

algorithms create static node execution schedules that are executed periodically by the uniprocessor.

For TFP scheduling on a uniprocessor, Parks and Lee [98] studied the applicability of non-preemptive

RM scheduling to SDF graphs. For multiprocessor platforms, Bekooij et al. presented a dataflow

analysis based upon time division multiplexing (TDM) scheduling on applications modeled as SDF

graphs [16]. To improve upon [16], Moreira et al. developed a resource allocation heuristic [90] and

a TDM scheduler combined with static allocation policies [89, 91].

LASM. The LASM was first proposed by Chatterjee and Strosnider [29, 30] to develop multimedia

applications. It is remarkably similar to PGM, although it was developed independently ten years

after PGM was developed. The main difference between LASM and PGM is due to different node

execution models. LASM requires a node to execute periodically, which is a reasonable requirement

for multimedia applications but adds latency (compared to the RBE model) to a signal in a signal

processing application. The work on PGM graphs [51, 69] improves on the analysis of LASM graphs

by not requiring periodic execution of the nodes in the graph. The adopted rate-based graph execution

model can more accurately predict processor demand without imposing the additional latency created

by periodic node execution.

53

Graph scheduling in distributed systems. The scheduling of real-time graphs in distributed sys-

tems (which must be scheduled by partitioning approaches) has also been considered. For example,

Jayachandran and Abdelzaher have presented delay composition rules that provide a bound on the

end-to-end delay of jobs in partitioned distributed systems that include DAGs [59] or graphs with

cyclic precedence constraints [58]. These rules permit a graph system to be transformed so that

uniprocessor schedulability analysis can be applied. Offline schedulability tests have also been

proposed by Palencia and Pellizzoni for scheduling tasks with precedence constraints in distributed

real-time systems comprised of periodic tasks [95, 99]. Several schedulability tests have also been

presented by by Kao and Zhang to divide the end-to-end deadline of tasks into per-stage dead-

lines such that uniprocessor schedulability tests can then be applied to determine if each stage is

schedulable [64, 118].

Our contributions. To the best of our knowledge, globally-scheduled multiprocessor systems that

allow DAG-based precedence constraints to be expressed have not been considered before. Thus, how

to support real-time DAG-based task systems on multiprocessors under global scheduling was an open

problem. Our contributions in dissertation is to support SRT PGM task graphs on multiprocessors

using global scheduling algorithms and distributed systems using clustered schedulers.

2.3.4 Dealing with Non-Preemptive Sections

In this dissertation, we consider a general form of non-preemptive section where a job that is executing

its non-preemptive section cannot be preempted by any other task (even with higher priority). Thus,

jobs with higher priorities can be blocked by lower-priority jobs due to non-preemptive sections. A

common approach [86] of dealing with such non-preemptive sections is to first compute the worst-

case blocking time that each task can experience. Then, such blocking times can be accommodate

into tasks’ WCETs as well as the corresponding schedulability tests.

A special form of non-preemptive section, called non-preemptive critical section that is often

due to resource sharing, has received much attention. When a job τi,k is executing within its non-

preemptive critical section due to accessing a resource A, it blocks jobs with higher priorities that

require accesses to the same resource A. However, τi,k can be preempted by jobs with higher

priorities that do not require accessing A. This property may cause “unbounded” blocking time

54

as noted in [86, 110]. Various strategies [6, 23, 25, 26, 60, 72, 86, 110] have been proposed to

control the length of the blocking time due to non-preemptive critical sections. The fundamental

idea behind all these strategies is to change the priority of the lower-priority job, which holds the

resource blocking other higher-priority jobs. The difference between them lies in when the priority is

changed and to which level. Under all strategies the changed priority is switched back at the end of

the critical section.

Regarding the general form of non-preemptive section we consider in this dissertation, as

discussed in Section 2.3.1.2, bounded tardiness can be achieved under non-preemptive GEDF for any

sporadic task system with total utilization up to m scheduled on m processors [41].

Our contributions. For real-time task systems with non-preemptive sections and other types of

complex runtime behaviors such as self-suspensions and precedence constraints, no obvious solution

exists. As the first attempt, we consider the issue of scheduling SRT task systems in which mixed

types of complex runtime behaviors may exist due to non-preemptive sections, self-suspensions,

and graph-based precedence constraints. We present a transformation process that converts such a

sophisticated task system into a simpler system with only self-suspensions. In the simpler system,

each task’s maximum job response time is at least that of the original system. This result allows

tardiness bounds to be established by focusing only on the impacts of suspensions.

2.3.5 Real-Time Parallel Task Scheduling

Scheduling non-real-time parallel applications is a deeply explored topic [31, 36, 48, 49, 85, 115, 117].

However, in most (if not all) prior work on this topic, including all of the just-cited work, scheduling

decisions are made on a best-effort basis, so none of these results can provide performance guarantees

such as response time bounds.

Regarding scheduling HRT parallel task systems, Lakshmanan et al. proposed a scheduling

technique for the fork-join model, where a parallel task is a sequence of segments, alternating between

sequential and parallel phases [70]. A sequential phase contains only one thread while a parallel

phase contains multiple threads that can be executed concurrently on different processors. In their

model, all parallel phases are assumed to have the same number of parallel threads, which must be no

55

greater than the number of processors. Also, all threads in any parallel segment must have the same

execution cost. The authors derived a resource augmentation bound of 3.42 under DM scheduling.

In [109], Saifullah et al. extended the fork-join model so that each parallel phase can have a

different number of threads and threads can have different execution costs. The authors proposed

an approach that transforms each periodic parallel task into a number of ordinary constrained-

deadline periodic tasks by creating per-segment intermediate deadlines. They also showed that

resource augmentation bounds of 2.62 and 3.42 can be achieved under GEDF and PDM scheduling,

respectively. In [92], Nelissen et al. proposed techniques that optimize the number of processors

needed to schedule sporadic parallel tasks. The authors also proved that the proposed techniques

achieve a resource augmentation bound of 2.0 under scheduling algorithms such as U-EDF [93] and

PD2 [111].

Our contributions. Although the problem of scheduling HRT parallel tasks has received much

more attention, achieving HRT correctness for many parallel applications in practice is overkill. For

applications such as real-time parallel video and image processing applications [5, 43] and computer

vision applications such as collision detection and feature tracking [66], fast and bounded response

times for individual video frames are important, to ensure smooth video output. Motivated by this

observation, in this dissertation, we focus on supporting SRT parallel task systems on multiprocessors

with bounded response times.

2.4 Summary

In this chapter, we reviewed some prior work on the real-time scheduling of task systems containing

complex runtime behaviors. Specifically, we reviewed prior work on handling each of our considered

runtime behaviors: self-suspensions in Section 2.3.2, graph-based precedence constraints in Sec-

tion 2.3.3, non-preemptive sections in Section 2.3.4, and parallel execution segments in Section 2.3.5.

From the review presented in this chapter, it is quite evident that the problem of dealing with complex

runtime behaviors in multiprocessor real-time systems has received limited attention. In the following

chapters, we present our results that contribute to fill this research vacancy.

56

CHAPTER 3

Scheduling SRT Self-Suspending Tasks1

In this chapter, we present multiprocessor schedulability tests for SRT self-suspending task

systems. We present a suspension-aware schedulability test, a technique that can further improve this

test, and another improved schedulability test for SRT self-suspending task systems, in Section 3.2,

3.3, and 3.4, respectively. First, we provided needed definitions.

3.1 System Model

We consider the problem of scheduling a set τ = {τ1, ..., τn} of n SRT (defined in Section 1.2.2) spo-

radic self-suspending tasks (defined in Section 2.1.4) onm ≥ 1 identical processorsM1,M2, ...,Mm.

A common case for real-time workloads is that both self-suspending tasks and computational

tasks (which do not suspend) co-exist. To reflect this, we let U ssum denote the total utilization of all

self-suspending tasks, and U csum denote the total utilization of all computational tasks.

So that our analysis can be more accurately applied in settings where a task’s total suspension

time varies from job to job, we assume that a fixed parameter H (H ≥ 1) is specified and that SHi

denotes the maximum total self-suspension length for any H (H ≥ 1) consecutive jobs of task τi.

Note that if H = 1, then a maximum per-job total suspension length is being assumed.

1Contents of this chapter previously appeared in preliminary form in the following papers:
Cong Liu and James Anderson. An O(m) Analysis Technique for Supporting Real-Time Self-Suspending Task Systems,
Proceedings of the 33th IEEE Real-Time Systems Symposium, pages 373-382, 2012.
Cong Liu and James Anderson. A New Technique for Analyzing Soft Real-Time Self-Suspending Task Systems, pages
29-32, ACM SIGBED Review, 2012.
Cong Liu and James Anderson. Improving the Schedulability of Sporadic Self-Suspending Soft Real-Time Multiprocessor
Task Systems, Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pages 13-22, 2010.
Cong Liu and James Anderson. Task Scheduling with Self-Suspensions in Soft Real-Time Multiprocessor Systems,
Proceedings of the 30th IEEE Real-Time Systems Symposium, pages 425-436, 2009.

As discussed in Chapter 2, under GEDF (GFIFO), released jobs are prioritized by their deadlines

(release times). So that our results can be applied to both algorithms, we consider a generic scheduling

algorithm (GSA) where each job is prioritized by some time point between its release time and

deadline. Specifically, for any job τi,j , we define a priority value with lower values denoting higher

priority: ρi,j = ri,j + κ · pi, where 0 ≤ κ ≤ 1. We assume that ties are broken by task ID. Note that

GEDF and GFIFO are special cases of GSA where κ is set to 1 and 0, respectively.

For simplicity, we henceforth assume that each job of any task τl executes for exactly el time

units. By Claim 1 provided below, any tardiness bound derived for such systems applies to other

systems as well. (Claim 1 also considers GTFP scheduling because GTFP scheduling is considered

in Chapter 4 for HRT sporadic self-suspending task systems.)

We say that a sporadic task system τ is concrete if the release time (and hence deadline) and

actual execution cost and suspension time of every job of each task is fixed. Two concrete task

systems are compatible if they have the same jobs with the same release times (they can have different

actual execution and suspension times). A concrete task system τ is maximal if the actual execution

time of any job equals the corresponding task’s WCET.

Claim 1. For any concrete task system τ , there exists a compatible maximal concrete task system

τ ′ such that, for any job τi,k, its response time in the GSA (or GTFP) schedule for τ ′ is at least its

response time in the GSA (or GTFP) schedule for τ .

Proof. The existence of the desired maximal concrete system is demonstrated via a construction

method in which computation phases are ranked as follows: (i) if τi,k ≺ τx,y (i.e., τi,k has higher

priority than τx,y, as defined in Chapter 2), then all computation phases of τi,k are ranked before all

computation phases of τx,y; (ii) earlier computation phases of τi,k are ranked before later computation

phases of τi,k.

Consider a computation phase C of a job τi,k that is not maximal. We show that the length of

C can be increased by one time unit by adding to the end of C a piece of computation ρ of length

one time unit (recall from Chapter 2 that we assume that time is integral). In doing so, it may be

necessary to reduce the length of a lower-ranked computation phase by one time unit and to reduce

the length of a subsequent suspension phase (if any) of τi,k. By inducting over all computation phases

in rank order, and by iteratively increasing any non-maximal execution time by one time unit, we can

58

obtain a compatible concrete task system that is maximal. The construction method will ensure that

no job’s response time is reduced.

Let [t, t + 1) denote the time interval where ρ should be added to the schedule (according to

GSA or GTFP). If, before adding ρ, task τi is scheduled within [t, t+ 1), then the computation phase

of τi executing at that time, call it C ′, is ranked lower than C. In this case, we can accommodate ρ

by reducing C ′ in length by one time unit.2 If C and C ′ are separated by a suspension phase, then

the length of that suspension phase must be defined to be zero.

In the rest of the proof, we consider the other possibility: before adding ρ, τi is not scheduled

within [t, t+ 1) (and hence, it is not scheduled in [t′, t+ 1), where t′ is the completion time of C). In

this case, if there is an idle processor in [t, t+ 1), then ρ can be scheduled there without modifying

the length of any lower-ranked computation phase. On the other hand, if there is no idle processor,

then, as ρ should be scheduled in [t, t+ 1), there must be a computation phase ranked lower than C

scheduled then. We can accommodate ρ and allow it to be scheduled in [t, t+ 1) by reducing the

length of that lower-ranked computation phase by one time unit. If C is followed by a suspension

phase, then, once ρ has been added to the schedule, it may be necessary to reduce the length of that

suspension phase. In particular, if, before adding ρ, τi,k was suspended in [t, t+ 1), then the length

of that suspension phase must be reduced so that it starts as t+ 1.

Note that the construction method used in this proof strongly exploits the fact that, in our task

model, suspension phases are upper-bounded, and hence, can be reduced.

3.2 First SRT Schedulability Test

We now derive a SRT schedulability test and thus a tardiness bound for GSA by comparing the

allocations to a task system τ in a processor sharing (PS) schedule (defined in Definition 2.5) and an

actual GSA schedule of interest for τ , both on m processors, and quantifying the difference between

the two. We analyze task allocations on a per-task basis. Our analysis draws inspiration from the

seminal work of Devi and Anderson [41], and follows the same general framework.

2If C′ is of length one time unit and is followed by a suspension phase, then we can avoid altering the length of that
suspension phase by assuming that C′ executes for zero time at time t+ 1. Note that C′’s execution time will be increased
in a subsequent induction step. A similar comment applies to the argument in the next paragraph.

59

Our tardiness-bound derivation focuses on a given task system τ . We order the jobs in τ based

on their priorities: τi,v ≺ τa,b iff ρi,v < ρa,b or (ρi,v = ρa,b) ∧ (i < a). Let τl,j be a job of a task τl

in τ , td = dl,j , and S be a GSA schedule for τ with the following property.

(P) The tardiness of every job τi,k such that τi,k ≺ τl,j is at most x+ ei + si in S, where x ≥ 0.

Our objective is to determine the smallest x such that the tardiness of τl,j is at most x+ el + sl.

This would by induction imply a tardiness of at most x+ ei + si for all jobs of every task τi, where

τi ∈ τ . We assume that τl,j finishes after td, for otherwise, its tardiness is trivially zero. The steps

for determining the value for x are as follows.

1. Determine an upper bound on the work pending for tasks in τ that can compete with τl,j after

td. This is dealt with in Lemmas 3.1–3.3 in Section 3.2.1.

2. Determine a lower bound on the amount of work pending for tasks in τ that can compete

with τl,j after td, required for the tardiness of τl,j to exceed x+ el + sl. This is dealt with in

Lemma 3.4 in Section 3.2.2.

3. Determine the smallest x such that the tardiness of τl,j is at most x+ el + sl, using the above

upper and lower bounds. This is dealt with in Theorem 3.1 in Section 3.2.3.

Definition 3.1. We categorize jobs based on the relationship between their priorities and deadlines

and those of τl,j :

d = {τi,v : (τi,v � τl,j) ∧ (di,v ≤ td)};

D = {τi,v : (τi,v ≺ τl,j) ∧ (di,v > td)}.

d is the set of jobs with deadlines at most td with priority at least that of τl,j . These jobs do not

execute beyond td in the PS schedule. Note that τl,j is in d. D is the set of jobs that have higher

priorities than τl,j and deadlines greater than td. Note that jobs not in d ∪ D have lower priority

than those in d ∪ D and thus do not affect the scheduling of jobs in d ∪ D. For simplicity, we will

henceforth assume that no job not in d ∪ D executes in either the PS or GSA schedule. Let DH be

the set of tasks with jobs in D. D consists of carry-in jobs, which have a release time before td and

a deadline after td. Exactly one such job exists for each task in DH . (Note that D is empty under

GEDF because jobs with later deadlines have lower priorities.)

60

Definition 3.2. A time instant t is busy for a job set J if all m processors execute a job in J at t. A

time interval is busy for J if each instant within it is busy for J .

The following claim follows from the definition of LAG (the concepts of lag and LAG are

presented in Section 2.2).

Claim 2. If LAG(d, t2, S) > LAG(d, t1, S), where t2 > t1, then [t1, t2) is non-busy for d. In other

words, LAG for d can increase only throughout a non-busy interval.

An interval could be non-busy for d for two reasons:

1. There are not enough enabled non-suspended jobs in d to occupy all available processors.

Such an interval is called non-busy non-displacing.

2. Jobs in D occupy one or more processors and there are enabled non-suspended jobs in d that

are not scheduled. Such an interval is called non-busy displacing.

Definition 3.3. Let δk be the amount of execution time consumed by a carry-in job τk,v by time td.

Definition 3.4. Let B(D, td, S) be the amount of work due to jobs in D that can compete with τl,j

after td.

Since d ∪ D includes all jobs of higher priority than τl,j , the competing work for τl,j is given

by the sum of (i) the amount of work pending at td for jobs in d, and (ii) the amount of work

B(D, td, S) demanded by jobs in D that competes with τl,j after td. Since jobs from d have

deadlines at most td, they do not execute in the PS schedule beyond td. Thus, the work pending

for them is given by LAG(d, td, S). Therefore, the competing work for τl,j after td is given by

LAG(d, td, S) +B(D, td, S). Let

Z = LAG(d, td, S) +B(D, td, S). (3.1)

3.2.1 Upper Bound

In this section, we determine an upper bound on Z.

Definition 3.5. Let tn be the end of the latest non-busy non-displacing interval for d before td, if

any; otherwise, tn = 0.

61

The following two lemmas have been proved previously for both GEDF [41] and GFIFO [78]

for ordinary sporadic task systems without self-suspensions. Note that the value of LAG(d, td, S) +

B(D, td, S) depends only on allocations in the PS schedule PS and allocations to jobs in d ∪ D

in the actual schedule S by time td. The PS schedule is not impacted by self-suspensions. Also,

Property (P) alone is sufficient for determining how much work any job in d ∪ D other than τl,j

completes before td. For these reasons, Lemmas 3.1 and 3.2 continue to hold for task systems with

self-suspensions.

Lemma 3.1. LAG(d, td, S) ≤ LAG(d, tn, S) +
∑

τk∈DH
δk(1− uk), where t ∈ [0, td].

Proof. By (2.5), we have

LAG (d, td, S) ≤ LAG(d, tn, S) +A (d, tn, td, PS)

−A (d, tn, td, S) . (3.2)

We split [tn, td) into z non-overlapping intervals [tpi , tqi), 1 ≤ i ≤ z, such that tn = tp1 , tqi−1 = tpi ,

and tqz = td. Each interval [tpi , tqi) is either busy or non-busy displacing for d, by the selection of

tn. We assume that the intervals are defined so that for each non-busy displacing interval [tpi , tqi), if

a task in DH executes in [tpi , tqi) then it executes continuously throughout [tpi , tqi); we let αi denote

the set of such tasks.

We now bound the difference between the work performed in the PS schedule and the GSA

schedule S across each of these intervals [tpi , tqi). The sum of these bounds will give us a bound on

the total allocation difference throughout [tn, td). Depending on the nature of the interval [tpi , tqi),

two cases are possible.

Case 1. [tpi , tqi) is busy. Since in S all processors are occupied by jobs in d, we have

A(d, tpi , tqi , PS)−A(d, tpi , tqi , S) ≤ Usum(tqi , tpi)−m(tqi − tpi) ≤ 0.

Case 2. [tpi , tqi) is non-busy displacing. The cumulative utilization of all tasks τk ∈ αi is
∑

τk∈αi
uk. The carry-in jobs of these tasks do not belong to d, by the definition of d. Therefore, the

allocation of jobs in d during [tpi , tqi) in PS is A(d, tpi , tqi , PS) ≤ (tqi − tpi)(m −
∑

τk∈αi
uk).

62

All processors are occupied at every time instant in the interval [tpi , tqi), because it is displacing.

Thus, A(d, tpi , tqi , S) = (tqi − tpi)(m − |αi|). Therefore, the allocation difference for jobs in d

throughout the interval is

A(d, tpi , tqi , PS)−A(d, tpi , tqi , S)

≤ (tqi − tpi) ((m−
∑

τk∈αi

uk)− (m− |αi|))

= (tqi − tpi)
∑

τk∈αi

(1− uk) . (3.3)

For each task τk in DH , the sum of the lengths of the intervals [tpi , tqi) in which the carry-in

job of τk executes continuously is at most δk. Thus, summing the allocation differences for all the

intervals [tpi , tqi) given by (3.3), we have

A(d, tn, td, PS)−A(d, tn, td, S)

≤
z∑

i=1

∑

τk∈DH

(tqi − tpi)(1− uk)

≤
∑

τk∈DH

δk(1− uk). (3.4)

Setting this value into (3.2), we get LAG(d, td, S) ≤ LAG(d, tn, S) + A(d, tn, td, PS) −

A(d, tn, td, S) ≤ LAG(d, tn, S) +
∑

τk∈DH
δk(1− uk).

Lemma 3.2. lag(τi, t, S) ≤ ui · x+ ei + ui · si for any task τi and t ∈ [0, td].

Proof. Let di,k be the deadline of the earliest pending job of τi, τi,k, in the schedule S at time t. If

such a job does not exist, then lag(τi, t, S) = 0, and the lemma holds trivially. Let γi be the amount

of work τi,k performs before t.

By the selection of τi,k, we have

lag(τi, t, S) =
∑

h≥k
lag(τi,h, t, S)

=
∑

h≥k
(A(τi,h, 0, t, PS)−A(τi,h, 0, t, S)).

63

Given that no job executes before its release time, A(τi,h, 0, t, S) = A(τi,h, ri,h, t, S). Thus,

lag(τi, t, S) = A(τi,k, ri,h, t, PS)−A(τi,k, ri,k, t, S)

+
∑

h>i

(A(τi,h, ri,h, t, PS)

−A(τi,h, ri,h, t, S)). (3.5)

By the definition of PS, A(τi,k, ri,h, t, PS) ≤ ei, and
∑

h>k A(τi,h, ri,h, t, PS) ≤ ui ·

max(0, t− di,k). By the selection of τi,k, A(τi,k, ri,k, t, S) = γi, and
∑

h>k A(τi,h, ri,h, t, S) = 0.

By setting these values into (3.5), we have

lag(τi, t, S) ≤ ei − γi + ui ·max(0, t− di,k). (3.6)

There are two cases to consider.

Case 1. di,k ≥ t. In this case, (3.6) implies lag(τi, t, S) ≤ ei−γi, which implies lag(τi, t, S) ≤

ui · x+ ei + ui · si.

Case 2. di,k < t. In this case, because t ≤ td and dl,j = td, τi,k is not the job τl,j . Thus, by

Property (P), τi,k has tardiness at most x + ei + si, so t + ei − γi ≤ di,k + x + ei + si. Thus,

t− di,k ≤ x+ γi + si. Setting this value into (7.4), we have lag(τi, t, S) ≤ ui · x+ ei + ui · si.

Lemma 3.3 below upper bounds LAG(d, tn, S).

Definition 3.6. Let Essum be the total execution cost of all self-suspending tasks in τ . Let Esum be

the total execution cost of all tasks in τ . Let Sssum be the total suspension length of all tasks in τ . Let

usmax be the maximum utilization of any self-suspending task in τ .

Definition 3.7. Let U cL be the sum of the min(m − 1, c) largest computational task utilizations,

where c is the number of computational tasks. Let EcL be the sum of the min(m − 1, c) largest

computational task execution costs.

Lemma 3.3. LAG(d, tn, S) ≤ (U ssum + U cL) · x+ Essum + EcL + usmax · Sssum.

64

Proof. By summing individual task lags at tn, we can bound LAG(d, tn, S). If tn = 0, then

LAG(d, tn, S) = 0, so assume tn > 0. Consider the set of tasks β = {τi : ∃τi,v in d such that τi,v

is enabled at t−n }. Given that the instant t−n is non-busy non-displacing, at most m− 1 computational

tasks in β have jobs executing at t−n . Due to suspensions, however, β may contain more than

m − 1 tasks. In the worst case, all suspending tasks in τ have a suspended enabled job at t−n and

min(m− 1, c) computational tasks have an enabled job executing at t−n . If task τi does not have an

enabled job at t−n , then lag(τi, tn, S) ≤ 0. Therefore, by (2.5), we have

LAG(d, tn, S) =
∑

τi:τwi,v∈d

lag(τi, tn, S)

≤
∑

τi∈β
lag(τi, tn, S)

{by Lemma 3.2}

≤
∑

τi∈β
(ui · x+ ei + ui · si)

≤ (U ssum + U cL) · x+ Essum + EcL

+ usmax · Sssum.

The demand placed by jobs in D after td is B(D, td, S) =
∑

τk∈DH
(ek − δk). Thus, by (3.1)

and Lemmas 3.1 and 3.3, we have the following upper bound:

Z ≤ (U ssum + U cL) · x+ Essum + EcL + usmax · Sssum

+
∑

τk∈DH

(δi(1− uk) + (ek − δk))

≤ (U ssum + U cL) · x+ Essum + EcL + usmax · Sssum

+ Esum. (3.7)

3.2.2 Lower Bound

Lemma 3.4, given below, establishes a lower bound on Z that is necessary for the tardiness of τl,j to

exceed x+ el + sl.

65

Definition 3.8. If job τi,v is enabled and not suspended at time t but does not execute at t, then it is

preempted at t.

Definition 3.9. If τi,v’s first phase is an execution (suspension) phase and it begins executing (a

suspension) for the first time at t, then t is called its start time, denoted S(τi,v). If τi,v’s last phase

(be it execution or suspension) completes at time t′, then t′ is called its finish time, denoted F (τi,v).

Definition 3.10. Let SHmax = max{SH1 , SH2 , ..., SHn }. (SHi was defined earlier in Section 3.1. We

repeat its definition for ease of readability.)

Definition 3.11. Let ξHi =
SHmax

SHmax +H · ei
be the suspension ratio of τi. Let ξHmax = max{ξ1, ξ2, ...,

ξn} be the maximum suspension ratio.

Lemma 3.4. If the tardiness of τl,j exceeds x+ el + sl, then Z > (1− ξHmax) ·mx− (m− 1)el −

m · sl − n · (SHmax + 2S1
max).

Proof. We prove the contrapositive: we assume that

Z ≤ (1− ξHmax) ·mx− (m− 1)el

−m · sl − n · (SHmax + 2S1
max) (3.8)

holds and show that the tardiness of τl,j cannot exceed x+ el + sl. Let ηl be the amount of work τl,j

performs by time td in S. Define y as follows.

y = (1− ξHmax) · x+
ηl
m

(3.9)

Let W be the amount of work due to jobs in d ∪ D that can compete with τl,j at or after td + y,

including the work due for τl,j . Let tf = F (τl,j). We consider two cases.

Case 1. [td, td + y) is a busy interval for d ∪ D. In this case, by (3.8) and (3.9), we have

W

= Z −my ≤ (1− ξHmax) ·mx− (m− 1)el −m · sl − n · (SHmax + 2S1
max)−my

= (1− ξHmax) ·mx− (m− 1)el −m · sl − n · (SHmax + 2S1
max)− (1− ξHmax) ·mx− ηl

< 0.

66

Since τl,j can suspend for at most sl time units after td + y (and at least one task executes while it is

not suspended), the amount of work performed by the system for jobs in d ∪ D during the interval

[td + y, tf) is at least tf − td − y − sl. Hence, tf − td − y − sl ≤W < 0. Therefore, the tardiness

of τl,j is tf − td < y + sl = (1− ξHmax) · x+
ηl
m

+ sl ≤ x+ el + sl.

Case 2. [td, td + y) is a non-busy interval for d∪D. Let ts ≥ td be the earliest non-busy instant

in [td, td + y). Job τl,j cannot become enabled until its predecessor (if it exists) completes. Let tp

be the finish time of τl,j’s predecessor (i.e., τi,j−1), if it exists; otherwise (j = 1), let tp = 0. We

consider three subcases.

Subcase 2.1. tp ≤ ts and τl,j is not preempted after ts. In this case, τl,j performs its remaining

execution and suspension phases in sequence without preemption after ts (note that, by Definition 7.5,

τl,j is not considered to be preempted when it is suspended). Thus, because ts < td + y, by

(3.9), the tardiness of τl,j is at most ts + el − ηl + sl − td < td + y + el − ηl + sl − td =

(1− ξHmax) · x+
ηl
m

+ el − ηl + sl ≤ x+ el + sl.

The claim below will be used in the next two subcases.

Claim 3. The amount of work due to d ∪ D performed within [t1, t2), where S(τl,j) ≤ t1 < t2 ≤

F (τl,j), is at least m(t2 − t1)− (m− 1)el −m · sl.

Proof. Within [t1, t2), all intervals during which τl,j is preempted are busy, and τl,j can execute

for at most el time. Within intervals where τl,j executes, at least one processor is occupied by τl,j .

Thus, at most m − 1 processors are idle while τl,j executes (for at most el time units) in [t1, t2).

Also, all processors can be idle while τl,j is suspended and this happens for at most sl time units in

[t1, t2).

Subcase 2.2. tp ≤ ts and τl,j is preempted after ts. Let t1 be the earliest time when τl,j is

preempted after ts, and let t2 be the last time τl,j resumes execution after being preempted. (A

finite number of jobs have higher priority than τl,j , so t2 exists.) Then, as shown in Figure 7.5, τl,j

executes or suspends within [ts, t1). Also, because τl,j is preempted at t1, t1 is busy with respect

to d ∪ D. Within [t1, t2), τl,j could be repeatedly preempted. All such intervals during which τl,j is

preempted must be busy in order for the preemption to happen. Note that tf ≤ t2 + el − ηl + sl.

Thus, if t2 ≤ y + td, then tf ≤ y + td + el − ηl + sl, which by (3.9) implies τl,j’s tardiness

is tf − td ≤ y + el − ηl + sl ≤ (1 − ξHmax) · x + el + sl ≤ x + el + sl, as required. If

67

td ts t1

Busy

t2

Busy interval
where gets

preempted

tf
Work performed during [td,td+y) is

at least: my - (m-1)el - m·sl

y+td

Busy

jlT ,jlT ,jlT ,

jlT ,

executes
or

suspends

executes
or

suspends

executes
or

suspends

Figure 3.1: Subcase 2.2.

t2 > td + y, then by Claim 3, the amount of work due to d ∪ D performed within [ts, td + y) is at

least m(td + y− ts)− (m− 1)el−m · sl. Because [td, ts) is busy, the work due to d∪D performed

within [td, td + y) is thus at least my − (m − 1)el −m · sl. Hence, the amount of work that can

compete with τl,j (including work due to τl,j) at or after td + y is

W ≤ Z − (my − (m− 1)el −m · sl)

{by (3.8)}

≤ (1− ξHmax) ·mx− (m− 1)el −m · sl −

n·(SHmax+2S1
max)− (my − (m− 1)el −m · sl)

= (1− ξHmax) ·mx− n·(SHmax+2S1
max)−my

{by (3.9)}

= −n·(SHmax+2S1
max)− ηl

≤ 0.

Therefore, the tardiness of τl,j is tf − td ≤ y +W ≤ y = (1− ξHmax) · x+
ηl
m
< x+ el + sl.

Subcase 2.3: tp > ts. The earliest time τl,j can commence its first phase (be it an execution

or suspension phase) is tp, as shown in Figure 3.2. If fewer than m tasks have enabled jobs in

d ∪ D at any time instant within [ts, tp), then τl,j will begin its first phase at tp and finish by time

68

td ts tp

Busy Busy: is
preempted

Busy
due to
preem
ption

Busy
due to
preem
ption

Work performed during
is at least:

)(, jlTS)(, jlTF

jlT ,

lljljl smemTSTFm ⋅−−−−)1())()((,,

))(),([,, jljl TFTS

jlT ,jlT ,
jlT ,

executes
or

suspends

Figure 3.2: Subcase 2.3.

tp + el + sl. (Note that the number of enabled jobs in d ∪ D does not increase after td.) By Property

(P) (applied to τl,j’s predecessor), tp ≤ td − pl + x+ el + sl ≤ td + x. Thus, the tardiness of τl,j is

tf − td ≤ tp + el + sl − td ≤ x+ el + sl.

The remaining possibility (which requires a much lengthier argument) is: tp > ts and at least m

tasks have enabled jobs in d∪D at each time instant within [ts, tp). In this case, given that at least m

tasks have enabled jobs in d ∪ D at ts, ts is non-busy due to suspensions.

Let W ′ be the amount of work due to d∪D performed during [ts, tp). Let I be the total idle time

in [ts, tp), where the idle time at each instant is the number of idle processors at that instant. Then,

W ′ + I = m · (tp − ts). The following claim will be used to complete the proof of Subcase 2.3.

Claim 4. W ′ ≥ (1− ξHmax) ·m(tp − ts)− n · (SHmax + 2S1
max).

Proof. We begin by dividing the interval [ts, tp) into subintervals on a per-processor basis. The

subintervals on processor k are denoted [IT
(k)
i , ET

(k)
i), where 1 ≤ i ≤ qk, IT (k)

i = ts, IT
(k)
i+1 =

ET
(k)
i , and ET (k)

qk = tp, as illustrated in Fig 3.3. With each such subinterval [IT
(k)
i , ET

(k)
i), we

associate a unique task, denoted τ (k)
i . We assume that during [IT

(k)
i , ET

(k)
i), τ (k)

i executes only on

processor k, and ET (k)−
i is the last time τ (k)

i is enabled within [ts, tp). Thus, if ET (k)
i < tp, then

the last job of τ (k)
i to be enabled within [ts, tp) finishes its last phase (be it execution or suspension)

at time ET (k)−
i ; if ET (k)

i = tp, then τ (k)
i has enabled jobs throughout [IT

(k)
i , tp). Note that it

is possible that τ (k)
i executes or suspends within [ts, tp) prior to IT (k)

i . We call the subinterval

69

T1
i

.
.

.
.

T2
i

T3
i

.
.

.

.Tw
i

)(
1

kT

s
k tIT =)(

1

………...

………...

)(
2

kT)(
3

kT)(
1

k
qk

T −

)(
2

)(
1

kk ITET =)(
3

)(
2

kk ITET =

)(k
qk

T

)()(
1

k
q

k
q kk

ITET =− p
k

q tET
k
=)(

Figure 3.3: Presence intervals within [ts, tp].

[IT
(k)
i , ET

(k)
i) the presence interval of τ (k)

i . The fact that a unique task can be associated with each

subinterval follows from the assumption that at least m tasks have jobs in d ∪ D that are enabled

at each time instant in [ts, tp).3 (Note that multiple jobs of τ (k)
i may execute during its presence

interval.) We let λ(k) denote the set of all tasks that have presence intervals on processor k.

We now upper-bound the idleness on processor k by bounding its idleness within one of its pres-

ence intervals. For conciseness, we denote this interval and its corresponding task as [IT (T), ET (T))

and T , respectively. If processor k is idle at any time in [IT (T), ET (T)), then some job of T is

suspended at that time. Thus, the total suspension time of jobs of T in [IT (T), ET (T)), denoted

I(T), upper-bounds the idle time on processor k in [IT (T), ET (T)).

Task T may have multiple jobs that are enabled within its presence interval. Such a job is said to

fully execute in the presence interval if it starts its first phase (be it execution or suspension) within

the presence interval and also completes all of its execution phases in that interval (note that it may

not complete all of its suspension phases). A job is said to partially execute in the presence interval

if it starts its first phase (be it execution or suspension) before the presence interval or completes

its last execution phase after the presence interval. Note that at most two jobs of T could partially

execute in its presence interval (namely, the first and last jobs to be enabled in that interval). We

now prove that I(T), and hence the idleness within [IT (T), ET (T)) on processor k, is at most

ξHmax · (ET (T)− IT (T)) + SHmax + 2S1
max (see Definition 3.10). Depending on the number of jobs

of T that execute during T ’s presence interval, we have two cases.

3As time increases from ts to tp, whenever a presence interval ends on processor k, a task exists that can be used to
define the next presence interval on processor k. It can also be assumed without loss of generality that this task executes
only on processor k during its presence interval.

70

Case 1. T has at most H jobs that fully execute in its presence interval. (Additionally, T may

have at most two jobs that partially execute in its presence interval.) In this case, I(T) is clearly at

most SHmax + 2S1
max.

Case 2. T has more than H jobs that fully execute in its presence interval. (Again, T may have

at most two jobs that partially execute in its presence interval.) In this case, the jobs of T that are

enabled in its presence interval can be divided into nT sets, where one set contains fewer than H

fully executed jobs plus at most two partially-executed jobs and each of the remaining nT − 1 sets

contains exactly H fully-executed jobs. Let θ denote the union of the latter nT − 1 job sets. Without

loss of generality, we assume that θ contains jobs that are enabled consecutively. The total suspension

time for the first job set defined above is clearly at most SHmax + 2S1
max. We complete this case by

showing that the total suspension time for all jobs in θ is at most ξHmax · (ET (T)− IT (T)).

To ease the analysis, let IT ′(T) be the start time of the first enabled job in θ, and ET ′(T) =

min(ET (T), FT), where FT is the finish time of the last enabled job in θ. Then ET ′(T) −

IT ′(T) ≤ ET (T) − IT (T). Also, ET ′(T) − IT ′(T) = I(θ) + ∆(θ) + E(θ), where I(θ) is

the total suspension time of all jobs in θ within [IT ′(T), ET ′(T)), ∆(θ) is the total preemption

time of all jobs in θ within [IT ′(T), ET ′(T)), and E(θ) is the total execution time of all jobs in

θ within [IT ′(T), ET ′(T)). (Recall that, by Definition 7.5, a suspended task is not considered to

be preempted.) Given that θ contains (nT − 1) H fully-executed jobs, I(θ) ≤ (nT − 1) · SHT .

Moreover, given our assumption that each job executes for the corresponding task’s WCET, E(θ) =

(nT − 1) ·H · e(T), where e(T) is the WCET of T . Thus,

I(θ) =
I(θ)

ET ′(T)− IT ′(T)
· (ET ′(T)− IT ′(T))

=
I(θ)

I(θ) + ∆(θ) + E(θ)
· (ET ′(T)− IT ′(T))

≤ I(θ)

I(θ) + E(θ)
· (ET ′(T)− IT ′(T))

{ because I(θ) ≤ (nT − 1) · SHT }

≤ (nT − 1) · SHT
(nT − 1) · SHT + E(θ)

· (ET ′(T)− IT ′(T))

{ because E(θ) = (nT − 1) ·H · e(T)}

71

≤ (nT − 1) · SHT · (ET ′(T)− IT ′(T))

(nT − 1) · SHT + (nT − 1) ·H · e(T)

=
SHT

SHT +H · e(T)
· (ET ′(T)− IT ′(T))

{by Definition 3.10}

≤ SHmax
SHmax +H · e(T)

· (ET ′(T)− IT ′(T))

{by Definition 3.11}

= ξHmax · (ET ′(T)− IT ′(T))

≤ ξHmax · (ET (T)− IT (T)).

This concludes the proof of Case 2 of Claim 4.

Given that a task can be identified with only one presence interval and there are at most n tasks,

the idleness within [ts, tp) on m processor satisfies

I ≤ n · (SHmax + 2S1
max)

+
∑

T∈λ(1)∪...∪λ(k)
ξHmax · (ET (T)− IT (T))

= ξHmax ·m(tp − ts) + n · (SHmax + 2S1
max).

Thus, W ′ = m(tp − ts)− I ≥ (1− ξHmax) ·m(tp − ts)− n · (SHmax + 2S1
max). This completes

the proof of Claim 4.

We now complete the proof of Subcase 3.2.2 (and thereby Lemma 3.4). As shown in Figure 3.2,

[td, ts) and [tp, S(τl,j)) are busy for d ∪D. By Claim 3, the amount of work due to d ∪D performed

in [S(τl,j), F (τl,j)) is at least m(F (τl,j)− S(τl,j))− (m− 1)el −m · sl. By Claim 4, the amount

of work due to d∪D performed in [ts, tp) is at least (1− ξHmax) ·m(tp − ts)− n · (SHmax − 2S1
max).

By summing over all of these subintervals, we can lower-bound the amount of work due to d ∪ D

performed in [td, F (τl,j)), i.e., Z:

Z ≥ m(ts − td) + (1− ξHmax) ·m(tp − ts)

− n · (SHmax + 2S1
max) +m(S(τl,j)− tp)

+ m(F (τl,j)− S(τl,j))− (m− 1)el −m · sl. (3.10)

72

By (3.8) and (3.10), we therefore have

(1− ξHmax) ·mx− (m− 1)el −m · sl

−n · (SHmax + 2S1
max)

≥ m(ts − td) + (1− ξHmax) ·m(tp − ts)

− n · (SHmax + 2S1
max) +m(S(τl,j)− tp)

+ m(F (τl,j)− S(τl,j))− (m− 1)el −m · sl,

which gives,

F (τl,j)− td ≤ (1− ξHmax) · x+ ξHmax · (tp − ts).

According to Property (P) (applied to τl,j’s predecessor), tp − ts ≤ tp − td ≤ x− pl + el + sl ≤ x.

Therefore, F (τl,j)− td ≤ (1− ξHmax) · x+ ξHmax · x < x+ el + sl.

3.2.3 Determining x

Setting the upper bound on LAG(d, td, S) +B(D, td, S) in (3.7) to be at most the lower bound in

Lemma 3.4 will ensure that the tardiness of τl,j is at most x+ el + sl. The resulting inequality can

be used to determine a value for x. By (3.7) and Lemma 3.4, this inequality is (U ssum + U cL) · x+

Essum +EcL +usmax ·Sssum +Esum ≤ (1− ξHmax) ·mx− (m− 1)el−m · sl−n · (SHmax + 2S1
max).

Let V = Essum + EcL + usmax · Sssum + Esum + (m − 1)el + m · sl + n · (SHmax + 2S1
max).

Solving for x, we have

x ≥ V

(1− ξHmax) ·m− U ssum − U cL
. (3.11)

x is well-defined provided U ssum + U cL < (1 − ξHmax) · m. If this condition holds and x equals

the right-hand side of (3.11), then the tardiness of τl,j will not exceed x + el + sl. A value for x

that is independent of the parameters of τl can be obtained by replacing (m − 1)el + m · sl with

maxl((m− 1)el +m · sl) in V .

73

Theorem 3.1. With x as defined in (3.11), the tardiness of any task τl scheduled under GSA is at

most x+ el + sl, provided U ssum + U cL < (1− ξHmax) ·m.

For GFIFO and GEDF, the bound in Theorem 3.1 can be improved.

Corollary 1. For GFIFO, Theorem 3.1 holds with V replaced by V − Esum +
∑

pi>pl
ei in the

numerator of (3.11).

Proof. Under GFIFO, DH consists of carry-in jobs that are released before rl,j and have deadlines

later than td, which implies that these jobs have periods greater than pl. Thus, the upper bound in

(3.7) can be refined to obtain LAG (d, td, S) +B(D, td, S) ≤ (U ssum + U cL) · x + Essum + EcL +

usmax · Sssum +
∑

pi>pl
ei. Using this upper bound to solve for x, the corollary follows.

Corollary 2. For GEDF, Theorem 3.1 holds with V replaced by V − Esum in the numerator of

(3.11).

Proof. Under GEDF, the demand placed by jobs in D after td is zero because D = ∅. Thus, under

GEDF, LAG (d, td, S) +B(D, td, S) ≤ (U ssum +U cL) · x+Essum +EcL + usmax · Sssum. Using this

upper bound to solve for x, the corollary follows.

3.2.4 A Counterexample

Previous research has shown that every sporadic task system for which Usum ≤ m without self-

suspensions has bounded tardiness under GEDF and GFIFO [41, 78]. We now show that it is possible

for a task system containing self-suspending tasks to have unbounded tardiness under GEDF or

GFIFO if the utilization constraint in Theorem 1 is violated.

Consider a two-processor task set τ that consists of three self-suspending tasks: τ1 = (e3, s7, 10),

τ2 = (e1, s8, e1, 10), and τ3 = (e1, s8, e1, 10). For this system, ξHmax = 0.8 (assuming H = 1) and

U ssum + U cL = 0.7. Thus, (1− ξHmax) ·m = 0.4 < U ssum + U cL, which violates the condition stated

in Theorem 1. Figure 3.4 shows the tardiness of each task in this system under GFIFO/GEDF by

job index assuming each job is released as early as possible. We have verified analytically that the

tardiness growth rate seen in Figure 3.4 continues indefinitely.

74

60

20

30

40

50

60

T1

T2

T3
Ta
rd
in
es
s

0

10

20

30

40

50

60

1 10 19 28 37 46 55 64 73 82 91 100

T1

T2

T3

Job index

Ta
rd
in
es
s

0

10

20

30

40

50

60

1 10 19 28 37 46 55 64 73 82 91 100

T1

T2

T3

Job index

Ta
rd
in
es
s

Figure 3.4: Tardiness growth rates in counterexample.

3.2.5 Experimental Evaluation

In this section, we describe experiments conducted using randomly-generated task sets to evaluate

the applicability of the tardiness bound in Theorem 3.1. Our goal is to examine how restrictive

the theorem’s utilization cap is, and to compare it with the suspension-oblivious approach (recall

Section 1.7.1.1 in Chapter 1), wherein all suspension phases are treated as computation phases.

From [41, 78], tardiness is bounded under the suspension-oblivious approach provided Usum ≤ m

and UL ≤ m, where UL is the sum of the min(m− 1, n) largest task utilizations. Note that under

the suspension-oblivious approach, suspensions also contribute to tasks’ utilizations. That is, after

treating all suspensions as computation, ui =
ei + si
pi

holds.

In our experiments, task sets were generated as follows. Task periods were uniformly distributed

over [50ms,100ms]. Task utilizations were uniformly distributed over [0.001,0.5]. Task execution

costs were calculated from periods and utilizations. We varied U ssum as follows: U ssum = 0.1 · Usum
(suspensions are relatively infrequent), U ssum = 0.4 · Usum (suspensions are moderately frequent),

and U ssum = 0.7 · Usum (suspensions are frequent). Moreover, we varied ξmax as follows: 0.05

(suspensions are short), 0.2 (suspensions are moderate), and 0.5 (suspensions are long). Table 3.2

shows suspension-length ranges generated by these parameters. We also varied Usum within {1,

75

- - - - - - - -
suspended.

t1 t2

t’

If some processor is idle during
[t’,t’+ε), then it is scheduled and

nothing else is changed.

t’

If all processors are busy during
[t’,t’+ε), then some lower-priority job

must be re-scheduled at t’+ε.

: some computation phase
ranked lower than Δ

: ρ

: task Ti

Case 1:

Case 2:

If all processors are busy during [t’,t’+ε)
and Ti,k is the lowerst-priority job among
all jobs scheduled within [t1,t2), then the

additional computation is scheduled at t3.

t3

: Ti is preempted

. . .- - - - - -

: Δ

.

short
suspensions
ξmax = 0.05

moderate
suspensions
ξmax = 0.2

long
suspensions
ξmax = 0.5

per-task
utilization

suspension
length

light

medium

heavy

min:
avg:
max:
min:
avg:
max:
min:
avg:
max:

2.6 µs
197 µs
526 µs
263 µs
789 µs
1.6 ms
789 µs
2.2 ms
4.2 ms

2.5 ms

12 µs
938 µs

789 µs

3.75 ms
50 µs

938 µs

10 ms
1.25 ms
3.75 ms
7.5 ms

5 ms
15 ms
30 ms

3.75 ms
10.3 ms
20 ms

15 ms
41.25 ms

80 ms

Table 3.1: Per-job suspension-length ranges.

2, ..., 8}. For each combination of (ξmax, U ssum, Usum), 1,000 task sets were generated for an

eight-processor system. For each generated system, soft real-time schedulability (i.e., the ability

to ensure bounded tardiness) was checked under the suspension-oblivious approach and using the

condition stated in Theorem 3.1.

The schedulability results that were obtained are shown in Figures 3.5-3.13. In these figures,

each curve plots the fraction of the generated task sets the corresponding approach successfully

scheduled, as a function of total utilization. Each graph gives three curves per tested approach for

the cases of short, moderate, and long suspensions, respectively. The label “LA-s(m/l)” indicates

our proposed approach assuming short (moderate/long) suspensions. Similar “SC” (suspensions as

computation) labels are used for the suspension-oblivious approach.

In most tested scenarios summarized in Figures 3.5-3.10, our approach proved to be superior,

sometimes by a substantial margin. However, in many of the scenarios summarized in Figures 3.11-

3.13, the suspension-oblivious approach proved to be superior. In these scenarios, task utilizations

are high and suspensions are long or frequent. Our analysis is negatively impacted in such cases

because U cL tends to be large when utilizations are high, and ξmax tends to be large when suspensions

are long. It is worth noting, however, that our approach allows certain tasks to be designated as

computational tasks. Thus, the suspension-oblivious approach is really a special case of our approach.

Motivated by this, we investigate in the next section intermediate choices between the two extremes

of modeling all versus no suspensions as computation.

76

! +
�!��"��#�

��
����� �������	����� � !� �!�������! +���	��	�
Ͳ����	����������

(+

! +

�� �

�!��"��#�

�!�

��
����� �������	����� � !� �!�������! +���	��	�
Ͳ����	����������

�"��

& +

(+

! +

��Ͳ�

��Ͳ�

��

�!��"��#�

�!�

�!��

�"���
�
��

��
����� �������	����� � !� �!�������! +���	��	�
Ͳ����	����������

�!��

�#��

�"��

$ +

& +

(+

! +

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

�!��"��#�

�!�

�!��

�"�

�"��

�#���
�	

��
��
�
��
�

��
����� �������	����� � !� �!�������! +���	��	�
Ͳ����	����������

�!��

�#��

�"��

" +

$ +

& +

(+

! +

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

�!��"��#�

�!�

�!��

�"�

�"��

�#�

�#��

��
�	

��
��
�
��
�

��
����� �������	����� � !� �!�������! +���	��	�
Ͳ����	����������

�!��

�#��

�"��

 +

" +

$ +

& +

(+

! +

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

�!��"��#�

�!�

�!��

�"�

�"��

�#�

�#��

��
�	

��
��
�
��
�

��
����� �������	����� � !� �!�������! +���	��	�
Ͳ����	����������

�!��

�#��

�"��

 +

" +

$ +

& +

(+

! +

 ! " # $ % & ' (

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

�!��"��#�

�!�

�!��

�"�

�"��

�#�

�#��

����� ��������

��
�	

��
��
�
��
�

��
����� �������	����� � !� �!�������! +���	��	�
Ͳ����	����������

�!��

�#��

�"��

Figure 3.5: Light per-task utilizations, relatively infrequent suspensions

100%
[1][2][3]

uniformly distributed in [0.001,0.1] and 40% are self‐suspending tasks

80%

100%

LA

[1][2][3]

[1] [2']

uniformly distributed in [0.001,0.1] and 40% are self‐suspending tasks

60%

80%

100%

LA‐s

SC‐s

[1][2][3]

[1]

[1']

[]ab
ili
ty [1']

[3']

[2']

uniformly distributed in [0.001,0.1] and 40% are self‐suspending tasks

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA l

[1][2][3]

[1]

[1']

[2]

[2']

[3]sc
he

du
la
bi
lit
y

[1']

[3']

[2']

uniformly distributed in [0.001,0.1] and 40% are self‐suspending tasks

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2][3]

[1]

[1']

[2]

[2']

[3]

[3']

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

uniformly distributed in [0.001,0.1] and 40% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2][3]

[1]

[1']

[2]

[2']

[3]

[3']

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

uniformly distributed in [0.001,0.1] and 40% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2][3]

[1]

[1']

[2]

[2']

[3]

[3']

total utilization

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

uniformly distributed in [0.001,0.1] and 40% are self‐suspending tasks

Figure 3.6: Light per-task utilizations, moderately frequent suspensions

77

100%
[1][2]

uniformly distributed in [0.001,0.1] and 70% are self‐suspending tasks

80%

100%

LA s

[1][2]

[1] [2']

uniformly distributed in [0.001,0.1] and 70% are self‐suspending tasks

60%

80%

100%

LA‐s

SC‐s

[1][2]

[1]

[1']

[2]ab
ili
ty [1']

[2']
[3]

uniformly distributed in [0.001,0.1] and 70% are self‐suspending tasks

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA l

[1][2]

[1]

[1']

[2]

[2']

[3]sc
he

du
la
bi
lit
y

[1']

[3']

[2']
[3]

uniformly distributed in [0.001,0.1] and 70% are self‐suspending tasks

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2]

[1]

[1']

[2]

[2']

[3]

[3']

sc
he

du
la
bi
lit
y

[1']

[3']

[2']
[3]

uniformly distributed in [0.001,0.1] and 70% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2]

[1]

[1']

[2]

[2']

[3]

[3']

sc
he

du
la
bi
lit
y

[1']

[3']

[2']
[3]

uniformly distributed in [0.001,0.1] and 70% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2]

[1]

[1']

[2]

[2']

[3]

[3']

total utilization

sc
he

du
la
bi
lit
y

[1']

[3']

[2']
[3]

uniformly distributed in [0.001,0.1] and 70% are self‐suspending tasks

Figure 3.7: Light per-task utilizations, frequent suspensions

! +
�!��"��#�

��
����� �������	����� �!� �#�������! +���	��	�
Ͳ����	����������

(+

! +

�� �

�!��"��#�

�!�

�"��

��
����� �������	����� �!� �#�������! +���	��	�
Ͳ����	����������

& +

(+

! +

��Ͳ�

��Ͳ�

�!��"��#�

�!�

�!��

�"���
�
�� �!��

�#��

�"��

��
����� �������	����� �!� �#�������! +���	��	�
Ͳ����	����������

$ +

& +

(+

! +

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

�� �

�!��"��#�

�!�

�!��

�"�

�"��

�#���
�	

��
��
�
��
� �!��

�#��

�"��

��
����� �������	����� �!� �#�������! +���	��	�
Ͳ����	����������

" +

$ +

& +

(+

! +

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

�!��"��#�

�!�

�!��

�"�

�"��

�#�

�#��

��
�	

��
��
�
��
� �!��

�#��

�"��

��
����� �������	����� �!� �#�������! +���	��	�
Ͳ����	����������

 +

" +

$ +

& +

(+

! +

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

�!��"��#�

�!�

�!��

�"�

�"��

�#�

�#��

��
�	

��
��
�
��
� �!��

�#��

�"��

��
����� �������	����� �!� �#�������! +���	��	�
Ͳ����	����������

 +

" +

$ +

& +

(+

! +

 ! " # $ % & ' (

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

��Ͳ�

�!��"��#�

�!�

�!��

�"�

�"��

�#�

�#��

����� ��������

��
�	

��
��
�
��
�

�!��

�#��

�"��

��
����� �������	����� �!� �#�������! +���	��	�
Ͳ����	����������

Figure 3.8: Medium per-task utilizations, relatively infrequent suspensions

78

100%
[1][2]

uniformly distributed in [0.1,0.3] and 40% are self‐suspending tasks

80%

100%

LA s

[1][2]

[1] [2']

uniformly distributed in [0.1,0.3] and 40% are self‐suspending tasks

60%

80%

100%

LA‐s

SC‐s

LA

[1][2]

[1]

[1']

[]ab
ili
ty [1']

[3']

[2']

uniformly distributed in [0.1,0.3] and 40% are self‐suspending tasks

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

[1][2]

[1]

[1']

[2]

[2']

[3]sc
he

du
la
bi
lit
y

[1']

[3']

[2']

[3]

uniformly distributed in [0.1,0.3] and 40% are self‐suspending tasks

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2]

[1]

[1']

[2]

[2']

[3]

[3']

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

[3]

uniformly distributed in [0.1,0.3] and 40% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2]

[1]

[1']

[2]

[2']

[3]

[3']

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

[3]

uniformly distributed in [0.1,0.3] and 40% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][2]

[1]

[1']

[2]

[2']

[3]

[3']

total utilization

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

[3]

uniformly distributed in [0.1,0.3] and 40% are self‐suspending tasks

Figure 3.9: Medium per-task utilizations, moderately frequent suspensions

100%
[1]

uniformly distributed in [0.1,0.3] and 70% are self‐suspending tasks

80%

100%

LA s

[1]

[1]

uniformly distributed in [0.1,0.3] and 70% are self‐suspending tasks

60%

80%

100%

LA‐s

SC‐s

LA

[1]

[1]

[1']

[2]ab
ili
ty [1']

[3']

uniformly distributed in [0.1,0.3] and 70% are self‐suspending tasks

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

[1]

[1]

[1']

[2]

[2']

[3]sc
he

du
la
bi
lit
y [1']

[3'] [2]
[3]

uniformly distributed in [0.1,0.3] and 70% are self‐suspending tasks

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1]

[1]

[1']

[2]

[2']

[3]

[3']

sc
he

du
la
bi
lit
y [1']

[3'] [2]
[3]

[2']

uniformly distributed in [0.1,0.3] and 70% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1]

[1]

[1']

[2]

[2']

[3]

[3']

sc
he

du
la
bi
lit
y [1']

[3'] [2]
[3]

[2']

uniformly distributed in [0.1,0.3] and 70% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1]

[1]

[1']

[2]

[2']

[3]

[3']

total utilization

sc
he

du
la
bi
lit
y [1']

[3'] [2]
[3]

[2']

uniformly distributed in [0.1,0.3] and 70% are self‐suspending tasks

Figure 3.10: Medium per-task utilizations, frequent suspensions

79

! +
�!��"��!��"��!��"�

��
����� �������	����� �#� �(�������! +���	��	�
Ͳ����	����������

(+

! +
�!��"�

�"��

�!��"�

�"��

�!��"�

�"��

��
����� �������	����� �#� �(�������! +���	��	�
Ͳ����	����������

& +

(+

! +
�!��"�

��
�
�� �!��

�#��

�"��

�#�

�!��"�

��
�
�� �!��

�#��

�"��

�#�

�!��"�

��
�
�� �!��

�#��

�"��

�#�

��
����� �������	����� �#� �(�������! +���	��	�
Ͳ����	����������

$ +

& +

(+

! +
�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

��
����� �������	����� �#� �(�������! +���	��	�
Ͳ����	����������

" +

$ +

& +

(+

! +

��Ͳ� ��Ͳ� ��Ͳ�

��Ͳ� ��Ͳ� ��Ͳ�

�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�!� �!��

�"�� �#��

�"�

�#�

�#�

��
����� �������	����� �#� �(�������! +���	��	�
Ͳ����	����������

 +

" +

$ +

& +

(+

! +

��Ͳ� ��Ͳ� ��Ͳ�

��Ͳ� ��Ͳ� ��Ͳ�

�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

�!��"�

��
�	

��
��
�
��
�

�!��

�#��

�"��

�!� �!��

�"�� �#��

�"�

�#�

�#�

��
����� �������	����� �#� �(�������! +���	��	�
Ͳ����	����������

 +

" +

$ +

& +

(+

! +

 ! " # $ % & ' (

��Ͳ� ��Ͳ� ��Ͳ�

��Ͳ� ��Ͳ� ��Ͳ�

�!��"�

����� ��������

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

�!��"�

����� ��������

��
�	

��
��
�
��
�

�!��

�#��

�"��

�#�

�!��"�

����� ��������

��
�	

��
��
�
��
�

�!��

�#��

�"��

�!� �!��

�"�� �#��

�"�

�#�

�#�

��
����� �������	����� �#� �(�������! +���	��	�
Ͳ����	����������

Figure 3.11: Heavy per-task utilizations, relatively infrequent suspensions

100%

uniformly distributed in [0.3,0.8] and 40% are self‐suspending tasks

80%

100%

LA‐s SC‐s
[1]

[2]

[1] [1']

uniformly distributed in [0.3,0.8] and 40% are self‐suspending tasks

60%

80%

100%

LA‐s SC‐s

LA‐m SC‐m

[1]

ab
ili
ty

[2']

[2]

[1]

[2]

[1']

[2']

[']

uniformly distributed in [0.3,0.8] and 40% are self‐suspending tasks

40%

60%

80%

100%

LA‐s SC‐s

LA‐m SC‐m

LA‐l SC‐l

[1]

sc
he

du
la
bi
lit
y

[1']

[2']

[2]

[1]

[2]

[3]

[1']

[2']

[3']

uniformly distributed in [0.3,0.8] and 40% are self‐suspending tasks

20%

40%

60%

80%

100%

LA‐s SC‐s

LA‐m SC‐m

LA‐l SC‐l

[1]

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

[3]

[2]

[1]

[2]

[3]

[1']

[2']

[3']

uniformly distributed in [0.3,0.8] and 40% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

LA‐s SC‐s

LA‐m SC‐m

LA‐l SC‐l

[1]

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

[3]

[2]

[1]

[2]

[3]

[1']

[2']

[3']

uniformly distributed in [0.3,0.8] and 40% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

LA‐s SC‐s

LA‐m SC‐m

LA‐l SC‐l

[1]

total utilization

sc
he

du
la
bi
lit
y

[1']

[3']

[2']

[3]

[2]

[1]

[2]

[3]

[1']

[2']

[3']

uniformly distributed in [0.3,0.8] and 40% are self‐suspending tasks

Figure 3.12: Heavy per-task utilizations, moderately frequent suspensions

80

100%

uniformly distributed in [0.3,0.8] and 70% are self‐suspending tasks

80%

100%

LA‐s

SC s

[1][1]

[1']
[3']

uniformly distributed in [0.3,0.8] and 70% are self‐suspending tasks

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC

[1][1]

[1']

[2]

[']ab
ili
ty [1']

[3']

[2']

uniformly distributed in [0.3,0.8] and 70% are self‐suspending tasks

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][1]

[1']

[2]

[2']

[3]

[3']sc
he

du
la
bi
lit
y [1']

[3']

[2]

[2']

uniformly distributed in [0.3,0.8] and 70% are self‐suspending tasks

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][1]

[1']

[2]

[2']

[3]

[3']sc
he

du
la
bi
lit
y [1']

[3']

[2]

[3]

[2']

uniformly distributed in [0.3,0.8] and 70% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][1]

[1']

[2]

[2']

[3]

[3']sc
he

du
la
bi
lit
y [1']

[3']

[2]

[3]

[2']

uniformly distributed in [0.3,0.8] and 70% are self‐suspending tasks

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

LA‐s

SC‐s

LA‐m

SC‐m

LA‐l

SC‐l

[1][1]

[1']

[2]

[2']

[3]

[3']

total utilization

sc
he

du
la
bi
lit
y [1']

[3']

[2]

[3]

[2']

uniformly distributed in [0.3,0.8] and 70% are self‐suspending tasks

Figure 3.13: Heavy per-task utilizations, frequent suspensions

81

3.3 An Effective Technique to Improve Schedulability

In the previous section, we showed that under GEDF and GFIFO, bounded tardiness can be ensured

even if tasks self-suspend. Specifically we showed that tardiness in such a system is bounded

provided

U ssum + U cL < (1− ξmax) ·m, (3.12)

where U ssum is the total utilization of all self-suspending tasks, c is the number of computational tasks

(which do not self-suspend),m is the number of processors, U cL is the sum of the min(m−1, c) largest

computational task utilizations, and ξmax is the maximum suspension ratio defined in Definition 3.11

(whereH = 1). Significant capacity loss may occur when using (3.12) if ξmax is large. Unfortunately,

it is unavoidable that many self-suspending task systems will have large ξmax values. For example,

consider a task system with three tasks scheduled on two processors: τ1 has an execution cost of 5, a

suspension length of 5, and a period of 10, τ2 has an execution cost of 2, a suspension length of 0,

and a period of 8, and τ3 has an execution cost of 2, a suspension length of 2, and a period of 8. For

this system, U ssum = u1 + u3 =
5

10
+

2

8
= 0.75, U cL = u2 =

2

8
= 0.25, ξmax = ξ1 =

5

5 + 5
= 0.5.

Although the total utilization of this task system is only half of the overall processor capacity, it is

not schedulable using the prior analysis since it violates the utilization constraint in (3.12) (since

U ssum + U cL = 1 = (1− ξmax) ·m). Notice that the main reason for the violation is a large value

of ξmax. In this section, we propose an approach, which we call PSAC (Partial Suspensions As

Computation), that relaxes the utilization constraint in (3.12).

As shown in Section 3.2, the suspension-oblivious approach, which treats all suspensions as

computation, is superior to the suspension-aware analysis when per-task utilizations are high and

suspensions are long. By observing that the analysis in Section 3.2 actually treats no suspension

as computation, our motivation is to investigate intermediate choices between the two extremes of

treating all versus no suspensions as computation.

The goal of PSAC is to decrease ξmax for any given task system τ . To motivate the details

that follow, suppose that τi has the maximum suspension ratio and it is the only task with that

suspension ratio, and after converting zi time units of its suspension time to computation, it still has

the maximum suspension ratio. Treating zi time units of the suspension time of τi as computation,

82

(3.12) becomes U ssum + U cL + zi/pi < (1 − si
si + ei

+
zi

si + ei
) ·m. Given that ei + si ≤ pi and

m ≥ 2, zi/pi <
zi

si + ei
·m holds. Therefore, as long as Usum + zi/pi ≤ m holds, the utilization

constraint in (3.12) becomes less stringent if zi time units of the suspension time of τi are treated as

computation.

Let ci denote the length of the suspension time of task τi that is treated as computation by

PSAC. For any task τi, after treating ci time units of suspensions as computation, its suspension ratio

becomes
si − ci
ei + si

, and its utilization becomes ui +
ci
pi

. A set of values ci (1 ≤ i ≤ n) is valid if the

following conditions (3.13)-(3.15) hold.

U ssum + U cL +
n∑

i=1

ci
pi
< (1− ξmax) ·m (3.13)

Usum +
n∑

i=1

ci
pi
≤ m (3.14)

0 ≤ ci ≤ si (3.15)

If (3.13) and (3.14) hold, then, after treating ci time units of the suspension time of each task τi

as computation, τ satisfies (3.12) and its total utilization is at most m (note that, in (3.13), ξmax is

the maximum suspension ratio after treating suspensions as computation). Thus, (3.13) and (3.14)

guarantee that τ becomes schedulable. Moreover, (3.15) trivially must hold.

Therefore, our goal is to find a set of valid values ci (1 ≤ i ≤ n). We first present in this section

a solution using linear programming, and then an alternative algorithm that optimally finds valid ci

values (if they exist) and that has low time complexity. For scenarios where the number of variables

and constraints in the linear program is large, applying the optimal algorithm is preferred since the

linear programming approach may exhibit a long program running time.

83

3.3.1 Linear Programming Approach

We formalize the problem of finding a set of valid ci values by specifying a linear program as

follows. First, note that we want to minimize
∑n

i=1 ci because this results in a lower tardiness bound,

according to Theorem 3.1. Given this, an appropriate linear program can be specified based on the

constraints (3.13)-(3.15) given earlier. Let ε be a constant that can be arbitrarily small. The linear

program we wish to solve is as follows

Minimize
∑n

i=1 ci

subject to:

U ssum + U cL +

n∑

i=1

ci
pi
≤ (1− si − ci

ei + si
) ·m− ε, (3.16)

i = 1, ...n

Usum +
n∑

i=1

ci
pi
≤ m (3.17)

ci ≤ si, i = 1, ...n (3.18)

ci ≥ 0, i = 1, ...n. (3.19)

In order to formalize the problem as a linear program, we replace the constraint in (3.13) by the

set of constraints in (3.16). In particular, instead of a single constraint involving ξmax, we have a

constraint for each individual ξi. Also, these constraints are expressed so that equality is allowed,

which is required in linear programs. This requires the introduction of a small ε term, as seen. This

linear programming approach can find valid ci values in polynomial time.

84

Henceforth, when considering algorithms for computing valid ci values, we regard ci as a

variable and ci as a value assigned to that variable. This is in keeping with how variables and values

are denoted in work on linear programming.

Example. Consider a task system scheduled on four processors under GEDF that contains seven

tasks: τ1(e3, s6, e1, 10), τ2(e4, s2, e2, 8), τ3(e1, 3), τ4(e8, s1, e6, 20), τ5(e1, 6), τ6(e2, 10), τ7(e3,

15), τ8(e1, 5), τ9(e1, 10), and τ10(e4, 20), where τ1, τ2, sand τ4 are self-suspending tasks and all

other tasks are computational tasks. This task system is deemed to be unschedulable by treating all

suspensions as computation because this causes total utilization to exceed 2.0. It is also deemed to be

unschedulable by using the analysis presented in Section 3.2 because it violates (3.12): U ssum+U cL =

0.4 + 0.75 + 0.7 +
1

3
+

1

5
+

1

5
> (1− ξmax) ·m = (1− 0.6) · 4 = 1.6.

However, this task system is determined to be schedulable by PSAC. By solving the above linear

program, a set of valid ci values can be obtained, where c1 =
59

18
and ci = 0 (where 2 ≤ i ≤ 7). The

existence of valid ci values implies that the system is schedulable.

3.3.2 An Optimal Polynomial-Time Algorithm

Although the linear programming approach presented in Section 3.3.1 enables valid ci values (if they

exist) to be obtained in polynomial time, algorithms for solving linear programs may exhibit long

program running times for scenarios where the number of variables and constraints is large. As an

alternative, we now present an optimal algorithm that generates minimal valid ci values in O((N s)2)

time. A set of valid values {c1, c2, ..., cn} is said to be minimal if
∑n

i=1 ci is minimal over all valid

sets of ci values. An algorithm is optimal if it can find a minimal valid set of ci values if a valid set

of ci values exists.

Let λi = {τj | tj ∈ τ and ξj is ranked as the ith largest suspension ratio}. Thus, tasks in λ1 have

the same suspension ratio, which equals ξmax. Obviously, we can decrease ξmax by treating some

suspension time of every task in λ1 as computation, at the cost of increasing U ssum by an amount

commensurate with the additional computation. Let {λ1
1, λ

2
1...λ

qi
1 } denote the tasks in λ1. Let c(λji)

denote the amount of the suspension time of task λji that is treated as computation by PSAC, e(λji)

denote λji ’s execution cost, s(λji) denote its suspension length, p(λji) denote its period, u(λji) denote

85

its utilization, and ξ(λji) denote its suspension ratio. Since we want to decrease ξmax, we initially

only care about tasks in λ1.

We apply two constraints in order for the algorithm to run in O((N s)2) time.

First, we desire to reduce the suspension ratio of every task in λ1 by the same amount, as stated

in (3.20). Reducing any task λi1’s suspension ratio by a greater amount than other tasks in λ1 does

not further decrease ξmax, but only increases the utilization of λi1.

∀j, k ::
s(λj1)− c(λj1)

e(λj1) + s(λj1)
=
s(λk1)− c(λk1)

e(λk1) + s(λk1)
(3.20)

Second, we desire to reduce the suspension ratio of each task in λ1 to no less than ξ(λ1
2) (or 0 if

λ1
2 does not exist), as stated in (3.21). Further reducing some ξ(λi1) does not decrease ξmax, but only

increases the utilization of λi1.

∀j ::
s(λj1)− c(λj1)

e(λj1) + s(λj1)
≥ ξ(λ1

2) (3.21)

With the above preliminaries in place, the algorithm can be stated as a two-step procedure.

1. Find valid values {c(λ1
1), c(λ2

1), ..., c(λq11)} that also satisfy (3.20) and (3.21). If such values

exist, then τ is schedulable. Otherwise, go to Step 2.

2. Decrease the suspension ratio of every task in λ1 to ξ(λ1
2) by defining c(λj1) for λj1 ∈ λ1 so that

s(λj1)− c(λj1)

e(λj1) + s(λj1)
= ξ(λ2) and (3.14) hold. If valid values do not exist, then τ is unschedulable.

Otherwise, update the set λ and go to Step 1.

Time complexity. In the worst case, Steps 1 and 2 can be executed for N s times. Step 1 has O(N s)

time complexity if valid ci values are obtained by the following procedure. First, solve (3.20) for

each task λj1, where j 6= 1, to specify c(λj1) as a function of c(λ1
1). This takes O(N s) time. Second,

substitute all c(λj1) values as specified into (3.13)-(3.15) and (3.21), and solve for c(λ1
1). This also

takes O(N s) time. Step 2 has O(N s) time complexity since it only needs to solve at most N s

equations. Therefore, the overall time complexity of the proposed algorithm is O((N s)2).

example Consider the task system described in Section 3.3.1. For this system, λ1 contains only τ1,

which has the maximum suspension ratio. We find valid values for c(λ1
1) that satisfy (3.13)-(3.15)

86

and (3.20)-(3.21) (note that satisfying (3.20) is actually not required because τ1 is the only task in

λ1). (3.13) requires that U ssum + U cL +
∑q1

j=1

c(λj1)

p(λj1)
= 1.85 +

11

15
+
c(τ1)

10
<

(
1− 6− c(τ1)

10

)
· 4,

that is, c(τ1) >
59

28
must hold. (3.14) requires Usum +

∑q1
j=1

c(λj1)

p(λj1)
=

13

4
+
c(τ1)

10
≤ m = 4, that is,

c(τ1) ≤ 7.5 must hold. (3.15) requires that c1 ≤ si = 6. (3.21) requires
s1 − c(τ1)

e1 + s1
=

6− c(τ1)

4 + 6
>

ξ(λ1
2) = ξ2 = 0.25, that is, c(τ1) < 3.5 must hold. Thus, any value satisfying 59/18 ≤ c(τ1) ≤ 3.5

is a valid value for c(τ1) and c(τi) = 59/18 is minimal. The existence of a valid value implies that

the system is schedulable.

Optimality of the proposed algorithm. The optimality of the proposed algorithm is proved in the

following theorem.

Theorem 3.2. For any sporadic self-suspending task system τ , the proposed algorithm will find a

minimal valid set of ci values if a valid set of ci values exists.

Proof. Let {c1, c2, ..., cn} be a minimal valid set of ci values. We first prove by contradiction that,

for any j, if cj > 0, then
sj − cj
ej + sj

= ξmax.

For any cj > 0, if
sj − cj
ej + sj

< ξmax holds, then less than cj time units of the suspension time of

τj can be treated as computation to make ξj equal ξmax or τj’s original suspension ratio, whichever

is smaller. Note that this does not increase ξmax but will decrease the utilization of τj , which implies

that (3.13)-(3.15) can still be satisfied. However, this contradicts our assumption that {c1, c2, ..., cn}

is minimal.

Therefore, every task τi with ci > 0 has the same suspension ratio, which is ξmax. Thus, all

such tasks are within the set λ1, defined above.

The proposed algorithm determines ci values in exactly the same way: it first checks whether it

can find a valid set of ci values by just considering tasks in λ1. If there exists no such set, then it treats

some suspension time of every task in λ1 as computation to force them to have the same suspension

ratio as tasks in λ2. As a result λ1 is redefined to include both the original λ1 and λ2. Continuing in

this manner, it will find a minimal valid set of ci values if one exists, because considering tasks in

other λi sets does not decrease ξmax but will increase both
∑n

i=1 ci and such a task’s utilization.

87

3.3.3 Tardiness Bound

If PSAC finds valid ci values, then τ is schedulable. In this case, Theorem 3.1 can be applied to

compute a tardiness bound, assuming execution costs and suspension times are updated in accordance

with the ci values PSAC produces.

3.3.4 Experimental Evaluation

In this section, we describe experiments conducted using randomly-generated task sets to evaluate

the effectiveness of PSAC assuming GEDF scheduling. We compare PSAC with the two extremes of

treating no suspension as computation (i.e., using the analysis stated in Section 3.2), denoted NSAC,

and the suspension-oblivious approach of treating all suspensions as computation, denoted ASAC. In

the variant of PSAC examined here, if valid ci values cannot be found, then schedulability is checked

via ASAC. That is, we exploit the fact that if all suspensions must be viewed as computation, then

the less stringent utilization constraint from [41] can be applied.

In our experiments, we generated task sets based upon distributions proposed by Baker [8].

Task periods were uniformly distributed over [10ms,100ms]. Task utilizations were distributed

differently for each experiment using three uniform and three bimodal distributions. The ranges

for the uniform distributions were [0.001,0.1] (light), [0.1,0.4] (medium), and [0.4,0.9] (heavy). In

the three bimodal distributions, utilizations were distributed uniformly over either [0.001, 0.4) or

[0.4, 0.9] with respective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9

(heavy). Task execution costs were calculated from periods and utilizations. Given that it is common

case for real-time workloads to have both self-suspending tasks and computational tasks, we varied

U ssum as follows: U ssum = 0.1 · Usum (suspensions are relatively infrequent), U ssum = 0.4 · Usum
(suspensions are moderately frequent), and U ssum = 0.7 ·Usum (suspensions are frequent). Moreover,

we varied ξmax as follows: 0.1 (suspensions are short), 0.3 (suspensions are moderate), and 0.6

(suspensions are long). Table 3.2 shows suspension-length ranges generated by these parameters.

Usum was varied within {1, 2, ..., 8}. For each combination of (task utilization distribution, U ssum,

Usum, ξmax), 1,000 task sets were generated for an eight-processor system. For each generated

system, soft real-time schedulability (i.e., the ability to ensure bounded tardiness) was checked for

PSAC, NSAC, and ASAC. In all figures presented in this section, the label “PSAC-s(m/l)” indicates

88

3.2 Tardiness Bound

If PSAC finds valid ci values, then τ is schedulable. In
this case, Theorem 1 can be applied to compute a tardiness
bound, assuming execution costs and suspension times are
updated in accordance with the ci values PSAC produces.

4 Experimental Evaluation

In this section, we describe experiments conducted us-
ing randomly-generated task sets to evaluate the effective-
ness of PSAC. We compare PSAC with the two extremes of
treating no suspension as computation (i.e., using the anal-
ysis stated in [8]), denoted NSAC, and treating all suspen-
sions as computation (i.e., the common approach), denoted
ASAC. In the variant of PSAC examined here, if valid ci
values cannot be found, then schedulability is checked via
ASAC. That is, we exploit the fact that if all suspensions
must be viewed as computation, then the less stringent uti-
lization constraint from [3] can be applied.

In our experiments, we generated task sets based upon
distributions proposed by Baker [1]. Task periods were
uniformly distributed over [10ms,100ms]. Task utilizations
were distributed differently for each experiment using three
uniform and three bimodal distributions. The ranges for
the uniform distributions were [0.001,0.1] (light), [0.1,0.4]
(medium), and [0.4,0.9] (heavy). In the three bimodal dis-
tributions, utilizations were distributed uniformly over ei-
ther [0.001, 0.4) or [0.4, 0.9] with respective probabili-
ties of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9
and 5/9 (heavy). Task execution costs were calculated
from periods and utilizations. Given that it is common
case for real-time workloads to have both self-suspending
tasks and computational tasks, we varied Ussum as follows:
Ussum = 0.1 · Usum (suspensions are relatively infrequent),
Ussum = 0.4 · Usum (suspensions are moderately frequent),
and Ussum = 0.7 · Usum (suspensions are frequent). More-
over, we varied ξmax as follows: 0.1 (suspensions are
short), 0.3 (suspensions are moderate), and 0.6 (suspensions
are long). Table 1 shows suspension-length ranges gen-
erated by these parameters. Usum was varied within {1,
2, ..., 8}. For each combination of (task utilization dis-
tribution, Ussum, Usum, ξmax), 1,000 task sets were gen-
erated for an eight-processor system. For each generated
system, soft real-time schedulability (i.e., the ability to en-
sure bounded tardiness) was checked for PSAC, NSAC, and
ASAC. In checking schedulability, system overheads were
ignored (factoring overheads into our analysis is beyond the
scope of this paper).

Schedulability results obtained using uniform and bi-
modal light task utilization distributions are shown in Fig. 2
(the organization of which is explained in the figure’s cap-
tion). Each curve plots the fraction of the generated task

- - - - - - - -
suspended.

t1 t2

t’

If some processor is idle during
[t’,t’+ε), then it is scheduled and

nothing else is changed.

t’

If all processors are busy during
[t’,t’+ε), then some lower-priority job

must be re-scheduled at t’+ε.

: some computation phase
ranked lower than Δ

: ρ

: task Ti

Case 1:

Case 2:

If all processors are busy during [t’,t’+ε)
and Ti,k is the lowerst-priority job among
all jobs scheduled within [t1,t2), then the

additional computation is scheduled at t3.

t3

: Ti is preempted

. . .- - - - - -

: Δ

.

short
suspensions
ξmax = 0.1

moderate
suspensions
ξmax = 0.3

long
suspensions
ξmax = 0.6

per-task
utilization

suspension
length

light

medium

heavy

min:
avg:
max:
min:
avg:
max:
min:
avg:
max:

26 µs
144 µs
263 µs
131 µs
723 µs
1.3 ms
342 µs
1.9 ms

3.42 ms

4.09 ms

409 µs
2.25 ms

789 µs

4.125 ms
750 µs

938 µs

7.5 ms
2.05 ms

11.25 ms
20.5 ms

3.75 ms
20.6 ms
37.5 ms

5.3 ms
29.25 ms
53.2 ms

9.75 ms
53.625 ms
97.5 ms

Table 1: Per-job suspension-length ranges.

sets the corresponding approach successfully scheduled, as
a function of total utilization.

As shown in Fig. 2, PSAC proved to be able to sig-
nificantly improve schedulability in most tested scenarios.
Both NSAC and ASAC are negatively impacted when in-
creasing task utilizations, Ussum, or ξmax. PSAC tries to
treat partial suspensions as computation, which effectively
decreases the value of ξmax at the cost of only marginally
increasing the left side of (1). By examing the right side
of (1), decreasing ξmax can quite significantly relax the uti-
lization constraint (due to the multiplication factor m). An
interesting observation is that when suspensions are short,
PSAC can guarantee 100% schedulability in all scenarios.
Another interesting observation is that when the total uti-
lization equals 8.0, PSAC yields the same schedulability as
NSAC. This is because treating any suspension as compu-
tation in this case causes total utilization to exceed 8.0.

Schedulability results obtained using uniform and bi-
modal medium task utilization distributions are shown in
Fig. 3. Again, PSAC proved to be able to significantly im-
prove schedulability in all tested scenarios. When total uti-
lization is no greater than 6.0 and suspensions are infrequent
or moderately frequent, almost 100% of all task sets were
schedulable using PSAC. Moreover, if suspensions are less
frequent or total utilization is smaller, then PSAC is consid-
erably better than ASAC and NSAC. These trends are due to
the fact that when total utilization is small and suspensions
are not frequent, the left side of (1) is small. This gives
PSAC more freedom in treating suspensions as computa-
tion. Another interesting observation is that, in comparison
to the light-utilization case, the improvement seen in PSAC
is less. This may be due to the fact that when task utiliza-
tions become higher, UL becomes larger, which constrains
PSAC’s ability to treat suspensions as computation.

Schedulability results obtained using uniform and bi-
modal heavy task utilization distributions are shown in
Fig. 3. Once again, PSAC proved to be able to improve
schedulability in all tested scenarios. When total utilization
is less than 7.0 and suspensions are short, PSAC can achieve
almost 100% schedulability. Interestingly, PSAC exhibited

5

Table 3.2: Per-job suspension-length ranges.

the PSAC approach assuming short (moderate/long) suspensions. Similar “NSAC” and “ASAC”

labels are used for NSAC and ASAC. Each figure gives three curves per tested approach for the cases

of short, moderate, and long suspensions, respectively.

Schedulability results obtained using uniform and bimodal light task utilization distributions are

shown in Figures 3.14-3.19. Each curve plots the fraction of the generated task sets the corresponding

approach successfully scheduled, as a function of total utilization.

As shown in Figures 3.14-3.19, PSAC proved to be able to significantly improve schedulability

in most tested scenarios. Both NSAC and ASAC are negatively impacted when increasing task

utilizations, U ssum, or ξmax. PSAC tries to treat partial suspensions as computation, which effectively

decreases the value of ξmax at the cost of only marginally increasing the left side of (3.12). By

examining the right side of (3.12), decreasing ξmax can quite significantly relax the utilization

constraint (due to the multiplication factor m). An interesting observation is that when suspensions

are short, PSAC can guarantee 100% schedulability in all scenarios. Another interesting observation

is that when the total utilization equals 8.0, PSAC yields the same schedulability as NSAC. This is

because treating any suspension as computation in this case causes total utilization to exceed 8.0.

Schedulability results obtained using uniform and bimodal medium task utilization distributions

are shown in Figures 3.20-3.25. Again, PSAC proved to be able to significantly improve schedulability

in all tested scenarios. As shown in Figures 3.20-3.21 and 3.23-3.24, when total utilization is no

greater than 6.0 and suspensions are infrequent or moderately frequent, almost 100% of all task

89

sets were schedulable using PSAC. Moreover, if suspensions are less frequent or total utilization

is smaller, then PSAC is considerably better than ASAC and NSAC. These trends are due to the

fact that when total utilization is small and suspensions are not frequent, the left side of (3.12) is

small. This gives PSAC more freedom in treating suspensions as computation. Another interesting

observation is that, in comparison to the light-utilization case, the improvement seen in PSAC is less.

This may be due to the fact that when task utilizations become higher, U cL becomes larger, which

constrains PSAC’s ability to treat suspensions as computation.

Schedulability results obtained using uniform and bimodal heavy task utilization distributions

are shown in Figure 3.26-3.31. Once again, PSAC proved to be able to improve schedulability in

all tested scenarios. When total utilization is less than 7.0 and suspensions are short, PSAC can

achieve almost 100% schedulability. Interestingly, PSAC exhibited greater improvement in the

case of bimodal task utilization distributions, as shown in Figures 3.29-3.31. When using uniform

heavy task utilization distributions, every self-suspending task or computational task has a heavy

utilization and U ssum and U cL tend to be large, which constrains PSAC. On the other hand, when using

bimodal heavy task utilization distributions, U ssum and U cL have a higher chance of being smaller

than in the uniform case, which constrains PSAC less. Moreover, when using bimodal distributions,

generated task sets tend to have fewer tasks that have long suspensions. Therefore, PSAC can treat

less suspension time as computation and has a better chance of finding valid ci values.

90

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������
������
������
������
������
������
������
������
������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�&&'�&�'#���
�'&2����������������
��������

"'�#"(�#��"'�#"(�#����

"'�#

")�#

"(�#

")�#
")�#

����� �����������

�	
��

�
��

��
���

�

Figure 3.14: Soft real-time schedulability results for uniform light task utilization distributions.
Relatively infrequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������
������
������
������
������
������
������
������
������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�&&'�&�'#���
�*&2����������������
��������

"'�#"(�#��"'�#"(�#����

"'�#

")�#

"(�#

����� �����������

�	
��

�
��

��
���

�

")�#

")�#

Figure 3.15: Soft real-time schedulability results for uniform light task utilization distributions.
Moderately frequent suspensions are assumed.

91

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�&&'�&�'#���
�-&2����������������
��������

"'�#��"'�#

"(�#
")�#

"(�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

"(�#

"'�#

Figure 3.16: Soft real-time schedulability results for uniform light task utilization distributions.
Frequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������
������
������
������
������
������
������
������
������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� .�/!���
�"&�*�&�/#� '�/!����
�'&2����������
������
��������

"'�#
")�#

"(�#

")�#
")�#

����� �����������

�	
��

�
��

��
���

�

"'�#�"(�# "(�#"'�#��

Figure 3.17: Soft real-time schedulability results for bimodal light task utilization distributions.
Relatively infrequent suspensions are assumed.

92

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� .�/!���
�"&�*�&�/#� '�/!����
�*&2����������
������
��������

"'�#")�#

"(�#

")�#
")�#

����� �����������

�	
��

�
��

��
���

�

"'�#� "'�#��

"(�#

"(�#

Figure 3.18: Soft real-time schedulability results for bimodal light task utilization distributions.
Moderately frequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� .�/!���
�"&�*�&�/#� '�/!����
�-&2����������
������
��������

"'�#")�#

"(�#

")�#
")�#

����� �����������

�	
��

�
��

��
���

�

"'�#�

"'�#��
"(�#

"(�#

Figure 3.19: Soft real-time schedulability results for bimodal light task utilization distributions.
Frequent suspensions are assumed.

93

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������
������
������
������
������
������
������
������
������

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�'�&�*#���
�'&2����������������
��������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

"'�#�"(�#��

")�#

"(�#

")�#

")�#

"(�#

"'�#

"'�#��

Figure 3.20: Soft real-time schedulability results for uniform medium task utilization distributions.
Relatively infrequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�'�&�*#���
�*&2����������������
��������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

"'�#�

"(�#
")�#

"(�#")�#

")�#

"(�#

"'�#

"'�#�

Figure 3.21: Soft real-time schedulability results for uniform medium task utilization distributions.
Moderately frequent suspensions are assumed.

94

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�'�&�*#���
�-&2����������������
��������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

"'�#�

"(�#")�#

"(�#

")�#

")�#

"(�#

"'�#

"'�#�

Figure 3.22: Soft real-time schedulability results for uniform medium task utilization distributions.
Frequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������
������
������
������
������
������
������
������
������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� ,�/!���
�"&�*�&�/#�)�/!����
�'&2����������
������
��������

"'�#
")�#

"(�#

")�# ")�#

����� �����������

�	
��

�
��

��
���

�

"'�#�

"(�# "'�#��

"(�#

Figure 3.23: Soft real-time schedulability results for bimodal medium task utilization distributions.
Relatively infrequent suspensions are assumed.

95

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� ,�/!���
�"&�*�&�/#�)�/!����
�*&2����������
������
��������

"'�#")�#

"(�#")�#

")�#

����� �����������

�	
��

�
��

��
���

�

"'�#�

"(�#

"'�#��

"(�#�

Figure 3.24: Soft real-time schedulability results for bimodal medium task utilization distributions.
Moderately frequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� ,�/!���
�"&�*�&�/#�)�/!����
�-&2����������
������
��������

"'�#

")�#

"(�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

"'�#�

"(�#

"'�#��

"(�#�

Figure 3.25: Soft real-time schedulability results for bimodal medium task utilization distributions.
Frequent suspensions are assumed.

96

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������
������
������
������
������
������
������
������
������

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�*�&�/#���
�'&2����������������
��������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

"'�#�

")�#

"(�#

")�#

")�#

"(�# "'�#
"'�#��

"(�#

Figure 3.26: Soft real-time schedulability results for uniform heavy task utilization distributions.
Relatively infrequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������
������
������
������
������
������
������
������
������

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�*�&�/#���
�*&2����������������
��������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

"'�#�

")�#

"(�#

")�#

")�#

"(�#
"'�#��

"(�#
"'�#��

Figure 3.27: Soft real-time schedulability results for uniform heavy task utilization distributions.
Moderately frequent suspensions are assumed.

97

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

����� �����������

�	
��

�
��

��
���

�

���������
���������
����"&�*�&�/#���
�-&2����������������
��������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

"'�#�
")�#

"(�#

")�#

")�#

"(�#

"'�#��

"(�#
"'�#��

Figure 3.28: Soft real-time schedulability results for uniform heavy task utilization distributions.
Frequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� *�/!���
�"&�*�&�/#� +�/!����
�'&2����������
������
��������

"'�#

")�#

"(�#

")�# ")�#

����� �����������

�	
��

�
��

��
���

�

"'�#� "(�#"'�#��"(�#�

Figure 3.29: Soft real-time schedulability results for bimodal heavy task utilization distributions.
Relatively infrequent suspensions are assumed.

98

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� *�/!���
�"&�*�&�/#� +�/!����
�*&2����������
������
��������

"'�#

")�# "(�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

"'�#�

"(�#

"'�#��

"(�#�

Figure 3.30: Soft real-time schedulability results for bimodal heavy task utilization distributions.
Moderately frequent suspensions are assumed.

&2

(&2

*&2

,&2

.&2

'&&2

& ' () * + , - .

������

������

������

������

������

������

������

������

������

"'�#

"'�#

"'�#

"(�#

"(�#

"(�#

")�#

")�#

")�#

����� �����������

�	
��

�
��

��
���

�

����
�����
���������
����"&�&&'�&�*#� *�/!���
�"&�*�&�/#� +�/!����
�*&2����������
������
��������

"'�#

")�#

"(�#

")�# ")�#

����� �����������

�	
��

�
��

��
���

�

"'�#�

"(�#

"'�#��

"(�#�

Figure 3.31: Soft real-time schedulability results for bimodal heavy task utilization distributions.
Frequent suspensions are assumed.

99

3.4 An O(m) Schedulability Test

As described in Section 3.2, the proposed suspension-aware analysis for globally scheduled SRT

sporadic self-suspending task systems improves upon the suspension-oblivious analysis for many

task systems. Unfortunately, it does not fully address the root cause of pessimism due to suspensions,

and thus may still cause significant capacity loss. Indeed, both suspension-aware analysis (presented

in Section 3.2) and suspension-oblivious analysis yield O(n) utilization loss4 where n is the number

of self-suspending tasks in the system.

The cause of pessimism in prior analysis. A key step in prior suspension-aware analysis presented

in Section 3.2 involves bounding the number of tasks that have enabled jobs (i.e., eligible for

executing or suspending) at a specifically defined non-busy time instant t (i.e., at least one processor

is idle at t). For ordinary task systems without suspensions, this number of tasks can be safely

upper-bounded by m− 1, where m is the number of processors, for otherwise, t would be busy. For

sporadic self-suspending task systems, however, idle instants can exist due to suspensions even if m

or more tasks have enabled jobs. The worst-case scenario that serves as the root source of pessimism

in prior analysis is the following: all n self-suspending tasks have jobs that suspend at some time t

simultaneously, thus causing t to be non-busy.

Key observation that motivates the approach in this section. Interestingly, the suspension-oblivi-

ous approach eliminates the worst-case scenario just discussed, albeit at the expense of pessimism

elsewhere in the analysis. That is, by converting all n tasks’ suspensions into computation, the worst-

case scenario is avoided because then at most m− 1 tasks can have enabled jobs at any non-busy

time instant. However, converting all n tasks’ suspensions into computation is clearly overkill when

attempting to avoid the worst-case scenario; rather, converting at most m tasks’ suspensions into

computation should suffice. This observation motivates the new analysis technique we propose,

which yields a much improved schedulability test with only O(m) suspension-related utilization loss.

Recent experimental results suggest that global algorithms should be limited to (sub-)systems with

modest core counts (e.g., up to eight cores) [15]. Thus, m is likely to be small and much less than n

in many settings.

4Task systems exist for which utilization loss is Θ(n) under either of these analysis approaches.

100

In the rest of this section, we derive a GEDF5 schedulability test that only results in an O(m)

capacity loss.

3.4.1 Schedulability Analysis

We now present our proposed new schedulability analysis for SRT sporadic self-suspending task

systems.

We focus on a given sporadic self-suspending task system τ . Let τl,j be a job of task τl in τ ,

td = dl,j , and S be a GEDF schedule for τ with the following property.

(P1) The tardiness of every job τi,k, where τi,k has higher priority than τl,j , is at most x+ ei + si

in S, where x ≥ 0.

Our objective is to determine the smallest x such that the tardiness of τl,j is at most x+ el + sl.

This would by induction imply a tardiness of at most x+ ei + si for all jobs of every task τi, where

τi ∈ τ . We assume that τl,j finishes after td, for otherwise, its tardiness is trivially zero. The steps

for determining the value for x are as follows.

1. Determine a lower bound on the amount of work pending for tasks in τ that can compete

with τl,j after td, required for the tardiness of τl,j to exceed x+ el + sl. This is dealt with in

Lemma 3.6 in Section 3.4.3.

2. Determine an upper bound on the work pending for tasks in τ that can compete with τl,j after

td. This is dealt with in Lemmas 3.7 and 3.8 in Section 3.4.4.

3. Determine the smallest x such that the tardiness of τl,j is at most x+ el + sl, using the above

lower and upper bounds. This is dealt with in Theorem 3.3 in Section 3.4.5.

Definition 3.12. We categorize jobs based on the relationship between their priorities and those of

τl,j :

d = {τi,v : (di,v < td) ∨ (di,v = td ∧ i ≤ l)}.

5We specifically focus on GEDF in this work. As discussed in Chapter 8, a useful future work is to enable more general
results by considering more general global schedulers such as GSA and other window-constrained scheduling algorithms.

101

By Definition 3.12, d is the set of jobs with deadlines at most td with priority at least that of τl,j .

These jobs do not execute beyond td in the PS schedule (as defined in Definition 2.5). Note that τl,j

is in d. Also note that jobs not in d have lower priority than those in d and thus do not affect the

scheduling of jobs in d. For simplicity, we will henceforth assume that jobs not in d do not execute

in either the GEDF schedule S or the corresponding PS schedule. To avoid distracting “boundary

cases,” we also assume that the schedule being analyzed is prepended with a schedule in which no

deadlines are missed that is long enough to ensure that all previously released jobs referenced in the

proof exist.

Similar to Section 3.2, our schedulability test is obtained by comparing the allocations to d in

the GEDF schedule S and the corresponding PS schedule, both on m processors, and quantifying the

difference between the two. We analyze task allocations on a per-task basis.

Definition 3.13. A time instant t is busy (respectively, non-busy) for a job set J if all (respectively,

not all) m processors execute jobs in J at t. A time interval is busy (respectively, non-busy) for J if

each instant within it is busy (respectively, non-busy) for J . A time instant t is busy on processor

Mk (respectively, non-busy on processor Mk) for J if Mk executes (respectively, does not execute) a

job in J at t. A time interval is busy on processor Mk (respectively, non-busy on processor Mk) for

J if each instant within it is busy (respectively, non-busy) on Mk for J .

The following claim follows from the definition of LAG (the concepts of lag and LAG are

presented in Section 2.2) .

Claim 5. If LAG(d, t2, S) > LAG(d, t1, S), where t2 > t1, then [t1, t2) is non-busy for d. In other

words, LAG for d can increase only throughout a non-busy interval for d .

3.4.2 New O(m) Analysis Technique

By Claim 5 and the above discussion, the pessimism of analyzing sporadic self-suspending task

systems is due to the worst-case scenario where all sporadic self-suspending tasks might have enabled

jobs that suspend at a time instant t, making t non-busy; this can result in non-busy intervals in which

LAG for d increases. Specifically, the worst-case scenario happens when at least m suspending

tasks have enabled tardy jobs with deadlines at or before a non-busy time instant t where such jobs

102

7

Bk1Ak1

Mk

0 tf

transformation interval

Bk2Ak2

. . . .

AkNk BkNk

First trans.
interval
w.r.t. Mk

Second
trans.

interval
w.r.t. Mk

Last trans.
interval
w.r.t. Mk

The transformation intervals w.r.t. each processor are identified one
by one from right to the left in the schedule with respect to time

Figure 3.32: Transformation intervals with respect to Mk.

suspend at t. (As seen in the analysis in Sections 3.4.3 and 3.4.4, suspensions of non-tardy jobs are

not problematic.)

Thus, our goal is to avoid such a worst case. The key idea behind our new technique is the

following: At any non-busy time t, if k processors (1 ≤ k ≤ m) are idle at t while at least k

suspending tasks have enabled tardy jobs with deadlines at or before t that suspend simultaneously

at t, then, by treating suspensions of k jobs of k such tasks to be computation at t, t becomes busy.

Treating the suspensions of all such tasks to be computation is needlessly pessimistic.

Let tf denote the end time of the schedule S. Our new technique involves transforming the entire

schedule S within [0, tf) from right to left (i.e., from time tf to time 0) to obtain a new schedule S

as described below. The goal of this transformation is to convert certain tardy jobs’ suspensions into

computation in non-busy time intervals to eliminate idleness as discussed above. For any job τi,v,

if its suspensions are converted into computation in a time interval [t1, t2), then τi,v is considered

to execute in [t1, t2). We transform S to S by applying m transformation steps, where in the kth

step, the schedule is transformed with respect to processor Mk. Let S0 = S denote the original

schedule, Sk denote the transformed schedule after performing the kth transformation step, and

Sm = S denote the final transformed schedule. The kth transformation step works as follows.

Transformation method. By analyzing the schedule Sk−1 on Mk, we first define Nk ≥ 0 transfor-

mation intervals denoted [A1
k, B

1
k), [A2

k, B
2
k), ..., [ANk

k , BNk
k) ordered from right to left with respect

to time, as illustrated in Figure 3.32. These transformation intervals are the only intervals that are

affected by the kth transformation step. We identify these transformation intervals by moving from

103

6

th

.

ri,v-c
=Ak1

Mk

di,vdi,v-c ri,vfi,v-c-1 tfdi,v-c-1

non-busy time
instant on Mkτi,v-c-1 (if any)

is not tardy

Release of job τi,v-c
such that τi,v-c, ..., τi,v
are all tardy

suspension of τi,v

th+1
=Bk1

job release job deadline

Figure 3.33: Defining th and ri,v−c in the transformation method.

8

computation of some
job of τi that originally
happens on Mk’ in [ta, tb)

Mk

ta tb

Mk’

Akq

Mk

ta tb

Mk’
switch

computation that originally
happens on Mk in [ta, tb)

Bkq Akq Bkq

Figure 3.34: Switch: switch the computation of τi originally executed on Mk′ to Mk.

right to left with respect to time in the schedule Sk−1 considering allocations on processor Mk. (An

extended example illustrating the entire transformation method will be given later.)

Moving from time tf to the left in Sk−1, let th denote the first encountered non-busy time instant

on Mk where at least one task τi has an enabled job τi,v suspending at th where

di,v ≤ th. (3.22)

(If th does not exist, then we have Sk = Sk−1.) Let v − c (0 ≤ c ≤ v − 1) denote the minimum job

index of τi such that all jobs τi,v−c, τi,v−c+1, ..., τi,v are tardy, as illustrated in Figure 3.33. Then,

[ri,v−c, th+1) is the first transformation interval with respect toMk, i.e., [A1
k, B

1
k) = [ri,v−c, th+1).

To find the next transformation interval on Mk, further moving from A1
k to the left in Sk−1,

find the next th, τi,v, and τi,v−c applying the same definitions given above. If they exist, then the

newly founded interval [ri,v−c, th+1) is the second transformation interval [A2
k, B

2
k). Such a process

104

9

computation of
jobs of τi on Mk

Mk

Mk’
move

computation of jobs
of tasks other than τi

idle

Mk

Mk’

suspensions of
jobs of τi on Mk

Akq Bkq Akq Bkq

Figure 3.35: Move: move the computation of tasks other than τi from Mk to some idle processor
Mk′ .

continues, moving from right to the left in Sk−1, until time 0 is reached before any such th is found.

If task τi is selected to define the transformation interval [Aqk, B
q
k) in the manner just described, then

we say that τi is associated with this transformation interval; each transformation interval has exactly

one associated task. (As seen below, when performing transformation steps after the kth step, τi

cannot be selected again for defining transformation intervals within [Aqk, B
q
k).) According to the

way we identify transformation intervals as described above, the following property holds.

(G1) Successive transformation intervals with respect to processor Mk do not overlap, i.e.,

Bq
k ≤ A

q−1
k holds where 2 ≤ q ≤ Nk.

After identifying all transformation intervals with respect to Mk, we perform the following three

operations on each of these Nk transformation intervals, starting with [A1
k, B

1
k). In the following,

let [Aqk, B
q
k) (1 ≤ q ≤ Nk) denote the currently considered transformation interval and let τi be the

associated task.

1. Switch: We assume that all computations of jobs of τi occurring within [Aqk, B
q
k) happen on Mk.

This is achieved by switching any computation of τi in any interval [ta, tb) ⊆ [Aqk, B
q
k) originally

executed on some processor Mk′ other than Mk with the computation (if any) occurring in [ta, tb) on

Mk, as illustrated in Figure 3.34.

2. Move: Then for all intervals in [Aqk, B
q
k) on Mk where jobs not belonging to τi execute while

some job of τi suspends, if any of such interval is non-busy (at least one processor is idle in this

interval), then we also move the computation occurring within this interval on Mk to some processor

105

Mk′ that is idle in the same interval, as illustrated in Figure 3.35. This guarantees that all intervals in

[Aqk, B
q
k) on Mk where jobs not belonging to τi execute are busy on all processors.

Due to the fact that all jobs of τi enabled in [Aqk, B
q
k) (i.e., τi,v−c, τi,v−c+1, ..., τi,v)6 are tardy,

interval [Aqk, B
q
k) on Mk consists of three types of subintervals: (i) those in which jobs of τi enabled

within [Aqk, B
q
k) are executing, (ii) those in which jobs of τi enabled within [Aqk, B

q
k) are suspending

(note that jobs of tasks other than τi may also execute on Mk in such subintervals; if this is the case,

then the move operation ensures that any such subinterval is busy on all processors), and (iii) those

in which jobs of τi enabled within [Aqk, B
q
k) are preempted. Thus, within any non-busy interval on

Mk in [Aqk, B
q
k), jobs of τi must be suspending (for otherwise this interval would be busy on Mk).

Therefore, we perform the third transformation operation as follows.

3. Convert: Within all time intervals that are non-busy on Mk in [Aqk, B
q
k), convert the suspensions of

all jobs of τi enabled within [Aqk, B
q
k) into computation, as illustrated in Figure 3.36. This guarantees

that Mk is busy within [Aqk, B
q
k). Since all such jobs belong to the associated task τi of [Aqk, B

q
k), by

the definitions of Aqk and Bq
k as described above, the following property holds.

(G2) For any transformation interval [Aqk, B
q
k), jobs whose suspensions are converted into

computation in this interval in the kth transformation step have releases and deadlines within

this interval.

When performing any later transformation step k′ > k (i.e., with respect to processor Mk′),

τi clearly cannot be selected again for its suspensions to be converted into computation in idle

intervals on Mk′ within [Aqk, B
q
k). Moreover, since all intervals within [Aqk, B

q
k) on Mk where jobs

not belonging to τi execute are busy on all processors, any switch or move operation performed

in later transformation steps does not change the fact that [Aqk, B
q
k) is busy on Mk in the final

transformed schedule S. Note that the above switch, move, and convert operations do not affect the

start and completion times of any job.

After performing the switch, move, and convert operations on [Aqk, B
q
k) as described above,

the transformation within [Aqk, B
q
k) is complete. We then consider the next transformation interval

6Note that, according to the way we select v − c, job τi,v−c−1 is not enabled within [Aq
k, B

q
k) because it is not tardy

and thus completes at or before di,v−c−1 ≤ ri,v−c = Aq
k.

106

.

suspension of τi,v

Mk

after converting suspensions of jobs
of τi into computation in non-busy
intervals on Mk in [Akq, Bkq)

computation of jobs of τi,v suspensions of jobs of τi
turned into computation

jobs of τi get preempted

C
on
ve
rt

di,vdi,v-c ri,vfi,v-c-1 di,v-c-1 Akq

=ri,v-c

th Bkq

=th+1

Figure 3.36: Convert: convert the suspensions of all jobs of τi that are enabled within [Aqk, B
q
k) (i.e.,

τi,v−c, ..., τi,v) into computation within all non-busy time intervals on Mk in [Aqk, B
q
k).

[Aq+1
k , Bq+1

k), and so on. The kth transformation step is complete when all such transformation

intervals have been considered, from which we obtain Sk.

Repeating this entire process, we similarly obtain Sk+1, Sk+2, ..., Sm = S.

Analysis. The transformation method above ensures the following.

Claim 6. At any non-busy time instant t ∈ [0, tf) in the transformed schedule S, at most m − 1

tasks can have enabled tardy jobs with deadlines at or before t.

Proof. Suppose that t ∈ [0, tf) is non-busy in S, and there are z idle processors at t. Assume that m

or more tasks have enabled tardy jobs at t with deadlines at or before t. Then at least z such tasks

have enabled tardy jobs suspending at t in order for t to be non-busy. However, our transformation

method would have converted the suspension time at t of z such jobs into computation, which makes

t busy on Mk, a contradiction.

Example 1. Consider a two-processor task set τ that consists of three tasks: τ1 = (e4, s2, e4, 10), and

τ2 = τ3 = (e2, s6, e2, 10). Figure 3.37(a) shows the original GEDF schedule S for the time interval

[0,34). Assume τ3,3 is the analyzed job so that td = 30 and tf = 34. By the transformation method,

we first transform the schedule in [0, 34) with respect to processor M1 (i.e., the first transformation

step). Moving from tf = 34 to the left in S, the first idle time instant on M1 is time 31. At time 31,

two jobs τ2,3 and τ3,3 are suspending and both jobs satisfy condition (3.22) since d2,3 = d3,3 = 30.

107

We arbitrarily choose τ3 for this transformation step. Since job τ3,1 has the minimum job index of

τ3 such that all jobs τ3,1, τ3,2, τ3,3 are tardy, we use τ3 for the transformation with respect to M1

up to the release time of τ3,1, which is time 0. Thus, M1 has only one transformation interval, i.e.,

[0, 32). By the transformation method, we first perform the switch operation, which switches any

computation of jobs of τ3 in [0, 32) that is not occurring on M1 to M1; this includes the computation

in [2, 4), [10, 12), and [22, 24). Accordingly, the computations that originally occur in these three

intervals on M1, which are due to jobs of τ1, are switched to M2. The resulting schedule after this

switching is shown in Figure 3.37(b). After this switching, we apply the move operation, which

affects non-busy intervals in [0, 32) in which jobs of τ3 are suspending while jobs of tasks other than

τ3 are executing on M1. For this example schedule, [6, 8), [16, 20), and [26, 30) must be considered,

and we move the computation of τ1 in these three intervals from M1 to M2. (Note that since intervals

[4, 6) and [30, 32) are non-busy on both processors, they are not considered.) The resulting schedule

after this moving is shown in Figure 3.37(c). Finally, within all non-busy intervals on M1 in [0, 32),

which include [4, 8), [16, 20), and [26, 32), we convert the suspensions of all enabled jobs of τ3 in

[0, 32) into computation. We thus complete the first transformation step and obtain the schedule

S1, which is shown in Figure 3.37(d). As seen in Figure 3.37(d), after applying the transformation

method with respect to M1, M1 is fully occupied in interval [0, 32) by the computation of jobs of τ3,

suspensions of jobs of τ3 that are converted into computation, the computations of jobs not belonging

to τ3 that preempt jobs of τ3, and the computations of jobs not belonging to τ3 that occur on M1

while jobs of τ3 are suspending. Next, we perform the second transformation step and transform

S1 in [0, 34) with respect to M2. This yields the final transformed schedule S2 = S, as shown in

Figure 3.37(e). Notice that M2 is idle in [4, 6) in S because jobs τ1,1 and τ2,1, which suspend in

[4, 6), have deadlines (at time 10) after time 6; thus, by the transformation method (see (3.22)) these

jobs’ suspensions are not turned into computation.

Definition 3.14. Let ui =
ei + si
pi

= ui +
si
pi

.

Note that in the above definition, ui ≤ 1 holds for any task τi ∈ τ because ei + si ≤ pi, as

discussed in Section 3.1.

Definition 3.15. The interval [ri,j , di,j) is called the job execution window for job τi,j .

108

Time

τ2

τ3

τ1

computation occurring
on processor M1

suspension

(a) Original schedule S0 = S

(d) Schedule S1 after applying the transformation method w.r.t. M1
(completing the first transformation step)

suspension converted into computation
that occurs on processor M1

10 200 2 4 6 8 1612 14 18 22 24 26 28 td=30 32

τ2

τ3

τ1

10 200 2 4 6 8 1612 14 18 22 24 26 28 Timetd=30 32

(e) Final transformed schedule S2 = S after applying
the transformation method w.r.t. both M1 and M2

τ2

τ3

τ1

10 200 2 4 6 8 1612 14 18 22 24 26 28 Timetd=30 32 tf=34

M1

M1

M1 M1 M1 M1 M1

M1 M1 M1

M1 M1 M1 M1

M1M1 M1 M1 M1 M1 M1 M1 M1

M1 M1 M1 M1

M1 M1 M1 M1 M1 M1 M1 M1 M1

M2 M2 M2 M2 M2 M2

M2 M2 M2

M2 M2M2 M2 M2 M2

M2 M2 M2 M2 M2 M2

M2 M2 M2 M2 M2 M2

M2 M2 M2 M2 M2 M2M2 M2

M1

tf=34

tf=34

Time

τ2

τ3

τ1

(b) Schedule after performing the switch operation in the first transformation step
10 200 2 4 6 8 1612 14 18 22 24 26 28 td=30 32

M1 M1 M1

M1 M1 M1

M2 M2 M2 M2 M2 M2

M1 M1 M1

tf=34

Time

τ2

τ3

τ1

(c) Schedule after performing the move operation in the first transformation step
10 200 2 4 6 8 1612 14 18 22 24 26 28 td=30 32

M2 M2

M1 M1 M1

M2 M2 M2 M2 M2 M2

M1 M1 M1

tf=34

M1 M2 M1 M2M1M2

M1M2M1 M2 M1M2 M1 M2

Figure 3.37: Example schedule transformation.

109

16

0
0

0.5

1.0

1.5

2.0
Utilization

4 8 12 16 20

τ1,1: 0.5 proc. share τ1,2: 0.5 proc. share

τ2,1: 0.5 proc. share τ2,2: 0.5 proc. share

τ3,1: 0.7 proc. share τ3,2: 0.6 proc. share

(a) Schedule PS
0

0

0.5

1.0

1.5

2.0
Utilization

4 8 12 16 20

τ1,1: 0.5 proc. share τ1,2: 0.5 proc. share

τ2,1: 0.5 proc. share τ2,2: 0.5 proc. share

τ3,1: 0.7 proc. share τ3,2: 0.9 proc. share

(b) Corresponding schedule PS

Figure 3.38: An example task system containing three tasks, τ1 and τ2 of utilization 0.5, and τ3 of
utilization 0.6. All three tasks have a period of 10 time units. (a) shows the PS schedule PS for this
system where each task executes according to its utilization rate when it is active. Assume that in
the transformed schedule S for this system, three time units of suspensions of τ3,2 are turned into
computation, which causes the utilization of τ3 to increase to 0.9 in τ3,2’s job execution window
[r3,2, d3,2) = [10, 20). (b) shows the corresponding schedule PS after this transformation. As seen,
in PS, task τ3 executes with a rate of 0.9 in [10, 20).

Defining PS. Now we define the PS schedule PS corresponding to the transformed schedule S.

Without applying the transformation method, any task τi executes in a PS schedule with the rate ui

in any of its job execution windows (i.e., when τi is active). Thus, if τi is active throughout [t1, t2) in

PS, then A(τi,j , t1, t2, PS) = (t2 − t1)ui holds.

On the other hand, after applying the transformation method, since we may convert a certain

portion of the suspension time of any job of any task into computation, a task may have different

utilizations within different job execution windows, but within the range of [ui, ui]. The upper bound

of this range is ui because all suspensions of a job could be turned into computation. Thus, for any

task τi that is active throughout [t1, t2) in PS, we have

(t2 − t1) · ui ≤ A(τi,j , t1, t2, PS) ≤ (t2 − t1) · ui. (3.23)

An example is given in Figure 3.38.

Note that our analysis does not require PS to be specifically defined; rather, only (3.23) is

needed in our analysis.

110

Definition 3.16. Let vi =
si
pi

denote the suspension ratio for task τi ∈ τ . Let vj denote the jth

maximum suspension ratio among tasks in τ .

In order for our analysis to be correct, we have to ensure that such a valid PS schedule exists.

That is, we have to guarantee that the total utilization of τ is at most m at any time instant t in PS.

The following lemma gives a sufficient condition that can provide such a guarantee.

Lemma 3.5. If Usum +
∑m

j=1 v
j ≤ m, then a valid PS schedule PS corresponding to S exists.

Proof. By the transformation method, for any processor Mk, jobs whose suspensions are converted

into computation with respect to Mk do not have overlapping job execution windows. This is because

such jobs either belong to the same task (in which case such jobs clearly do not have overlapping

job execution windows), or belong to different tasks each of which is associated with a different

transformation interval with respect to Mk. In the latter case, non-overlap follows by Properties (G1)

and (G2) stated earlier. Since there are m processors and the jobs used for the transformation with

respect to each processor do not have overlapping job execution windows, at any time t in PS, there

exist at most m jobs with overlapping job execution windows whose suspensions are converted into

computation, which can increase total utilization by at most
∑m

j=1 v
j . This implies that at any time

t in PS, the total utilization of τ is at most Usum +
∑m

j=1 v
j , which is at most m according to the

claim statement.

We next derive a lower bound (Section 3.4.3) and an upper bound (Section 3.4.4) on the pending

work that can compete with τl,j after td in schedule S, which is given by LAG(d, td, S), as d includes

all jobs of higher priority than τl,j .

3.4.3 Lower Bound

Lemma 3.6 below establishes the desired lower bound on LAG(d, td, S).

Lemma 3.6. If the tardiness of τl,j exceeds x+ el + sl, then LAG(d, td, S) > m · x+ el + sl.

Proof. We prove the contrapositive: we assume that

LAG(d, td, S) ≤ m · x+ el + sl (3.24)

111

holds and show that the tardiness of τl,j cannot exceed x+ el + sl. Let ηl be the amount of work τl,j

performs by time td in S. Note that by the transformation method, 0 ≤ ηl < el + sl. Define y as

follows.

y = x+
ηl
m

(3.25)

We consider two cases.

Case 1. [td, td + y) is a busy interval for d. In this case, the amount of work completed in

[td, td + y) is exactly my. Hence, the amount of work pending at td + y is at most LAG(d, td, S)−

my
{by (3.24) and (3.25)}

≤ mx + el + sl − mx − ηl = el + sl − ηl. This remaining work will be

completed no later than td + y+ el + sl− ηl
{by (3.25)}

= td +x+
ηl
m

+ el + sl− ηl ≤ td +x+ el + sl.

Since this remaining work includes the work due for τl,j , τl,j thus completes by td + x+ el + sl.

Case 2. [td, td + y) is a non-busy interval for d. Let ts be the earliest non-busy instant in

[td, td + y). If more than m− 1 tasks have enabled tardy jobs in d at ts, then since all such enabled

tardy jobs in d at ts have deadlines at or before td ≤ ts, by Claim 6, ts cannot be non-busy. Thus, at

most m− 1 tasks can have enabled tardy jobs in d at ts. Moreover, since the number of tasks that

have enabled jobs in d does not increase after td, we have

(Z) At most m− 1 tasks have enabled tardy jobs in d at or after ts.

If τl,j completes by ts, then fl,j ≤ ts < td+y
{by (3.25)}

= td+x+
ηl
m
< td+x+el+sl. In the rest of

the proof, assume that τl,j completes after ts. Let tp be the completion time of τl,j’s predecessor (i.e.,

τl,j−1). If tp ≤ ts, then τl,j is enabled at ts and will execute or suspend at ts because ts is non-busy.

Furthermore, by (Z), τl,j is not preempted after ts. Thus, by the definition of ηl and ts, we have

fl,j ≤ ts+el+sl−ηl < td+y+el+sl−ηl
{by (3.25)}

= td+x+
ηl
m

+el+sl−ηl ≤ td+x+el+sl.

The remaining possiblity is that tp > ts. In this case, τl,j will begin its first phase at tp and by (Z)

finish by time tp+el+sl. By Property (P1) (applied to τl,j’s predecessor), tp ≤ td−pl+x+el+sl ≤

td + x. Thus, the tardiness of τl,j is fl,j − td ≤ tp + el + sl − td ≤ x+ el + sl.

3.4.4 Upper Bound

In this section, we determine an upper bound on LAG(d, td, S).

112

Definition 3.17. Let tn be the end of the latest non-busy interval for d before td, if any; otherwise,

tn = 0.

By the above definition and Claim 5, we have

LAG(d, td, S) ≤ LAG(d, tn, S). (3.26)

Lemma 3.7. For any task τi and t ∈ [0, td], if τi has pending jobs at t in the schedule S, then we

have

lag(τi, t, S) ≤

ei + si if di,k ≥ t

ui · x+ ei + si + ui · si if di,k < t

where di,k is the deadline of the earliest pending job of τi, τi,k, at time t in S. If such a job does not

exist, then lag(τi, t, S) ≤ 0.

Proof. If τi does not have a pending job at t in S, then by Definition 2.3 and (2.4), lag(τi, t, S) ≤ 0

holds. So assume such a job exists. Let γi be the amount of work τi,k performs before t. By the

transformation method, γi < ei + si holds.

By the selection of τi,k, we have lag(τi, t, S) =
∑

h≥k lag(τi,h, t, S) =
∑

h≥k
(
A(τi,h, 0, t, PS)−

A(τi,h, 0, t, S)
)
. Given that no job executes before its release time,A(τi,h, 0, t, S) = A(τi,h, ri,h, t, S).

Thus,

lag(τi, t, S) = A(τi,k, ri,k, t, PS)−A(τi,k, ri,k, t, S)

+
∑

h>k

(
A(τi,h, ri,h, t, PS)

−A(τi,h, ri,h, t, S)
)
. (3.27)

By the definition of PS, (3.23), and Definition 3.14, A(τi,k, ri,k, t, PS) ≤ ei + si, and
∑

h>k A(τi,h, ri,h, t, PS) ≤ ui ·max(0, t − di,k). By the selection of τi,k, A(τi,k, ri,k, t, S) = γi,

and
∑

h>k A(τi,h, ri,h, t, S) = 0. By setting these values into (7.3), we have

lag(τi, t, S) ≤ ei + si − γi + ui ·max(0, t− di,k). (3.28)

113

There are two cases to consider.

Case 1. di,k ≥ t. In this case, (3.28) implies lag(τi, t, S) ≤ ei + si − γi ≤ ei + si.

Case 2. di,k < t. In this case, because t ≤ td and dl,j = td, τi,k is not the job τl,j . Thus, by

Property (P1), τi,k has a tardiness of at most x+ ei + si. Since τi,k is the earliest pending job of τi at

time t, the earliest possible completion time of τi,k is at t+ ei− γi (τi,k may suspend for zero time at

run-time). Thus, we have t+ei−γi ≤ di,k+x+ei+si, which gives t−di,k ≤ x+γi+si. Setting this

value into (3.28), we have lag(τi, t, S) ≤ ei+si−γi+ui ·(x+γi+si) ≤ ui ·x+ei+si+ui ·si.

Definition 3.18. Let Um−1 be the sum of the m− 1 largest ui values among tasks in τ . Let E be

the largest value of the expression
∑

τi∈τ (ei + si) +
∑

τi∈ψ ui · si, where ψ denotes any set of m− 1

tasks in τ .

Lemma 3.8 below upper bounds LAG(d, td, S).

Lemma 3.8. LAG(d, td, S) ≤ Um−1 · x+ E.

Proof. By (3.26), we have LAG(d, td, S) ≤ LAG(d, tn, S). By summing individual task lags at tn,

we can bound LAG(d, tn, S). If tn = 0, then LAG(d, tn, S) = 0, so assume tn > 0.

Given that the instant tn − 1 is non-busy, by Claim 6, at most m − 1 tasks can have enabled

tardy jobs at tn − 1 with deadlines at or before tn − 1. Let θ denote the set of such tasks. Therefore,

we have

LAG(d, td, S)

{by (3.26)}

≤LAG(d, tn, S)

{by (2.4)}

=
∑

τi:τi,v∈d

lag(τi, tn, S)

{by Lemma 3.7}

≤
∑

τi∈θ
(ui · x+ ei + si + ui · si) +

∑

τj∈τ−θ
(ej + sj)

114

{by Definition 3.18}

≤Um−1 · x+ E.

3.4.5 Determining x

Setting the upper bound on LAG(d, td, S) in Lemma 3.8 to be at most the lower bound in Lemma 3.6

will ensure that the tardiness of τl,j is at most x+ el + sl. The resulting inequality can be used to

determine a value for x. By Lemmas 3.6 and 3.8, this inequality is m · x+ el + sl ≥ Um−1 · x+E.

Solving for x, we have

x ≥ E − el − sl
m− Um−1

. (3.29)

By Definitions 3.14 and 3.18, Um−1 < m clearly holds. Thus, if x equals the right-hand side of

(3.29), then the tardiness of τl,j will not exceed x+ el + sl in S. A value for x that is independent of

the parameters of τl can be obtained by replacing −el − sl with maxl(−el − sl). Moreover, in order

for our analysis to be valid, the condition Usum +
∑m

i=1 v
j ≤ m as stated in Lemma 3.5 must hold.

Since the transformation method used to obtain S does not alter the tardiness of any job, the

claim below follows.

Claim 7. The tardiness of τl,j in the original schedule S is the same as that in the transformed

schedule S.

By the above discussion, the theorem below follows.

Theorem 3.3. With x as defined in (3.29), the tardiness of any task τl scheduled under GEDF is at

most x+ el + sl, provided Usum +
∑m

i=1 v
j ≤ m where vj is defined in Definition 3.16.

3.4.6 Theoretical Dominance over Prior Tests

We now show that our derived schedulability test theoretically dominates the suspension-oblivious

approach [86] and the suspension-aware analysis presented in Section 3.2 with respect to schedulabil-

ity. Moreover, we show via a counterexample that task systems that violate the utilization constraint

stated in Theorem 3.3 may have unbounded tardiness.

115

Time10 200 2 4 6 8 1612 14 18

M1

M1

M1

M1

M1

M1

22 2824 26 30 32 423834 36 40 44 5046 48 52

τ1

τ2

τ3

Time

10 20

0

1612 14 18 22 2824 26 30 32 423834 36 40 44 5046 48 52

τ1

τ2

τ3

0 2

10 20 30 40 50

computation suspension

Figure 3.39: GEDF schedule of the counterexample.

When using the suspension-oblivious approach of treating all suspensions as computation, which

transforms all sporadic self-suspending tasks into ordinary sporadic tasks, and then applying prior

SRT schedulability analysis [41], the resulting utilization constraint is given byUsum+
∑n

i=1

si
pi
≤ m.

Clearly the constraint Usum +
∑m

i=1 v
j ≤ m from Theorem 3.3 is less restrictive than this prior

approach. Moreover, the resulting utilization constraint when using the technique presented in

Section 3.2 is given byUsum <

(
1−maxi

(
si

ei + si

))
·m. Since

∑m
i=1 v

j ≤ maxi
(

si
ei + si

)
·m,

our schedulability test is also less restrictive than this prior approach. Note that a major reason the

prior approach in Section 3.2 causes significant capacity loss for some task systems is the fact that

the term maxi

(
si

ei + si

)
·m is not associated with any task period parameter. As a result, many

task systems with even small utilizations may be deemed to be unschedulable.

Counterexample. Consider a two-processor task set τ that consists of three identical self-suspending

tasks: τ1 = τ2 = τ3 = (e1, s8, e1, 10). For this system, Usum+
∑m

i=1 v
j = 0.6+1.6 = 2.2 > m = 2,

which violates the condition stated in Theorem 3.3. Figure 3.39 shows the GEDF schedule of this

task system. As seen, the tardiness of each task in this system grows with increasing job index.

3.4.7 Experiments

In this section, we describe experiments conducted using randomly-generated task sets to evaluate

the applicability of Theorem 3.3. Our goal is to examine how restrictive the derived schedulability

test’s utilization cap is, and how large the magnitude of tardiness is, and to compare it with prior

methods. In the following, we denote our O(m) schedulability test, the test presented in Section 3.2,

and the suspension-oblivious approach, as “O(m),” “LA,” and “SC,” respectively.

116

[1] O(m)-s
[2] LA-s
[3] SC-s

[4] O(m)-m
[5] LA-m
[6] SC-m

[7] O(m)-l
[8] LA-l
[9] SC-l

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

[9]

[8]

[7]

[6]

[5]
[4][2] [3]

[1]

2**
2*
2

1** 3**
3*
3

1*
1

1*

2**3**

2*

3

3*

1

1**

2

Figure 3.40: m = 4 and light per-task utilizations are assumed.

Experimental setup. In our experiments, task sets were generated as follows. Task periods were

uniformly distributed over [50ms,200ms]. Task utilizations were distributed differently for each ex-

periment using three uniform distributions. The ranges for the uniform distributions were [0.005,0.1]

(light), [0.1,0.3] (medium), and [0.3,0.8] (heavy). Task execution costs were calculated from periods

and utilizations. Suspension lengths of tasks were also distributed using three uniform distributions:

[0.005 · (1− ui) · pi, 0.1 · (1− ui) · pi] (suspensions are short), [0.1 · (1− ui) · pi, 0.3 · (1− ui) · pi]

(suspensions are moderate), and [0.3 · (1 − ui) · pi, 0.8 · (1 − ui) · pi] (suspensions are long).7

We varied the total system utilization Usum within {0.1, 0.2, ...,m}. For each combination of task

utilization distribution, suspension length distribution, and Usum, 1,000 task sets were generated for

systems with four and eight processors. Each such task set was generated by creating tasks until

total utilization exceeded the corresponding utilization cap, and by then reducing the last task’s

utilization so that the total utilization equalled the utilization cap. For each generated system, SRT

schedulability (i.e., the ability to ensure bounded tardiness) was checked for O(m), LA, and SC.

Results. The obtained SRT schedulability results for GEDF are shown in Figures 3.40-3.45. In these

figures, labels “O(m)-s”, “O(m)-m”, “O(m)-l” (“LA-s”, “LA-m”, “LA-l” and “SC-s”, “SC-m”, “SC-

l”, respectively) represent the approach of O(m) (LA and SC, respectively) assuming short, moderate,

and long suspensions, respectively. In all figures, the x-axis denotes the task set utilization cap and

the y-axis denotes the fraction of generated task sets that were schedulable with bounded deadline

7Note that any si is upper-bounded by (1 − ui) · pi.

117

[1] O(m)-s
[2] LA-s
[3] SC-s

[4] O(m)-m
[5] LA-m
[6] SC-m

[7] O(m)-l
[8] LA-l
[9] SC-l2**

2*
2

1** 3**
3*
3

1*
1

1*

2**3**

2*

3 1

1**

2

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6 7 8

[9]

[8]

[7]
[6]

[5]
[4][2]

[3]
[1]

3*

Figure 3.41: m = 8 and light per-task utilizations are assumed.

[1] O(m)-s
[2] LA-s
[3] SC-s

[4] O(m)-m
[5] LA-m
[6] SC-m

[7] O(m)-l
[8] LA-l
[9] SC-l2**

2*
2

1** 3**
3*
3

1*
1

3**

2*

3 1

1**

3*

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

[9] [8]

[7]

[6]

[5]

[4]

[2]

[3]

[1]
2

1*

2**

Figure 3.42: m = 4 and medium per-task utilizations are assumed.

tardiness. Each figure gives three curves per tested approach for the cases of short, moderate, and long

suspensions, respectively. Each curve plots the fraction of the generated task sets the corresponding

approach successfully scheduled, as a function of total utilization. As seen, in all tested scenarios,

O(m) significantly improves upon LA and SC by a substantial margin. For example, as seen in

Figure 3.40, when task utilizations are light and m = 4, O(m) can achieve 100% schedulability when

Usum equals 3.7, 3.1, and 2.1 when suspension lengths are short, moderate, and long, respectively,

while LA and SC fail to do so when Usum merely exceeds 1.8, 0.7, and 0.3, respectively. Note that

when task utilizations are lighter, the improvement margin by O(m) over LA and SC increases. This

is because in this case, the si/(ei + si) term that cause capacity loss in LA becomes large since

118

[1] O(m)-s
[2] LA-s
[3] SC-s

[4] O(m)-m
[5] LA-m
[6] SC-m

[7] O(m)-l
[8] LA-l
[9] SC-l2**

2*
2

1** 3**
3*
3

1*
1

3**

3

1**

3*

2

1*

2**

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6 7 8

[9]

[8]
[7]

[6]

[5]

[4][2] [3]
[1]

2*

1

Figure 3.43: m = 8 and medium per-task utilizations are assumed.

[1] O(m)-s
[2] LA-s
[3] SC-s

[4] O(m)-m
[5] LA-m
[6] SC-m

[7] O(m)-l
[8] LA-l
[9] SC-l2**

2*
2

1** 3**
3*
3

1*
1

3

1**

3* 1*2*

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

[9]

[8]

[7]

[6]

[5]
[4] [2]

[3]

[1]
12

3** 2**

Figure 3.44: m = 4 and heavy per-task utilizations are assumed.

[1] O(m)-s
[2] LA-s
[3] SC-s

[4] O(m)-m
[5] LA-m
[6] SC-m

[7] O(m)-l
[8] LA-l
[9] SC-l2**

2*
2

1** 3**
3*
3

1*
1

3

1*

2*

12

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6 7 8

[1]
[3]

[2]

[4]

[5]

[6]

[7]

[9]

[8]
3*

3**

2**

1**

Figure 3.45: m = 8 and heavy per-task utilizations are assumed.

119

Table 3.3: Average tardiness bounds under O(m), SC, and LA when m = 4. The labels “u-L” /“u-
M”/“u-H” indicate light/medium/ heavy task utilizations, respectively. Within the row “O(m),” the
three sub-rows “n-O(m)” /“n-SC”/“n-LA” represent the average tardiness bound achieved by O(m)
as computed for all task sets that can be successfully scheduled under O(m)/SC/LA, respectively.
The rows “SC”/“LA” represent the average tardiness bound achieved by SC/LA as computed for all
task sets that can be successfully scheduled under SC/LA, respectively. All time units are in ms.

5

MethodMethod
Short susp.Short susp.Short susp. Moderate susp.Moderate susp.Moderate susp. Long susp.Long susp.Long susp.

MethodMethod
u-L u-M U-H u-L u-M U-H u-L u-M U-H

O(m)

n-O(m) 140 125 191 301 173 286 667 286 377

O(m) n-SC 59 83 178 82 113 247 181 167 289O(m)

n-LA 22 34 158 50 64 197 106 172 203

SCSC 36 58 153 63 85 213 126 148 243

LALA 97 144 316 149 287 375 231 626 892

MethodMethod
Short susp.Short susp.Short susp. Moderate susp.Moderate susp.Moderate susp. Long susp.Long susp.Long susp.

MethodMethod
u-L u-M U-H u-L u-M U-H u-L u-M U-H

O(m)

n-O(m) 140 125 191 301 173 286 667 286 377
O(m) n-SC 59 83 178 82 113 247 181 167 289O(m)

n-LA 22 34 158 50 64 197 106 172 203

SCSC 36 58 153 63 85 213 126 148 243

LALA 97 144 316 149 287 375 231 626 892

ei is small; similarly, for SC, more tasks are generated under light utilizations, which causes more

capacity loss since all generated tasks’ suspensions must be converted into computation. On the

other hand, O(m)’s capacity loss is determined by the m largest suspension ratios, and thus is not

similarly affected. In general, when suspension lengths are short and moderate, O(m) achieves little

or no capacity loss in all scenarios. Even when suspension lengths become long, capacity loss under

O(m) is still reasonable, especially when compared to the loss under LA and SC. Observe that all

three approaches perform better when using heavier per-task utilization distributions. This is because

when ui is larger, si becomes smaller since ei + si ≤ pi must hold, which helps all three approaches

yield smaller capacity loss.

In addition to schedulability, the magnitude of tardiness, as computed using the bound in

Theorem 3.3, is of importance. Table 3.3 (the organization of which is explained in the table’s

caption) depicts the average of the computed bounds for each of the nine tested scenarios (three

utilization distributions combined with three suspension length distributions) when m = 4 under

O(m), SC, and LA, respectively. In all tested scenarios, O(m) provides reasonable predicted tardiness,

which is comparable to SC and improves upon LA. For cases where suspensions are short, the

predicted tardiness under O(m) is low. Moreover, as Figures 3.40-3.45 imply, O(m) can often ensure

120

bounded tardiness when SC or LA cannot. To conclude, our proposed analysis technique not only

often guarantees schedulability with little or no capacity loss, but can provide such a guarantee with

reasonable predicted tardiness.

3.5 Chapter Summary

In this chapter, we presented multiprocessor schedulability tests for SRT sporadic self-suspending

task systems. For the past 20 years, the unsolved problem of supporting real-time systems with

suspensions has impeded research progress on many related research topics such as analyzing

and implementing I/O-intensive applications in multiprocessor systems. The impact of my work

is demonstrated by the fact that it provides a first set of practically efficient solutions that can

fundamentally solve this problem.

121

CHAPTER 4

Scheduling HRT Self-Suspending Tasks1

In the previous chapter, we presented multiprocessor schedulability tests for SRT self-suspending

task systems. In this chapter, we consider the HRT case. It has been shown that precisely analyzing

HRT systems with suspensions is difficult, even for very restricted self-suspending task models on

uniprocessors [106]. However, uniprocessor analysis that is correct in a sufficiency sense (although

pessimistic) has been proposed (see Section 2.3.2). Such analysis can be applied on a per-processor

basis to deal with suspensions under partitioning approaches where tasks are statically bound to

processors. In contrast, for global scheduling where tasks are scheduled from a single run queue

and may migrate across processors, other than the suspension-oblivious approach, which simply

integrates suspensions into per-task WCET requirements, no known global HRT schedulability

analysis exists for self-suspending task systems. In this chapter, we present the first suspension-aware

analysis for globally scheduled HRT self-suspending tasks for multiprocessor systems. We focus

specifically on two widely used global schedulers: GTFP and GEDF scheduling. We analyze these

schedulers assuming the scheduled workload is an HRT arbitrary-deadline sporadic self-suspending

task system.

We consider the sporadic self-suspending task model described in Section 2.1.4, except that we

consider the HRT case (defined in Section 1.2.2) in this chapter. Specifically, We establish HRT

schedulability tests for arbitrary-deadline sporadic self-suspending task systems under both GTFP

(Section 4.1) and GEDF (Section 4.2).

To enable more general results, for any task τi, we allow a predefined tardiness threshold to be

set, denoted λi. (Task τi is an ordinary HRT task if λi = 0.) Throughout this chapter, we assume that

1Contents of this chapter previously appeared in preliminary form in the following papers:
Cong Liu and James Anderson. Suspension-Aware Analysis for Hard Real-Time Multiprocessor Scheduling, Proceedings
of the 25th EuroMicro Conference on Real-Time Systems, to appear, 2013.

ei, si, di, pi, and λi for any task τi ∈ τ are non-negative integers, and as before, all time values are

integral. Thus, a job that executes at time point t executes during the entire time interval [t, t+ 1).

For simplicity, we henceforth assume that each job of any task τi executes for exactly ei time

units. By Claim 1, any response-time bound derived for a sporadic self-suspending task system by

considering only schedules meeting this assumption applies to other schedules as well. For any job

τi,k, we let si,k denote its total suspension time, where si,k ≤ si.

Real-time workloads often have both self-suspending tasks and computational tasks (which do

not suspend) co-exist. To reflect this, we let τ s (τ e) denote the set of self-suspending (computational)

tasks in τ , as we did in Chapter 3. Also, we let ns (ne) denote the number of self-suspending

(computational) tasks in τ .

Next, in Sections 4.1 and 4.2, we present the aforementioned suspension-aware GTFP and GEDF

schedulability tests, respectively. In Section 4.2.4, we experimentally compare them with other

methods.

4.1 GTFP

In this section, based upon RTA, we derive a fixed-priority multiprocessor schedulability test for

HRT and SRT (i.e., each task τi can have a predefined tardiness threshold λi) arbitrary-deadline

sporadic self-suspending task systems.

Under GTFP, a task cannot be interfered with by tasks with lower priorities. Assume that tasks

are ordered by decreasing priority, i.e., i < k iff τi has a higher priority than τk.

Definition 4.1. Let τl,j be the maximal job of τl, i.e., τl,j either has the largest response time among

all jobs of τl or it is the first job of τl that has a response time exceeding dl + λl.

We assume l > m since under GTFP, any task τi where i ≤ m has a response time bound of

ei + si. We further assume that for any task τi where i < l, its largest response time does not exceed

di + λi. Our analysis focuses on the job τl,j , as defined above. To avoid distracting “boundary cases,”

we also assume that the schedule being analyzed is prepended with a schedule in which no deadlines

are missed that is long enough to ensure that all predecessor jobs referenced in the proof exist (this

applies to Section 4.2 as well).

123

to te td td+λlrl,j tf
L

ζl

Figure 4.1: The maximal job τl,j of task τl becomes eligible at te. to is the earliest time instant before
te such that at any time instant t ∈ [to, te) all processors are occupied by tasks with equal or higher
priority than τl,j .

Definition 4.2. Let fi,k denote the completion time of job τi,k. The eligible time of job τi,k is defined

to be max(ri,k, fi,k−1). Let tf denote the completion time of our job of interest τl,j , te denote its

eligible time (i.e., te = max(rl,j , fl,j−1)), and td denote its deadline.

As in [10], we extend the analyzed interval from te to an earlier time instant to as defined below.

Definition 4.3. to denotes the earliest time instant at or before te such that at any time instant

t ∈ [to, te) all processors are occupied by tasks with equal2 or higher priority than τl, as illustrated in

Figure 4.1.

For conciseness, let τhp ⊆ τ denote the set of tasks that have equal or higher priority than the

analyzed task τl, and let

L = tf − to (4.1)

and

ζl = te − to. (4.2)

Definition 4.4. A task τi has a carry-in job if there is a job of τi that is released before to that has

not completed by to.

Two parameters are important to RTA: the workload and the interference, as defined below.

Workload. The workload of an sporadic self-suspending task τi in the interval [to, tf) is the amount

of computation that τi requires to execute in [to, tf). Note that suspensions do not contribute to

the workload since they do not occupy any processor. Let ω(τi, L) denote an upper bound of the

2 Note that any job τl,k of τl where k < j may delay τl,j from executing and thus can be considered to have higher
priority than τl,j .

124

to tf

pipi ei

ri,kL

to tf

pipi ei

ri,k
L

di,h

λi
pi

ei,h
ri,h

pipi

Figure 4.2: Computing ωnc(τi, L).

workload of each task τi ∈ τhp in the interval [to, tf) of length L. Let ωnc(τi, L) denote the workload

bound if τi does not have a carry-in job (see Definition 4.4), and let ωc(τi, L) denote the workload

bound if τi has a carry-in job. ωnc(τi, L) and ωc(τi, L) can be computed as shown in the following

lemmas.

Lemma 4.1.

ωnc(τi, L) =

(⌊
L− ei
pi

⌋
+ 1

)
· ei. (4.3)

Proof. Since τi does not have a carry-in job, only jobs that are released within [to, tf) can contribute

to ωnc(τi, L). The scenario for the worst-case workload to happen is shown in Figure 4.2, where job

τi,k, which is the last job of τi that is released before tf , executes continuously within [ri,k, ri,k + ei)

such that ri,k + ei = tf (according to our task model, each suspension of τi,k within [ri,k, tf) may be

of length 0), and jobs of τi are released periodically. (Note that if i = l, then this worst-case scenario

still gives a safe upper bound on the workload since in this case τl,j could be the job τi,k.) Besides

τi,k, there are at most
⌊
L− ei
pi

⌋
jobs of τi released within [to, tf).

Definition 4.5. For any interval of length t, let ∆(τi, t) =

(⌈
t

pi

⌉
− 1

)
·ei+min

(
ei, t−

⌈
t

pi

⌉
· pi + pi

)
.

∆(τi, t) is defined for computing carry-in workloads. Definition 4.5 improves upon a similar

definition for computing carry-in workloads proposed in [77] by deriving a more precise upper bound

of the workload.

The following lemma, which computes ωc(τi, L), is proved similarly to Lemma 4.1.

Lemma 4.2.

ωc(τi, L) = ∆(τi, L− ei + di + λi) (4.4)

125

to tf

pipi ei

ri,k
L

to tf

pipi ei

ri,k
L

di,h

λi
pi

ei,h
ri,h

pipi

Figure 4.3: Computing ωc(τi, L).

Proof. The scenario for the worst-case workload to happen is shown in Figure 4.3, where job τi,k,

which is the last job of τi that is released before tf , executes continuously within [ri,k, ri,k + ei) such

that

ri,k + ei = tf (4.5)

(recall that τi,k may suspend for zero time within [ri,k, tf)), and jobs are released periodically. (Note

that if i = l, then this worst-case scenario still gives a safe upper bound on the workload since τl,j

could be the job τi,k.)

Let τi,h be the first job such that ri,h < to and

di,h + λi > to, (4.6)

i.e., τi,h is the first job of τi (potentially tardy) that may execute during [to, tf) and is released before

to (note that if τi,h does not exist, then τi would not have a carry-in job). Besides τi,k and τi,h, jobs of

τi that are released within [ri,h+pi, ri,k) can contribute to ωc(τi, L). Let y denote the number of jobs

of τi released in [ri,h, ri,k). There are thus y − 1 jobs of τi that are released within [ri,h + pi, ri,k).

Since jobs of τi are released periodically, we have

ri,k − ri,h = y · pi. (4.7)

126

Moreover, work contributed by τi,h cannot exceed the smaller of ei and the length of the interval

[to, di,h + λi). The length of the interval [to, di,h + λi) is given by

di,h + λi − to

=ri,h + di + λi − to

{by (4.7)}

=ri,k − y · pi + di + λi − to

{by (4.1) and (4.5)}

=(L− ei + di + λi)− y · pi.

Thus, the work contributed by τi,h is given by min(ei, (L− ei + di + λi)− y · pi).

By summing the contributions of τi,h, τi,k, and jobs of τi that are released within [ri,h + pi, ri,k),

we have

ωc(τi, L)

= min(ei, (L− ei + di + λi)− y · pi)

+ ei + (y − 1) · ei

= min(ei, (L− ei + di + λi)− y · pi)

+ y · ei (4.8)

To find y, by (4.7), we have

y

=
ri,k − ri,h

pi

=
ri,k − di,h + di

pi

{by (4.6)}

<
ri,k − to + λi + di

pi

{by (4.1) and (4.5)}

127

=
L− ei + λi + di

pi
.

For conciseness, let σ = L− ei +λi + di. Thus, y <
σ

pi
holds. If σ mod pi = 0, then y ≤ σ

pi
− 1 =

⌈
σ

pi

⌉
− 1, otherwise, y ≤

⌊
σ

pi

⌋
=

⌈
σ

pi

⌉
− 1. Thus, a general expression for y can be given by

y ≤
⌈
σ

pi

⌉
− 1.

By (4.8), the maximum value for ωc(τi, L) can be obtained when y =

⌈
σ

pi

⌉
− 1. Setting this

expression for y into (4.8), we get

ωc(τi, L)

=min

(
ei, σ −

⌈
σ

pi

⌉
· pi + pi

)
+

(⌈
σ

pi

⌉
− 1

)
· ei

{by Definition 4.5}

=∆(τi, σ)

{by the definition of σ}

=∆(τi, L− ei + di + λi).

It is important to point out that neither ωnc(τi, L) nor ωc(τi, L) depends on ζl (as defined in

(4.2)). For any given interval [to, tf) of length L, we get the same result of ωnc(τi, L) and ωc(τi, L),

regardless of the value of ζl. This observation enables us to greatly reduce the time complexity to

derive the response time bound, as shown later.

Interference. The interference Il(τi, L) of a specific task τi on τl over [to, tf) is the part of the

workload of τi that has higher priority than τl,j and can delay τl,j from executing its computation

phases. Note that if i 6= l, then τi cannot interfere with τl while τi or τl is suspending. If i = l, then

suspensions of job τl,k where k < j, may delay τl,j from executing. However, by Definition 4.3, all

processors are occupied by tasks with equal or higher priority than τl at any time instant t ∈ [to, te).

Thus, whenever suspensions of any such job τl,k delay τl,j from executing within [to, te), such

suspensions must be overlapped with computation from some other task with higher priority than τl.

Therefore, it suffices for us to compute the interference using workload as derived in (4.3) and (4.4).

128

(Intuitively, this portion of the schedule, i.e., the schedule within [to, te), would be the same even if

τl did not suspend, since τl has the lowest priority among the tasks being considered.)

As we did for the workload, we also define two expressions for Il(τi, L). We use Incl (τi, L) to

denote a bound on the interference of τi to τl during [to, tf) if τi does not have a carry-in job, and

use Icl (τi, L) if τi has a carry-in job.

By the definitions of workload and interference, within [to, tf), if i 6= l, then task τi cannot

interfere with τl by more than τi’s workload in this interval. Thus, we have Incl (τi, L) ≤ ωnc(τi, L)

and Icl (τi, L) ≤ ωc(τi, L). The other case is i = l. In this case, since τl,j cannot interfere with itself,

we have Incl (τi, L) ≤ ωnc(τl, L)− el and Icl (τi, L) ≤ ωc(τl, L)− el. Moreover, because τi cannot

interfere with τl while τl,j is executing and suspending for a total of el + sl,j time units in [to, tf),

Il(τi, L) cannot exceed L− el − sl,j . Therefore, we have3

Incl (τi, L) =

min(ωnc(τi, L), L− el − sl,j + 1), if i 6= l

min(ωnc(τl, L)− el, L− el − sl,j + 1), if i = l

(4.9)

and

Icl (τi, L) =

min(ωc(τi, L), L− el − sl,j + 1), if i 6= l

min(ωc(τl, L)− el, L− el − sl,j + 1), if i = l.

(4.10)

Now we define the total interference bound on τl within any interval [to, to + Z) of arbitrary

length Z, denoted Ωl(Z), which is given by
∑

τi∈τhp Il(τi, Z). The total interference bound on τl

within the interval [to, tf) is thus given by Ωl(L).

Upper-bounding Ωl(L). By Definition 4.3, either to = 0, in which case no task has a carry-in job,

or some processor is idle in [to − 1, to), in which at most m− 1 computational tasks are active at

to − 1. Thus, at most min(m − 1, nehp) computational tasks in τhp have carry-in jobs, where nehp

3 The upper bounds of Inc
l (τi, L) and Icl (τi, L) (as shown next) are set to be L− el − sl,j + 1 instead of L− el − sl,j

in order to guarantee that the response time bound we get from the schedulability test presented later is valid. A formal
explanation of this issue can be found in Section 4 of [19].

129

denotes the number of computational tasks in τhp. Due to suspensions, however, all self-suspending

tasks in τhp may have carry-in jobs that suspend at to. Let τ shp denote the set of self-suspending

tasks in τhp. Thus, self-suspending tasks can contribute at most
∑

τi∈τshp
max(Icl (τi, L), Incl (τi, L))

work to Ωl(L). Let τ ehp denote the set of computational tasks in τhp and β
min(m−1,ne

hp)

τi∈τehp
denote

the min(m− 1, nehp) greatest values of max(0, Icl (τi, L)− Incl (τi, L)) for any computational task

τi ∈ τ ehp. Then computational tasks can contribute at most
∑

τi∈τehp
Incl (τi, L) + β

min(m−1,ne
hp)

τi∈τehp

work to Ωl(L). Therefore, by summing up the work contributed by both self-suspending tasks and

computational tasks, we can bound Ωl(L) by

Ωl(L) =
∑

τi∈τshp

max(Icl (τi, L), Incl (τi, L))

+
∑

τi∈τehp

Incl (τi, L) + β
min(m−1,ne

hp)

τi∈τehp
. (4.11)

The time complexity for computing
∑

τi∈τshp
max(Icl (τi, L), Incl (τi, L)) and

∑
τi∈τehp

Incl (τi, L)

is O(n). Also, as noted in [10], by using a linear-time selection technique from [24], the time

complexity for computing β
min(m−1,ne

hp)

τi∈τehp
is O(n). Thus, the time complexity to upper-bound Ωl(L)

as above is O(n).

Schedulability test. We now derive an upper bound on the response time of task τl in an sporadic

self-suspending task system τ scheduled using fixed priorities, as stated in Theorem 4.1. Before

stating the theorem, we first present two lemmas, which are used to prove the theorem. Lemma 4.3 is

intuitive since it states that the total interference of tasks with equal or higher priority than τl must

be large enough to prevent τl,j from being finished at to +H if to +H < tf holds (recall that tf is

defined to be the completion time of τl,j).

Lemma 4.3. For job τl,j and any interval [to, to +H) of length H , if H < tf − to, then

⌊
Ωl(H)

m

⌋
> H − el − sl,j . (4.12)

Proof. Ωl(H) denotes the total interference bound on τl within the interval [to, to +H).

130

If te ≥ to +H , then by Definition 4.3, all processors must be occupied by tasks in τhp during the

interval [to, to+H), which implies that tasks in τhp generate a total workload of at least m ·H within

[to, to+H) that can interfere with τl. Thus, (4.12) holds since Ωl(H) ≥ m·H ≥ m·(H−el−sl,j+1).

The other possibility is te < to +H . In this case, given (from the statement of the lemma) that

H < tf − to, job τl,j is not yet completed at time to +H . Thus, only at strictly fewer than el + sl,j

time points within the interval [to, to +H) was τl,j able to execute its computation and suspension

phases (for otherwise it would have completed by to+H). In order for τl,j to execute its computation

and suspension phases for strictly fewer than el + sl,j time points within [to, to +H), tasks in τhp

must generate a total workload of at least m · (H− el− sl,j + 1) within [to, to+H) that can interfere

with τl. Thus, Ωl(H) ≥ m · (H − el − sl,j + 1) holds.

Lemma 4.4. te − rl,j ≤ κl, where κl = λl − pl + dl if λl > pl − dl, and κl = 0, otherwise.

Proof. By Definition 4.1, we have

fl,j−1 ≤ dl,j−1 + λl. (4.13)

If λl > pl − dl, then we have

te − rl,j

{by Definition 4.2}

=max(rl,j , fl,j−1)− rl,j

=max(0, fl,j−1 − rl,j)

{by (4.13)}

≤max(0, dl,j−1 + λl − rl,j)

=max(0, rl,j−1 + dl + λl − rl,j)

≤max(0, dl + λl − pl)

=λl − pl + dl.

131

If λl ≤ pl − dl, then

fl,j−1

{by (4.13)}

≤dl,j−1 + λl

=rl,j−1 + dl + λl

≤rl,j − pl + dl + λl

≤rl,j ,

which implies that job τl,j−1 completes by rl,j . Thus, by Definition 4.2, we have te − rl,j = 0.

Theorem 4.1. Let ψl be the set of minimum solutions of (4.14) for L below for each value of

sl,j ∈ {0, 1, 2, ..., sl} by performing a fixed-point iteration on the RHS of (4.14) starting with

L = el + sl,j :

L =

⌊
Ωl(L)

m

⌋
+ el + sl,j . (4.14)

Then ψmaxl + κl upper-bounds τl’s response time, where ψmaxl is the maximum value in ψl.

Proof. We first prove by contradiction that ψmaxl + κl − ζl is an upper bound of τl’s response time.

Assume that the actual worst-case response time of τl is given by R, where

R > ψmaxl + κl − ζl. (4.15)

By Definitions 4.1 and 4.2, we have

R = tf − rl,j . (4.16)

Thus, we have

ψmaxl

{by (4.15)}

<R+ ζl − κl

132

{by (4.16)}

=tf − rl,j + ζl − κl

{by (4.2)}

=tf − to + te − rl,j − κl

{by Lemma 4.4}

≤tf − to + κl − κl

=tf − to.

Hence, by Lemma 4.3, (4.12) holds with H = ψmaxl , which contradicts the assumption of ψmaxl

being a solution of (4.14). Therefore, ψmaxl + κl − ζl is an upper bound of τl’s response time.

By (4.2) and Definition 4.3, ζl ≥ 0 holds. Moreover, by (4.3) and (4.4)-(4.11), Ωl(L) is

independent of ζl, which implies that ψmaxl is independent of ζl. Thus, the maximum value for the

term ψmaxl + κl − ζl, which is given by ψmaxl + κl when setting ζl = 0, is an upper bound of τl’s

response time.

Note that (4.14) depends on sl,j . Thus, it is necessary to test each possible value of sl,j ∈

{0, 1, 2, ..., sl} to find a corresponding minimum solution of (4.14). By the definition of ψmaxl ,

ψmaxl can then be safely used to upper-bound τl’s response time. Moreover, for every task τi ∈ τ ,

ψmaxi ≤ di + λi − κi must hold in order for τ to be schedulable; otherwise, some jobs of τi may

have missed their deadlines by more than the corresponding tardiness thresholds. The following

corollary immediately follows.

Corollary 3. Task system τ is GTFP-schedulable upon m processors if, by repeating the iteration

stated in Theorem 4.1 for all tasks τi ∈ τ , ψmaxi ≤ di + λi − κi holds.

Comparing with [53]. In [53], an RTA technique, which we refer to as “GY” for short, was proposed

to handle ordinary arbitrary-deadline sporadic task systems (without suspensions). (Note that GY

is the only prior work that considers multiprocessor RTA techniques for arbitrary-deadline task

systems.) In GY, the methodology used for the constrained-deadline case is extended for dealing

with the arbitrary-deadline case by recursively solving an RTA equation. This recursive process

could iterate many times depending on task parameters, and may not terminate in some rare cases.

133

On the other hand, due to the fact that our analysis used a more suitable interval analysis framework

for arbitrary-deadline task systems (which applies to constrained-deadline task systems as well), for

any task in an ordinary sporadic task systems (without suspensions), its response-time bound can

be found by solving the RTA equation (4.14) only once and our RTA process always terminates.

Specifically, we analyzed the eligible time te of our job of interest τl,j , instead of its release time rl,j

as done in [53]. In this way, when computing workload and interference, we already considered the

case where job τl,k where k < j might complete beyond rl,j if dl > pl holds. On the contrary, in GY,

the analyzed interval is extended to include all prior jobs that may complete beyond rl,j and an RTA

equation is recursively solved to find the response-time bound. As shown by experiments presented

in Section 4.2.4, our analysis has better runtime performance than GY.

4.2 GEDF

In this section, we present a GEDF schedulability test for sporadic self-suspending task systems. Our

goal is to identify sufficient conditions for ensuring that each task τi cannot miss any deadlines by

more than its predefined tardiness threshold, λi. These conditions must be checked for each of the n

tasks in τ .

Let S be a GEDF schedule of τ such that a job τl,j of task τl is the first job in S to miss its

deadline at td = dl,j by more than its predefined tardiness threshold λl, as shown in Figure 4.4.

Under GEDF, jobs with lower priorities than τl,j do not affect the scheduling of τl,j and jobs with

higher priorities than τl,j , so we will henceforth discard from S all jobs with priorities lower than

τl,j .

Similar to Section 4.1, we extend the analyzed interval from τl,j’s eligible time te (see Defini-

tion 4.2) to an earlier time instant to as defined below.

Definition 4.6. to denotes the earliest time instant at or before te such that there is no idleness in

[to, te).

Our goal now is to identify conditions necessary for τl,j to miss its deadline by more than λl; i.e.,

for τl,j to execute its computation and suspension phases for strictly fewer than el + sl,j time units

over [te, td + λl). This can happen only if all m processors execute jobs other than τl,j for strictly

more than (td + λl − te)− (el + sl,j) time units (i.e., at least td + λl − te − el − sl,j + 1 time units)

134

to te td td+λl

no idleness
within [to, te)

ξl

Θ
Tl,j ’s computation and

suspension phases

Intervals in which all m processors are occupied by jobs other
than Tl,j, and the total length must be greater than (td+λl-te-el-sl,j)

in order for Tl,j to miss its deadline by more than λl

Proc.
1
2....
m

Figure 4.4: A job τl,j of task τl becomes eligible at te and misses its deadline at td by more than λl.
to is the earliest time instant at or before te such that there is no idleness in [to, te).

over [te, td + λl) (for otherwise, τl,j would complete by td + λl), as illustrated in Figure 4.4. For

conciseness, let

ξl = td + λl − to. (4.17)

Definition 4.7. Let Θ denote a subset of the set of intervals within [te, td + λl), where τl,j does not

execute or suspend, such that the cumulative length of Θ is exactly td + λl − te − el − sl,j + 1 over

[te, td + λl). As seen in Figure 4.4, Θ may not be contiguous.

By Definition 4.7, the length of the intervals in [to, te) ∪Θ is given by te − to + td + λl − te −

el − sl,j + 1 = td + λl − to − el − sl,j + 1
{by (4.17)}

= ξl − el − sl,j + 1.

For each task τi, let W (τi) denote the contribution of τi to the work done in S during [to, te)∪Θ.

In order for τl,j to miss its deadline, it is necessary that the total amount of work that executes over

[to, te) ∪Θ satisfies
∑

τi∈τ
W (τi) > m · (ξl − el − sl,j). (4.18)

This follows from the observation that all m processors are, by Definitions 4.6 and 4.7, completely

busy executing work over the ξl − el − sl,j + 1 time units in the interval [to, te) ∪Θ.

Condition (4.18) is a necessary condition for τl,j to miss its deadline by more than λl. Thus, in

order to show that τ is GEDF-schedulable, it suffices to demonstrate that Condition (4.18) cannot be

satisfied for any task τl for any possible values of ξl and sl,j .

135

We now construct a schedulability test using Condition (4.18) as follows. In Section 4.2.1, we

first derive an upper bound for the term
∑

τi∈τ W (τi) in the LHS of Condition (4.18). Then, in

Section 4.2.2, we compute possible values of the termm·(ξl−el−sl,j) in the RHS of Condition (4.18).

Later, in Section 4.2.3, a schedulability test is derived based on these results.

4.2.1 Upper-Bounding
∑

τi∈τ W (τi)

In this section, we derive an upper bound on
∑

τi∈τ W (τi), by first upper-bounding W (τi) for each

task τi and then summing these per-task upper bounds.

In the following, we compute upper bounds on W (τi). If τi has no carry-in job (defined in

Definition 4.4), then let Wnc(τi) denote this upper bound; otherwise, let Wc(τi) denote the upper

bound. Since τl,j is the first job that misses its deadline at td by more than its corresponding tardiness

threshold, we have

fl,j−1 ≤ dl,j−1 + λl ≤ td − pl + λl. (4.19)

The following lemma bounds the length of time interval [to, te).

Lemma 4.5. te − to ≤ max(ξl − λl − dl, ξl − pl).

Proof. te − to
{by Definition 4.2}

= max(rl,j , fl,j−1)− to
{by (4.19)}
≤ max(td − dl, td − pl + λl)− to =

max(td − dl − to, td − pl + λl − to)
{by (4.17)}

= max(ξl − λl − dl, ξl − pl).

If a task τi has no carry-in job, then the total amount of work that must execute over [to, te) ∪Θ

is generated by jobs of τi arriving in, and having deadlines within, the interval [to, td]. The following

lemma, which was originally proved for ordinary sporadic task systems in [16], applies to sporadic

self-suspending task systems as well.

Lemma 4.6. The maximum cumulative execution requirement by jobs of an sporadic self-suspending

task τi that both arrive in, and have deadlines within, any interval of length t is given by demand

bound function

DBF (τi, t) = max(0, (

⌊
t− di
pi

⌋
+ 1) · ei).

Proof. Because we restrict attention to jobs of τi that have releases and deadlines within the con-

sidered interval of length t, and suspensions do not occupy any processor, the required total work

136

ri,k di,k

An interval with length t

pi pi pi

job release job deadline

di

Figure 4.5: DBF for self-suspending tasks.

of τi can be bounded by considering the scenario in which some job τi,k of τi has a deadline

at the end of the interval and jobs are released periodically. This scenario is illustrated in Fig-

ure 4.5. There are at most
⌊
t− di
pi

⌋
jobs that are released and have deadlines within the interval

other than τi,k. Thus, the maximum cumulative execution requirement by jobs of τi is given by

DBF (τi, t) = max(0, (

⌊
t− di
pi

⌋
+ 1) · ei), which is the same as the DBF for ordinary sporadic

tasks (i.e., without suspensions). This is due to the fact that suspensions do not contribute to the

execution requirement.

The lemma below computes Wnc(τi) using DBF.

Lemma 4.7.

Wnc(τi) =

min
(
DBF (τi, ξl − λl),

ξl − el − sl,j + 1
)

if i 6= l

min
(
DBF (τl, ξl − λl)− el,

max(ξl − λl − dl, ξl − pl)
)

if i = l

Proof. Depending on the relationship between i and l, there are two cases to consider.

Case i 6= l. The total amount of work contributed by τi that must execute over [to, te) ∪ Θ

cannot exceed the total length of the intervals in [to, te)∪Θ, which is ξl− el− sl,j + 1. Furthermore,

the total work that needs to be bounded must have releases and deadlines within the interval [to, td],

which by (4.17) is of length ξl − λl. By Lemma 4.6, this total work is at most DBF (τi, ξl − λl).

Case i = l. As in the previous case, the total work is at most DBF (τl, ξl − λl). However, in

this case, since τl,j does not execute within [to, te) ∪Θ, we can subtract its execution requirement,

137

which is el, from DBF (τl, ξl − λl). Also, this contribution cannot exceed the length of the interval

[to, te), which by Lemma 4.5 is at most max(ξl − λl − dl, ξl − pl).

We now consider the case where τi has a carry-in job. The following lemma, which computes

Wc(τi), is proved similarly to Lemma 4.7.

Lemma 4.8.

Wc(τi) =

min(∆(τi, ξl − λl + λi),

ξl − el − sl,j + 1) if i 6= l

min(∆(τl, ξl)− el,

max(ξl − λl − dl, ξl − pl). if i = l

Proof. The total work of τi in this case can be upper-bounded by considering the scenario in which

some job of τi has a deadline at td and jobs of τi are released periodically, as illustrated in Figure 4.6.

Depending on the relationship between i and l, we have two cases to consider.

Case i 6= l. Let τi,k be the first job such that ri,k < to and

di,k + λi > to, (4.20)

i.e., τi,k is the first job of τi (potentially tardy) that may execute during [to, td) and is released before

to (note that if τi,k does not exist then τi would have no carry-in job). Since jobs are released

periodically,

td − di,k = x · pi (4.21)

holds for some integer x.

The demand for jobs of τi in this case is thus bounded by the demand due to x jobs that have

deadlines at or before td and are released at or after ri,k + pi, plus the demand imposed by the job

τi,k, which cannot exceed the smaller of ei and the length of the interval [to, di,k + λi), which by

(4.21) is td − x · pi + λi − to
{by (4.17)}

= ξl − λl + λi − x · pi. Thus, we have

Wc(τi) = x · ei +min(ei, ξl − λl + λi − x · pi). (4.22)

138

To find x, by (4.21), we have

x

=
td − di,k

pi

{by (4.20)}

<
td − to + λi

pi

{by (4.17)}

=
ξl − λl + λi

pi
.

For conciseness, let π = ξl − λl + λi. Thus, x <
π

pi
holds. If π mod pi = 0, then x ≤ π

pi
− 1 =

⌈
π

pi

⌉
− 1, otherwise, x ≤

⌊
π

pi

⌋
=

⌈
π

pi

⌉
− 1. Thus, a general expression for x can be given by

x ≤
⌈
π

pi

⌉
− 1.

By (4.22), the maximum value for Wc(τi) can be obtained when x =

⌈
π

pi

⌉
− 1. Setting this

expression for x into (4.22), we have

Wc(τi)

=
(⌈ π

pi

⌉
− 1
)
· ei +min

(
ei, π −

⌈
π

pi

⌉
· pi + pi

)

{by Definition 4.5}

=∆(τi, π)

{by the definition of π}

=∆(τi, ξl − λl + λi).

Moreover, this total demand cannot exceed the total length of the intervals in [to, te) ∪Θ, which

is ξl − el − sl,j + 1.

Case i = l. Repeating the reasoning from the previous case, we find that the total demand

of jobs of τl with deadlines at most td is at most ∆(i, ξl − λl + λi) = ∆(τi, ξl). Since τl,j does

not execute within [to, te) ∪ Θ, we subtract its execution requirement, which is el, from ∆(τi, ξl).

139

di,k

pi pi pi

to td

λi
pipipi
di

Figure 4.6: Computing Wc(τi).

Also, this contribution cannot exceed the length of the interval [to, te), which by Lemma 4.5 is

max(ξl − λl − dl, ξl − pl).

Upper-bounding
∑

τi∈τ W (τi). Similar to the discussion in Section 4.1, by Definition 4.6, either

to = 0, in which case no task has a carry-in job, or some processor is idle in [to − 1, to), in which at

most m− 1 computational tasks are active at to − 1. Thus, at most min(m− 1, ne) computational

tasks can have a carry-in job. However, since suspensions do not occupy any processor, each

self-suspending task may be active at to − 1 and have a job that is suspended at to. Thus, in the

worst case, all ns self-suspending tasks can have carry-in jobs. Consequently, there are at most

ns self-suspending tasks and min(m − 1, ne) computational tasks that contribute Wc(τi) work,

and the remaining max(0, ne − m + 1) computational tasks must contribute to Wnc(τi). Thus,

self-suspending tasks can contribute at most
∑

τi∈τs max
(
Wnc(τi),Wc(τi)

)
work to

∑
τi∈τ W (τi).

Let δmin(m−1,ne)
τi∈τe denote the min(m − 1, ne) greatest values of max(0,Wc(τi) − Wnc(τi)) for

any computational task τi. Then computational tasks can contribute at most
∑

τj∈τe Wnc(τj) +

δ
min(m−1,ne)
τk∈τe work to

∑
τi∈τ W (τi). Therefore, by summing up the work contributed by both self-

suspending tasks and computational tasks, we can bound
∑

τi∈τ W (τi) by
∑

τi∈τs max(Wnc(τi),

Wc(τi))+
∑

τj∈τe Wnc(τj)+ δ
min(m−1,ne)
τk∈τe .

Similar to the discussion in Section 4.1, the time complexity for computing Wc(τi), Wnc(τi),

and Wc(τi) −Wnc(τi) is O(n). Also, by using a linear-time selection technique from [24], the

time complexity for computing δmin(m−1,ne)
τk∈τe is O(n). Thus, the time complexity to upper-bound

∑
τi∈τ W (τi) as above is O(n).

140

4.2.2 Finding Values of ξl and sl,j

So far we have upper-bounded the LHS of Condition (4.18). Recall that our goal is to test Condi-

tion (4.18) for a violation for all possible values of ξl and sl,j . The following theorem shows that the

range of possible values of ξl that need to be tested can be limited. Let esum be the sum of the execu-

tion costs for all tasks in τ . For conciseness, let φ = m · (el+sl,j)−λl ·usum+
∑

τi∈τ λi ·ui+esum.

Theorem 4.2. If Condition (4.18) is satisfied for τl, then it is satisfied for some ξl satisfying

min(dl + λl, pl) ≤ ξl <
φ

m− usum
, (4.23)

provided usum < m

Proof. By Lemmas 4.6 and 4.7, Wnc(τi) ≤
⌊
ξl − λl
pi

⌋
· ei + ei holds. By Lemma 4.8 and Defini-

tion 4.5, Wc(τi) ≤
⌊
ξl − λl + λi

pi

⌋
· ei + ei holds. Thus, the LHS of Condition (4.18) is no greater

than
∑

τi∈τ

(⌊ξl − λl + λi
pi

⌋
· ei + ei

)
. Assuming Condition (4.18) is satisfied, we have

∑
τi∈τ W (τi) > m · (ξl − el − sl,j)

⇒ {upper-bounding
∑

τi∈τ W (τi) as above}
∑

τi∈τ

(⌊ξl − λl + λi
pi

⌋
· ei + ei

)
> m · (ξl − el − sl,j)

⇒ {removing the floor}
∑

τi∈τ

(
(ξl − λl + λi) · ui + ei

)
> m · (ξl − el − sl,j)

⇒ {rearranging}

ξl · usum − λl · usum +
∑

τi∈τ λi · ui + esum

> m · ξl −m · el −m · sl,j
⇒ ξl <

φ

m− usum
,

provided usum < m.

Moreover, we have

141

ξl

{by (4.17)}

=td − to + λl

{by Definition 4.6}

≥td − te + λl

{by Definition 4.2}

=td −max(rl,j , fl,j−1) + λl

{by (4.19)}

≥td −max(td − dl, td − pl + λl) + λl

=min(dl, pl − λl) + λl

=min(dl + λl, pl).

Possible values for sl,j . By Lemmas 4.7 and 4.8,
∑

τi∈τ W (τi), which is the LHS of Condi-

tion (4.18), depends on the value of sl,j non-monotonically. Moreover, by Theorem 4.2, ξl also

depends on the value of sl,j (recall φ). Thus, it is necessary to test all possible values of sl,j , which

are {0, 1, 2, ..., sl}.

4.2.3 Schedulability Test

Theorem 4.3. Task system τ is GEDF-schedulable on m processors if for all tasks τl and all values

of ξl satisfying (4.23),

∑
τi∈τ max

(
Wnc ((τi),Wc(τi)) +

∑
τj∈τe Wnc(τj)

+δ
min(m−1,ne)
τk∈τe

)
≤ m · (ξl − el − sl,j) (4.24)

holds for every value of sl,j ∈ {0, 1, 2, ..., sl}.

By Theorem 4.2, we can test Condition (4.24) in time pseudo-polynomial in the task parameters.

142

4.2.4 Experiments

We now describe experiments conducted using randomly-generated task sets to evaluate the perfor-

mance of the proposed schedulability tests. In these experiments, several aspects of our analysis were

investigated. In the following, we denote our GEDF and GTFP schedulability tests as “Our-EDF”

and “Our-FP,” respectively.

HRT effectiveness. We evaluated the effectiveness of the proposed techniques for HRT sporadic self-

suspending task systems by comparing Our-EDF and Our-FP to the suspension-oblivious approach

denoted “SC” combined with the tests in [10] and [53], which we denote “Bar” (for “Baruah”)

and (as noted earlier) “GY,” respectively. That is, after transforming all sporadic self-suspending

tasks into ordinary sporadic tasks (no suspensions) using SC, we applied Bar and GY, which are

the best known schedulability tests for GEDF and GTFP, respectively. In [10], Bar was shown to

overcome a major deficiency (i.e., the O(n) carry-in work) of prior GEDF analysis (as discussed in

Section 2.3). In [53], GY was shown to be superior to all prior analysis for ordinary task systems

available at that time. Moreover, since partitioning approaches have been shown to be generally

superior to global approaches on multiprocessors [8], we compared our test to SC combined with the

partitioning approach proposed in [12], which we denoted “FB-Par”. FB-Par is considered to be the

best partitioning approach for constrained-deadline sporadic task systems.

SRT effectiveness. We evaluated the effectiveness of the proposed techniques for SRT sporadic

self-suspending task systems with predefined tardiness threshold by comparing them to SC combined

with the test proposed in [77], which we denote “LA.” LA is the only prior schedulability test for

SRT ordinary task systems with predefined tardiness thresholds.

Impact of carry-in work. To evaluate the impact brought by O(n) carry-in work on our analysis,

we compared the HRT schedulability for sporadic self-suspending task systems using our analysis to

that obtained by applying the analysis proposed in [19], which we denoted “BC,” to an otherwise

equivalent task system with no suspensions. In [19], BC was shown to be superior to all prior analysis

assuming O(n) carry-in work available at that time.

143

Runtime performance. Finally, we evaluated the effectiveness and the runtime performance of

Our-FP for ordinary arbitrary-deadline sporadic task systems (with no suspensions) by comparing it

to GY.

In our experiments, sporadic self-suspending task sets were generated based upon the methodol-

ogy proposed by Baker in [8]. Integral task periods were distributed uniformly over [10ms,100ms].

Per-task utilizations were uniformly distributed in [0.01, 0.3]. Task execution costs were calculated

from periods and utilizations. For any task τi in any generated task set, di/pi was varied within

[1,2] for the arbitrary-deadline case and within [max(0.7,
ei + si
pi

), 1] for the constrained-deadline

case, and the tardiness threshold λi was varied uniformly within [0, 2 · pi] for SRT tasks. The

suspension length for any task τi was generated by varying si/ei as follows: 0.5 (short suspension

length), 1 (moderate suspension length), and 1.5 (long suspension length). Task sets were generated

for m = 4 processors, as follows. A cap on overall utilization was systematically varied within

[1, 1.1, 1.2, ..., 3.9, 4]. For each combination of utilization cap and suspension length, we generated

1,000 sporadic self-suspending task sets. Each such sporadic self-suspending task set was gener-

ated by creating sporadic self-suspending tasks until total utilization exceeded the corresponding

utilization cap, and by then reducing the last task’s utilization so that the total utilization equalled the

utilization cap. For GTFP scheduling, priorities were assigned on a global deadline-monotonic basis.

In all figures presented in this section, the x-axis denotes the utilization cap and the y-axis denotes

the fraction of generated task sets that were schedulable.

Figures 4.7 and 4.8 show HRT and SRT schedulability results for constrained-deadline sporadic

self-suspending task sets achieved by using Our-EDF, Our-FP, Bar, GY, and FB-Par. As seen, for

both the HRT and the SRT cases, Our-EDF and Our-FP improve upon the other tested alternatives.

Notably, Our-EDF and Our-FP consistently yield better schedulability results than the partitioning

approach FB-Par, as seen in Figures 4.7. This is due to the fact that, after treating suspensions as

computation, FB-Par suffers from bin-packing-related capacity loss. Moreover, as the suspension

length increases, such performance improvement also increases. This is because treating suspension

as computation becomes more pessimistic as the suspension length increases. This result suggests

that a task’s suspensions do not negatively impact the schedulability of other tasks as much as

computation does.

144

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(a) HRT: short suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(b) HRT: moderate suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(c) HRT: long suspensions

Figure 4.7: HRT results. ui ∈ [0.01, 0.3], di ∈ [max(0.7 · pi, ei + si), pi].

145

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(a) SRT: short suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(b) SRT: moderate suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(c) SRT: long suspensions

Figure 4.8: SRT results. ui ∈ [0.01, 0.3], di ∈ [max(0.7 · pi, ei + si), pi].

146

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

BC
Our-FP-S
Our-FP-M

Figure 4.9: HRT results compared with BC.

Figure 4.9 shows HRT schedulability results for constrained-deadline sporadic self-suspending

task sets achieved by using Our-FP and by applying BC to otherwise equivalent task sets with no

suspensions. In Figure 4.9, “Our-FP-S” (respectively, “Our-FP-M”) represents schedulability results

achieved by Our-FP for the task sets (which are originally generated for BC with no suspensions)

after adding suspensions by setting
si
ei

= 0.2 (respectively,
si
ei

= 0.5). It can be seen that Our-FP

yields schedulability results that are very close to that achieved by BC. For task sets with
si
ei

= 0.2,

Our-FP and BC achieved almost identical schedulability results. This shows that the negative impact

brought by suspensions is mainly caused by forcing O(n) carry-in work.

Figure 4.10 shows HRT schedulability results for arbitrary-deadline ordinary task systems

(with no suspensions) achieved by using Our-FP and GY. In this experiment, for each choice of

the utilization cap, 10,000 task sets are generated. As seen, Our-FP slightly improves upon GY.

Moreover, Figure 4.10 also shows the total time for running this entire experiment for Our-FP and

GY. As seen, Our-FP runs much faster (> 10×) than GY, due to the fact that Our-FP can find any

task’s response time by solving the RTA equation only once.

4.3 Chapter Summary

In this chapter, we presented the first suspension-aware multiprocessor schedulability tests for

globally-scheduled HRT sporadic self-suspending task systems under both GTFP and GEDF schedul-

147

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

Our-FP
GY

Our-FP running time: 67(s)
GY running time: 946(s)

Figure 4.10: HRT results compared with GY.

ing. We also presented experimental results that show that our suspension-aware analysis is much

superior to the prior suspension-oblivious approach. Also, when applied to ordinary arbitrary-

deadline task systems with no suspensions, our fixed-priority analysis has a lower running time than

that proposed in [53].

148

CHAPTER 5

Multiprocessor Scheduling of PGM Graphs1

In this chapter, we consider the problem of scheduling multiprocessor implementations of real-

time systems specified as directed-acyclic-graphs (DAGs). If all deadlines in such a system are

viewed as hard, and tasks execute sporadically (or periodically), then DAG-based systems can be

easily supported by assigning a common period to all tasks in a DAG and by adjusting job releases so

that successive tasks execute in sequence. Figure 5.1 shows an example of scheduling a DAG τ1 on

a two-processor system consisting of four sporadic tasks, τ1
1 , τ2

1 , τ3
1 , and τ4

1 . (DAG-based systems

are formally defined in Chapter 2. It suffices to know here that the kth job of τ1
1 , τ2

1 (or τ3
1), and τ4

1 ,

respectively, must execute in sequence.) As seen in this example, the timing guarantees provided by

the sporadic model ensure that any DAG executes correctly as long as no deadlines are missed.

However, if all deadlines in a multiprocessor sporadic task system must be viewed as hard,

then significant processing capacity must be sacrificed, due to either inherent schedulability-related

capacity loss—which is unavoidable under most scheduling schemes—or high runtime overheads—

which typically arise in optimal schemes that avoid schedulability-related loss. In systems where less

stringent notions of real-time correctness suffice, such loss can be avoided by viewing deadlines as

soft. Such systems are also our focus; the notion of soft real-time correctness we consider is that

deadline tardiness is bounded.

Unfortunately, if deadlines can be missed, then DAGs are not as easy to support as ordinary

sporadic tasks. For example, if the first job of τ1
1 in Figure 5.1 were to miss its deadline, then its

1Contents of this chapter previously appeared in preliminary form in the following papers:
Cong Liu and James Anderson. Supporting Soft Real-Time DAG-based Systems on Multiprocessors with No Utilization
Loss, Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 3-13, 2010.
Cong Liu and James Anderson. Supporting Graph-Based Real-Time Applications in Distributed Systems, Proceedings
of the 17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pages
143-152, 2011.

AVI
Splitter

FLV
Filter

Video
Processing

Audio
Processing

 UNC Chapel Hill Liu and Anderson 6

 Supporting Soft Real-Time DAG-based Systems on Multiprocessors with No Utilization Loss RTSS’10

AVI
Splitter

Video
Processing

Audio
Processing

FLV
Filter

job release job deadline

Figure 5.1: Example DAG.

execution might overlap that of the first jobs of τ2
1 and τ3

1 . This violates the requirement that instances

of successive DAG vertices must execute in sequence. In this chapter, we address this lack of support

by presenting scheduling techniques and analysis that can be applied to support DAG-based systems

on multiprocessors with no capacity loss, assuming that bounded deadline tardiness is the timing

guarantee that must be ensured. Our results can be applied to systems with rather sophisticated

precedence constraints. To illustrate this, we consider a particularly expressive DAG-based formalism,

namely PGM (recall Section 2.3.3 of Chapter 2). We show that PGM-specified systems can be

scheduled with bounded tardiness on multiprocessors with no capacity loss.

In this chapter, we show that sophisticated notions of acyclic precedence constraints can be

supported under GEDF on multiprocessors and in distributed systems, provided bounded deadline

tardiness is acceptable. The types of precedence constraints we consider are those allowed by PGM

and studied previously in the uniprocessor case by Goddard [51]. Since any acyclic PGM graph

has a natural representation as a DAG-based rate-based (RB) task system, such systems are our

major focus. We specifically show that, when any such system is scheduled by GEDF, each task’s

maximum tardiness is bounded. We show this by transforming any such system into an ordinary

sporadic system (with sporadic job releases and without precedence constraints) and by exploiting

the fact the latter has bounded tardiness under GEDF. Note that, although we focus specifically

on GEDF, our results can be applied to any global scheduling algorithm that can ensure bounded

tardiness with no capacity loss for ordinary sporadic task systems. Moreover, due to the fact that our

150

PGM	
graph	 G	

DAG-‐based	 RB	 task	
system	

τRB	

1	

τ	

Ordinary	 sporadic	
task	 system	

via	
transforma;on	

represented	
by	

Figure 5.2: Roadmap.

RB task model is a generalization of the periodic and sporadic task models (see Section 2.1), our

results are general enough to be applicable to periodic and sporadic DAG systems.

Roadmap. In this chapter, we primarily deal with PGM graphs, DAG-based RB task systems, and

ordinary sporadic task systems (see Section 2.1 for definitions of these task models). For clarity, we

let G denote a PGM graph, τ denote an ordinary sporadic task system, and τRB denote a DAG-based

RB task system, as shown in Figure 5.2.

The rest of this chapter is organized as follows. In Section 5.1, we first derive our multiprocessor

schedulability test for SRT PGM graphs. In Section 5.2, we show how to support SRT PGM graphs

in a distributed system. In Section 5.3, we summarize our work.

5.1 Supporting PGM-Specified Systems on Multiprocessors

In this section, we present our proposed approach for supporting PGM-specified systems on mul-

tiprocessors. We first show that any PGM graph G can be represented by a DAG-based RB task

system τRB by mapping PGM nodes to RB tasks. We then show that τRB can be transformed to an

ordinary sporadic task system τ , for which tardiness bounds can be derived. A summary of the terms

defined so far, as well as some additional terms defined later, is presented in Table 7.1.

5.1.1 Representing PGM Graphs by DAG-based RB Task Systems

In this section, our goal is to implement G by a task system τRB, where G consists of a set of n

acyclic PGM graphs {G1, G2, ..., Gn}. By computing valid node execution rates (as defined below)

based on the producer/consumer relationships that exist in any graph Gl in G, we can implement

each node in Gl by an RB task in τRB.

151

m Number of processors

n Number of tasks

Usum Total utilization of τRB

(xi, yi) Execution rate of an RB task τi,
indicating that there are at most
xi job releases within any time
interval [j ·yi, (j+1)·yi) (j ≥ 0)

ρk←j Produce amount of the queue
connecting any two nodes Gj

and Gk in a PGM graph G

ϕk←j Threshold of the queue connect-
ing any two nodes Gj and Gk in
a PGM graph G

ck←j Consume amount of the queue
connecting any two nodes Gj

and Gk in a PGM graph G

pred(τhl) Set of predecessor tasks of task
τhl

pred(τhl,j) Set of predecessor jobs of job τhl,j

Fmax(pred(τhl,j)) Latest completion time among all
predecessor jobs of τhl,j

tf (τhl,j) Completion time of τhl,j

ε(τhl,j) Early-release time of τhl,j

Table 5.1: Summary of notation.

Definition 5.1. [51] An execution rate is a pair of non-negative integers (x, y). An execution rate

specification for any node Gil in Gl, (xil, y
i
l), is valid if there exists a time t such that Gjl executes

exactly xil times in time intervals [t+ (k− 1) · yil , t+ k · yil) for all k > 0. An execution of a node in

Gl is valid iff: (1) the task executes only when it is eligible for execution and no two executions of

the same node overlap, (2) each input queue has its tokens atomically consumed after each output

queue has its tokens atomically produced, and (3) tokens are produced at most once on an output

queue during each node execution. An execution of G is valid iff all of the nodes in the execution

sequence have valid executions and no data loss occurs.

152

We define τRB to have the same structure as G, i.e., each graph Gl in G is implemented by a

DAG-based RB task τl in τRB. Moreover, each node Gil in Gl is implemented by an RB task τ il in τl,

and these tasks are connected via edges just like the corresponding nodes in Gl. We assume that the

source node of Gl is governed by an RB specification and non-source nodes execute according to

the corresponding specifications in Gl (i.e., produce, threshold, and consume attributes of queues in

Gl).2

As shown in [51], it is possible to compute a valid execution rate for every task in τRB, provided

the assumption that the source node of a PGM graph executes according to a valid rate-based

rate (note that we also make this assumption in this dissertation). Although the focus of [51] is

uniprocessor platforms, this result is independent of the hardware platform. Thus, we first apply

the same method to compute a valid execution rate for every task in τRB, as stated in the following

lemma (proved in Theorem 2.4.9 on Page 74 of [51]).

Lemma 5.1. [51] For any task τki in τRB that has at least one incoming edge, let ν denote the set

of predecessor tasks of τki . For any node τui in ν, let Rui = (xui , y
u
i) be a valid execution rate. The

execution rate Rki = (xki , y
k
i) for τki is valid if

yki = lcm

{
ck←vi · yvi

gcd(ρk←vi · xvi , ck←vi)
|v ∈ ν

}
,

xki = yki ·
ρk←vi

ck←vi

· x
v
i

yvi
, where τvi ∈ ν.3

Proof. The proof of this lemma presented in [51] assumes the RBE task model while we use the RB

task model. As discussed in Chapter 2, under the RBE task model, an execution rate of task τki is

specified by parameters xki and yki , where xki is the number of executions expected to be requested

in any interval of length yki ; contrastingly, in our RB task model, xki is the maximum number of

executions in an interval of length yki . However, as Goddard assumes that the source node of a PGM

graph executes according to a valid rate-based pattern (i.e., exactly x executions in any interval y),

this difference becomes immaterial. This lemma thus continues to hold in our context.

2Given the close connection between τRB and G, we can henceforth associate tokens, queue attributes, etc., with edges
in every DAG-based RB task in τRB, just like in G.

3It is shown in [51] that Definition 5.1 and Lemma 5.1 ensure that all tasks in ν with valid execution rates have the
same x/y value.

153

T1
1

T1
2 T1

3

(4,12,3,e1
2)

(1,4,4,2)

(1,3,3,2)

(2,12,6,3)

(4,12,3,1)

2
1

1
1

3
1

4
1

1T

),4,4,1(1
1e

),3,12,4(2
1e),3,12,4(3

1e

),6,12,2(4
1e

1

Figure 5.3: RB counterpart of the PGM graph in Figure 2.7.

0 4 8 12 16 20 24

0

Queue
length

Sequence of
releases

28

Job release of Job release of

4

8

5

9 10

7
4

8

5

9

6

10

7

4
6

T1
1

312
1 c

412
1

712
1

T1
2

1
1

2
1

1
1

2
1

Figure 5.4: Extended snapshot sequence of releases.

By Lemma 5.1, we can compute an execution rate (xki , y
k
i) for every task τki in τRB. Thus, each

such task τki can be specified by parameters (xki , y
k
i , d

k
i , e

k
i), where

dki = yki /x
k
i . (5.1)

Example. Consider again the example PGM graph shown in Figure 2.7. Figure 5.3 shows the corre-

sponding DAG-based RB task system. The rate of each task is computed according to Lemma 5.1, as-

suming that the source nodeG1
1 has an execution rate of (1, 4). For instance, y2

1 =
3 · 4

gcd(4 · 1, 3)
= 12

and x2
1 = 12 · 4 · 1

3 · 4 = 4. Also, y4
1 = lcm

{
2 · 12

gcd(4, 2)
,

4 · 12

gcd(8, 4)

}
= lcm{12, 12} = 12 and

x4
1 = 12 · 1

2
· 4

12
= 2. Figure 5.4 shows an extended snapshot sequence showing releases of nodes

τ1
1 and τ2

1 . As seen, τ2
1 releases at most four jobs within any interval [j · 12, (j + 1) · 12) (j ≥ 0).

154

In order to completely define τRB, we need to determine job precedence constraints in τRB. This

is dealt with in the following lemma. In τRB, any job τki,j’s predecessor jobs are those that need to

complete execution in order for τki,j to be eligible to execute.

Lemma 5.2. For any τwi ∈ pred(τki), τwi,v is a predecessor job of τki,j iff v =

⌈
(j − 1) · ck←wi + ϕk←wi

ρk←wi

⌉
.

Proof. If τwi,v is a predecessor job of τki,j , then when τwi,v completes, the number of tokens in the queue

between τwi and τki should be at least ϕk←wi in order for τki,j to be able to execute. That is, v ·ρk←wi −

(j − 1) · ck←wi ≥ ϕk←wi must hold. By rearrangement, we have v ≥ (j − 1) · ck←wi + ϕk←wi

ρk←wi

. Since

v must be an integer, we have v =

⌈
(j − 1) · ck←wi + ϕk←wi

ρk←wi

⌉
.

Example. Consider the example shown in Figure 5.4. We can define job precedence constraints

according to Lemma 5.2. For instance, the predecessor job of τ2
1,3 is τ1

1,v, where v =

⌈
2 · 3 + 7

4

⌉
= 4,

and the predecessor job of τ2
1,4 is also τ1

1,4 because
⌈

3 · 3 + 7

4

⌉
= 4.

5.1.2 Transforming τRB to τ

We now show that τRB can be transformed to an ordinary sporadic system τ without capacity loss. The

transformation process ensures that all precedence constraints in τRB are met. Later, in Section 5.1.3,

we show that this process ensures that tardiness is bounded for τRB when GEDF is used.

We transform τRB to τ by redefining job releases appropriately. First, we must eliminate

precedence constraints among tasks within the same DAG. We can do this by redefining job releases

so that such constraints are automatically satisfied. By doing so, a DAG can be transformed into a set

of independent RB tasks. Second, an RB task may release jobs arbitrarily close together, which is

disallowed in the sporadic task model. Therefore, in order to transform τRB to τ , we also need to

re-define job release times to enforce a minimum inter-arrival time.

For any job τhl,j where j > 1 and h > 1, its original release time, rRB(τhl,j), is redefined to be

r(τhl,j) = max
(
rRB(τhl,j), Fmax(pred(τhl,j)),

r(τhl,j−1) + dhl
)
, (5.2)

where Fmax(pred(τhl,j)) denotes the latest completion time among all predecessor jobs of τhl,j .

155

Rate-based
job release

Redefined
sporadic release

2
1T

3
1T

0 4 8 12 16

(d) Improve job response time by further early-releasing

1
1T
2

1T
3

1T
0 4 8 12 16 20 24

(e) Further early-release every job at the eligible time

1
1T
2

1T
3

1T
0 4 8 12 16 20 24

1
1T
2

1T
3

1T

(a) Rate-based schedule.

0 4 8 12 16 20

Job release Job deadline
New periodic

release
New periodic

deadline

1
1T
2

1T
3

1T

(a) Rate-based schedule with early-releasing.

0 4 8 12 16 20

1
1T
2

1T
3

1T
0 4 8 12 16

2
1

0 4 8 12

Rate-based
job release

Redefined
sporadic release

2
1,1

2
2,1

2
3,1 2

4,1

Figure 5.5: Redefining job releases according to (5.18) – (5.5).

Given that a source task has no predecessors, the release of any job τ1
l,j (j > 1) of such a task is

redefined to be

r(τ1
l,j) = max

(
rRB(τ1

l,j), r(τ
1
l,j−1) + d1

l

)
. (5.3)

For the first job τhl,1 (h > 1) of any non-source task, its release time is redefined to be

r(τhl,1) = max
(
rRB(τhl,1), Fmax(pred(τhl,1))

)
. (5.4)

Finally, for the first job τ1
l,1 of any source task, its release time is redefined to be

r(τ1
l,1) = rRB(τ1

l,1). (5.5)

After redefining job releases according to (5.18)–(5.5), τhl,j’s redefined deadline, denoted d(τhl,j),

is given by

d(τhl,j) = r(τhl,j) + dhl . (5.6)

Note that these definitions imply that each task’s utilization remains unchanged.

Example. Consider the same example as shown in Figure 5.3. Figure 5.5 shows the redefined

job releases of task τ2
1 . As seen, according to (5.18) and (5.20), r(τ2

1,1) = rRB(τ2
1,1), r(τ2

1,2) =

r(τ2
1,1) + d2

1, r(τ2
1,3) = r(τ2

1,2) + d2
1, and r(τ2

1,4) = rRB(τ2
1,4).

156

Note that the release time of any job τhl,j with predecessor jobs is redefined to be at least

Fmax(pred(τhl,j)). Thus, its start time is at least Fmax(pred(τhl,j)). Hence, the GEDF schedule

preserves the precedence constraints enforced by the DAG-based RB model. Note also that, since

the release time of each τhl,j (j > 1) is redefined to be at least that of τhl,j−1 plus dhl , τl executes as

a sporadic task with phl = dhl . By transforming every task in τRB to an independent sporadic task

according to (5.18)–(5.5), we obtain τ . Note that (5.22) potentially causes job deadlines to move to

later points in time.4 The following lemma establishes an upper bound on the gap between the original

deadline and the redefined deadline of any job of any source task. (Actually, it is not necessary to so

aggressively shift releases to later points in time; this issue is dealt with in Section 5.1.4.)

Lemma 5.3. For any job τ1
i,j , r(τ

1
i,j)− rRB(τ1

i,j) < 2 · y1
i .

Proof. (All jobs considered in this proof are assumed to be jobs of τ1
i .) It suffices to prove that for

any job τ1
i,u with k · y1

i ≤ rRB(τ1
i,u) < (k+ 1) · y1

i , where k ≥ −1, we have r(τ1
i,u) < k · y1

i + 2 · y1
i .

We prove this by induction on k. For conciseness, we make the base case vacuous by starting with

k = −1 (the base case then holds trivially since no job is released within time interval [−y1
i , 0)).

For the induction step, let us assume that

r(τ1
i,c) < j · y1

i + 2 · y1
i (5.7)

holds for any job τ1
i,c with j · y1

i ≤ rRB(τ1
i,c) < (j + 1) · y1

i (j ≥ 0). Then we want to prove that for

any job τ1
i,v with

(j + 1) · y1
i ≤ rRB(τ1

i,v) < (j + 2) · y1
i , (5.8)

we have r(τ1
i,v) < (j + 1) · y1

i + 2 · y1
i .

Let χ denote the set of jobs with RB release times within [(j + 1) · y1
i , r

RB(τ1
i,v)]. We consider

three cases.

Case 1. χ is empty. In this case, rRB(τ1
i,v) is the first RB release within [(j + 1) · y1

i , (j + 2) · y1
i).

According to (5.19), either r(τ1
i,v) = rRB(τ1

i,v) or r(τ1
i,v) = r(τ1

i,v−1) +d1
i where τ1

i,v−1 is the last job

of τ1
i with j ·y1

i ≤ rRB(τ1
i,v−1) < (j+1)·y1

i . If r(τ1
i,v) = rRB(τ1

i,v), then r(τ1
i,v) = rRB(τ1

i,v)
{by (5.8)}

<

4Note that the method so far yields a non-work-conserving scheduler since the release time of some job may be delayed
to a later point of time.

157

j · y1
i + 2 · y1

i . If r(τ1
i,v) = r(τ1

i,v−1) + d1
i , then by (5.7), we have r(τ1

i,v−1) < j · y1
i + 2 · y1

i . Thus,

r(τ1
i,v) = r(τ1

i,v−1) + d1
i < j · y1

i + 2 · y1
i + d1

i

{by (5.1)}
≤ (j + 1) · y1

i + 2 · y1
i .

Case 2. χ is non-empty and there exists at least one job τ1
i,v′ in χ such that r(τ1

i,v′) = rRB(τ1
i,v′).

According to (5.19) and the fact that at most x1
i jobs could be released within χ (since [(j + 1) ·

y1
i , r

RB(τ1
i,v)] ∈ [(j + 1) · y1

i , (j + 2) · y1
i)), the release time of τ1

i,v could be delayed by at most

(x1
i − 1) · d1

i time units. By (5.1), (x1
i − 1) · d1

i < y1
i . Thus, r(τ1

i,v) < rRB(τ1
i,v) + y1

i

{by (5.8)}
<

(j + 2) · y1
i + y1

i = (j + 1) · y1
i + 2 · y1

i .

Case 3. χ is non-empty and there exists no job in χ such that r(τ1
i,v′) = rRB(τ1

i,v′). In this case,

for the first-released job τ1
i,v′ in χ, we have r(τ1

i,v′) = r(τ1
i,v′−1) + d1

i . Note that τ1
i,v′−1 exists,

for otherwise, we would have r(τ1
i,v′) = rRB(τ1

i,v′). Due to the fact that at most x1
i − 1 jobs

could be released within χ, we have r(τ1
i,v) ≤ r(τ1

i,v′−1) + x1
i · d1

i . Thus, we have r(τ1
i,v) ≤

r(τ1
i,v′−1) + x1

i · d1
i

{by (5.1) and (5.7)}
< j · y1

i + 2 · y1
i + y1

i = (j + 1) · y1
i + 2 · y1

i .

5.1.3 Tardiness Bound for τRB

Given a DAG-based RB task system, τRB, by applying the strategy presented above, we obtain a task

system τ containing only independent sporadic tasks. We can then apply the tardiness bound derived

for ordinary sporadic task systems in [41] (or any other such bound), as stated below. Let tf (τhl,j)

denote the completion time of τhl,j in τ .

Definition 5.2. Let ∆ =
esum − emin
m− Um−1

+ el, where esum is the sum of all tasks’ WCET, emin is the

smallest WCET among all tasks, and Um−1 is the total utilization of m − 1 tasks with the largest

utilizations.

Theorem 5.1. [41] In any GEDF schedule for the sporadic task system τ on m processors, if

Usum ≤ m, then the tardiness of any job τhl,j , with respect to its redefined deadline d(τhl,j), is at most

δ, i.e.,

tf (τhl,j)− d(τhl,j) ≤ ∆. (5.9)

However, Theorem 5.1 only gives a tardiness bound for any job τhl,j with respect to its redefined

deadline, d(τhl,j). τhl,j can have higher tardiness with respect to its original deadline, dRB(τhl,j).

158

Therefore, we must bound the actual tardiness any job τhl,j may experience with respect to its original

deadline. The following theorem gives such a bound. Let ymaxl = max(y1
l , y

2
l , ..., y

z
l), where z is

the number of nodes in τl. Before stating the theorem, we first prove a lemma that is used in its proof.

Lemma 5.4. For any two jobs τhl,j and τhl,k of τhl in τRB, where j < k, i ·yhl ≤ rRB(τhl,j) < (i+1) ·yhl
(i ≥ 0), and (i+ w) · yhl ≤ rRB(τhl,k) < (i+ w + 1) · yhl (w ≥ 0), we have rRB(τhl,k)− rRB(τhl,j) >

(k − j) · dhl − 2 · yhl .

Proof. (All jobs considered in this proof are assumed to be jobs of τhl .) Note that k − j − 1 denotes

the number of jobs other than τhl,j and τhl,k released in [rRB(τhl,j), r
RB(τhl,k)]. Depending on the number

of such jobs, we have two cases.

Case 1. k − j − 1 ≤ 2 · xhl − 2. Given the case condition, k − j ≤ 2 · xhl − 1 holds. Thus, we have

(k − j) · dhl − 2 · yhl ≤ (2 · xhl − 1) · dhl − 2 · yhl
{by (5.1)}

< 0. Since k > j, rRB(τhl,k)− rRB(τhl,j) ≥

0 > (k − j) · dhl − 2 · yhl .

Case 2. k − j − 1 > 2 · xhl − 2. In this case, more than 2 · (xhl − 1) jobs other than τhl,j and τhl,k are

released in [rRB(τhl,j), r
RB(τhl,k)]. By the statement of the lemma, at most xhl jobs can be released in

[rRB(τhl,j), (i+ 1) · yhl) or [(i+ w) · yhl , rRB(τhl,k)], respectively. Thus,

λ ≥ (k − j − 1)− 2 · (xhl − 1), (5.10)

where λ is the number of jobs other than τhl,j and τhl,k released in [(i+ 1) · yhl), (i+ w) · yhl).

Note that the length of the time interval [(i + 1) · yhl), (i + w) · yhl) really depends on the

number of jobs released within this interval, due to that fact that at most xhl jobs are released within

any interval [(i + 1) · yhl), (i + 2) · yhl) of length yhl . For instance, if k jobs are released within

[(i+1) ·yhl), (i+w) ·yhl), where 1 ≤ k < xhl , then its length is at least yhl . If xhl ≤ k < 2xhl jobs are

released within this interval, then its length is at least 2·yhl . In general, by (5.10), the length of the time

interval [(i+1) ·yhl), (i+w) ·yhl) is (i+w) ·yhl −(i+1) ·yhl ≥
⌈

(k − j − 1)− 2 · (xhl − 1)

xhl

⌉
·yhl ≥

(k − j − 1)− 2 · (xhl − 1)

xhl
· yhl =

(k − j)− 2 · xhl + 1

xhl
· yhl = (k − j) · dhl − 2 · yhl + dhl .

159

Given (from the statement of the lemma) that rRB(τhl,j) < (i+1) ·yhl and rRB(τhl,k) ≥ (i+w) ·yhl ,

we have rRB(τhl,k) − rRB(τhl,j) > (i + w) · yhl − (i + 1) · yhl ≥ (k − j) · dhl − 2 · yhl + dhl >

(k − j) · dhl − 2 · yhl .

Theorem 5.2. In any GEDF schedule for τRB on m processors, if Usum ≤ m, then the tardiness

of any job τhl,j of a task τhl at depth k, with respect to its original deadline, dRB(τhl,j), is at most

(k + 1) ·∆ + 3(k + 1) · ymaxl , i.e.,

tf (τhl,j)− dRB(τhl,j) ≤ (k + 1) ·∆ + 3(k + 1) · ymaxl . (5.11)

Proof. This theorem can be proved by induction on task depth. In the base case, by Theorem 5.1 and

the fact that τ1
i has no predecessors, its tardiness with respect to its newly-defined deadline, d(τ1

i,j),

is at most ∆. By Lemma 5.3, r(τ1
i,j)− rRB(τ1

i,j) < 2 · y1
i . Thus, with respect to its original deadline,

dRB(τ1
i,j), τ1

i,j has a tardiness bound of ∆ + 2 · y1
i < ∆ + 3 · ymaxi .

For the induction step, let us assume (5.11) holds for any task τwi at depth at most k − 1, k ≥ 1.

Then, the tardiness of any job τwi,v of τwi is at most k ·∆ + 3k · ymaxi , i.e.,

tf (τwi,v)− dRB(τwi,v) ≤ k ·∆ + 3k · ymaxi . (5.12)

We want to prove that for any job τhi,j of any task τhi at depth k, tf (τhi,j)− dRB(τhi,j) ≤ (k + 1) ·∆ +

3(k + 1) · ymaxi . According to (5.18) and (5.20), there are three cases to consider regarding τhi,j’s

newly-defined release time r(τhl,j), as illustrated in Figure 5.6.

Case 1. r(τhi,j) = rRB(τhi,j). By Theorem 5.1, we know that tf (τhi,j) − d(τhi,j) ≤ ∆. Given that

d(τhi,j) = dRB(τhi,j), we have tf (τhi,j)− dRB(τhi,j) ≤ ∆ < (k + 1) ·∆ + 3(k + 1) · ymaxi .

Case 2. r(τhi,j) = Fmax(pred(τhi,j)). Let τwi,v be the predecessor of τhl,j that has the latest completion

time among all predecessors of τhi,j (τwi,v exists because the depth of τhl is at least one). Thus, we have

r(τhi,j) = Fmax(pred(τhi,j)) = tf (τwi,v). (5.13)

Therefore,

160

Original job
release

h
i(a) Case 1.

New job release

)(

)(

,

,

h
ji

RBE

h
ji

r

r

j

h
i

(b) Case 2.

)(

)(

,

,

w
jif

h
ji

t

r

j

w
i

j

h
i

(c) Case 3.1.

j

i
h
qi

h
ji

pqjr

r

)()(

)(

,

,

.
q

q

)(

)(

,

,

w
qif

h
qi

t

r

)(,
h
ji

RBEr

(d) Case 3.2.

h
i

j
.

q

)(

)(

,

,

h
qi

RBE

h
qi

r

r

)(

)()(

)(

,

,

,

h
ji

RBE

i
h
qi

h
ji

r

pqjr

r

w
i

Figure 5.6: Three cases in Theorem 5.5.

161

tf (τhi,j)− dRB(τhi,j)

{by (2.1)}

= tf (τhi,j)− rRB(τhi,j)− dhi
= tf (τhi,j)− r(τhi,j) + r(τhi,j)− rRB(τhi,j)− dhi
{by (5.22)}

= tf (τhi,j)− d(τhi,j) + dhi + r(τhi,j)− rRB(τhi,j)− dhi
{by (5.9)}

≤ ∆ + dhi + r(τhi,j)− rRB(τhi,j)− dhi
= ∆ + r(τhi,j)− rRB(τhi,j)

{by (2.2) and (5.26)}

≤ ∆ + tf (τwi,v)− rRB(τwi,v)

{by (2.1)}

= ∆ + tf (τwi,v)− dRB(τwi,v) + dwi

{by (5.25)}

≤ ∆ + k ·∆ + 3k · ymaxi + dwi

{by (5.1)}

< (k + 1) ·∆ + 3(k + 1) · ymaxi .

Case 3. j > 1 ∧ r(τhi,j) = r(τhi,j−1) + dhi . Let τhi,q (q < j) denote the last job of τhi released

before τhi,j such that r(τhi,q) = rRB(τhi,q) or r(τhi,q) = Fmax(pred(τhi,q)). τhi,q exists because according

to (5.20) and (5.5), there exists at least one job, τhi,1, such that r(τhi,1) = rRB(τhi,1) or r(τhi,1) =

Fmax(pred(τhi,1)). Depending on the value of r(τhi,q), we have two subcases.

Case 3.1. r(τhi,q) = rRB(τhi,q). By the definition of τhi,q, the release time of any job τhi,k, where

q < k ≤ j, is redefined to be r(τhi,k) = r(τhi,k−1) + dhi . Thus, we have

r(τhi,j) = r(τhi,q) + (j − q) · dhi . (5.14)

Therefore, we have

tf (τhi,j)− dRB(τhi,j)

162

{by (2.1)}

= tf (τhi,j)− rRB(τhi,j)− dhi
= tf (τhi,j)− r(τhi,j) + r(τhi,j)− rRB(τhi,j)− dhi
{by (5.22)}

= tf (τhi,j)− d(τhi,j) + dhi + r(τhi,j)− rRB(τhi,j)− dhi
{by (5.9)}

≤ ∆ + dhi + r(τhi,j)− rRB(τhi,j)− dhi
= ∆ + r(τhi,j)− rRB(τhi,j)

{by (5.27) and Lemma 5.4}

< ∆ + (r(τhi,q) + (j − q) · dhi)− (rRB(τhi,q)

+(j − q) · dhi − 2 · yhi)

{by the case condition}

= ∆ + 2 · yhi
< (k + 1) ·∆ + 3(k + 1) · ymaxi .

Case 3.2. r(τhi,q) = Fmax(pred(τhi,q)). Let τwi,v denote a predecessor job of τhi,q with tf (τwi,v) =

Fmax(pred(τhi,q)) = r(τhi,q). We have

tf (τhi,j)− dRB(τhi,j)

{similarly to the derivation in Case 3.1}

< ∆ + (r(τhi,q) + (j − q) · dhi)− (rRB(τhi,q)

+(j − q) · dhi − 2 · yhi)

= ∆ + r(τhi,q)− rRB(τhi,q) + 2 · yhi
{by the case condition and (2.2)}

≤ ∆ + tf (τwi,v)− rRB(τwi,v) + 2 · yhi
{by (2.1)}

= ∆ + tf (τwi,v)− dRB(τwi,v) + dwi + 2 · yhi
{by (5.25)}

≤ ∆ + k ·∆ + 3k · ymaxi + dwi + 2 · yhi
{by (5.1)}

≤ (k + 1) ·∆ + 3(k + 1) · ymaxi .

163

5.1.4 Improving Job Response Times by Early-Releasing

By forcing RB releases to be sporadic, we essentially delay job releases. However, excessive release

delays are actually unnecessary and actual response times can be improved by applying a technique

called “early-releasing,” which allows jobs to execute before their specified release times. The earliest

time at which job τhl,j may execute is defined by its early-release time ε(τhl,j), where ε(τhl,j) ≤ r(τhl,j).

For any job τhl,j , its early-releasing time can be defined as

ε(τhl,j) =

rRB(τhl,j) if h = 1

Fmax(pred(τhl,j)) if h > 1.

An unfinished job τhl,j is eligible for execution at time t if τhl,j−1 has completed by t (if j > 1)

and t ≥ ε(τhl,j). The tardiness bound given in Theorem 5.1 continues to hold if early-releasing is

allowed [39]. Intuitively, this is reflective of the fact that schedulability mainly hinges on the proper

spacing of consecutive job deadlines of a task, instead of its releases. This same intuition underlies

the development of the uniprocessor RBE model [61].

Example. Consider a DAG-based RB task system scheduled on two processors under GEDF con-

sisting of two tasks: τ1
1 (1, 4, 4, 2) and τ2

1 (1, 4, 4, 2), where pred(τ2
1) = τ1

1 and pred(τ2
2,j) = τ1

1,j for

any j > 0. Figure 5.7(a) shows the original RB releases before time 12. Figure 5.7(b) shows the

redefined releases according to (5.18)–(5.5), as well as the GEDF schedule. As seen in the schedule,

τ2
1,2 completes at time 10 and misses its original deadline, which is at time 8. Figure 5.7(c) shows

early releases as defined above and the corresponding GEDF schedule. As seen, most jobs’ response

times are improved. For instance, τ2
1,2 now completes at time 8 and meets its original deadline.

5.1.5 Case Study

In this section, we present a case study that demonstrates the utility of our results. We study a

DAG-based system with two sporadic DAGs, as shown in Fig 5.8. Each sporadic DAG contains

a number of sporadic tasks, with a common period of 10ms. Node labels in Figure 5.8 give the

execution cost (in ms) of each task. The total utilization of this system is 3.0. Prior to our work,

164

0 4 8 12 16

(b)

T1
2

T1
3

T1
4

20

release deadline precedence

T1
1

0 4 8 12 16

(b)

T1
2

T1
3

T1
4

20

T1
1

0 4 8 12 16

(b)

T1
2

T1
3

T1
4

20

T1
1

0 4 8 12 16

(b)

T1
1

T1
2

T1
3

T1
4

20

1
1,1T

2
4,1T

1
2,1T

2
2,1T 2

3,1T

3
1,1T 3

2,1T 3
3,1T 3

4,1T

4
1,1T 4

2,1T

2
1,1T

1
1,1T 1

2,1T

1
3,1T

2
1,1

3
1,1T 3

3,1T
3
4,1T

4
2,1T

3
2,1T

1
2,1

0 4 8 12 16

1
1,1

0 4 8 12 16

0 4 8 12 16

2
2,1

2
3,1

1
3,1

1
2,1

1
1,1 1

3,1

2
1,1 2

2,1
2

3,1

release deadline redefined
release

early
release

(a)

(b)

(c)

1
1

2
1

1
1

2
1

1
1

2
1

missed deadlines

Figure 5.7: Early-releasing example.

165

1

1
1T1

1T

1
1T

1
1T

1
1T

1

1

1

1
1

2
611

2

2

1
21

2

2

2

Figure 5.8: Case study.

Previous	 approach Our	 approach

Processors	 needed 6 3

Max.	 bound	 of	 Ƭ1 0 102ms

Max.	 bound	 of	 Ƭ2 0 272	 ms

Max.	 observed	 tardiness 0 10	 ms

Table 5.2: Case study results.

the only existing approach that could be applied to successfully schedule a DAG-based system

under GEDF on multiprocessors is to ensure that every job meets its deadline, so that DAG-based

precedence constraints can automatically be satisfied (as seen in Figure 5.1).

Table 5.2 shows a comparison of our approach and this previous approach, where in the latter

case, a GEDF schedulability test by Baker [7] was used to ensure that deadlines are not missed. In this

table, the number of required processors, theoretical tardiness bounds (computed using Theorems 5.1

and 5.5), and the maximum observed tardiness are shown. The latter was determined by simulating

the schedule until it repeats. As seen, although our approach requires a higher tardiness bound, we

only need three processors to correctly schedule this system under GEDF with bounded tardiness,

which is only half of the processors required by the other approach. Moreover, the maximum

observed tardiness arising under our approach is low.

166

5.1.6 Summary

We have shown in this section that DAG-based systems with sophisticated notions of acyclic prece-

dence constraints can be supported under GEDF on multiprocessors with no capacity loss provided

bounded deadline tardiness is acceptable. Our results also imply that any global scheduling algorithm

that can ensure bounded tardiness with no capacity loss for ordinary sporadic task systems can

ensure the same for any DAG-based task system. Our results are general enough to be applicable to

periodic/sporadic DAG-based systems as well.

Our overall scheduling strategy is similar to that presented previously by Goddard for the

uniprocessor case [51]. However, several differences do exist. First, under the RBE task model used

in [51], a rate is specified by parameters x and y, where x is the number of executions expected to

be requested in any interval of length y; contrastingly, in our RB task model, x is the maximum

number of executions in an interval of length y. However, Goddard assumes that the source node

of a PGM graph executes according to a deterministic rate-based pattern (i.e., exactly x executions

in any interval y), so this difference becomes immaterial. Second, the RBE task model specifies a

minimum separation between consecutive job deadlines of the same task. Although our RB task

model does not require such a minimum separation, we ultimately redefine releases and deadlines to

enforce a minimum separation (Section 5.1.2), and early-release jobs to obtain a work-conserving

scheduler (Section 5.1.4). Third, in the uniprocessor case, DAG-based precedence constraints can be

more easily eliminated than in the multiprocessor case. In [51], DAG-based precedence constraints

are met by keeping the job ready queue in EDF order and breaking deadline ties on a FIFO basis. We

instead redefine job releases to eliminate all DAG-based precedence constraints (see (5.18)–(5.5)).

Finally, after mapping PGM graphs to rate-based tasks, Goddard derives a schedulability condition

for the resulting system. We instead further transform rate-based tasks into sporadic tasks and derive

a schedulability condition for the sporadic task system. Despite these differences, our approach can

be seen as a multiprocessor counterpart of that in [51] for scheduling acyclic PGM graphs.

167

5.2 Scheduling SRT PGM in a Distributed System

In the previous section, we showed that SRT PGM task systems can be supported on a globally-

scheduled multiprocessor with no capacity loss. In this section, this result is extended to be applicable

to distributed systems, which consist a collection of clusters of processors.

In work on real-time scheduling in distributed systems, task models where no inter-task prece-

dence constraints exist, such as the periodic and the sporadic task models, have received much

attention. However, with the growing prevalence of multicore platforms, it is inevitable that such

DAG-based real-time applications will be deployed in distributed systems where multicore machines

are used as per-node computers. One emerging example application where such a deployment is

expected is fractionated satellite systems [34]. Such a system consists of a number of wirelessly-

connected small satellites, each of which may be controlled by a multicore machine. The overall

collection of such machines is expected to support DAG-based real-time workloads such as radar

and signal-processing subsystems. To support such workloads, efficient scheduling algorithms are

needed. Motivated by applications such as this, we show in this section how to support real-time

DAG-based applications in distributed systems.

We view a distributed system as a collection of clusters of processors, where all processors in

a cluster are locally connected (e.g., on a multicore machine). A DAG-based task system can be

deployed in such a setting by (i) assigning tasks to clusters, and (ii) determining how to schedule

the tasks in each cluster. In addressing (i), overheads due to data communications among connected

tasks must be considered since tasks within the same DAG may be assigned to different clusters. In

addressing (ii), any employed scheduling algorithm should seek to minimize capacity loss.

To the best of our knowledge, in all prior work on supporting DAG-based applications in

systems with multiple processors (multiprocessors or distributed systems), either global or partitioned

scheduling has been assumed. As discussed in Section 2.3, if bounded deadline tardiness is the

timing constraint of interest, then global approaches can often be applied on multiprocessor platforms

with no loss of processing capacity [39, 76]. However, the virtues of global scheduling come at the

expense of higher runtime overheads. In work on ordinary sporadic (not DAG-based) task systems,

clustered scheduling, which combines the advantages of both global and partitioned scheduling, has

168

been suggested as a compromise [9, 27]. Under clustered scheduling, tasks are first partitioned onto

clusters of cores, and intra-cluster scheduling is global.

In distributed systems, clustered scheduling algorithms are a natural choice, given the physical

layout of such a system. Thus, such algorithms are our focus here. Our specific objective is to

develop clustered scheduling techniques and analysis that can be applied to support DAGs, assuming

that bounded deadline tardiness is the timing guarantee that must be ensured. Our primary motivation

is to develop such techniques for use in distributed systems, where different clusters are physically

separated; however, our results are also applicable in settings where clusters are tightly coupled (e.g.,

each cluster could be a socket in a multi-socket system). Our results can be applied to systems with

rather sophisticated precedence constraints as specified by PGM. In a distributed system, it may

be necessary to transfer data from a producer in one cluster to a consumer in another through an

inter-cluster network, which could cause a significant amount of data communication overhead. Thus,

any proposed scheduling algorithm should seek to minimize such inter-cluster data communication.

In the previous section, we extended Goddard’s work and showed that GEDF can ensure bounded

deadline tardiness in general DAG-based systems with no capacity loss on multiprocessors. In the

rest of this section, we show that sophisticated notions of acyclic precedence constraints can also be

efficiently supported under clustered scheduling in a distributed system, provided bounded deadline

tardiness is acceptable. Specifically, we propose a clustered scheduling algorithm called CDAG that

first partitions PGM graphs onto clusters, and then uses global scheduling approaches within each

cluster. We present analysis that gives conditions under which each task’s maximum tardiness is

bounded. The conditions derived for CDAG show that the resulting capacity loss (even in the worst-

case) is small. To assess the effectiveness of CDAG in reducing inter-cluster data communications,

we compare it with an optimal integer linear programming (ILP) solution that minimizes inter-

cluster data communications when partitioning PGM graphs onto clusters. We assume that tasks are

specified using a rate-based task model that generalizes the periodic and sporadic task models. We

next describes our system model.

5.2.1 System Model

In this section, we describe the assumed system architecture. A detailed description of the PGM and

the DAG-based RB task model can be found in Section 2.1.6.

169

We consider the problem of scheduling a set of n acyclic PGM graphs {τ1, τ2, ..., τn} on ϕ

clusters C1, C2, ..., Cϕ. Each cluster Ci contains λi processors. Clusters are connected by a network.

Let B denote the minimum number of data units that can be transferred between any two clusters per

time unit. Similarly, let b denote the minimum number of data units that can be transferred between

any two processors within the same cluster per time unit. If the system is a distributed collection of

multicore machines, then B is impacted by the speed and bandwidth of the communication network

and b is impacted by the speed of the data transfer bus on a multicore chip. In this case, b� B, as

local on-chip data communication is generally much faster than communication across a network.

Example. Figure 5.9(a) shows an example PGM graph system consisting of two graphs τ1 and

τ2 where τ1 contains four nodes with four edges and τ2 contains two nodes with one edge. We

will use this example to illustrate other concepts throughout this section. Figure 5.9(b) shows the

rate-based counterpart of the PGM graphs in Figure 5.9(a) (the transformation is discussed in detail

in Section 5.1). An example distributed system containing two clusters each with two processors

interconnected by a network is shown in Figure 5.9(c).

For conciseness, we remove the RB superscript in job-related notation as seen in Equations (2.1)

and (2.2). That is, we denote job τhl,j’s release time as rhl,j and its (absolute) deadline as

dhl,j = rhl,j + dhl , (5.15)

and we have

rhl,j ≥ rwi,v. (5.16)

5.2.2 Algorithm CDAG

In this section, we propose Algorithm CDAG, a clustered-scheduling algorithm that ensures bounded

tardiness for DAG-based systems on distributed clusters. Since inter-cluster data communication can

be expensive, CDAG is designed to reduce such communication.

CDAG consists of two phases: an assignment phase and an execution phase. The assignment

phase executes offline and assigns each PGM graph to one or more clusters. In the execution phase,

PGM graphs are first transformed to ordinary sporadic tasks (where no precedence constraints arise),

and then scheduled under a proposed clustered scheduling algorithm.

170

Ƭ12

Ƭ11

Ƭ14

Ƭ13

Ƭ21
Ƭ1 Ƭ2

Ƭ22

(x11=1,y11=4,
 d11=4, e11=1)

(x12=4,y12=12,
 d12=3,e12=2)

(x13=4,y13=12,
 d13=3,e13=1)

(x14=2,y14=12,
 d14=6,e14=2)

(x21=1, y21=4,
 d21=4, e21=2)

(x22=4, y22=12,
 d22=4, e22=2)

Ƭ12

Ƭ11

Ƭ14

Ƭ13

Ƭ21
Ƭ1 Ƭ2

Ƭ22

σ2
12=3

(a) Example PGM graph system

(b) Rate-based counterpart of (a)

ρ1
12=4

θ1
12=7

σ1
12=3

ρ1
13=4

θ1
13=5
σ1

13=3

ρ1
24=1

θ1
24=3
σ1

24=2

ρ1
34=2

θ1
34=6

σ1
34=4

ρ2
12=4

θ2
12=5

Cluster C1

with 2 processors

B = 2

Interconnection Network

(c) An example distributed system

Cluster C2

with 2 processors

Figure 5.9: Example system used throughout this section.

5.2.3 Assignment Phase

The assignment phase assigns acyclic PGM graphs (or DAGs for short) to clusters in a way such that

the inter-cluster data communication cost is reduced. Note that the total utilization of the DAGs (or

portions of DAGs) assigned to a cluster must not exceed the total capacity of that cluster. CDAG

contains an assignment algorithm that is designed to partition DAGs onto clusters such that both the

inter-cluster data communication cost and any bin-packing-related capacity loss are minimized.

To provide a better understanding of the problem of partitioning DAGs onto clusters with

minimum inter-cluster data communication cost, we first formulate it as an ILP, which provides an

optimal solution. (Note that, due to potential capacity loss arising from partitioning DAGs, the ILP

171

approach may not find a feasible assignment. However, if the ILP approach cannot find a feasible

solution, then the given task set cannot be assigned to clusters under any partitioning algorithm.)

Definition 5.3. For any edge ejki of DAG τi, its edge data weight, wjki , is defined to be ρjki ·
xji
yji

. A

larger edge data weight indicates a larger data communication cost between tasks connected by the

corresponding edge. For any edge ejki of DAG τi , its communication cost $jk
i is defined to be wjki

if the corresponding connected nodes τ ji and τki are assigned to different clusters, and 0 otherwise.

Note that the above definition does not consider data consuming rates. This is because data is

stored in memory local to the consuming node, as discussed in Section 2.3.3. Thus, only produced

data needs to be transferred.

Example. For task τ1
1 of DAG τ1 in Figure 5.9, we can use previous techniques presented in

Section 5.1 to calculate its execution rates, which are x1
1 = 1 and y1

1 = 4. Thus, for edge e12
1 of τ1,

its edge data weight w12
1 = ρ12

1 ·
x11
y11

= 4 · 1
4 = 1. Intuitively, node τ1

1 produces one data unit on

average on edge e12
1 per time unit, given its execution rate (x1

1, y
1
1) = (1, 4).

Definition 5.4. The total communication cost of any given DAG-based system τ , denoted $sum, is

given by
∑

τi∈τ
∑

ejki ∈τi
$jk
i .

ILP formulation. We are given a set τ of tasks (each task corresponds to a node in a DAG) and a

set ξ of clusters. To reduce clutter in the ILP formulation, we denote tasks more simply as τ1, τ2, ...,

and let wi,j be the data weight of the edge connecting tasks τi and τj (wi,j = 0 if i and j are not

connected). (This simplified notation is used only for the ILP formulation.)

For all τi ∈ τ , let xi,k be a binary decision variable that equals 1 when task τi is assigned to

cluster Ck, and 0 otherwise. For all (τi, τj) ∈ τ × τ , let yi,j be a binary decision variable that equals

1 if tasks τi and τj are assigned to the same cluster, and 0 otherwise.

Our goal is to minimize the total communication cost. An ILP formulation of this optimization

problem is then:

Minimize

∑
i∈τ
∑

j∈τ wi,j · (1− yi,j) (5.17)

172

subject to the constraints below. Note that by Definitions 5.3 and 5.4, (5.17) represents the total

communication cost.

• Each task must be assigned to one cluster:

∑
Ck∈ξ xi,k = 1, ∀τi ∈ τ.

• The total utilization of all tasks assigned to a cluster must not exceed the total capacity of that

cluster:

∑
τi∈τ xi,k · ui ≤ λk,∀Ck ∈ ξ.

• yi,j should be 1 when two tasks are assigned to the same cluster, and 0 otherwise:

yi,j ≤ xi,k − xj,k + 1,∀(τi, τj) ∈ τ × τ,∀Ck ∈ ξ,

yi,j ≤ −xi,k + xj,k + 1, ∀(τi, τj) ∈ τ × τ,∀Ck ∈ ξ.

By solving the ILP above, we obtain an optimal assignment that gives the minimum total

communication cost as long as there exists a feasible assignment.

Example. Consider assigning DAGs τ1 and τ2 in Figure 5.9 to two clusters. τ1 has a utilization of

1/4 + 2/3 + 1/3 + 1/3 = 19/12 and τ2 has a utilization of 1/2 + 2/3 = 7/6. By formulating this

assignment problem as an ILP according to the above approach, an optimal solution is to assign all

tasks of τ1 to the first cluster and all tasks of τ2 to the second cluster, which leads to $sum = 0.

A polynomial-time assignment algorithm. Although the ILP solution is optimal, it has exponen-

tial time complexity. We now propose a polynomial-time algorithm to assign DAGs to clusters. This

173

algorithm tries to minimize the total communication cost, which is achieved by locally minimizing

communication costs when assigning each DAG.

Definition 5.5. For any task τ ji of DAG τi, its task data weight, wji , is defined to be
∑

τ ji→τki
wjki ,

where τ ji → τki denotes that τ ji has an outgoing edge to τki .

Definition 5.6. For any DAG τi, its average data weight, wi, is defined to be

∑
ejki ∈τi

wjki

Ei
, where

Ei is the total number of edges in τi. A DAG τi’s data weight is defined to be
∑

ejki ∈τi
wjki .

Example. For DAG τ1 in Figure 5.9, by Definition 5.3, w12
1 = w13

1 = 1, w24
1 = 1/3, andw34

1 = 2/3.

Thus, by Definition 5.6, τ1 has an average data weight of 3
4 . By Definition 5.5, task τ1

1 of τ1 has a

data weight of w1
1 = w12

1 + w13
1 = 2. Intuitively, node τ1

1 produces two data units on average on its

outgoing edges per time unit, given its execution rate (x1
1, y

1
1) = (1, 4).

The proposed DAG assignment algorithm, denoted ASSIGN, is shown in Figure 5.10.

Algorithm description. Algorithm ASSIGN assigns DAGs to clusters in two phases. In the first

phase (lines 1-7), it assigns DAGs in largest-average-data-weight-first order to clusters in smallest-

capacity-first order, which gives a higher possibility for DAGs with larger average data weight to be

fully assigned to a cluster. DAGs that cannot be assigned to clusters in the first phase are considered

in the second phase (lines 8-15). For each unassigned DAG in order, its tasks are ordered by depth

and then tasks at the same depth are ordered by data weight, which gives tasks with larger data weight

a greater chance to be assigned to the same cluster as their predecessor tasks (lines 8-9). Then each

task in order is assigned to clusters in largest-capacity-first order (lines 10-15). Task τki is assigned

to cluster Cj if τki can receive its full share of its utilization from Cj (lines 13-14). If not, then Cj

is excluded from being considered for any of the later tasks, and the next cluster in order will be

considered for scheduling τki (line 15).

Example. Consider the example DAG system in Figure 5.9 to be partitioned under the proposed

algorithm. By Definitions 5.3 and 5.4, τ1 has an average data weight of 3/4 and τ2 has an average

data weight of 1. Thus, τ2 is ordered before τ1. Since τ2 has a utilization of 7/6 and τ1 has a

utilization of 19/12, the tasks of τ2 are assigned to the first cluster, and the tasks of τ1 are assigned

to the second cluster, which leads to $sum = 0.

174

ASSIGN

u(Ci): CAPACITY OF CLUSTER Ci, INITIALLY u(Ci) = λi

ξ: A LIST OF CLUSTERS {C1, C2, ..., Cϕ}

ζ : A LIST OF DAGS {τ1, τ2, ..., τn}

PHASE 1:

1 Order DAGs in ζ by largest average data weight first

2 Order clusters in ξ by smallest capacity first

3 for each DAG τi in ζ in order

4 for each cluster Cj in ξ in order

5 if ui ≤ u(Cj)

6 Assign all tasks of τi to Cj

7 Remove τi from ζ; u(Cj) := u(Cj)− ui
PHASE 2:

8 for each DAG τi in ζ in order

9 Order tasks within τi by smallest depth first, then

order tasks within τi and at the same depth by

largest task data weight first

10 Order clusters in ξ by largest capacity first

11 for each task τki of DAG τi in ζ in order

12 for each cluster Cj in ξ in order

13 if uki ≤ u(Cj) then

14 Assign τki to Cj ; u(Cj) := u(Cj)− uki
15 else Remove Cj from ξ

19

Figure 5.10: Psuedocode of the assignment algorithm.

175

Time complexity. The time complexity of Phase 1 of ASSIGN depends on (i) the sorting process

(lines 1-2), which is O(n · logn+ϕ · logϕ), and (ii) the two for loops (lines 3-4), which is O(N ·ϕ),

where N is the number of tasks in the system (each task corresponds to a node in a DAG). Thus,

Phase 1 has a time complexity of O(n · logn+ ϕ · logϕ+N · ϕ). The time complexity of Phase

2 of ASSIGN depends on (i) the sorting process (lines 9-10), which is O(n · µ · logµ + ϕ · logϕ),

where µ is the maximum number of tasks per-DAG, and (ii) the two for loops (lines 11-12), which is

O(N · ϕ). Thus, Phase 2 has a time complexity of O(n · µ · logµ+ ϕ · logϕ+N · ϕ). The overall

time complexity of ASSIGN is thus O(n · logn+ ϕ · logϕ+ n · µ · logµ+N · ϕ).

Partitioning condition. The following theorem gives a condition for ASSIGN to successfully parti-

tion any given DAG-based task system onto clusters. For conciseness, let us denote tasks (each task

corresponds to a node in a DAG) after ordering by τ1, τ2, ..., τN (note that tasks within DAGs that

are fully assigned to clusters in the first phase are assumed to be ordered before all other tasks here).

Let u(τi) denote the utilization of task τi under this notation. Before stating the theorem, we first

prove the following lemma.

Lemma 5.5. Under Algorithm ASSIGN, if a task τi is the first task that cannot be assigned to any

cluster, then
∑i

k=1 u(τk) > m− uϕ−1, where uϕ−1 is the sum of ϕ− 1 largest task utilizations.

Proof. Due to the fact that some task τi cannot be assigned to any cluster, the second phase of

Algorithm ASSIGN is executed. In the second phase, if Algorithm ASSIGN fails to assign the ith

task τi to any cluster, then the last cluster Cϕ does not have enough capacity to accommodate τi.

Moreover, for each previous cluster Cj , where j ≤ ϕ− 1, there exists a task, denoted T j , that could

not be assigned to Cj , and thus the next cluster in order was considered to accommodate T j and Cj

was removed from being considered again for any of the later tasks (line 15). That is, for each such

cluster Cj , its remaining capacity is strictly less than the utilization of T j (for the last cluster, we

know that Tϕ is τi). Thus, for any cluster Cj , its allocated capacity is strictly greater than λj−u(T j).

Since tasks {τ1, τ2, ..., τi−1} have been successfully assigned, the total utilization of these tasks is

equal to the total allocated capacity of clusters, which is given by
∑i−1

k=1 u(τk). Hence, we have

∑i−1
k=1 u(τk) >

∑ϕ
j=1(λj − u(T j))

⇔ {adding u(τi) on both sides}

176

∑i
k=1 u(τk) >

∑ϕ
j=1(λj − u(T j)) + u(τi)

⇔ {because
∑ϕ

j=1 λj = m and u(Tϕ) = u(τi)}
∑i

k=1 u(τk) > m−∑ϕ−1
j=1 u(T j)

⇒ {by the definition of uϕ−1}
∑i

k=1 u(τk) > m− uϕ−1.

Theorem 5.3. Algorithm ASSIGN successfully partitions any DAG-based task system τ on ϕ clusters

for which usum ≤ m− uϕ−1.

Proof. Let us suppose that Algorithm ASSIGN fails to assign the ith task τi to any cluster. Then by

Lemma 5.5,
∑i

k=1 u(τk) > m− uϕ−1 holds. Therefore, we have

∑i
k=1 u(τk) > m− uϕ−1

⇒ ∑N
k=1 u(τk) = usum > m− uϕ−1.

Hence, any system that Algorithm ASSIGN fails to partition must have usum > m− uϕ−1.

If ϕ is much smaller than m, which will often be the case in practice, then the proposed

assignment algorithm results in little capacity loss even in the worst case.

Bounding $sum. For any given DAG system, if all DAGs can be assigned in the first phase,

then $sum = 0. In the second phase, each DAG is considered in order, and if a cluster fails to

accommodate a task (line 15), then it will never be considered for later tasks. Thus, it immediately

follows that at most ϕ− 1 DAGs can contribute to $sum. Due to the fact that in the worst case all

edges of a DAG can cause inter-cluster communication (as illustrated by the example below), an

upper-bound on $sum under Algorithm ASSIGN is given by the sum of ϕ − 1 largest DAG data

weights.

Example. Consider a scenario where three DAGs τi, τj , and τk are assigned to three clusters in a

way as shown in Figure 5.11. Note that all edges of ϕ− 1 = 2 DAGs τj and τk contribute to $sum.

177

Ti2

Ti1

Ti3

7 UNC Chapel Hill Liu and Anderson 69

 Supporting Soft Real-Time DAG-based Systems on Multiprocessors with No Utilization Loss RTSS’10

Tj2

Tj1

Tj4Tj3 Tk2

Tk1

Tk4Tk3

Assigned to the first cluster Assigned to the second cluster

Assigned to the third cluster

put circle outside t1 t2

Figure 5.11: Example worst-case scenario where all edges of ϕ − 1 DAGs contribute to the total
communication cost.

5.2.4 Scheduling Phase

After executing the assignment phase, every task is mapped to a cluster. The scheduling phase of

CDAG ensures that each task is scheduled with bounded tardiness. The scheduling phase consists of

two steps: (i) transform each PGM graph into ordinary sporadic tasks by redefining job releases, and

(ii) apply any window-constrained scheduling policy [76] such as GEDF to globally schedule the

transformed tasks within each cluster.

Transforming PGM graphs into sporadic tasks. In Section 5.1, we showed that on a multiproces-

sor, any PGM graph system can be transformed into a set of ordinary sporadic tasks without capacity

loss. The transformation process ensures that all precedence constraints in the original PGM graphs

are met. This is done by redefining job releases properly. However, data communication delays

(inter-cluster or intra-cluster) were not considered in Section 5.1. In this section, for each cluster,

we apply the same approach but redefine job releases in a way such that data communications are

considered. Later we shall show that this process still ensures bounded tardiness for any graph.

Definition 5.7. Let Fmax(pred(τhl,j), υ
h
l,j) denote the latest completion time plus the data communi-

cation time among all predecessor jobs of τhl,j , where υhl,j denotes the time to transfer data from the

corresponding predecessor job of τhl,j to τhl,j . For any predecessor job τkl,i of τhl,j , υ
h
l,j can be computed

by dividing ρkhl (the number of produced data units on the corresponding edge) by the correspond-

ing network bandwidth (i.e., B for inter-cluster data communications and b for intra-cluster data

communications).

178

Definition 5.8. Let tf (τhl,j) denote the completion time of job τhl,j .

The following equations can be applied to redefine job releases and deadlines in an iterative way

(job τhl,j’s redefined release depends on the redefined release of τhl,j−1 where j > 1).

For any job τhl,j where j > 1 and h > 1, its redefined release time, denoted r(τhl,j), is given by

r(τhl,j) = max
(
rhl,j , r(τ

h
l,j−1) + dhl ,

Fmax(pred(τhl,j), υ
h
l,j)
)
. (5.18)

Given that a source task has no predecessors, the redefined release of any job τ1
l,j (j > 1) of such

a task, r(τ1
l,j), is given by

r(τ1
l,j) = max

(
r1
l,j , r(τ

1
l,j−1) + d1

l

)
. (5.19)

For the first job τhl,1 (h > 1) of any non-source task, its redefined release, r(τhl,1), is given by

r(τhl,1) = max
(
rhl,1, Fmax(pred(τhl,j), υ

h
l,j)
)
. (5.20)

Finally, for the first job τ1
l,1 of any source task, its release time is not altered, i.e.,

r(τ1
l,1) = r1

l,1. (5.21)

(Note that when redefining job releases in Section 5.1, the term υhl,j did not appear in Equations (5.18)-

(5.20) since data communications were not considered.)

After redefining job releases according to (5.18)-(5.20), any job τhl,j’s redefined deadline, denoted

d(τhl,j), is given by

d(τhl,j) = r(τhl,j) + dhl . (5.22)

Note that these definitions imply that each task’s utilization remains unchanged. In particular, as

shown in Section 5.2.5, bounded tardiness can be ensured for every transformed task in any cluster.

Thus, Equations (5.18)-(5.20) delay any job release by a bounded amount, which implies that the

execution rate and the relative deadline of each task is unchanged. Note also that the release time

179

of any job τhl,j with predecessor jobs is redefined to be at least Fmax(pred(τhl,j), υ
h
l,j). Hence, the

schedule preserves the precedence constraints enforced by the PGM model. Furthermore, since the

release time of each τhl,j (j > 1) is redefined to be at least that of τhl,j−1 plus dhl , τl executes as a

sporadic task with a period of dhl .

Example. Suppose that DAG τ2 in Figure 5.9 is to be assigned to clusters in a way such that τ1
1

and τ2
1 are assigned to different clusters. For any job τ2

2,j of τ2, its predecessor job is τ1
2,j . Thus,

assuming B = 2 as in Figure 5.1(c), by Definition 5.7, for any job τ2
2,j , we have v2

2,j =
ρ122
B = 4

2 = 2.

Figure 5.12(a) shows the original job releases for τ1
2 and τ2

2 and Figure 5.12(b) shows the redefined

job releases according to Equations (5.18)-(5.20) and the corresponding job executions. (Insets (c)

and (d) are considered later.) Given that job τ1
2,1 completes at time 4, according to Equation (5.20),

the release of τ2
2,1 is redefined to be at time 6. According to Equation (5.19), the release of τ1

2,2 is

redefined to be at time 6. Then, τ1
2,2 completes at time 8. According to Equation (5.18), the release

of τ2
2,2 is redefined to be at time 10, which is the completion time of its predecessor job τ1

2,2 plus the

data communication time. Similarly, releases of other jobs can be defined by Equations (5.18)-(5.20).

Note that the redefined job releases are in accordance with the sporadic task model. Moreover, τ1
2 and

τ2
2 execute as if they were ordinary sporadic tasks, and yet all precedence constraints are satisfied.

5.2.5 Tardiness Bound

Given a PGM-specified system, by applying the strategy presented above, we obtain a transformed

task system τ containing only independent sporadic tasks. Then, we can use GEDF to schedule tasks

within each cluster with no capacity loss.

In the previous section, we derived a tardiness bound for any PGM system scheduled on a

multiprocessor (which can be considered as a single cluster, as a special case of our multi-cluster

system) under GEDF, without considering the communication time, as stated below.

Theorem 5.4. The tardiness of any job τhl,j of any task τhl at depth k within a DAG τl scheduled under

GEDF on a multiprocessor is at most (k+1) ·∆+3(k+1) ·ymaxl , where ymaxl = max(y1
l , y

2
l , ..., y

z
l)

(z is the number of nodes within τl) and ∆ denotes the tardiness bound of τl with respect to its

180

1

redefined
release

1Ƭ21(1,4,4,2)

Ƭ22(4,12,4,2)

original
release

2 3

2 3

Ƭ21(1,4,4,2)

Ƭ22(4,12,4,2)

(a) Original releases

(c) Redefined releases without communication delay

i
the ith job
execution

data communication
delay

4

early
release

0 4 8 12 16 time

1

1Ƭ21(1,4,4,2)

Ƭ22(4,12,4,2)

2 3

2 3 4

(b) Redefined releases with communication delay

1

1Ƭ21(1,4,4,2)

Ƭ22(4,12,4,2)

2 3

2 3 4

(d) Early-releasing

Figure 5.12: Illustrating various ideas on redefining job releases for DAG τ2 in Figure 5.9.

181

redefined deadlines, as defined in Definition 5.2, i.e.,

tf (τhl,j)− d(τhl,j) ≤ ∆. (5.23)

Figure 5.12(b) shows the redefined releases and the job executions after considering data

communication times (as covered earlier). Figure 5.12(c) shows the redefined releases and the

corresponding job executions assuming no data communication time for DAG τ2. As seen, the data

communication further delays the redefined releases to later points of time. By bounding such data

communication times and appropriately incorporating them into the prior tardiness bound (i.e., the

one assuming no communication time), we are able to derive a final tardiness bound for every task in

the given PGM system scheduled under CDAG, as stated in the following theorem. Before proving

Theorem 5.5, we first state two lemmas that have been proved in Section 5.1 for systems without

considering data communications.

Lemma 5.6. For any job τ1
l,j , r(τ

1
l,j)− r1

l,j < 2 · y1
l .

Proof. By (5.19), r(τ1
l,j) is independent of the data communication time. Thus, the proof is exactly

the same as the one for proving Lemma 5.3 in Section 5.1.

Lemma 5.7. For any two jobs τhl,j and τhl,k of τhl , where j < k, i · yhl ≤ rhl,j < (i+ 1) · yhl (i ≥ 0),

and (i+ w) · yhl ≤ rhl,k < (i+ w + 1) · yhl (w ≥ 0), we have rhl,k − rhl,j > (k − j) · dhl − 2 · yhl .

Proof. The objective of this lemma is to prove the stated properties on rhl,k and rhl,j , which are the

original releases of any two jobs τhl,j and τhl,k of any task τhl . Thus, the proof does not involve any

data communication time. Therefore, the proof is exactly the same as the one for proving Lemma 5.4

in Section 5.1.

Now we prove the following theorem.

Theorem 5.5. The tardiness of any job τhl,j of any task τhl at depth k within a DAG τl scheduled

under CDAG with respect to its original deadline is at most

(k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)), (5.24)

182

where max(υhl,j) denotes the maximum data communication time between any predecessor job of

τhl,j and τhl,j .

Proof. This theorem can be proved by induction on task depth. In the base case, by Theorem 5.4 and

the fact that τ1
l has no predecessors, its tardiness with respect to its newly-defined deadline, d(τ1

l,j),

is at most ∆. By Lemma 5.6, r(τ1
l,j) − rτ1

l,j < 2 · y1
l . Thus, with respect to its original deadline,

dτ1
l,j , τ

1
l,j has a tardiness bound of ∆ + 2 · y1

l < ∆ + 3 · ymaxl .

For the induction step, let us assume (5.24) holds for any task τwl at depth at most k − 1, k ≥ 1.

Then, the tardiness of any job τwl,v of τwl is at most k ·∆ + 3k · (ymaxl +max(υhl,j)), i.e.,

tf (τwl,v)− dwl,v ≤ k ·∆ + 3k · (ymaxl +max(υhl,j)). (5.25)

We want to prove that for any job τhl,j of any task τhl at depth k, tf (τhl,j)− dhl,j ≤ (k+ 1) ·∆ + 3(k+

1) · (ymaxl +max(υhl,j)). According to (5.18) and (5.20), there are three cases to consider regarding

τhl,j’s newly-defined release time r(τhl,j).

Case 1. r(τhl,j) = rhl,j . By Theorem 5.4, we know that tf (τhl,j) − d(τhl,j) ≤ ∆. Given that

d(τhl,j) = dhl,j , we have tf (τhl,j)− dhl,j ≤ ∆ < (k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)).

Case 2. r(τhl,j) = Fmax(pred(τhl,j), υ
h
l,j). Let τwl,v be the predecessor of τhl,j that has the latest

completion time among all predecessors of τhl,j (τwl,v exists because the depth of τhl is at least one).

Thus, we have

r(τhl,j) = Fmax(pred(τhl,j), υ
h
l,j) ≤ tf (τwl,v) +max(υhl,j). (5.26)

Therefore,

tf (τhl,j)− dhl,j
{by (5.15)}

= tf (τhl,j)− rhl,j − dhl
= tf (τhl,j)− r(τhl,j) + r(τhl,j)− rhl,j − dhl
{by (5.22)}

= tf (τhl,j)− d(τhl,j) + dhl + r(τhl,j)− rhl,j − dhl
{by (5.23)}

183

≤ ∆ + dhl + r(τhl,j)− rhl,j − dhl
= ∆ + r(τhl,j)− rhl,j
{by (5.16) and (5.26)}

≤ ∆ + tf (τwl,v) +max(υhl,j)− rwl,v
{by (5.15)}

= ∆ + tf (τwl,v) +max(υhl,j)− dwl,v + dwl

{by (5.25)}

≤ ∆ + k ·∆ + 3k · (ymaxl +max(υhl,j))

+max(υhl,j) + dwl

{by (5.1)}

< (k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)).

Case 3. j > 1∧r(τhl,j) = r(τhl,j−1)+dhl . Let τhl,q (q < j) denote the last job of τhl released before τhl,j

such that r(τhl,q) = rhl,q or r(τhl,q) = Fmax(pred(τhl,q), υ
h
l,j). τhl,q exists because according to (5.20) and

(5.21), there exists at least one job, τhl,1, such that r(τhl,1) = rhl,1 or r(τhl,1) = Fmax(pred(τhl,1), υhl,j).

Depending on the value of r(τhl,q), we have two subcases.

Case 3.1. r(τhl,q) = rhl,q. By the definition of τhl,q, the release time of any job τhl,k, where q < k ≤ j,

is redefined to be r(τhl,k) = r(τhl,k−1) + dhl . Thus, we have

r(τhl,j) = r(τhl,q) + (j − q) · dhl . (5.27)

Therefore, we have

tf (τhl,j)− dhl,j
{by (5.15)}

= tf (τhl,j)− rhl,j − dhl
= tf (τhl,j)− r(τhl,j) + r(τhl,j)− rhl,j − dhl
{by (5.22)}

= tf (τhl,j)− d(τhl,j) + dhl + r(τhl,j)− rhl,j − dhl
{by (5.23)}

184

≤ ∆ + dhl + r(τhl,j)− rhl,j − dhl
= ∆ + r(τhl,j)− rhl,j
{by (5.27) and Lemma 5.7}

< ∆ + (r(τhl,q) + (j − q) · dhl)− (rhl,q

+(j − q) · dhl − 2 · yhl)

{by the case condition}

= ∆ + 2 · yhl
< (k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)).

Case 3.2. r(τhl,q) = Fmax(pred(τhl,q), υ
h
l,j). Let τwl,v denote a predecessor job of τhl,q with tf (τwl,v) =

Fmax(pred(τhl,q), υ
h
l,j) − dchl,q(τwl,v) = r(τhl,q) − dchl,q(τwl,v), where dchl,q(τ

w
l,v) denotes the data com-

munication time between τwl,v and τhl,q. We have

tf (τhl,j)− dhl,j
{similarly to the derivation in Case 3.1}

< ∆ + (r(τhl,q) + (j − q) · dhl)− (rhl,q

+(j − q) · dhl − 2 · yhl)

= ∆ + r(τhl,q)− rhl,q + 2 · yhl
{by the case condition and (5.16)}

≤ ∆ + tf (τwl,v) + dchl,q(τ
w
l,v)− rwl,v + 2 · yhl

{by (5.15)}

= ∆ + tf (τwl,v) + dchl,q(τ
w
l,v)− dwl,v + dwl + 2 · yhl

{by (5.25)}

≤ ∆ + k ·∆ + 3k · (ymaxl +max(υhl,j)) + dchl,q(τ
w
l,v)

+dwl + 2 · yhl
{by (5.1)}

< (k + 1) ·∆ + 3(k + 1) · (ymaxl +max(υhl,j)).

Note that a per-task response time bound can be obtained from the above tardiness bound by

adding the task’s relative deadline. Such bounds are useful in settings where response time is used as

185

the performance metric.5 Note also that since no capacity loss occurs during the scheduling phase,

any PGM system is schedulable with bounded response times as long as it can be partitioned onto

clusters under CDAG.

5.2.6 Improving Job Response Times

Similar to the discussion in Section 5.1.4, we can apply the early-releasing technique to improve job

response times.

According to Equations (5.18)-(5.20), we delay job releases to transform DAGs into sporadic

tasks. However, excessive release delays are actually unnecessary and actual response times can be

improved by applying early-releasing. The earliest time at which job τhl,j may execute is defined by

its early-release time ε(τhl,j), where ε(τhl,j) ≤ r(τhl,j). For any job τhl,j , its early-releasing time can be

defined as

ε(τhl,j) =

rhl,j if h = 1

Fmax(pred(τhl,j), υ
h
l,j) if h > 1.

Thus, an unfinished job τhl,j is eligible for execution at time t if τhl,j−1 has completed by t (if j > 1)

and t ≥ ε(τhl,j).

Example. Consider again the scheduling of τ2 as shown in Figure 5.12(b). Figure 5.12(d) shows

early releases as defined above and the corresponding GEDF schedule. As seen, most jobs’ response

times are improved. For instance, τ2
2,2 now completes at time 10, two time units earlier than the case

without early-releasing.

5.2.7 Experiments

In this section, we describe experiments conducted using randomly-generated DAG sets to evaluate

the effectiveness of CDAG in minimizing capacity loss and total communication cost. We do this

by comparing CDAG with the optimal ILP solution. The experiments focus on three performance

metrics: (i) capacity loss, (ii) total communication cost, and (iii) each test’s runtime performance.

In our experiments, we selected a random target size for DAGs, from at least one task to 100

per DAG. Then tasks within each DAG were generated based upon distributions proposed by Baker

5In some PGM-specified applications, deadlines are not specified but bounded response times are still required [51].

186

[8]. The source task of each DAG was assumed to be released sporadically, with a period uniformly

distributed over [10ms, 100ms]. The produce amount of each edge was varied from 10 data units to

1000 data units. For every edge of each DAG, its produce amount, threshold, and consume amount

were assumed to be the same. Valid execution rates were calculated for non-source tasks within

each DAG using results from Section 5.1. Task utilizations were distributed using four uniform

distributions, [0.05, 0.2] (light), [0.2, 0.5] (medium), [0.5, 0.8] (heavy), and [0.05, 0.8] (uniform).

Task execution costs were calculated from execution rates and utilizations. We generated six clusters,

each with a random processor count from 4 to 16, with a total processor count of 48. We assumed

B = 10 and b = 1000. For each choice of utilization distribution, a cap on overall utilization

was systematically varied within [16, 48]. For each combination of utilization cap and utilization

distribution, we generated 100 DAG sets. Each such DAG set was generated by creating DAGs until

total utilization exceeded the corresponding utilization cap, and by then reducing the last DAG’s

utilization so that the total utilization equalled the utilization cap.

The schedulability results that were obtained are shown in Figures 5.13-5.16. In all of these

Figures, “CDAG” denotes the schedulability results achieved by CDAG, “Thm. 1 Bound” denotes the

worst-case utilization bound of CDAG as stated in Theorem 1, and “ILP” denotes the schedulability

results achieved by ILP. Each curve in each figure plots the fraction of the generated DAG sets that

the corresponding approach successfully scheduled, as a function of total utilization. (Note that

the range of the x-axis in all insets is given by [43, 48].) As Figures 5.13-5.16 show, under all four

utilization distributions, CDAG yields schedulability results that are very close to that achieved by

ILP. Moreover, the worst-case utilization bound in Theorem 1 is reasonable. For example, under

the light per-task utilization distribution, the worst-case utilization bound of CDAG ensures that

any DAG set with a total utilization up to 47 can be successfully scheduled in a distributed system

containing 48 processors.

Table 5.3 shows the total communication cost achieved by both approaches categorized by the

total utilization Usum using the light per-task utilization distribution. In these experiments, all DAG

sets were guaranteed to be schedulable since the total utilization of any DAG set (at most 44) is

less than the worst-case utilization bound of CDAG, which is 47. In Table 5.3, for each Usum, the

total communication cost under ILP or CDAG was computed by taking the average of the total

communication cost over the 100 generated DAG sets. The total communication cost for each

187

0 %

20 %

40 %

60 %

80 %

100 %

 43 44 45 46 47 48

Sc
he

du
la

bi
lit

y

DAG set utilization cap

Light per-task utilization

CDAG
Thm. 1 Bound

ILP

Figure 5.13: Schedulability results: light per-task utilization distribution.

0 %

20 %

40 %

60 %

80 %

100 %

 43 44 45 46 47 48

Sc
he

du
la

bi
lit

y

DAG set utilization cap

Medium per-task utilization

CDAG
Thm. 1 Bound

ILP

Figure 5.14: Schedulability results: medium per-task utilization distribution.

188

0 %

20 %

40 %

60 %

80 %

100 %

 43 44 45 46 47 48

Sc
he

du
la

bi
lit

y

DAG set utilization cap

Heavy per-task utilization

CDAG
Thm. 1 Bound

ILP

Figure 5.15: Schedulability results: heavy per-task utilization distribution.

0 %

20 %

40 %

60 %

80 %

100 %

 43 44 45 46 47 48

Sc
he

du
la

bi
lit

y

DAG set utilization cap

Uniform per-task utilization

CDAG
Thm. 1 Bound

ILP

Figure 5.16: Schedulability results: uniform per-task utilization distribution.

189

Table 5.3: Total communication cost.

Usum=16 Usum=20 Usum=24 Usum=28 Usum=32 Usum=36 Usum=40 Usum=44

ILP 6.4 9.2 13.3 21.2 22.5 26.2 24.8 32.6

CDAG-
runtime 78.1 87.2 130.5 146.3 173.1 187.7 281.2 248.7

CDAG-
bound

6221.6 7950.4 9416.2 10264.8 9879.8 12001 11731.2 11015.1

Total 34588.9 45048.8 52968.1 58895.3 69895.9 77125.5 86741.4 93775.9

DAG set
 utilization

Method

Usum=16 Usum=20 Usum=24 Usum=28 Usum=32 Usum=36 Usum=40 Usum=44

ILP 6.4 7.5 10.6 17 22.5 26.2 29.8 32.6

CDAG 78.1 87.2 130.5 146.3 173.1 187.7 231.2 248.7

Total 34588.9 45048.8 52968.1 58895.3 69895.9 77125.5 86741.4 93775.9

DAG set
 utilization

Method

Table 5.4: Runtime performance.

N=100 N=200 N=300 N=400 N=500

ILP 51.9 (s) 165.9 (s) 412.2 (s) 2848.1 (s) 37791.8 (s)

CDAG 0.48 (ms) 0.58 (ms) 0.62 (ms) 0.56 (ms) 0.71 (ms)

of tasks

Method

generated DAG set is given by $sum as defined in Definition 5.4. The label “Total” represents the

maximum communication cost of the DAG set, which is given by
∑

τi∈ζ
∑

ejki ∈τi
wjki where (as

noted earlier) ζ represents the corresponding DAG set. As seen, CDAG is effective in minimizing the

total communication cost. The total communication costs achieved by CDAG are close to the optimal

ones achieved by ILP and are significantly smaller than the maximum communication costs. For

example, when Usum = 44, CDAG achieves a total communication cost of 248.7 data units while

ILP gives an optimal solution of 32.6 data units, both of which are almost negligible compared to the

maximum communication cost, which is 93775.9 data units.

Regarding runtime performance, Table 5.4 shows the average time to run an experiment as a

function of the number of tasks N using the light per-task utilization distribution. For each N in the

set {100, 200, 300, 400, 500}, we generated ten DAG sets and recorded the average running time of

both ILP and CDAG. CDAG consistently took less than 1 ms to run while ILP ran for a significantly

longer time, sometimes prohibitively so. For instance, when N = 500, ILP took more than 10 hours

on average per generated DAG set.

190

5.3 Chapter Summary

In this chapter, we proposed a variant of EDF that can achieve no capacity loss for scheduling PGM

graphs in multicore systems while providing timing correctness guarantees. We later extended this

work to support PGM graphs in a distributed system containing multiple multicore-based clusters.

The impact of this work is demonstrated by the fact that we closed a problem that stood open

for 12 years. Since PGM is widely used today in the design of many signal processing and radar

applications deployed in a number of submarines and helicopters in service, these research results

provide designers of such military systems a set of analytically correct and practically efficient

methodologies that can be applied to avoid capacity loss. Such military systems are often mission-

critical; any reduction of the number of hardware components is thus significant as it reduces

complexity and improves reliability.

191

CHAPTER 6

Multiprocessor Scheduling of SRT Tasks with Non-
Preemptive Sections, Self-Suspensions, and Graph-

based Precedence Constraints1

In the previous three chapters, we presented solutions that can support real-time tasks with

either self-suspensions or graph-based precedence constraints on multiprocessors. In this chapter, we

consider this issue in the context of sporadic task systems in which mixed types of runtime behaviors

may exist due to non-preemptive sections, self-suspensions, and graph-based precedence constraints.

The timing correctness of such a system may be quite difficult to analyze, particularly if deadline

misses cannot be tolerated. However, we show in this chapter that the situation is not nearly so bleak,

if bounded deadline tardiness is acceptable.

Specifically, we address the problem of deriving conditions under which bounded tardiness

can be ensured when all of the above-mentioned behaviors—non-preemptive sections, graph-based

precedence constraints,2 and self-suspensions—are allowed. For conciseness, we use NGS task

systems to name such systems. In considering this problem, we focus specifically on the GEDF

algorithm. Our main result is a transformation process that converts any implicit-deadline sporadic

NGS task system into a simpler system with only self-suspensions. In the simpler system, each task’s

maximum job response time is at least that of the original system. This result allows tardiness bounds

to be established by focusing only on the impacts of suspensions.

1Contents of this chapter previously appeared in preliminary form in the following paper:
Cong Liu and James Anderson. Scheduling Suspendable, Pipelined Tasks with Non-Preemptive Sections in Soft Real-
Time Multiprocessor Systems, Proceedings of the 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 23-32, 2010.

2To enable our results to be applied to systems with rather sophisticated graph-based precedence constraints, we
consider PGM task graphs.

The rest of this chapter is organized as follows. Section 6.1 describes our system model.

The transformation discussed above is obtained via a sequence of sub-transformations, which are

described in Sections 6.2.1 and 6.2.2. In Section 6.3, a tardiness bound is derived. Section 6.4

concludes this chapter.

6.1 System Model

We consider the problem of scheduling a set τNGS = {G1, ..., Gn} of n SRT PGM task graphs on

m ≥ 2 identical processors under GEDF, where any task within a graph may self-suspend and contain

non-preemptive sections. As shown in Chapter 5, a PGM task graph can be naturally represented as

a DAG-based RB task. Thus, the more sophisticated PGM task graph considered in this chapter can

be represented as a DAG-based RB self-suspending task (defined in Section 2.1.7), as we discuss in

the next section.

Example. Figure 6.1 depicts an example GEDF schedule of an NGS task system, scheduled on three

processors. This task system contains a PGM task graph containing two subtasks, each with a period

of 10 time units, and another PGM task graph containing three subtasks, each with a period of 10

time units. τ1
1 executes for 2 time units, then suspends for 3 time units, executes for another 2 time

units, and finally suspends for 1 time unit. τ2
1 executes for 4 time units, then suspends for 1 time

unit, and executes for another 2 time units. τ1
2 executes for 3 time units, and then suspends for 1 time

unit. τ2
2 executes for 9 time units. τ3

2 first suspends for 1 time unit, then executes non-preemptively

for 3 time units and then preemptively for another time unit, suspends for 1 time unit, and finally

executes for 4 time units. As seen in the GEDF schedule, τ2
2,1 misses its deadline at time 20 by 1 time

unit, which causes τ3
2,1 to start its first suspension phase at time 21. At time 24, τ3

2,1 starts executing

its first computation phase since τ1
1,3, τ2

1,2, τ1
2,3 are suspended at that time. Since this execution is

non-preemptive, at time 25, τ2
1,2 preempts τ2

2,1 instead of τ3
2,1.

193

Job release Job deadline

1
2
2
2
3
2

1
1

0

2
1

10 20 305 15 25

NPS

NPS: Non-Preemptive SectionsComputation Suspension

Figure 6.1: Example NGS task system.

6.2 Transformation.

In this section, we show how to transform τNGS, a sporadic NGS task system, into a sporadic task

system with only suspensions. This transformation requires two steps:

1. Transform τNGS into τGS, where τGS denotes a fully preemptive suspendable PGM task graph

system, by treating blocking times due to non-preemptive sections as suspensions. This is

dealt with in Section 6.2.1.

2. Transform τGS into τ S, where τ S is a sporadic task system with only suspensions (i.e., it

contains no PGM task graphs and it is fully preemptive), by eliminating graph-based precedence

constraints as done in Chapter 5. This is dealt with in Section 6.2.2.

6.2.1 Transforming τNGS to τGS

We transform τNGS into τGS by treating blocking times due to non-preemptive sections as suspensions.

Definition 6.1. We say that a task system τ is concrete if the actual execution cost and suspension

time of every job of each task is fixed. For any τ (τ may be any of the task systems mentioned in the

roadmap at the end of the prior section), we let τ denote any arbitrary concrete instantiation of it.

A job τhl,j is non-preemptively blocked, or NP-blocked, at time t if it is among m highest-priority

enabled jobs according to GEDF, but it cannot execute because lower-priority jobs are executing

194

t
J

NPS

J’s release time

t

J’s U-predecessorJ’s L-predecessor

NPS

NPS A job with lower priority than job J executes in a non-preemptive section

J
t

J

NPS

J’s original suspension phase

J’s additional suspension phase (in order to model NP-blocking)

J

J is NP-blocked at
its release time

J is NP-blocked at
the end of its

suspension phase

J is NP-blocked at the
end of its PP-blocking

interval

NPS
A job with lower priority than job τh

l,j

executes in a non-preemptive section

t

NPS

τh
l,j is NP-blocked within [t,t1]

t1 t

NPS

τh
l,j suspends within [t,t1]

t1
τh

l,jτh
l,j

Figure 6.2: Modeling NP-blocking as suspension.

non-preemptively at t. This can happen only when τhl,j commences executing one of its computation

phases. Given that any job τhl,j has at most chl such phases and the maximum length of any job’s

non-preemptive section is at most bmax, we have the following lemma.

Lemma 6.1. Any job τhl,j in τNGS can be NP-blocked for at most chl · bmax time units.

Given Lemma 6.1, we can define τGS by simply treating NP-blocking times as suspensions. That

is, we view all non-preemptive sections as preemptive, and for any subtask τhl , we increase shl by

chl · bmax, which by Lemma 6.1 upper-bounds the NP-blocking time of τhl . This is illustrated in

Figure 6.2. The theorem below immediately follows.

Theorem 6.1. For any concrete instantiation τNGS of τNGS, there exists a concrete instantiation τGS

of τGS such that τNGS and τGS have equivalent GEDF schedules.3

Note that this transformation strongly exploits the fact that, in our task model, suspension phases

are upper-bounded, and hence, can be reduced to reflect actual NP-blocking times. Note also that the

“reverse” of this theorem may not hold: for a concrete instantiation τGS of τGS, there may not exist a

concrete instantiation τNGS of τNGS such that τGS and τNGS have equivalent GEDF schedules.

Corollary 4. For any subtask τhl , if the maximum response time of any job of τhl in any GEDF

schedule for τGS is z time units, then the maximum response time of any such job in any GEDF

schedule for τNGS is at most z time units.

3That is, if SNGS (SGS) is the GEDF schedule for τNGS (τGS), then job τhl,j is scheduled at time t in SNGS iff it is
scheduled at time t in SGS.

195

6.2.2 Transforming τGS to τ S

After obtaining τGS, we further transform τGS into τS . τGS can be viewed as a special PGM task

system where subtasks within each PGM may self-suspend. That is, the only difference between τGS

and the ordinary PGM task system considered in Chapter 5 is that subtasks within PGM task graphs

in τGS may self-suspend.

Sections 5.1.1 and 5.1.2 in Chapter 5 demonstrate approaches of transforming an ordinary PGM

task system into an ordinary sporadic task system. We can apply these approaches in order to

transform τGS into τS . As described in Section 5.1.1, we first represent each PGM graph in τGS as

a DAG-based RB task by mapping PGM nodes to RB tasks. Since this process is independent of

whether subtasks within PGM task graphs self-suspend, we can apply the same approach presented

in Section 5.1.1.

We then transform the obtained DAG-based RB task system to an ordinary sporadic self-

suspending task system τ S by applying the approach presented in Section 5.1.2. We are able to apply

this same approach because it only modifies job releases and deadlines, and thus can be applied to

the DAG-based RB task system transformed from τGS. After this transformation, we obtain τS that

consists of a set of independent sporadic self-suspending tasks.

6.3 A Tardiness Bound

We now derive a tardiness bound for the original task system τNGS. As described in Section 5.1.3 in

Chapter 5, this tardiness bound can be obtained by first deriving a tardiness bound for each job with

respect to its redefined deadline (as presented in Theorem 5.1). Since the actual tardiness bound of

any job should be with respect to its original deadline, we then upper-bound the length between each

job’s original deadline and its redefined deadline.

As shown in Theorem 5.1, for ordinary PGM task graphs, we can obtain a set of independent

ordinary sporadic tasks after the transformation. Therefore, Theorem 5.1 applies the tardiness

bound derived for ordinary sporadic task systems in [41]. However, since τ S consists of a set of

self-suspending tasks, we instead apply the tardiness bound derived for sporadic self-suspending task

systems as given in Theorem 3.3 in Section 3.4.5, as stated below.

196

Definition 6.2. Let ∆ =
E − el − sl
m− Um−1

+ ehl + shl , where esum is the sum of all subtasks’ WCET,

emin is the smallest WCET among all subtasks, and Um−1 is the total utilization of m− 1 subtasks

with the largest utilizations.

Note that Definition 6.2 differs from Definition 5.2 in terms of the specific definition of the term

∆. The ∆ terms seen in Theorem 5.1 and Theorem 6.2 given below represent the tardiness bound for

ordinary sporadic task systems and self-suspending task systems, respectively.

Theorem 6.2. In any GEDF schedule for the sporadic task system τ on m processors, if Usum +

∑m
i=1 v

j ≤ m where vj is defined in Definition 3.16 in Section 3.4.1 in Chapter 3, then the tardiness

of any job τhl,j , with respect to its redefined deadline, is at most ∆ defined in Definition 6.2.

We now bound the actual tardiness any job τhl,j may experience with respect to its original

deadline. The following theorem gives such a bound. Let ymaxl = max(y1
l , y

2
l , ..., y

h
l), where h is

the number of subtasks in Gl. Lemma 6.2 and Theorem 6.3 given below were originally proved in

Lemma 5.4 and Theorem 5.5 presented in Section 5.1.3. They continue to hold in this case because

their proofs do not rely on whether jobs self-suspend. Note that in Theorem 6.3, the utilization

constraint Usum+
∑m

i=1 v
j ≤ m and the term ∆ are different from Theorem 5.5 because the tardiness

bound with respect to a job’s redefined deadline and the utilization constraint in this case are given in

Theorem 6.2.

Lemma 6.2. For any two jobs τhl,j and τhl,k of τhl in τRB, where j < k, i ·yhl ≤ rRB(τhl,j) < (i+1) ·yhl
(i ≥ 0), and (i+ w) · yhl ≤ rRB(τhl,k) < (i+ w + 1) · yhl (w ≥ 0), we have rRB(τhl,k)− rRB(τhl,j) >

(k − j) · dhl − 2 · yhl .

Theorem 6.3. In any GEDF schedule for τGS on m processors, if Usum +
∑m

i=1 v
j ≤ m, then the

tardiness of any job τhl,j of a task τhl at depth k, with respect to its original deadline, is at most

(k + 1) ·∆ + 3(k + 1) · ymaxl , where ∆ is given in Definition 6.2.

6.4 Chapter Summary

In this chapter, we presented a method for transforming a sporadic NGS task system into a simpler

sporadic task system with only suspensions. The transformation allows maximum response-time

bounds derived for sporadic suspending task systems to be applied to sporadic NGS task systems.

197

CHAPTER 7

A Response Time Bound for Scheduling Real-Time
Parallel Tasks on a Multiprocessor1

The growing prevalence of multicore platforms has resulted in the wider applicability of parallel

programming models such as OpenMP [28] and MapReduce [36]. Such models can be applied

to parallelize certain segments of programs, thus better utilizing hardware resources and possibly

shortening response times. Many applications implemented under such parallel programming models

have SRT constraints. Examples include real-time parallel video and image processing applications

[5, 43] and computer vision applications such as colliding face detection and feature tracking [66]. In

these applications, providing fast and bounded response times for individual video frames is important,

to ensure smooth video output. However, achieving this at the expense of using conservative HRT

analysis is not warranted. In this chapter, we consider how to schedule parallel task systems that

require such SRT performance guarantees on multicore processors.

Parallel task models pose new challenges to real-time scheduling since intra-task parallelism has

to be specifically considered. Recent work (as reviewed in Section 2.3.5) on scheduling real-time

sporadic parallel tasks have focused on providing HRT guarantees under GEDF or PDM scheduling.

However, as discussed above, viewing parallel tasks as HRT may be overkill in many settings and

furthermore may result in significant schedulability-related capacity loss. Thus, our focus is to instead

ensure bounded response times in supporting parallel task systems by applying SRT scheduling

analysis techniques. Specifically, we consider whether it is possible to specify reasonable constraints

under which bounded response times can be guaranteed using global real-time scheduling techniques,

for sporadic parallel task systems that are not HRT in nature.

1Contents of this chapter previously appeared in preliminary form in the following paper:
Cong Liu and James Anderson. Supporting Soft Real-Time Parallel Applications on Multicore Processors, Proceedings
of the 18th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pages
114-123, 2012.

In this chapter, we show that parallel task systems can be supported on multiprocessors under

GEDF-like schedulers with bounded response times. Our analysis shows that on a two-processor

platform, no capacity loss results for any parallel task system. Despite this special case, on a platform

with more than two processors, utilization constraints are needed. To discern how severe such

constraints must fundamentally be, we present a parallel task set with minimum utilization that is

unschedulable on any number of processors. This task set violates our derived constraint and has

unbounded response times. The impact of utilization constraints can be lessened by restructuring

tasks to reduce intra-task parallelism. We propose optimization techniques that can be applied to

determine such a restructuring. Finally, we present the results of experiments conducted to evaluate

the applicability of the derived schedulability condition. We describe our parallel task model next.

7.1 System Model and Notation

We consider the problem of scheduling a set τ = {τ1, ..., τn} of n independent sporadic parallel

tasks (defined in Section 2.3.5) on m processors. For clarity, a summary of important terms defined

so far, as well as some additional terms defined later, is presented in Table 7.1. We assume vmaxi ≥ 2

holds for at least one task τi; otherwise, the considered task system is simply an ordinary sporadic

task system (without intra-task parallelism).

Each parallel task τi has a specified relative deadline of di, which may differ from pi (thus, our

analysis is applicable to soft real-time arbitrary-deadline sporadic parallel tasks). We do not use such

deadlines in prioritizing jobs, but rather assign each job τi,k a priority point at di,k = ri,k + pi and

schedule jobs on a global earliest-priority-point-first (GEPPF) basis. That is, earlier priority points

are prioritized over later ones.2 We assume that ties are broken by task ID (lower IDs are favored).

Note that the parallel task model and the PGM task graph model (presented in Chapter 5) are

not equivalent (i.e., a parallel task cannot be modelled as a PGM graph, and vice versa) as the

former expresses intra-task precedence constraints while the later expresses inter-task precedence

constraints.

2GEDF becomes a special case of GEPPF when di = pi holds for each τi.

199

Table 7.1: Summary of notation.

τ ji,h jth segment of the hth job of task τi

τ j,ki,h kth thread of segment τ ji of the hth job of task
τi

si Number of segments of task τi

ej,ki Worst-case execution cost of thread τ j,ki

eji Worst-case execution cost of segment τ ji

ei Worst-case execution cost of task τi

emini Best-case execution cost of task τi

vmaxi Maximum number of threads in any segment
of task τi

vmaxi Maximum number of threads of any segment
of the task that has the ith maximum number
of threads of any segment among all tasks

7.2 Response Time Bound

We derive a response time bound for GEPPF by comparing the allocations to a task system τ in a

PS schedule (Definition 2.5) and an actual GEPPF schedule of interest for τ , both on m processors,

and quantifying the difference between the two. Note that parallelism is not considered in the PS

schedule. A valid PS schedule exists for τ if Usum ≤ m holds. Also note that according to the

parallel task model, the per-task utilization could be greater than one. This is a key difference in

comparison to most prior work where a PS schedule is considered. A PS schedule for an example

parallel task system is shown in Figure 7.1.

Our response time bound derivation focuses on a given task system τ . We order jobs in τ by

GEPPF, and break ties by task ID. Let τl,j be a job of a task τl in τ , td = dl,j , and S be a GEPPF

schedule for τ with the following property.

(P2) The response time of every job τi,k of higher priority than τl,j is at most x+ pi + ei in S,

where x ≥ 0.

200

 UNC Chapel Hill C. Liu

 Supporting Complex Time-Sensitive Applications with Dependencies in Multicore-based Systems

7

0
0

0.5

1.0

1.5

2.0
Utilization

5 10 15 20 25 30 35 40

τ1,2τ1,1 τ1,3 τ1,4

τ2,1 τ2,2

Figure 7.1: PS schedule for a task system containing two tasks. Task τ1 has a period of 10 time units
and a utilization of 1.5. Task τ2 has a period of 20 time units and a utilization of 0.5. As seen in the
PS schedule, intra-task parallelism is not considered and each job completes exactly at its deadline.

Our objective is to determine the smallest x such that the response time of τl,j is at most

x + pl + el. This would by induction imply a response time of at most x + pi + ei for all jobs of

every task τi, where τi ∈ τ . We assume that τl,j finishes after td, for otherwise, its response time is

trivially no greater than pl. The steps for determining the value for x are as follows.

1. Determine an upper bound on the work pending for tasks in τ that can compete with τl,j after

td. This is dealt with in Lemmas 7.1 and 7.2 in Section 7.2.1.

2. Determine a lower bound on the amount of work pending for tasks in τ that can compete with

τl,j after td, required for the response time of τl,j to exceed x+ pl + el. This is dealt with in

Lemma 7.3 in Section 7.2.2.

3. Determine the smallest x such that the response time of τl,j is at most x+ pl + el, using the

above upper and lower bounds. This is dealt with in Theorem 7.1 in Section 7.2.3.

Definition 7.1. d = {τi,h : (di,h < td) ∨ (di,h = td ∧ i ≤ l)}.

d is the set of jobs with deadlines at most td with priority at least that of τl,j . These jobs do

not execute beyond td in the PS schedule. Note that τl,j is in d. Also note that jobs not in d have

lower priority than those in d and thus do not affect the scheduling of jobs in d. For simplicity, we

will henceforth assume that no job not in d executes in either the PS or GEPPF schedule. To avoid

distracting “boundary cases,” we also assume that the schedule being analyzed is prepended with a

schedule in which no deadlines are missed that is long enough to ensure that all previously released

jobs referenced in the proof exist.

201

tn

6

tn td
busy

End of the latest non-busy
interval for d before td

Figure 7.2: Definition of tn.

According to Property (P2), job τl,j−1 has a response time of at most x + pl + el. Thus, the

completion time of τl,j−1, denoted tp (p for predecessor), is given by

tp ≤ rl,j−1 + pl + x+ el ≤ rl,j + x+ el = td − pl + x+ el. (7.1)

Definition 7.2. A time instant t is busy for a job set J if all m processors execute jobs in J at t. A

time interval is busy for J if each instant within it is busy for J .

The following claim follows from the definition of LAG.

Claim 8. If LAG(d, t2, S) > LAG(d, t1, S), where t2 > t1, then [t1, t2) is non-busy for d. In other

words, LAG for d can increase only throughout a non-busy interval.

An interval could be non-busy for d only if there are not enough enabled jobs in d to occupy all

available processors.

Since d includes all jobs of higher priority than τl,j , the competing work for τl,j after time td is

given by the amount of work pending at td for jobs in d, which is given by LAG(d, td, S).

7.2.1 Upper Bound

In this section, we determine an upper bound on LAG(d, td, S). We first upper bound lag(τi, t, S)

(t ∈ [0, td]) in Lemma 7.1 below. Then, in Lemma 7.2, we upper bound LAG(d, td, S) by summing

individual task lags.

Definition 7.3. Let tn be the end of the latest non-busy interval for d before td, if any; otherwise, let

tn = 0 (see in Figure 7.2).

By the above definition and Claim 8, we have

LAG(d, td, S) ≤ LAG(d, tn, S). (7.2)

202

Lemma 7.1. lag(τi, t, S) ≤ ui · x+ (ui + 1) · ei for any task τi and t ∈ [0, td].

Proof. Let di,k be the deadline of the earliest pending job of τi, τi,k, in the schedule S at time t. If

such a job does not exist, then lag(τi, t, S) = 0, and the lemma holds trivially. Let γi be the amount

of work τi,k performs before t.

By the selection of τi,k, we have

lag(τi, t, S) =
∑

h≥k
lag(τi,h, t, S)

= A(τi,k, ri,k, t, PS)−A(τi,k, ri,k, t, S)

+
∑

h>k

(
A(τi,h, ri,h, t, PS)

−A(τi,h, ri,h, t, S)
)
. (7.3)

By the definition of PS, A(τi,k, ri,k, t, PS) ≤ ei, and
∑

h>k A(τi,h, ri,h, t, PS) ≤ ui ·

max(0, t − di,k) (the latter follows because each such job τi,h executes with rate ui in PS while

active, and the sum of the active intervals under consideration is at most t− di,k). By the selection of

τi,k, A(τi,k, ri,k, t, S) = γi, and
∑

h>k A(τi,h, ri,h, t, S) = 0. By setting these values into (7.3), we

have

lag(τi, t, S) ≤ ei − γi + ui ·max(0, t− di,k). (7.4)

There are two cases to consider.

Case 1. di,k ≥ t. In this case, (7.4) implies lag(τi, t, S) ≤ ei − γi ≤ ui · x+ (ui + 1) · ei.

Case 2. di,k < t. In this case, because t ≤ td and dl,j = td, τi,k is not the job τl,j . Thus, by

Property (P2), τi,k has a response time of at most x + pi + ei. Since τi,k is the earliest pending

job of τi at time t, the earliest possible completion time of τi,k is at t+. Thus, we have t − ri,k <

t+ − ri,k ≤ x+ pi + ei, which (because di,k = ri,k + pi) implies t− di,k = t− ri,k − pi < x+ ei.

Setting this value into (7.4), we have lag(τi, t, S) < ei−γi+ui·(x+ei) ≤ ui·x+(ui+1)·ei.

Lemma 7.2 below upper bounds LAG(d, td, S). We first define some needed terms.

Definition 7.4. Let U be the sum of the min(m− 1, n) largest task utilizations. Let E be the largest

value of the expression
∑

τi∈γ
(
(ui + 1) · ei

)
, where γ denotes any set of min(m− 1, n) tasks in τ .

Lemma 7.2. LAG(d, td, S) ≤ U · x+ E.

203

Proof. By (7.2), we have LAG(d, td, S) ≤ LAG(d, tn, S). By summing individual task lags at tn,

we can bound LAG(d, tn, S). If tn = 0, then LAG(d, tn, S) = 0, so assume tn > 0. Consider the

set of tasks β = {τi : ∃τi,h in d such that τi,h is enabled at t−n }. Given that the instant t−n is non-busy,

there are not enough enabled jobs in d to occupy all m processors. More precisely, there are not

enough enabled threads belonging to jobs in d to occupy all m processors. There could be at most

min(m− 1, n) parallel tasks that have enabled jobs at t−n since each such parallel task has at least

one enabled thread at t−n ; that is, |β| ≤ min(m− 1, n).

If task τi does not have pending jobs at t−n , then lag(τi, tn, S) ≤ 0. Therefore, we have

LAG(d, td, S)

{by (7.2)}

≤LAG(d, tn, S)

{by (2.5)}

=
∑

τi:τwi,h∈d

lag(τi, tn, S)

≤
∑

τi∈β
lag(τi, tn, S)

{by Lemma 7.1}

≤
∑

τi∈β

(
ui · x+ (ui + 1) · ei).

By Definition 7.4 and because |β| ≤ min(m − 1, n), we have LAG(d, td, S) ≤ ∑τi∈β
(
ui ·

x+ (ui + 1) · ei) ≤ U · x+ E.

7.2.2 Lower Bound

In the following lemma, we determine a lower bound on LAG(d, td, S) that is necessary for the

response time of τl,j to exceed x+ pl + el.

Definition 7.5. If any thread of any segment of job τi,h is enabled at time t but does not execute at t,

and at least one processor is executing some job other than τi,h at t, then τi,h is preempted at t (see

Figure 7.3).

204

9

t

preemption

τ1,11,1

τ1,11,2

τ1,11,3

t

τ1,11,1

τ1,11,3

τ1,11,2Proc. 1

Proc. 2 τ2,11,1

(a) τ1,1 is not preempted at t

τ2,11,1

(b) τ1,1 is preempted at t

Figure 7.3: Illustration of a preemption. Job τ1,1 has one segment with three parallel threads, executed
on two processors. In inset (a), although τ1,3

1,1 is enabled but does not execute at time t, τ1,1 is not
preempted at t since both processors are executing threads of τ1,1. In inset (b), τ1,1 is preempted by
τ2,1 at t.

Definition 7.6. Let vmaxi denote the maximum number of threads of any segment of the task that

has the ith maximum number of threads of any segment among tasks in τ .

If
∑n

i=1 vmaxi ≤ m, then each thread of each segment of each task in τ can be executed on a

processor without being preempted, which implies that each task τk ∈ τ has a bounded response

time of emink < x+ pk + ek. Thus, we consider the other case, where
∑n

i=1 vmaxi > m. Moreover,

since we assume that there exists at least one task τk ∈ τ with vmaxk ≥ 2 (as discussed in Section 2),

we have vmax1 ≥ 2. Thus, if n > m, then
∑m

i=1 vmaxi > m holds. Therefore, we have

min(m,n)∑

i=1

vmaxi > m. (7.5)

Definition 7.7. Let

Q =

2 if vmax1 > m

min{k |
k∑

i=1

vmaxi > m} if vmax1 ≤ m.

Q is used in Lemma 7.3 below to obtain a lower bound on LAG(d, td, S); the two conditions in

the definition of Q arise because of different subcases considered in the proof of Lemma 7.3. Note

that by the above definition and (7.5), we have

2 ≤ Q ≤ min(m,n) ≤ m. (7.6)

Lemma 7.3. If the response time of τl,j exceeds x+pl+el, then LAG(d, td, S) > Q·x−(m−1)·el.

205

Proof. Throughout the proof of this lemma, we assume
∑n

i=1 vmaxi > m and vmax1 ≥ 2 both hold,

for reasons discussed above. We prove the contrapositive: we assume that

LAG(d, td, S) ≤ Q · x− (m− 1) · el (7.7)

holds and show that the response time of τl,j cannot exceed x + pl + el. Let ηl be the amount of

work τl,j performs by time td in S. Define y as follows.

y =
Q

m
· x+

ηl
m

(7.8)

Let W be the amount of work due to jobs in d that can compete with τl,j after td + y, including the

work due for τl,j . Let tf be the completion time of τl,j . We consider two cases.

Case 1. [td, td + y) is a busy interval for d. In this case, we have

W = LAG(d, td, S)−my

{by (7.7)}

≤ Q · x− (m− 1) · el −my

{by (7.8)}

= Q · x− (m− 1) · el −Q · x− ηl

= −(m− 1) · el − ηl

< 0.

Because GEPPF is work-conserving (i.e., GEPPF idles a processor only when there is no enabled

job), at least one processor is busy until τl,j completes. Thus, the amount of work performed by the

system for jobs in d during the interval [td+y, tf) is at least tf−td−y. Hence, tf−td−y ≤W < 0.

Therefore, the response time of τl,j is

206

subcase 2.1

11

td tp ts tf ≤ ts+el+sl-ηl

 < td+y+el+sl-ηl

Earliest non-busy
instant in [td,td+y)

τl,j is not preempted
after ts

td+y

Figure 7.4: Subcase 2.1

tf − rl,j = tf − td + pl

< y + pl

{by (7.8)}

=
Q

m
· x+

ηl
m

+ pl

{by (7.6)}

≤ x+ el + pl.

Case 2. [td, td + y) is a non-busy interval for d. Let ts ≥ td be the earliest non-busy instant in

[td, td + y). Recall (see (7.1)) that tp is the completion time of job τl,j−1. We consider three subcases.

Subcase 2.1. tp ≤ ts and τl,j is not preempted within [tp, ts). As illustrated in Figure 7.4, in this

case, τl,j can start execution at ts because ts is non-busy. Since τl,j is not preempted within [ts, tp),

τl,j completes by ts + el − ηl. Thus, because ts < td + y, τl,j finishes by time

ts + el − ηl < td + y + el − ηl

{by (7.8)}

= td +
Q

m
· x+

ηl
m

+ el − ηl

{by (7.6)}

≤ rl,j + pl + x+ el.

207

Subcase 2.2 tp ≤ ts and τl,j is preempted within [tp, ts). If tf ≤ y + td, then

tf − rl,j ≤ y + td − rl,j

{by (7.8)}

=
Q

m
· x+

ηl
m

+ pl

{by (7.6)}

≤ x+ el + pl.

So assume tf > y + td. Let t1 > ts be the earliest time when τl,j is preempted. As shown in

Figure 7.5, by the definition of ts and t1, τl,j executes throughout [ts, t1) without being preempted.

Because τl,j is preempted at t1, t1 is busy with respect to d. Let t2 be the last time τl,j resumes

execution after being preempted if such a time exists; if such a time does not exist, which implies that

τl,j is preempted until tf , then let t2 = tf (note that by Definition 7.5, some threads of τ jl can execute

while τ jl is preempted). Within [t1, t2), τl,j could be preempted multiple times. By Definition 7.5, all

such intervals during which τl,j is preempted must be busy in order for the preemption to happen.

Given that tf ≤ t2 + el − ηl, if t2 ≤ y + td, then tf ≤ y + td + el − ηl, in which case, because

td − rl,j = pl, the response time of τl,j is

tf − rl,j ≤ y + pl + el − ηl

{by (7.8)}

≤ Q

m
· x+ pl + el

{by (7.6)}

≤ x+ pl + el,

as required.

If t2 > td + y, then the amount of work due to d performed within [td, td + y) is at least

my− (m− 1) ·min(el, y) because all intervals during which τl,j is preempted are busy, and τl,j can

execute for at most el time in [td, y+ td). (Within intervals in [ts, td + y) where τl,j is not preempted,

at least one processor is occupied by τl,j .) Thus, the amount of work that can compete with τl,j after

208

 UNC Chapel Hill C. Liu

 Supporting Complex Time-Sensitive Applications with Dependencies in Multicore-based Systems

subcase 2.2

4

td ts t1 y+td t2 tf

τl,j
executes

without being
preempted

Busy
Busy interval

where τl,j
is preempted

Busy interval
where τl,j

is preempted

τl,j
executes

without being
preempted

τl,j
executes

without being
preempted

Figure 7.5: Subcase 2.2

td + y is

W ≤ LAG(d, td, S)− (my − (m− 1) ·min(el, y))

{by (7.7)}

≤ Q · x− (m− 1) · el − (my − (m− 1) ·min(el, y))

≤ Q · x−my

{by (7.8)}

= −ηl

≤ 0.

Since W is defined to be the amount of work due to jobs in d that can compete with τl,j after td + y

and W ≤ 0, the latest completion time of τl,j is at td + y + el − ηl. Therefore, the response time of

τl,j is

tf − rl,j ≤ td + y + el − ηl − rl,j

= y + el − ηl + (td − rl,j)

= y + el − ηl + pl

{by (7.8)}

=
Q

m
· x+

ηl
m

+ el − ηl + pl

{by (7.6)}

≤ x+ el + pl.

209

 UNC Chapel Hill C. Liu

 Supporting Complex Time-Sensitive Applications with Dependencies in Multicore-based Systems

subcase 2.3

6

td ts tp S(τl,j)

Busy
Busy
due to

preemp
tion

τl,j
executes
without
being

preempted

tf

τl,j

Busy
due to

preemp
tion

τl,j

Busy
due to

preemp
tion

Work performed
during [ts, tp) is at

least: Q⋅(tp-ts)

Work performed during [S(τl,j), tf) is
at least: m⋅(tf - S(τl,j)) - (m-1)⋅el

Figure 7.6: Subcase 2.3

Subcase 2.3: tp > ts. The earliest time τl,j can commence execution is tp, as shown in

Figure 7.6. Let S(τl,j) be the time when τl,j starts execution for the first time. If τl,j is not preempted

after tp, then τl,j starts execution at tp and completes no later than tp + eminl . Thus, we have

tf − rl,j =tp + eminl − rl,j

{by (7.1)}

≤td − pl + x+ el + eminl − rl,j

=x+ el + eminl

{because eminl ≤ pl}

≤x+ el + pl.

The other possibility is that τl,j gets preempted after tp. Let λ denote the set of tasks including

τl that have ready jobs in d at any time instant within [ts, tp).

We now prove that |λ| ≥ Q holds. By Definition 7.5, in order for τl,j to be preempted after tp,

the number of processors required by tasks in λ (note that τl ∈ λ) at some time instant after tp must

exceed m. Thus, the maximum total number of threads of tasks in λ that can execute in parallel at

the same time must exceed m, which gives

∑

τi∈λ
vmaxi > m. (7.9)

210

Thus, by the definition of vmaxk , we have
∑|λ|

k=1 vmaxk ≥
∑

τi∈λ v
max
i

{by (7.9)}
> m. By

Definition 7.7, we consider two cases: vmax1 ≤ m and vmax1 > m. If vmax1 ≤ m, then |λ| ≥ Q

holds. On the other hand, if vmax1 > m, then although
∑|λ|

k=1 vmaxk > m may hold when |λ| = 1,

λ clearly needs to contain at least two tasks in order for τl,j to be preempted (namely, τl and at least

one other task). Thus, |λ| ≥ Q also holds in this case.

Because |λ| ≥ Q, we know that at least Q tasks have ready jobs in d at any time instant within

[ts, tp), which occupy at least Q processors throughout the interval [ts, tp). Thus, the amount of work

due to d performed in [ts, tp) is at least Q · (tp − ts). We now complete the proof of Subcase 7.2.2

(and thereby Lemma 7.3).

By the definitions of ts and tp, [td, ts) and [tp, S(τl,j)) are busy for d. As discussed above, the

amount of work due to d performed in [ts, tp) is at least Q · (tp − ts). Moreover, the amount of work

due to d performed in [S(τl,j), tf) is at least m · (tf − S(τl,j))− (m− 1) · el.3 Thus, we have

LAG(d, td, S) ≥ m · (ts − td) +Q · (tp − ts) +m · (S(τl,j)− tp)

+m · (tf − S(τl,j))− (m− 1) · el.

By (7.7), we therefore have

Q · x− (m− 1) · el

≥ m · (ts − td) +Q · (tp − ts)

+ m · (S(τl,j)− tp)

+ m · (tf − S(τl,j))− (m− 1) · el,

which gives,

3We apply the same reasoning as used in Subcase 2.2. All intervals in [S(τl,j), tf) during which τl,j is preempted are
busy, and τl,j can execute for at most el time in [S(τl,j), tf). (Within such intervals, at least one processor is occupied by
τl,j .)

211

tf − td ≤
Q

m
· x+

(
1− Q

m

)
· (tp − ts). (7.10)

Also, we have tp − ts ≤ tp − td
{by (7.1)}
≤ td − pl + x+ el − td = x− pl + el. Therefore,

tf − rl,j =tf − td + pl

{by (7.10)}

≤Q
m
· x+

(
1− Q

m

)
· (x− pl + el) + pl

{by (7.6)}

≤x+ pl + el.

7.2.3 Determining x

Setting the upper bound on LAG(d, td, S) in Lemma 7.2 to be at most the lower bound in Lemma 7.3

will ensure that the response time of τl,j is at most x+ pl + el. By solving for the minimum x that

satisfies the resulting inequality, we obtain a value of x that is sufficient for ensuring a response time

of at most x+ pl + el. By Lemmas 7.2 and 7.3, this inequality is

U · x+ E

≤ Q · x− (m− 1) · el.

Solving for x, we have

x ≥ E + (m− 1) · el
Q− U . (7.11)

If x equals the right-hand side of (7.11), then the response time of τl,j will not exceed x+pl + el.

A value for x that is independent of the parameters of τl can be obtained by replacing (m− 1) · el
with maxl((m− 1) · el) in (7.11).

212

Theorem 7.1. With x as defined above, the response time for any task τl scheduled under GEPPF is

at most x+ pl + el, provided U < Q, where U and Q are defined in Definition 7.4 and Definition 7.7,

respectively.

7.2.4 A Case with No Utilization Loss

The following corollary shows that GEPPF results in no capacity loss for scheduling any parallel

task system on two processors.

Corollary 5. For two-processor systems, the response time for any task τl scheduled under GEPPF

is at most x+ pl + el, where x =
E + (m− 1) · el
Q−maxi(ui)

and maxi(ui) is the maximum task utilization

of tasks in τ .

Proof. If the system only contains one task, then clearly this task, denoted τ1, has bounded response

time, which is given by emin1 ≤ x + p1 + e1. If the system contains more than one task, then by

Defs. 7.4 and 7.7 and m = 2, we have U = maxi(ui) and Q = 2 = m. Thus, the utilization

constraint in Theorem 7.1 becomes maxi(ui) < Q = m, which always holds.

7.2.5 Cases with Utilization Loss

As shown in Theorem 7.1 and Corollary 5, the utilization constraint U < Q is needed on m ≥ 3

processors while no utilization constraint is needed on m = 2 processors. By Defs. 7.4 and 7.7, in

the worst case, U = Usum and Q = 2. This implies that in some cases even when m is arbitrarily

large, Usum < 2 is needed in our analysis. Since no capacity loss can be achieved on two processors

as shown in Corollary 5, we can schedule any parallel task system with Usum = 2 on only two

processors (i.e., leave the other m− 2 processors idle if m > 2). Thus, in the worst case, Usum ≤ 2

(rather than Usum < 2) is needed under our analysis for any parallel task system to have bounded

response times for m ≥ 3 processors. To discern how severe such constraints must fundamentally

be, we next show that for any m ≥ 3, there exists a parallel task system with a total utilization of

2 + σ that has unbounded response times, where σ can be an arbitrarily small value. This proves

that utilization constraints are fundamental for parallel task systems scheduled on m ≥ 3 processors.

(Note that this task set also violates our derived utilization constraint.)

213

8

Time

τ1

τ2

e 2e 3e 4e0

Proc. 1

Proc. 2

Proc. 3

Proc. m

....

ε

ε

ε

ε 2ε

ε ε

ε

εε

εε

εε

....

Figure 7.7: The worst-case parallel task set.

Worst-case parallel task set. Consider a parallel task system containing two parallel tasks. Task τ1

has only one segment that contains one thread with an execution cost of e time units, and τ1 has a

period of e time units. Thus, τ1 has a utilization of 1.0. Task τ2 has three segments, where the first

segment contains one thread with an execution cost of e− ε time units, where ε can be an arbitrarily

small value, the second segment contains m parallel threads, each of which has an execution cost of

ε time units, and the third segment contains one thread with an execution cost of e time units. τ2 has

a period of 2e and a utilization of
e− ε+m · ε+ e

2e
= 1 +

(m− 1)

2e
· ε. Thus, this task set has a

total utilization of 2 +
(m− 1)

2e
· ε, or rather 2 + σ, where σ =

(m− 1)

2e
· ε can be arbitrarily small.

Figure 7.7 shows the GEPPF schedule of this parallel task system on any m ≥ 3 processors. It is

clearly seen that task τ2’s response time grows unboundedly regardless of m.

7.2.6 Optimization

The capacity loss seen in the utilization constraint U < Q is mainly caused by a small value of Q.

(Note that by Definition 7.4, U is completely determined by the tasks’ execution costs and periods,

which are fixed parameters.) By Definition 7.7, Q depends on vmaxi (1 ≤ i ≤ n). If the value of

vmaxi can be decreased, then the value of Q is increased.

To decrease vmaxi (1 ≤ i ≤ n), we can seek to decrease vmaxk (the maximum number of threads

in any segment of τk) for each task τk ∈ τ . This can be done by splitting any segment of τk with a

214

large number of threads into multiple sequential sub-segments, each of which has a smaller number

of threads, thus decreasing vmaxk . Notice that a critical constraint to enable such splittings is to

ensure that emink ≤ pk still holds for any task τk after splitting; otherwise, response times may grow

unboundedly. Thus, for each task, we need to determine the maximum degree to which its segments

can be split.

We propose algorithm Q-Optimization to increase Q for any given parallel task system τ by

decreasing vmaxk for each task τk ∈ τ , as discussed above. The pseudo-code for this algorithm is

given in Figures 7.8–7.10. Applying this algorithm can also reduce response time bounds, as seen in

Section 5.2.7.

Algorithm description. Algorithm Q-Optimization seeks to increase the value of Q by decreasing

the maximum number of threads in any segment of each task. In the code, vmaxi (vsecmaxi) denotes

the number of threads in the segment of τi with the largest (second largest) number of threads. Note

that if all segments of task τi contain the same number of threads, then vsecmaxi = 0.

We first describe the function SPLIT (shown in Figure 7.9) used in the main algorithm (shown in

Figure 7.8). SPLIT(τk,H) splits the segments with the maximum number of threads into a number

of sequential sub-segments, each with at most H threads (lines 1-4 in function SPLIT). (Note that

several variables used in this function are defined in algorithm Q-Optimization shown in Figure 7.8.)

Threads are assigned to each of these sub-segments in smallest-thread-ID-first order, until either a

sub-segment containsH threads or all threads have been assigned. Then in line 5, function COMBINE

(shown in Figure 7.10) seeks to combine any two sub-segments that originally belong to the same

segment into one segment if the sum of the number of threads in both sub-segments is no greater than

the maximum number of threads of any segment. Finally, function SPLIT calculates emink (line 6 in

function SPLIT) using the method we discussed in Section 2.

Now we describe algorithm Q-Optimization in detail. First we make two important observations.

(i) For any task τi that contains at least two segments having a different number of threads, we desire

to reduce the number of threads of its segments that contain the maximum number of threads among

all segments of τi to no less than vsecmaxi . Further reductions do not reduce vmaxi . (ii) For any task

τi containing at least two segments that have the same number of threads, we desire to reduce the

215

number of threads of such segments by the same amount. Reducing any such segment’s thread count

by a greater amount than the others does not reduce vmaxi .

Motivated by these two observations, the algorithm first executes SPLIT(τk, vsecmaxk), which

splits each of the segments in τk that have the maximum number of threads into a sequential number

of sub-segments, each with at most vsecmaxk threads. After such a splitting, if emink < pk and

vmaxk 6= 1 (lines 5-7 in algorithm Q-Optimization), then we set the further-split-flag to be true, which

implies that there is still the potential for us to split τk to further reduce vmaxk .

On the other hand, if emink > pk after such a splitting (line 8 in algorithm Q-Optimization),

then it implies that such a splitting causes emini to exceed τk’s period (which causes τk to have

unbounded response times) and is thus invalid. Since this splitting is invalid, we restore the task

structure to the one before the splitting (lines 9-10 in algorithm Q-Optimization). Thus, we now

know that it is impossible to split segments in τk to reduce vmaxk to equal vsecmaxk . However, by

splitting, we might still be able to reduce vmaxk to some number between vsecmaxk and vmaxk (realized

by lines 12-14 in algorithm Q-Optimization). Note that the minimum value of such a number is given

by Ck (for otherwise it would have been possible to reduce vmaxk to equal vsecmaxk given that Ck

is initially vsecmaxk + 1.). Therefore, starting from Ck, the algorithm uses the SPLIT function and

compares the resulting emink with pk to determine whether any such splitting is valid (lines 11-18 in

algorithm Q-Optimization using the logic discussed above).

Optimization example. Since we seek to decrease vmaxk for each task τk in any given task system

using the same optimization algorithm, we use one example task τ1 to illustrate the idea. In this

example, m = 4 and τ1 originally has five segments, as illustrated in Figure 7.11(a). The notation

τ i,j1 (e) in Figure 7.11 denotes that thread τ i,j1 has an execution cost of e time units. τ1 has a period

of 18 time units, thus p1 = 18.

Because we want to decrease vmax1 , we first try to decrease the number of threads of segments in

τ1 that have the largest number of threads, which are τ2
1 and τ3

1 (realized by executing algorithm Q-

Optimization). Therefore, according to observations (i) and (ii) discussed above, we split each of τ2
1

and τ3
1 into two sequential sub-segments, one with three threads and the other one with one thread

(realized by executing line 4 in algorithm Q-Optimization), as shown in Figure 7.11(b) (note that in

the figure updated segment notations are used after each splitting). After this splitting, we obtain

216

ALGORITHM: Q-OPTIMIZATION

further-split-flag: BOOLEAN

Ck : INTEGER, INITIALLY vsecmaxk + 1

vmaxk : INTEGER, DEFINED IN SECTION 4

vsecmaxk : INTEGER, DEFINED IN SECTION 4

h: INTEGER, INITIALLY h := 1

Ak : THE SET OF SEGMENTS IN τk THAT HAVE vmaxk THREADS

1 for each parallel task τk ∈ τ

2 further-split-flag := false

3 do

4 SPLIT(τk,vsecmaxk)

5 if emink < pk

6 if vmaxk 6= 1

7 then further-split-flag := true

8 else if emink > pk

9 Restore the structure of τk to the one before the last splitting and

10 update segment notations, Ak, vmaxk , vsecmaxk , and Ck accordingly

11 while Ck < vmaxk

12 SPLIT(τk,Ck)

13 if emink ≤ pk

14 break

15 else

16 Restore the structure of τk to the one before the last splitting and

17 update segment notations, Ak, vmaxk , vsecmaxk , and Ck accordingly

18 Ck := Ck + 1

19 while further-split-flag = true

42
Figure 7.8: Algorithm Q-Optimization.

217

FUNCTION: SPLIT(τk,H)

1 for each segment τ jk ∈ Ak

2 Split τ jk into
⌈vjk
H

⌉
sequential sub-segments, each with at most H threads, and

3 assign threads to each sub-segment in smallest-thread-ID-first order and

4 update segment notations, Ak, vmaxk , vsecmaxk , and Ck accordingly

5 COMBINE(τk)

6 Calculate emink

43

Figure 7.9: Function SPLIT.

FUNCTION: COMBINE(τk)

1 while τhk exists

2 if τhk and τh+1
k (if any) are sub-segments that originally belong to the same segment, and vhk + vh+1

k ≤ vmaxk

3 then combine τhk and τh+1
k into one segment and

4 update segment notations, Ak, vmaxk , vsecmaxk , and Ck accordingly

5 else

6 h := h+ 1

42

Figure 7.10: Function Combine.

emin1 = 15 < p1 = 18 (we apply the same method discussed in Section 2 to obtain emin1). Thus, this

splitting is valid (as verified in lines 5-7 in algorithm Q-Optimization). Now we obtain a task τ1 in

which segments τ2
1 , τ4

1 , and τ6
1 have the largest number of threads (three threads per segment), while

segment τ1
1 has the second largest number of threads (one thread per segment). Therefore, we again

try to reduce the number of threads of τ2
1 , τ4

1 , and τ6
1 to no less than the number of threads of τ1

1 .

This can be achieved by splitting each of these three segments into three sequential segments, each

of which contains only one thread (again, realized by executing line 4 in algorithm Q-Optimization).

However, after such a splitting, we have emin1 = 28 > p1 = 18. Thus, such a splitting is invalid (as

verified in lines 8-10 in algorithm Q-Optimization).

Therefore, our goal now is trying to reduce the number of threads of τ2
1 , τ4

1 , and τ6
1 to a smallest

possible number, which is two threads per segment in this case (realized by executing lines 11-18 in

218

1

τ12,1 (4)

τ12,2 (3)

τ12,3 (2)

τ12,4 (1)

τ11,1 (1)

τ13,1 (4)

τ13,2 (3)

τ13,3 (2)

τ13,4 (1)

τ14,1 (3)

τ14,2 (2)

τ14,3 (1)

τ15,1 (1)(a)

(b)

(d)

τ12,1 (4)

τ12,2 (3)

τ12,3 (2)

τ13,1 (1)τ11,1 (1)

τ14,1 (4)

τ14,2 (3)

τ14,3 (2)

τ15,1 (1)

τ16,1 (3)

τ16,2 (2)

τ16,3 (1)

τ17,1 (1)

τ12,1 (4)

τ12,2 (3)

τ13,1 (2)

τ13,2 (1)
τ11,1 (1)

τ14,1 (4)

τ14,2 (3)

τ15,1 (2)

τ15,2 (1)

τ16,1 (3)

τ16,2 (2)
τ17,1 (1) τ18,1 (1)

e1min = 13

e1min = 15

e1min = 18

(c)
τ12,1 (4)

τ12,2 (3)
τ13,1 (2)τ11,1 (1) τ14,1 (1)

τ15,1 (4)

τ15,2 (3)
τ16,1 (2) τ17,1 (1)

τ18,1 (3)

τ18,2 (2)
τ19,1 (1) τ110,1 (1)

Threads that originally belong to the same segment

Figure 7.11: Illustration of the optimization algorithm.

algorithm Q-Optimization). As shown in Figure 7.11(c), we split each of τ2
1 , τ4

1 , and τ6
1 into two

sequential sub-segments, one with two threads and another one with one thread. Also notice that after

this splitting, τ3
1 and τ4

1 originally belonged to the same segment, and τ6
1 and τ7

1 originally belonged

to the same segment. Since combining τ3
1 and τ4

1 (as well as τ6
1 and τ7

1) into one sub-segment

does not increase vmax1 , we combine them in such a way to decrease emin1 (realized by executing

function COMBINE), as illustrated in Figure 7.11(d). After this splitting, we have emin1 = 18 = p1.

Thus, we cannot split segments any further (as verified in lines 13-14 in algorithm Q-Optimization),

and we successfully reduce vmax1 from 4 to 2.

219

7.2.7 Experimental Evaluation

In this section, we describe experiments conducted using randomly-generated parallel task sets to

evaluate the applicability of the response time bound in Theorem 7.1. Moreover, we evaluate whether

the optimization algorithm can effectively improve schedulability (with respect to bounded response

times) and reduce the bound.

Experimental setup. In our experiments, parallel task sets were generated as follows. The number

of segments of each task was uniformly distributed over [1, 30]. The number of threads of each

segment was distributed differently for each experiment using three uniform distributions: [1, m/2]

(low parallelism), [m/2, m] (high parallelism), and [1, m] (random parallelism), where m is the

number of processors. The execution cost of each thread was uniformly distributed over [1ms,100ms].

The worst-case execution cost ei and the best-case execution cost emini of each parallel task τi were

then calculated using the approach discussed in Section 2. Then, for each task τi, its period was

uniformly distributed over [emini , emini + ei], and its utilization was calculated using ei and pi. We

also varied the system utilization Usum within {0.1, 0.2, ..., m }. For each Usum, 1,000 parallel task

sets were generated for systems with four, six, and eight processors. Each such parallel task set was

generated by creating parallel tasks until total utilization exceeded Usum, and by then reducing the

last task’s utilization so that the total system utilization equalled Usum. For each generated system,

we first checked schedulability (i.e., the ability to ensure bounded response times) and the magnitude

of response time bounds using Theorem 7.1. Then, for each such generated system, we applied

the optimization algorithm and re-checked schedulability and response time bounds. In all figures

and tables presented in this section, we let “Original” and “Optimization” denote results under the

original analysis and results after applying the optimization algorithm Q-Optimization.

Results. The schedulability results that were obtained on four-, six-, and eight-processor systems

with different degrees of intra-task parallelism are shown in Figures 7.12-7.20, respectively. In these

figures, the x-axis denotes Usum and each curve plots the fraction of the generated parallel task sets

the corresponding approach successfully scheduled, as a function of Usum. As seen, our analysis can

provide reasonable schedulability. For example, as shown in Figure 7.12, on four processors with

low parallelism, all parallel task sets have bounded response times until Usum reaches 3.0 and more

220

than 40% of the task sets still have bounded response times when Usum reaches 3.3. Moreover, the

optimization algorithm is able to effectively improve schedulability, especially when the processor

count is large or the intra-task parallelism is high. For example, as illustrated in Figure 7.20, on

eight processors with random parallelism, the optimization algorithm can improve schedulability

by more than 400% in many cases (e.g., when Usum = 3.0). Such improvements tend to increase

with increasing processor count or increasing parallelism. This is because when m becomes larger or

the number of threads per segment increases, it is easier to increase Q by applying the optimization

algorithm, which is intuitive according to the definition of Q. Note that, when schedulability drops

significantly, it does so at an integral values of Usum. For example, as seen in Figure 7.12, when

Usum reaches 3.0, schedulability drops from 100% to less than 50% under Original. This is because

when Usum reaches 3.0, by Definition 7.4, U may also equal 3.0 since some parallel tasks very likely

have utilization greater than 1.0. Thus, Q has to be 4.0 instead of 3.0 (when the utilization is below

3.0) in order for the utilization constraint Q > U to hold; this obviously makes this constraint much

more severe.

Figures 7.21–7.23 show the computed response time bounds using Theorem 7.1 under Original

and Optimization. To better illustrate the magnitude of the response time bounds, we plot relative

response time bounds. A task’s relative response time bound is given by the ratio of its response

time bound divided by its period. The data in Figure 7.12 shows average relative response time

bounds obtained by considering all tasks in certain selected task sets. Such task sets were selected by

considering values of Usum for which 100% schedulability can be ensured, which guarantees all such

task sets valid response time bounds. For example, on four processors, we calculated the average

relative response time bound over task sets whose utilizations are within [0.1, 3) (all such task sets

are schedulable and thus have valid response time bounds). As seen in the figure, our analysis can

achieve reasonable response time bounds. For example, as shown in Figure 7.21, on four processors

with low parallelism, the average relative response time bound is around nine. The benefit of the

optimization algorithm is apparent. For example, as illustrated in Figure 7.22, on eight processors

with high parallelism, we can reduce the average relative response time bound from around 33 to less

than 18. This is because applying the optimization algorithm only increases Q and does not change

other values in the response time bound expression shown in Theorem 7.1.

221

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.12: Schedulability: m = 4, low parallelism.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.13: Schedulability: m = 6, low parallelism.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6 7 8

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.14: Schedulability: m = 8, low parallelism.

222

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.15: Schedulability: m = 4, high parallelism.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.16: Schedulability: m = 6, high parallelism.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6 7 8

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.17: Schedulability: m = 8, high parallelism.

223

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.18: Schedulability: m = 4, random parallelism.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.19: Schedulability: m = 6, random parallelism.

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6 7 8

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

Figure 7.20: Schedulability: m = 8, random parallelism.

224

 0

 5

 10

 15

 20

m=4 m=6 m=8Re
la

tiv
e

re
sp

on
se

 ti
m

e
bo

un
d

Original
Optimization

Figure 7.21: Response time bounds: low parallelism.

 0

 10

 20

 30

 40

 50

m=4 m=6 m=8Re
la

tiv
e

re
sp

on
se

 ti
m

e
bo

un
d

Original
Optimization

Figure 7.22: Response time bounds: high parallelism.

 0

 5

 10

 15

 20

 25

 30

m=4 m=6 m=8Re
la

tiv
e

re
sp

on
se

 ti
m

e
bo

un
d

Original
Optimization

Figure 7.23: Response time bounds: random parallelism.

225

7.3 Chapter Summary

We have presented schedulability analysis for sporadic parallel task systems under GEPPF scheduling.

The proposed analysis shows that such systems can be efficiently supported on multiprocessors

with bounded response times. In experiments presented herein, our analysis is proved to provide

good performance with respect to both schedulability and response time bounds. In future work, it

would be interesting to investigate more practical parallel task models where data is communicated

among segments within a parallel task. Moreover, allowing more general parallel execution patterns

such as cycles would expand the applicability of our results. Last but not the least, as shown by the

worst-case parallel task set (presented in Section 7.2.5), there exist parallel task systems with small

utilizations that cannot be scheduled on a multiprocessor with an arbitrary number of processors.

This fact implies that utilization might not be the best metric to evaluate schedulability for parallel

task sets. In future work, we plan to investigate other metrics such as the ratio between the maximum

degree of parallelism among tasks and the number of processors.

226

CHAPTER 8

Conclusions and Future Work

The main objective of the research reported in this dissertation is to enable real-world real-time

applications containing complex runtime behaviors to be efficiently supported on multiprocessors.

To achieve this objective, we have designed new multiprocessor real-time scheduling algorithms and

efficient schedulability tests for tasks that may contain self-suspensions, graph-based precedence

constraints, non-preemptive sections, and parallel execution segments. Our major goal is to avoid

over-provisioning systems and to reduce the number of needed hardware components to the extent

possible while providing temporal correctness guarantees. In the following, we first summarize our

results in Section 8.1, and then discuss open questions and future work in Section 8.2.

8.1 Summary of Results

In Chapter 1, we formulated the thesis statement that this dissertation strived to support, as stated

below.

Capacity loss can be significantly reduced on multiprocessors while providing non-

trivial SRT and HRT guarantees for sophisticated real-time applications that contain

common types of runtime behaviors including self-suspensions, graph-based prece-

dence constraints, non-preemptive sections, and parallel execution segments by

designing new real-time scheduling algorithms and developing new schedulability

tests.

In support to this thesis statement, our research makes novel contributions in advancing the

state-of-the-art to support more sophisticated but practical applications in real-time systems. In the

following, we briefly recapitulate the key points of Chapters 3–7.

8.1.1 Multiprocessor Schedulability Tests for Globally-Scheduled Self-Suspending

Task Systems

The first set of contributions we summarize is two multiprocessor GEDF schedulability tests proposed

in Chapter 3 for SRT self-suspending task systems. The approach presented in Section 3.2 serves as

the first attempt at dealing with self-suspensions on globally-scheduled SRT multiprocessors.

New suspension-aware global SRT schedulability tests. To deal with self-suspensions, the com-

mon suspension-oblivious approach, which simply integrates suspensions into per-task WCET

requirements, is rather pessimistic. In order to improve upon this approach, we have proposed in

Chapter 3 two new suspension-aware schedulability tests and one effective technique that can further

improve schedulability. Specifically, in the first schedulability test (presented in Section 3.2), we

derived a general tardiness bound, which is applicable to either GEDF or GFIFO, that expresses

tardiness as a function of task parameters. This bound shows that task systems consisting of both

self-suspending tasks and ordinary computational tasks that do not suspend can be supported with

bounded tardiness if

ξmax < 1− U ssum + U cL
m

, (8.1)

where ξmax is the maximum suspension ratio defined in Definition 3.11, U ssum is the total utilization

of all self-suspending tasks in the system, and U cL is the total utilization of the m− 1 computational

tasks of highest utilization.

From Equation (8.1), we see that significant utilization loss may occur when ξmax is large. Thus,

in order to improve the utilization bound, it is desirable to decrease the value of ξmax. Motivated by

this, we showed that ξmax can be effectively decreased by treating partial suspensions as computation.

That is, we consider intermediate choices between the two currently-available extremes of treating all

(as is commonly done) or no suspensions as computation. Our technique (presented in Section 3.3)

can find the amount of the suspension time of each task that should be treated as computation in order

for the task system to satisfy the utilization constraint and thus become schedulable. Experiments

presented in Section 3.3.4 demonstrated the effectiveness of the proposed technique.

Although our proposed first suspension-aware analysis (presented in Section 3.2) improves upon

the suspension-oblivious approach for many task systems, it unfortunately does not fully address

228

the root cause of pessimism due to suspensions, and thus may still cause significant utilization loss.

The worst-case scenario that serves as the root source of pessimism in this analysis is the following:

all n self-suspending tasks have jobs that suspend at some time t simultaneously, thus causing t

to be non-busy. Motivated by this, we derived a much improved schedulability test (presented in

Section 3.4) that shows that any given sporadic self-suspending task system is schedulable under

GEDF scheduling with bounded tardiness if Usum +
∑m

i=1 v
j ≤ m holds, where Usum is the total

system utilization and vj is the jth maximum suspension ratio, where a task’s suspension ratio

is given by the ratio of its suspension time over its period. We showed in Section 3.4.6 that our

derived schedulability test theoretically dominates the suspension-oblivious approach [86], and

our previously proposed suspension-aware analysis (presented in Section 3.2) if every task in the

system is a self-suspending task. As demonstrated by experiments in Section 3.4.7, our proposed

test significantly improves upon prior methods with respect to schedulability, and is often able to

guarantee schedulability with little or no utilization loss while providing low predicted tardiness.

Multiprocessor HRT schedulability tests for self-suspending task systems under GEDF and

GTFP scheduling. Although the techniques presented in Section 3.2-3.4 can handle the SRT case,

how to support HRT sporadic self-suspending task systems on multiprocessors (other than using

the suspension-oblivious approach) remains as an open issue. As the first attempt at solving this

problem, we presented in Chapter 4 global suspension-aware multiprocessor schedulability analysis

techniques for HRT arbitrary-deadline sporadic self-suspending task models under both GEDF and

global TFP scheduling. Our analysis shows that schedulability is much less impacted by suspensions

than computation on multiprocessors. For any job, suspensions of jobs with higher priorities do

not contribute to the competing work that may prevent the job from executing (while computation

does). Indeed, as shown by experiments in Section 4.2.4, HRT schedulability tests based on our new

analysis proved to be superior to the method of treating all suspensions as computation. However, as

will be discussed in Section 8.2.2, this analysis could still be quite pessimistic in certain cases, and

one of our most important future work is to improve upon it by deriving new schedulability tests for

HRT sporadic self-suspending task systems.

229

8.1.2 Multiprocessor Scheduling of SRT PGM Task Systems

Our work pertaining to the scheduling of SRT PGM task systems on multiprocessors and in distributed

systems is presented in Chapter 5.

Supporting PGM task systems on multiprocessors. In Section 5.1, we proposed a variant of

GEDF that can be used on multiprocessors as the underlying scheduling algorithm for SRT PGM task

systems. The associated analysis shows that the main complicating factor in supporting graph-based

dependencies in a multicore setting is workload burstiness, which may cause deadline burstiness.

Thus, we proposed a technique that effectively postpones deadlines of certain tasks to avoid such

burstiness without affecting timing correctness. We showed that the proposed solution is able to

achieve no capacity loss for executing PGM task graphs in multiprocessor systems while providing

timing correctness guarantees. That is, any PGM task system τ is SRT schedulable if usum(τ) ≤ m

holds.

Supporting PGM task systems in a distributed system. In Section 5.2, we further showed how

to extend the above PGM approach for application in distributed systems comprised of clusters of

processors, where scheduling within each cluster is global. Our main contribution in that work was

to develop a method for assigning tasks to clusters so as to minimize the amount of data movement

across clusters. Once tasks are so assigned, those in each cluster can be scheduled globally as

described above (with some slight adjustments due to potential dependencies across clusters). Note

that this same task-assignment method can be applied in a fully partitioned system (where each

cluster is just one processor), in which case Goddard’s orignal work (with some slight modifications)

can be applied on each processor. Although our focus in this work was distributed systems, the same

techniques can be applied to schedule tasks on a (large) multicore platform in a clustered fashion.

8.1.3 Multiprocessor SRT Scheduling of Task Systems with Mixed Types of Complex

Runtime Behaviors

Besides handling self-suspensions (in Chapters 3 and 4) and graph-based precedence constraints

(in Chapter 5) independently, in Chapter 6, we also investigated how to support sophisticated real-

time task systems containing multiple types of such complex runtime behaviors. We considered

230

this issue in the context of SRT sporadic task systems in which non-preemptive sections, self-

suspensions, and graph-based precedence constraints co-exist. Specifically, we addressed the problem

of deriving conditions under which bounded tardiness can be ensured when all of the above-mentioned

behaviors—non-preemptive sections, graph-based precedence constraints, and self-suspensions—

are allowed. In considering this problem, we focused specifically on GEDF. Our main result is a

transformation process that converts any implicit-deadline periodic task system with self-suspensions,

graph-based precedence constraints, and non-preemptive sections into a simpler system with only

suspensions. In the simpler system, each task’s maximum job response time is at least that of the

original system. This result allows tardiness bounds to be established by focusing only on the impacts

of suspensions. It thus enables prior results on systems with suspensions (presented in Chapter 3 and

4) to be applied to derive tardiness bounds for more complex systems, as scheduled by GEDF.

8.1.4 A Tardiness Bound for Multiprocessor Real-Time Parallel Tasks

Finally, in Chapter 7, we presented a tardiness bound for GEDF-scheduled sporadic parallel task

systems on multiprocessors. Our analysis shows that on a two-processor platform, no utilization

loss results for any parallel task system. Despite this special case, on a platform with more than

two processors, utilization constraints are needed. To discern how severe such constraints must

fundamentally be, we presented a parallel task set with a utilization of approximately 2.0 that is

unschedulable on any number of processors. This task set violates our derived constraint and has

unbounded response times. The impact of utilization constraints can be lessened by restructuring

tasks to reduce intra-task parallelism. We proposed optimization techniques that can be applied to

determine such a restructuring.

8.2 Future Work

We now discuss some of the challenges that remain in the research area of real-time systems and are

relevant to this dissertation.

231

8.2.1 General Results on Scheduling Real-Time Task Systems with Complex Run-

time Behaviors

In Chapter 6, we investigated how to support sophisticated SRT task systems containing non-

preemptive sections, self-suspensions, and graph-based precedence constraints. Since we have

also presented in this dissertation solutions on supporting real-time parallel task systems and HRT

self-suspending task systems, an important future work is to combine all these results together.

Specifically, we would like to present a general multiprocessor scheduling design and analysis frame-

work that can efficiently support both HRT and SRT task systems with all aforementioned complex

runtime behaviors including non-preemptive sections, self-suspensions, graph-based precedence

constraints, and parallel execution segments.

8.2.2 Improved Multiprocessor Schedulability Tests for HRT Sporadic Self-Suspend-

ing Task Systems

In Chapter 4, we presented global suspension-aware multiprocessor schedulability analysis techniques

for HRT sporadic self-suspending task systems under both GEDF and GTFP scheduling. However,

similar to the observation we discussed in the beginning of Section 3.4, these techniques do not

address the worst-case scenario due to self-suspensions, which is the following: all self-suspending

tasks have jobs that suspend at non-busy time instants. For the SRT case, in Section 3.4, we presented

a technique that can transform a schedule on a processor-by-processor basis to eliminate this worst-

case scenario, which enables us to derive an improved schedulability test that only results in an O(m)

suspension-related capacity loss. Motivated by this, we plan to extend the ideas used in our O(m)

SRT schedulability analysis to apply to HRT sporadic self-suspending task systems. In the HRT

case, it may be similarly possible to transform the analyzed schedule on a processor-by-processor

basis. However, transformation intervals may not be defined on the basis of tardy jobs, as done in

Section 3.4.

8.2.3 Supporting Practical Suspending Task Models on Multiprocessors

As mentioned in Chapter 2, all prior work on scheduling self-suspending task systems assumes that

each task’s suspensions are simply upper-bounded and will not be interfered with by other tasks’

232

suspensions. However, in practice, a task’s suspensions are often interfered with by other tasks

that access the same device. For example, a common scenario for suspensions to occur is when a

task accesses an I/O device. There has been much work done on scheduling disk I/O requests in

order to improve response times. This implies that in most (if not all) cases, a task’s suspensions

will be interfered with by other tasks’ suspensions. Thus, it would be interesting to allow a task’s

suspension lengths to be affected by other tasks’ suspensions (e.g., due to contention when multiple

tasks simultaneously access the same shared resource). Solving this problem is equivalent to solving

the problem of scheduling tasks that access two different classes of resources (e.g., CPUs and digital

signal processors). Due to its difficulty, the general problem of real-time scheduling on two unrelated

classes of resources has received limited attention in the real-time community.1 This real-time

scheduling problem is challenging because a task’s execution on both classes of processors could be

interfered with and delayed by other tasks. Due to the difficulty of this problem, we may first solve

the uniprocessor version of the problem assuming there are only two classes of processors, each

with one processor. Then the multiprocessor case can be solved by proposing and applying efficient

partitioning algorithms to partition tasks on both classes of processors.

8.2.4 Supporting DAGs with Mixed Timing Constraints on Multiprocessors

For scheduling multiprocessor DAG-based task systems, if the deadline of every task within any

DAG must be viewed as hard, then significant processing capacity must be sacrificed. On the other

hand, if all deadlines are viewed as soft, then using multiprocessor global scheduling schemes such

as GEDF can achieve no capacity loss; however, the resulting tardiness bound could be large. In

practice, there exists a class of DAG-based applications that only require the exit task (i.e., the sink

task) to meet its deadline. In other words, tasks other than the exit task within a DAG have soft

deadlines. An excellent motivating application is the MapReduce application, which has emerged

as an important paradigm in many large-scale data processing applications in modern data centers.

MapReduce consists of two functions, map and reduce. The map phase partitions the entire input

1The end-to-end scheduling approach [86] can be applied to guarantee that any job’s computation and suspensions
phases complete within certain time bounds so that the whole job can meet its deadline. However, the end-to-end approach
may result in severe utilization loss, and cannot be efficiently used in SRT systems. Note that for a relevant problem,
namely the problem of real-time scheduling on a multiprocessor containing heterogeneous but related resources (i.e., a
multiprocessor containing two CPUs with different speeds), several approaches have been proposed [4, 50, 102, 103, 104].

233

dataset (which could be very large in practice) into several smaller chunks that can be executed in

parallel. Then the reduce phase aggregates all the partial results produced during the map phase and

generates the final result. MapReduce applications can be naturally modelled as DAGs. It is often

required that the final reduce phase (i.e., the exit task) must complete by a specified deadline. In other

words, the map tasks are allowed to miss deadlines. Motivated by this, we plan to investigate the

problem of supporting DAG-based task systems with mixed timing constraints on multiprocessors.

For any DAG, it is only required to meet the exit task’s deadline. Intuitively, allowing the deadlines

of non-exit tasks to be missed offers some flexibility that could be utilized to improve overall system

utilization. Thus, we plan to design and analyze real-time multiprocessor scheduling algorithms that

can improve the utilization for scheduling such systems with mixed timing constraints, compared to

the case where all deadlines must be viewed as hard.

8.2.5 Scheduling Heterogeneous Multiprocessor DAG-based Systems

In practice, many real-time DAG-based applications often contain tasks that may access several

different classes of resources such as executing on a CPU and reading data from disk. In many

CPSs, such applications become even more common since system components often access external

devices such as sensors to obtain physical information. Motivated by this, we plan to investigate

the problem of scheduling DAG-based systems on multiprocessors containing different classes of

resources. We plan to focus on two classes of resources, computational resource such as CPUs

and I/O resources such as disks. There are two goals for this research: (i) determine whether SRT

DAG-based systems can be supported with no utilization loss, and (ii) design effective disk and CPU

co-scheduling algorithms to improve the response time performance. (Note that this is different from

Section 8.2.3 since tasks that access different classes of resources have inter-task dependencies such

as DAG-based dependencies while the tasks considered in Section 8.2.3 that access different classes

of resources have only intra-task dependencies, i.e., suspensions.)

8.2.6 Reducing the Magnitude of Tardiness Bounds

In this dissertation, we mainly focused on deriving tardiness bounds for real-time task systems

with complex runtime behaviors. However, these bounds may not be tight. We plan to investigate

the problem of reducing the magnitude of the tardiness bounds derived in this dissertation. One

234

promising technique to apply is compliant vector analysis (CVA) [45]. CVA has been used to obtain

tardiness bounds that are superior to previously known bounds for sporadic task systems [45, 46].

In contrast to the lag-based analysis framework used in this dissertation, which computes a single

tardiness bound for all the tasks in the system, CVA seeks to derive a separate tardiness bound for

each task. The resulting tardiness bounds for different tasks are more specific and thus tighter than a

single general bound.

8.2.7 Innovations in Many-Core Real-Time Systems

A recent multicore-related development is the emergence of many-core architectures, where tens

to thousands of processors are placed on the same chip. Many-core architectures are different from

traditional multicore architectures because they rely on message passing mechanisms instead of

shared memory for inter-core communication to ensure better scalability. This different inter-core

communication method brings new challenges to support real-time graph-based applications on

many-core platforms, because delays due to inter-core communications may depend upon the locality

of processors where each part of the application graph is allocated. Thus, instead of scheduling only

computations, we now have to consider data locality and judiciously schedule computations and

communications at the same time. We plan to investigate this open problem by proposing locality-

aware application mapping and processor selection strategies to minimize inter-core communications

while providing timing correctness guarantees. Another challenging research topic imposed by

many-core architectures is thermal management. It has been shown that power dissipation almost

scales up linearly with the number of cores, which also directly increases operation temperature [85].

Without proper thermal management, thermal runaway and on-chip “hotspots” can be easily created

on many-core chips; these reduce chip lifetime and may also significantly degrade chip performance.

Therefore, we plan to propose effective thermal-aware task mapping and data routing schemes; the

goal is to guarantee that the operating temperature of the chip does not exceed its critical temperature

such that the reliability, stability, and certain performance objectives are achieved. One promising

idea is to balance loads on both CPUs and routing links when making mapping decisions such that

hotspots can be avoided. Moreover, selectively turning off certain cores or reducing their operating

voltages could be effective methods to better manage heat on many-core chips.

235

8.2.8 Supporting Data-Intensive Workloads in Networked Real-Time Systems

With the rapidly growing popularity of Web 2.0 technologies and social business, an increasing

number of applications are emerging that require large volumes of data and devote most of their

processing time to analysis and manipulation of data. Many organizations have started to use data-

intensive cluster computing systems (e.g., Hadoop) for applications such as Google’s MapReduce. An

important requirement of executing such data-intensive applications is to satisfy real-time constraints.

For example, in time-sensitive processes such as detecting fraud, millions of daily call detail records

must be analyzed in real time in order to predict customer churn faster. The data-intensive nature of

such applications poses new challenges that we plan to investigate: (a) Is there a way to efficiently

support applications with more frequent and longer suspensions than computation (due to intensive

I/O access) in networked real-time systems? (b) What is the impact of data locality on guaranteeing

fast and bounded response times? (c) What data parallel processing techniques are most efficient for

supporting data-intensive applications in multicore systems with both high throughput and timing

correctness? To answer these questions, factors that have not been considered by traditional solutions,

such as network topology, data transmission overheads, and data locality, have to be explicitly

considered when deriving new methods.

Furthermore, emerging data-intensive analytics and “Big Data” workloads pose new challenges

to system design and configuration. Current systems are often designed and configured in response

to more traditional workload demands. To execute such new workloads more efficiently, one

promising improvement to traditional system design is the addition of reconfigurable acceleration.

Accelerators such as FPGAs are more efficient for executing highly data-parallel functions such as

matrix manipulations. While reconfigurable acceleration has been studied and used successfully in

several commercial systems, the problem of meeting certain performance constraints such as power

budgets and response time requirements, which commonly exist in many systems, has received limited

attention. Motivated by this, we plan to address the research challenges brought by considering such

constraints in the design and configuration of accelerator-based systems. For example, given a certain

power budget, determine how to configure the system (i.e., which and how many power-efficient

processing accelerators should be used) and how to offload performance-intensive functions to the

reconfigurable logic in a way such that the system throughput can be maximized.

236

BIBLIOGRAPHY

[1] J. Anderson, V. Bud, and U. Devi. An EDF-based scheduling algorithm for multiprocessor soft
real-time systems. In Proceedings of the 17th Euromicro Conference on Real-Time Systems,
pages 199-208, 2005.

[2] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic tasks.
Journal of Computer and System Sciences, 68(1):157–204, 2004.

[3] B. Andersson and J. Jonsson. The utilization bounds of partitioned and Pfair static-priority
scheduling on multiprocessors are 50%. In Proceedings of the 15th Euromicro Conference on
Real-Time Systems, pages 33-40, 2003.

[4] B. Andersson, G. Raravi, and K. Bletsas. Assigning real-time tasks on heterogeneous multi-
processors with two unrelated types of processors. In Proceedings of the 31st IEEE Real-Time
Systems Symposium, pages 239-248, 2010.

[5] D. Bailey. An optimal scheduling algorithm for parallel video processing. In Proceedings of
the 5th IEEE International Conference on Multimedia Computing and Systems, pages 245-248,
1998.

[6] T. Baker. Stack-based scheduling for realtime processes. Real-Time Systems, 3(1):67–99,
1991.

[7] T. Baker. Multiprocessor EDF and deadline monotonic schedulability analysis. In Proceedings
of the 24th IEEE Real-Time Systems Symposium, pages 120-129, 2003.

[8] T. Baker and S. Baruah. Handbook of Real-Time and Embedded Systems, chapter Schedu-
lability analysis of multiprocessor sporadic task systems. Chapman Hall/CRC, Boca Raton,
Florida, 2007.

[9] T. Baker and S. Baruah. Schedulability analysis of multiprocessor sporadic task systems,
Handbook of real-time and embedded systems. Chapman Hall/CRC, 2007.

[10] S. Baruah. Techniques for multiprocessor global schedulability analysis. In Proceedings of
the 28th IEEE International Real-Time Systems Symposium, pages 119-18, 2007.

[11] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness
in resource allocation. Algorithmica, 15(6):600–625, 1996.

[12] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of sporadic task systems.
In Proceedings of the 26th Real-Time Systems Symposium, pages 330–341, pages 321-329,
2005.

[13] S. Baruah, J. Haritsa, and N. Sharma. Online scheduling to maximize task completions. In
Proceedings of the 15th IEEE Real-Time Systems Symposium, pages 228-237, 1994.

[14] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic tasks
on one processor. In Proceedings of the 11th IEEE Real-Time Systems Symposium, pages
182-190, 1990.

237

[15] A. Bastoni, B. Brandenburg, and J. Anderson. Mixed pfair/erfair scheduling of asynchronous
periodic tasks. In Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 14-24,
2010.

[16] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B. Mesman, J. Mol, S. Stuijk,
V. Gheorghita, and J. Meerbergen. Dataow analysis for real-time embedded multiprocessor sys-
tem design. Dynamic and Robust Streaming in and between Connected Consumer-Electronic
Devices, 4(1):81–108, 2005.

[17] M. Bertogna and S. Baruah. Tests for global EDF schedulability analysis. Journal of Systems
Architecture, 57(5):487–497, 2011.

[18] M. Bertogna and S. Baruah. Response-time analysis for globally scheduled symmetric
multiprocessor platforms. In Proceedings of the 28th IEEE International Real-Time Systems
Symposium, pages 149-160, 2007.

[19] M. Bertogna and M. Cirinei. Response-time analysis for globally scheduled symmetric
multiprocessor platforms. In Proceedings of the 28th Real-Time Systems Symposium, pages
149-160, 2007.

[20] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global scheduling algo-
rithms on multiprocessor platforms. IEEE Transactions on Parallel and Distributed Systems,
20(4):553–666, 2009.

[21] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis of EDF on multipro-
cessor platforms. In Proceedings of the 17th Euromicro Conference on Real-Time Systems,
pages 209-218, 2005.

[22] S. Bhattacharyya, P. Murthy, and E. Lee. Software Synthesis from Data on Graphs. Kluwer
Academic Publishers, 1996.

[23] A. Block. Adaptive Multiprocessor Real-Time Systems. PhD thesis, University of North
Carolina at Chapel Hill, 2008.

[24] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Trarjan. Time bounds for selection.
Journal of Computer Science and Systems, 7(4):448–461, 1973.

[25] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Systems.
PhD thesis, University of North Carolina at Chapel Hill, 2011.

[26] A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering real-time fixed
priority schedulers. IEEE Transactions on Software Engineering, 21(5):475–480, 1995.

[27] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time scheduling approach
for large-scale multicore platforms. In Proceedings of the 19th Euromicro Conference on
Real-Time Systems, pages 247-256, 2007.

[28] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel program-
ming in OpenMP. Morgan Kaufmann, 2000.

[29] S. Chatterjee and J. Strosnider. Distributed pipeline scheduling: A framework for distributed,
heterogeneous real-time system design. The Computer Journal, 38(4):271–285, 1995.

238

[30] S. Chatterjee and J. Strosnider. A generalized admissions control strategy for heterogeneous,
distributed multimedia systems. In Proceeding of ACM Multimedia, pages 345-356, 1995.

[31] S. Chen and S. Schlosser. MapReduce meets wider varieties of applications. Technical Report
IRP-TR-08-05, Intel Labs Pittsburgh, 2008.

[32] E. Coffman, M. Garey, and D. Johnson. Approximation algorithms for bin packing: A survey.
PWS Publishing Company, 1997.

[33] Tilera Corporation. TILE-GX Processor with up to 100 cores. http://www.tilera.com/ product-
s/processors/, 2010.

[34] DARPA. Satellite System F6 Specification and Requirement. http://www.darpa.mil/Our -
Work/TTO/Programs/Systemf6/ System F6.aspx, 2011.

[35] R. Davis and A. Burns. Improved priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems. Real-Time Systems, 47(1):1–40, 2011.

[36] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Proceedings of the 6th USENIX Conference on Symposium on Operating System Design and
Implementation, pages 137-150, 2004.

[37] M. Dertouzos. On the complexity of fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, 2(4):237–250, 1982.

[38] M. Dertouzos. Control robotics: The procedural control of physical processes. In Information
Processing, pages 807-813, 1974.

[39] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis, University of North
Carolina at Chapel Hill, 2006.

[40] U. Devi. An improved schedulability test for uniprocessor periodic task systems. In Proceed-
ings of the 15th Euromicro Conference on Real-Time Systems, pages 23-30, 2003.

[41] U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a multiprocessor.
In Proceedings of the 26th IEEE Real-Time Systems Symposium, pages 330-341, 2005.

[42] S. Dhall and C. Liu. On a real-time scheduling problem. Operations Research, 26(1):127–140,
1978.

[43] E. Dougherty and P. Laplante. Introduction to Real-Time Imaging. Wiley-IEEE Press, 1995.

[44] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs.
Real-Time Systems, 48(1):34–74, 2012.

[45] J. Erickson, U. Devi, and S. Baruah. Improved tardiness bounds for global EDF. In Proceedings
of the 22nd Euromicro Conference in Real-Time Systems, pages 14-23, 2010.

[46] J. Erickson, N. Guan, and S. Baruah. Tardiness bounds for global EDF with deadlines different
from periods. In Proceedings of the 14th International Conference on Principles of Distributed
Systems, pages 286-301, 2010.

[47] F. Abazovic. Intel showcases 80-core cpu. http://www.fudzilla.com/index.php?option=com -
content& task=view& id=10107& Itemid=1, 2008.

239

[48] D. Feitelson. Job scheduling in multiprogrammed parallel systems. Technical report, IBM
Research, 1997.

[49] D. Feitelson and L. Rudolph. Parallel job scheduling: Issues and approaches. In Proceedings
of the Workshop on Job Scheduling Strategies for Parallel Processing, pages 71–80, pages
1-18, 1995.

[50] S. Funk. EDF Scheduling on Heterogeneous Multiprocessors. PhD thesis, University of North
Carolina at Chapel Hill, 2004.

[51] S. Goddard. On the Management of Latency in the synthesis of real-time signal processing
systems from processing graphs. PhD thesis, The University of North Carolina at Chapel Hill,
1998.

[52] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task systems on
multiprocessors. Real-Time Systems, 25(2-3):187–205, 2003.

[53] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for fixed priority multipro-
cessor scheduling. In Proceedings of the 30th Real-Time Systems Symposium, pages 387-397,
2009.

[54] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for streams with
(m, k)-firm deadlines. IEEE Transactions on Computers, 44(12):1443–1451, 1995.

[55] W. Horn. Some simple scheduling algorithms. IEEE Transactions on Computers, 21(1):177–
185, 1974.

[56] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical
processors. Journal of ACM, 23(2):317–327, 1976.

[57] R. Jain, C. Hughes, and S. Adve. Soft real-time scheduling on simultaneous multithreaded
processors. In Proceedings of the 23rd IEEE Real-Time Systems Symposium, pages 134-145,
2002.

[58] P. Jayachandran and T. Abdelzaher. End-to-end delay analysis of distributed systems with
cycles in the task graph. In Proceedings of the 21th Euromicro Conference on Real-Time
Systems, pages 13-22, 2009.

[59] P. Jayachandran and T. Abdelzaher. Transforming distributed acyclic systems into equivalent
uniprocessors under preemptive and non-preemptive scheduling. In Proceedings of the 20th
Euromicro Conference on Real-Time Systems, pages 233–242, pages 233-242, 2008.

[60] K. Jeffay. Scheduling sporadic tasks with shared resources in hard-real-time systems. In
Proceedings of the 13th IEEE Real-Time Systems Symposium, pages 89–99, 1992.

[61] K. Jeffay and S. Goddard. A theory of rate-based execution. In Proceedings of the 20th IEEE
International Real-Time Systems Symposium, pages 304-314, 1999.

[62] M. Joseph and P. Pandya. Finding response times in a real-time system. The Computer
Journal, 29(5):390–395, 1986.

[63] W. Kang, S. Son, J. Stankovic, and M. Amirijoo. I/O-Aware Deadline Miss Ratio Management
in Real-Time Embedded Databases. In Proceedings of the 28th IEEE Real-Time Systems
Symposium, pages 277-287, 2007.

240

[64] B. Kao and H. Garcia-Molina. Deadline assignment in a distributed soft real-time system.
IEEE Transaction on Parallel and Distributed Systems, 8(12):1268–1274, 1997.

[65] I. Kim, K. Choi, S. Park, D. Kim, and M. Hong. Real-time scheduling of tasks that contain the
external blocking intervals. In Proceedings of the 2nd International Workshop on Real-Time
Computing Systems and Applications, pages 54-59, 1995.

[66] Y. Kitamura, A. Smith, H. Takemura, and F. Kishino. Parallel algorithms for real-time
colliding face detection. In Proceedings of the 4th IEEE Workshop on Robot and Human
Communication, pages 211-218, 1995.

[67] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for overloaded systems that
allow skips. In Proceedings of the 16th IEEE Real-Time Systems Symposium, pages 110-117,
1995.

[68] J. Labetoulle. Some theorems on real time scheduling. Computer Architecture and Networks,
pages 285-298, 1974.

[69] Naval Research Laboratory. Processing Graph Method Specification, prepared by the Naval
Research Laboratory for use by the Navy Standard Signal Processing Program Office (PMS-
412). 1987.

[70] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks on multi-core
processors. In Proceedings of the 31st Real-Time Systems Symposium, pages 259-268, 2010.

[71] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-time tasks with rate-
monotonic priorities. In Proceedings of the 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 3-12, 2010.

[72] B. Lampson and D. Redell. Experience with processes and monitors in Mesa. Communications
of ACM, 23(2):105–117, 1980.

[73] E. Lee and D. Messerschmitt. Static scheduling of synchronous data flow programs for digital
signal processing. IEEE Transactions on Computers, 36(1):24–35, 1987.

[74] S. Lee and B. Moon. Design of flash-based DBMS: an in-page logging approach. In
Proceedings of the 2007 ACM Conference on Management of Data, pages 55-66, 2007.

[75] J. Lehoczky, L. Sha, J. Strosnider, and H. Tokuda. Fixed priority scheduling theory for hard
real-time systems, chapter 1, pages 1–30. Foundations of Real-Time Computing: Scheduling
and Resource Management, 1991.

[76] H. Leontyev. Compositional Analysis Techniques For Multiprocessor Soft Real-Time Schedul-
ing. PhD thesis, University of North Carolina at Chapel Hill, 2010.

[77] H. Leontyev and J. Anderson. A unified hard/soft real-time schedulability test for global EDF
multiprocessor scheduling. In Proceedings of the 29th Real-Time Systems Symposium, pages
375-384, 2008.

[78] H. Leontyev and J. Anderson. Generalized tardiness bounds for global multiprocessor schedul-
ing. In Proceedings of the 28th IEEE Real-Time Systems Symposium, pages 413-422, 2007.

[79] J. Leung and M. Merrill. A note on preemptive scheduling of periodic, real-time tasks.
Information Processing Letters, 11(3):115–118, 1980.

241

[80] C. Liu. Scheduling algorithms for hard-real-time multiprogramming of a single processor. In
JPL Space Programs Summary, pages 31-37, 1969.

[81] C. Liu and J. Anderson. A new technique for analyzing soft real-time self-suspending task
systems. In ACM SIGBED Review, pages 29-32, 2012.

[82] C. Liu and J. Anderson. An O(m) analysis technique for supporting real-time self-suspending
task systems. In Proceedings of the 33th IEEE Real-Time Systems Symposium, pages 373-382,
2012.

[83] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft real-time multiprocessor
systems. In Proceedings of the 30th Real-Time Systems Symposium, pages 425-436, 2009.

[84] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM, 20(1):46–61, 1973.

[85] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin. Power-efficient time-sensitive
mapping in CPU/GPU heterogeneous systems. In Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, pages 23-32, 2012.

[86] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[87] J. Lopez, J. Diaz, and D. Garcia. Utilization bounds for EDF scheduling on real-time
multiprocessor systems. Real-Time Systems, 28(1):39–68, 2004.

[88] A. Mok. Fundamental Design Problems of Distributed Systems for the Hard-real-time
environment. PhD thesis, Massachusetts Institute of Technology, 1983.

[89] O. Moreira and M. Bekooij. Self-timed scheduling analysis for real-time applications. In
EURASIP on Advances in Signal Processing, pages 1-15, 2007.

[90] O. Moreira, J. Mol, M. Bekooij, and J. Meebergen. Multiprocessor resource allocation for
hard-real-time streaming with a dynamic job-mix. In Proceedings of the 11th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 332-341, 2005.

[91] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-real-time
jobs on a heterogeneous multiprocessor. In Proceedings of the 7th ACM/IEEE international
conference on Embedded software, pages 57-66, 2007.

[92] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques optimizing the number of
processors to schedule multi-threaded tasks. In Proceedings of the 24th Euromicro Conference
on Real-Time Systems, pages 321-330, 2012.

[93] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic. An unfair but optimal
multiprocessor scheduling algorithm for sporadic tasks. In Proceedings of the 24th Euromicro
Conference in Real-Time Systems, pages 13-23, 2012.

[94] S. Pak. Azul Systems extends leadership in business critical Java applications performance
with the new Vega series. http://www.azulsystems.com/ press/052008vega3.htm, May 2008.

[95] J. Palencia and M. Harbour. Offset-based response time analysis of distributed systems
scheduled under EDF. In Proceedings of the 15th Euromicro Conference on Real-Time
Systems, pages 3–12, 2003.

242

[96] J. C. Palencia and M. Gonzlez Harbour. Response time analysis of EDF distributed real-time
systems. Journal of Embedded Computing, 1(2):225–237, 2005.

[97] J. C. Palencia and M. Gonzlez Harbour. Schedulability analysis for tasks with static and
dynamic offsets. In Proceedings of the 19th IEEE Real-Time Systems Symposium, pages 26-37,
1998.

[98] T. Parks and E. Lee. Non-preemptive real-time scheduling of dataflow systems. International
Conference on Acoustics, Speech, and Signal Processing, 5(3235-3238), 1995.

[99] R. Pellizzoni and G. Lipari. Improved schedulability analysis of real-time transactions with
earliest deadline scheduling. In Proceedings of the 11th IEEE International Real Time and
Embedded Technology and Applications Symposium, pages 66–75, 2005.

[100] C. Philips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource
augmentation. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
pages 110-149, 1997.

[101] R. Rajkumar. Dealing with Suspending Periodic Tasks. IBM T. J. Watson Research Center,
1991.

[102] G. Raravi, B. Andersson, and K. Bletsas. Assigning real-time tasks on heterogeneous multi-
processors with two unrelated types of processors. Real-Time Systems, 49(1):29–72, 2013.

[103] G. Raravi, B. Andersson, K. Bletsas, and V. Neils. Task assignment algorithms for two-
type heterogeneous multiprocessors. In Proceedings of the 24th Euromicro Conference on
Real-Time Systems, pages 34-43, 2012.

[104] G. Raravi and V. Neils. A PTAS for assigning sporadic tasks on two-type heterogeneous
multiprocessors. In Proceedings of the 33th Real-Time Systems Symposium, pages 117-126,
2012.

[105] F. Ridouard and P. Richard. Worst-case analysis of feasibility tests for self-suspending tasks.
In Proceedings of the 14th Real-Time and Network Systems, pages 15-24, 2006.

[106] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling independent hard
real-time tasks with self-suspensions. In Proceedings of the 25th IEEE Real-Time Systems
Symposium, pages 47-56, 2004.

[107] R. Ritz, M. Willems, and H. Meyer. Scheduling for optimum data memory compaction in
block diagram oriented software synthesis. In Proceedings of the International Conference on
Signal Processing, pages 133-143, 1995.

[108] S. Ritz and H. Meyer. Exploring the design space of a DSP-based mobile satellite receiver. In
Proceedings of the International Conference on Signal Processing, pages 24-34, 1994.

[109] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time scheduling for generalized
parallel task models. In Proceedings of the 32nd Real-Time Systems Symposium, pages
217-226, 2011.

[110] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers, 39(9):1175–1185, 1990.

243

[111] A. Srinivasan and J. Anderson. Fair scheduling of dynamic task systems on multiprocessors.
Journal of Systems and Software, 77(1):67–80, 2005.

[112] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. Journal of
Computer and System Sciences, 72(6):1094–1117, 2006.

[113] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. In
Proceedings of the 34th ACM Symposium on Theory of Computing, pages 189-198, 2002.

[114] K. Tindell. Adding time-offsets to schedulability analysis. Technical Report 221, University
of York, 1994.

[115] C. Volker, V. Hamscher, and R. Yahyapour. Economic scheduling in grid computing. In
Proceedings of the Conference on Scheduling Strategies for Parallel Processing, pages 71–80,
pages 128-152, 2002.

[116] R. West and C. Poellabauer. Analysis of a window-constrained scheduler for real-time and
best-effort packet streams. In Proceedings of the 21st IEEE Real-Time Systems Symposium,
pages 239-248, 2000.

[117] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay scheduling:
a simple technique for achieving locality and fairness in cluster scheduling. In Proceedings of
the European Conference on Computer Systems, pages 265-278, 2010.

[118] Y. Zhang, C. Lu, C. Gill, P. Lardieri, and G. Thaker. Configurable middleware for distributed
real-time systems with aperiodic and periodic tasks. IEEE Transactions on Parallel and
Distributed Systems, 21(3):393–404, 2010.

[119] V. Zivojnovic, R. Ritz, and H. Meyer. High performance DSP software using data-flow graph
transformations. In Proceedings of the 28th Asilomar Conference on Signals, Systems and
Computers, 1994.

244

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	What is a Real-Time System?
	Classical Real-Time System Model
	Sporadic Task Model
	Hard and Soft Temporal Constraints
	Resource Model

	Real-Time Scheduling Algorithms and Schedulability Tests
	Concepts and Metrics

	The Divergence of Theory and Practice
	Limitations of the Sporadic Task Model
	Limitations of the State-of-the-Art

	Research Overview
	Thesis Statement
	Contributions
	Multiprocessor SRT Schedulability Test for Globally-Scheduled Self-Suspending Task Systems
	The First SRT Suspension-Aware Global Schedulability Test
	An Improved Utilization Constraint
	An O(m) Analysis Technique

	Multiprocessor HRT Schedulability Tests for Self-Suspending Task Systems
	Multiprocessor Scheduling of SRT Task Graphs
	Supporting PGM Task Systems on Multiprocessors
	Supporting PGM Task Systems in a Distributed System under Clustered Scheduling

	99993em.5Multiprocessor SRT Scheduling of Complex Task Graphs Containing Non-Preemptive Sections and Self-Suspensions
	A Tardiness Bound for Multiprocessor Real-Time Parallel Tasks

	Organization

	Background and Prior Work
	Real-Time Task Models
	The Non-Recurrent Task Model
	The Non-Recurrent Self-Suspending Task Model
	The Sporadic Task Model
	The Sporadic Self-Suspending Task Model
	The RB Task Model
	The DAG-based RB Task Model
	The Processing Graph Method

	The DAG-based RB Self-Suspending Task Model
	The Parallel Task Model

	Common Definitions
	Prior Work
	Real-Time Scheduling of Sporadic Task Systems
	Uniprocessor Scheduling
	Multiprocessor Scheduling
	Clustered Scheduling

	Real-Time Self-Suspending Task Scheduling
	Negative Results
	Self-Suspending Task Scheduling on Uniprocessors

	Real-Time Task Graph Scheduling
	Uniprocessor PGM Scheduling
	Other Prior Work on Real-Time Task Graph Scheduling

	Dealing with Non-Preemptive Sections
	Real-Time Parallel Task Scheduling

	Summary

	Scheduling SRT Self-Suspending Tasks
	System Model
	First SRT Schedulability Test
	Upper Bound
	Lower Bound
	Determining x
	A Counterexample
	Experimental Evaluation

	An Effective Technique to Improve Schedulability
	Linear Programming Approach
	An Optimal Polynomial-Time Algorithm
	Tardiness Bound
	Experimental Evaluation

	An O(m) Schedulability Test
	Schedulability Analysis
	New O(m) Analysis Technique
	Lower Bound
	Upper Bound
	Determining x
	Theoretical Dominance over Prior Tests
	Experiments

	Chapter Summary

	Scheduling HRT Self-Suspending Tasks
	GTFP
	GEDF
	Upper-Bounding i W(i)
	Finding Values of l and sl,j
	Schedulability Test
	Experiments

	Chapter Summary

	Multiprocessor Scheduling of PGM Graphs
	Supporting PGM-Specified Systems on Multiprocessors
	Representing PGM Graphs by DAG-based RB Task Systems
	Transforming RB to
	Tardiness Bound for RB
	Improving Job Response Times by Early-Releasing
	Case Study
	Summary

	Scheduling SRT PGM in a Distributed System
	System Model
	Algorithm CDAG
	Assignment Phase
	Scheduling Phase
	Tardiness Bound
	Improving Job Response Times
	Experiments

	Chapter Summary

	Multiprocessor Scheduling of SRT Tasks with Non-Preemptive Sections, Self-Suspensions, and Graph-based Precedence Constraints
	System Model
	Transformation.
	Transforming NGS to GS
	Transforming GS to S

	A Tardiness Bound
	Chapter Summary

	A Response Time Bound for Scheduling Real-Time Parallel Tasks on a Multiprocessor
	System Model and Notation
	Response Time Bound
	Upper Bound
	Lower Bound
	Determining x
	A Case with No Utilization Loss
	Cases with Utilization Loss
	Optimization
	Experimental Evaluation

	Chapter Summary

	Conclusions and Future Work
	Summary of Results
	Multiprocessor Schedulability Tests for Globally-Scheduled Self-Suspending Task Systems
	Multiprocessor Scheduling of SRT PGM Task Systems
	Multiprocessor SRT Scheduling of Task Systems with Mixed Types of Complex Runtime Behaviors
	A Tardiness Bound for Multiprocessor Real-Time Parallel Tasks

	Future Work
	General Results on Scheduling Real-Time Task Systems with Complex Runtime Behaviors
	Improved Multiprocessor Schedulability Tests for HRT Sporadic Self-Suspend- ing Task Systems
	Supporting Practical Suspending Task Models on Multiprocessors
	Supporting DAGs with Mixed Timing Constraints on Multiprocessors
	Scheduling Heterogeneous Multiprocessor DAG-based Systems
	Reducing the Magnitude of Tardiness Bounds
	Innovations in Many-Core Real-Time Systems
	Supporting Data-Intensive Workloads in Networked Real-Time Systems

	BIBLIOGRAPHY

