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1 Introduction

Scheduling theory may be thought of as the study of how to accomplish certain tasks by

certain deadlines. As humans, we handle scheduling issues every day. For example, a student

must accomplish homework by the appropriate due date, a professor must complete the

rought draft of a paper by the submission date, etc. Were we to have only one task to

accomplish, meeting that deadline probably would be very simple. Our lives, however,

contain many tasks that have deadlines { tax forms, car inspections, meetings, classes, etc.

Thus, we must use some sort of scheduling technique to \juggle" our various tasks, so that

they all are completed by their appropriate deadlines. Clearly, there are some tasks whose

deadlines are not strict { one may request an extension to submit one's taxes, one may balance

the chance of getting ticketed against missing one's car inspection date, etc. However, there

are those tasks in life whose deadlines are much more strict { court dates, grant proposals,

etc. In such situations, if the deadline is missed, there are dire consequences (e.g., being sent

to jail, not receiving funding). These examples show that we live life in real time: a situation

where homework and grant proposals must be properly submitted, but also one where they

must be submitted on time.

In this paper, we will consider hard-real-time systems. A real-time system is one where

computations not only must produce correct output, but also must produce that output in

a timely fashion (namely, by given deadlines). Hard-real-time systems are real-time systems

where the cost associated with untimely output (i.e., missing a deadline) is very high. An

example of a hard-real-time system is a computer that controls the landing of an airplane:

the rudders and aps must respond to the sensors' inputs within a given timeframe. If the

responses are incorrect or are too late, the plane may crash. Due to the nature of hard-

real-time systems, consideration is focused primarily (and in this paper, focused solely) on

worst-case behavior. If a scheduling system produces wonderful output in the average case,

but is known to fail in some situations, one would not wish to trust such a system to landing

an airplane. Clearly, one would desire a guarantee of a correct landing.

Hard-real-time systems are usually considered as a set of tasks that are repeatedly requested.

Tasks may be periodic, where there is a constant amount of time t such that the task is

requested every t time units (e.g., a digital watch changing its display every second), or

sporadic, where each task request must arrive at least a constant time after the previous

request (e.g., resetting the time on a digital watch). In this paper, we will focus on periodic

tasks, and discuss the e�ects of considering sporadic tasks where appropriate. Either way,

each task request has an associated deadline, by which the task must complete execution.

Additionally, the tasks may have shared resources { objects which some tasks require (exclu-

sively) at some point during execution. An example of a shared object would be a computer's
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hard drive { one program may wish to write its data while the other wishes to read data

from another location on the disk. Since a disk cannot write from one location and read

from another at the same time, the read and write tasks require exclusive access to the disk

during the appropriate read and write portions of their execution.

A scheduling algorithm is one that uses the information from the set of tasks, and discerns

when to schedule what task. All scheduling algorithms may be considered as priority driven

{ the task with the highest priority that has execution remaining should be scheduled. In

that regard, there are two subsets of scheduling algorithms: ones where priorities are �xed

(static priorities), and ones where priorities may change over time (dynamic priorities).

We will consider four scheduling algorithms for task sets of periodic tasks without shared

resources: rate monotonic [LL '73, LSD '89, La '74], and deadline monotonic [LW '82] use

static priorities; earliest deadline �rst [LL '73, LM '80, BRH '90, BHR '93], and modi�ed

least laxity �rst use dynamic priorities. The modi�ed least laxity �rst scheduling algorithm

was developed by the author to generalize two dynamic priority scheduling algorithms {

earliest deadline �rst, and least laxity �rst [Mo '83].

We will de�ne each scheduling algorithm, and determine in which situations the algorithm is

optimal. We will also derive feasibility tests in order to determine if a given task set will have

a valid schedule under a given scheduling algorithm. We will also determine the complexity of

the feasibility test. The complexity is a signi�cant factor in using the scheduling algorithms,

since it gives a rough idea of the time that is involved with determining a priori whether

a given task set has a valid schedule under the algorithm. In a hard-real-time setting, one

would not wish to simply start up the scheduler and hope for the best { one would want

to know with certainty that all deadlines will be met. However, since we are considering

hard-real-time systems, time may be critical, and the time it takes to determine feasibility

might defer the start of the schedule while feasibility is determined. In such a case, one

would clearly want a \quick" feasibility test.

Following the work of [LL '73, LSD '89, La '74], we will determine that for the conditions

where rate-monotonic scheduling is optimal, there is a linear time feasibility test for rate

montonic scheduling that determines necessity, but not su�ciency. We will show that there

exists a pseudo-polynomial time necessary and su�cient test that indicates the feasibility

question for rate monontonic scheduling is in NP.

We will then follow [LW '82] to show it is a generalization of rate-monotonic scheduling, and

to determine the conditions under which deadline-monotonic scheduling is optimal. We will

then begin to consider task sets where the tasks are not released simultaneously, and see

that there is a necessary and su�cient test for feasibility in this case. The test, however, is
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then shown to be co-NP -complete in the strong sense.

Earliest-deadline-�rst scheduling is a very powerful scheduling algorithm, as we shall see. It is

optimal among dynamic scheduling algorithms and o�ers the �rst polynomial time necessary

and su�cient feasibility test for feasibility. However, under certain circumstances that test

is not valid, and we will show that the feasibility test for those cases is co-NP -complete in

the strong sense.

We will lastly develop a new scheduling algorithm, modi�ed least laxity �rst. The algorithm

will be shown as a generalization of earliest-deadline-�rst scheduling, and is therefore optimal.

Additionally, it then inherits the feasibility tests from earliest-deadline-�rst { under some

conditions, we have a polynomial time test, and under others the test is co-NP -complete in

the strong sense.

2 Preliminary de�nitions and notation

We de�ne a periodic task without resources, �i, to be the 4-tuple (ei; di; pi; ri) where ei, di,

and pi are positive real numbers, and ri is a non-negative real number. The task �i is said

to have execution time ei, a deadline span of di, a period of pi, and an initial release time

of ri. �i is said to have release times at ri;k, k 2 Z+, where ri;k+1 = ri + kpi. ri;k is said

to be the kth release of �i. Each release ri;k has an associated deadline, ri;k + di, the kth

deadline of �i. We de�ne a task set of n tasks without shared resources, T , to be f�ig
n
i=1,

where �i = (ei; di; pi; ri) as above. As a convention in this paper, T will represent a task set,

subscripted � 's will represent tasks in T , and n will represent the number of tasks in T .

A schedule of T is a function g : R+ 7! T [ f;g. We say that �i is scheduled at time t or

on the processor at time t if g(t) = �i, and that the processor is idle at time t if g(t) = ;.

We say a task set is synchronous if there exists some r such that for all i; ri = r. Without

loss of generality for synchronous task sets, we will also assume that r = 0: Given a task

set T = f�ig
n
i=1 of n tasks that are synchronous, we de�ne T 0 to be the set f� 0ig

n
i=1 such that

� 0i = (ei; di; pi; 0). It is clear that if g(t) is the schedule of T produced by a given scheduling

algorithm, then g0(t), the schedule of T 0 produced by that scheduling algorithm, is exactly

g(t+ r). Additionally, there will be no task scheduled on [0; r) in g since no task is released

until time r. Hence, g is valid if and only if g0 is valid.
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Given a function f : A 7! B, and some element b 2 B, we de�ne

�f;b(a) =

(
0 : f(a) 6= b

1 : f(a) = b

�i is said to be active at time t if there exists k 2 Z+ such that ri;k � t < ri;k + di
and

R t
ri;k

�g;�i(x) dx < e. Informally, the task has been released, but has not completed its

execution corresponding to that release. �i is said to overow ormiss its deadline at t if there

exists k 2 Z+ such that t = ri;k + di (i.e., t is the k
th deadline of �i) and

R t
ri;k

�g;�i(x) dx < e.

If
R t
ri;k

�g;�i(x) dx � e, we say �i meets its deadline at t. These de�nitions correspond to the

intuitive notion of a deadline { if the task hasn't executed \enough", then the deadline is

missed.

The response time of the kth release of a task is the di�erence between the time the task

�nishes executing that invocation and the time it was released, which can be seen as the

time it takes the task to complete its execution. A critical instant of a task (under a given

scheduling algorithm) is a release that yields the longest possible response time of that task

for the given task set. A schedule is said to be valid if all deadlines of all tasks are met.

We say that, under a given scheduling algorithm, the processor is fully utilized for a given

task set if the algorithm produces a valid schedule for the given task set, but an increase

in the execution time of any process in the task set would yield an overow. We call a

scheduling algorithm optimal if, when there exists a valid schedule for some task set T , then

the scheduling algorithm also produces a valid schedule for T .

A priority-based scheduling algorithm is one where each task �i is assigned a corresponding

priority, Pi. These priorities may be either static or dynamic. Lower priority numbers

correspond to higher priorities. That is to say, if P1 = 1 and P2 = 2 then task �1 has higher

priority than task �2. All priority based scheduling algorithms use the following de�nition

for their schedule:

gP (t) =

(
�i : �i is active at time t and 8j 6= i; Pj < Pi ) Pj is not active.

; : there is no active task at time t

Note that if two (or more) active process have the same priority, ties may be broken arbi-

trarily. Thus, in this paper, for static priority scheduling algorithms, we will assume that no

two tasks have the same priority (since one must be chosen over another, and that choice

must be static). By convention, we will also assume that for a static priority scheduling

algorithm, the task sets under consideration are ordered by priority: P1 < P2 < : : : < Pn.

The utilization function corresponds to the notion of \how busy the processor is". Formally,
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U : T 7! R+ is de�ned by

U(T ) =
nX
i=1

ei

pi

it is clear that U(T ) � 0 for all T , since for all i; ei; pi > 0. In Section 3 we will show that

U(T ) � 1 is a necessary condition to produce a valid schedule of T for any uniprocessor

scheduling algorithm.

To facilitate how the scheduling algorithms work, there are several graphs of example task

sets. The key to those graphs is as follows:

Sample graph

5

Time

10 15 20

1

3

2

Task

0

Active task begins to execute

Task deadline

Task deadline concurrent with next release

(Upper line) Task scheduled

(Lower line) Task active but not scheduled

Task release

Task completes execution

(On time axis) Processor idle

Preempted task is scheduled

Scheduled task is preempted

For example, in the sample graph we have 3 tasks. �1 has an execution time of 2, a deadline

span of 5, a period of 7, and a release time of 0. �2 has an execution time of 2, a deadline

span of 11, a period of 11, and a release time of 1. �3 has an execution time of 4, a deadline

span of 16, a period of 16, and a release time of 2. Thus, at time 0, �1 is released and

executes. At time 1, �2 is released, but is not scheduled since �1 is of higher priority. At time

2, �1 completes execution and �3 is released. Since �2 is the higher priority task, it executes

to completion at time 4, when �3 begins execution. At time 5, �1 has a deadline (that is met,

since �1 �nished execution at time 2). At time 7, �1 is released and preempts �3 until time

9, when �3 is again scheduled. �3 completes at time 10, when there is no active task. Thus,

the processor is idle until a task is released, namely at time 12 (�2 is released). The rest of

the graph should be clear.
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3 Schedulablity and a bound on utilization

We �rst show one of the fundamental theorems in scheduling theory, which states that no

task set with a utilization greater than one is schedulable. Intuitively, this theorem should

agree with the reader's notions about utilization { utilization represents the fraction of the

time the processor must be active for a valid schedule of the task set. If that fraction is

greater than one, then there is more \work" than time available, and the task set has no

valid schedule.

We follow the work of [ARJ '97].

Theorem 3.1 ([ARJ '97]) If a task set is schedulable, its utilization must be at most 1.

Proof: Assume that there is a valid schedule for some task set T . Then every deadline of

the task set will be met. Thus, we know that each task �i is scheduled for ei time units every

pi time units after ri. Thus, for t � ri, �i has
j
t�ri
pi

k
satis�ed deadlines over [ri; t). Note that

on [ri; t), �i is then scheduled for
j
t�ri
pi

k
ei time units.

So, let t 2 R+ such that t � max�i2Tfrig. Since any valid schedule must meet every deadline,

the time available for execution (namely, t) must be greater than the amount of execution

corresponding to deadlines at or prior to t:

t �
nX
i=1

$
t� ri

pi

%
ei

since bxc > x� 1 for all x 2 R+, we have

t >
nX
i=1

 
t� ri

pi
� 1

!
ei

=
nX
i=1

 
tei � riei

pi
� ei

!

= t
nX
i=1

 
ei

pi

!
�

nX
i=1

 
riei

pi
+ ei

!

rearranging terms, we have

nX
i=1

 
riei

pi
+ ei

!
> t

 
nX
i=1

 
ei

pi

!
� 1

!
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Note that this equation holds for all t 2 R+ such that t � max�i2Tfrig. Since the left-hand

side of the equation is a bounded non-negative constant, and the right-hand side is linear in

t, we must have

 
nX
i=1

 
ei

pi

!
� 1

!
� 0 , i.e.,

nX
i=1

ei

pi
� 1

Thus, if there is a valid schedule for the given task set, then the task set's utilization is at

most 1. 2

4 Rate Monotonic Scheduling

Rate monotonic scheduling (RM) was the focus of one of the seminal papers in hard-real-

time scheduling theory, [LL '73]. The paper laid most of the ground work for much of

the development of static-priority scheduling. RM is easy to understand and simple to

implement, yet it yields several signi�cant results. Additionally, RM is an optimal scheduling

algorithm for static-priority scheduling algorithms under certain circumstances. Due to its

signi�cance in the �eld, we devote a reasonable amount of attention to its development and

results.

4.1 De�nition

Rate monotonic scheduling is a static-priority scheduling algorithm for periodic tasks. In

RM, priorities are equal to the periods of the associated tasks. Hence, the task with the

shortest period has the highest priority, and the task with the longest period has the lowest

priority. Intuitively, this prioritization makes sense, since the task that has the shortest

period will be the �rst one to be re-released. Hence, it should be the �rst one to complete

(so that it will be ready for its next release). In [LL '73], RM is considered in the case where

each task's deadline is concurrent with the task's next release (thus, di = pi). [LW '82]

later showed that RM is not optimal when this case does not hold, and developed deadline

monotonic scheduling (DM). We will consider DM in Section 5. Formally, RM is a priority-

based algorithm, such that Pi = pi for each task �i in the given task set.
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4.2 Examples

The two following examples display two extremes related to RM scheduling. The �rst ex-

ample considers a task set that fully utilizes the processor, yet whose schedule contains idle

time. The second example shows that there are cases under which RM produces a valid

schedule for task sets whose utilization is equal to one.

4.2.1 Example 1

Let T be the task set f�ig
3
i=1 such that �1 = (1; 3; 3; 0), �2 = (1; 4; 4; 0), and �3 = (1; 5; 5; 0).

Note that by the de�nition of RM, �1 has a higher priority than �2, which has a higher

priority than �3. Hence, at time 0, all three tasks are active, and thus �1 executes. Since �1 is

the highest-priority task, it will not be preempted by any other task. Hence, �1 executes to

completion at time 1. At time 1, the highest priority active task is �2, and it executes until

time 2. At time 2, �3 is the only active task, so it executes (until time 3). At time 3, �1 is

released and is the highest priority task (and the only active task). Hence, �1 executes until

time 4, when �2 is the only active task { �2 executes until time 5, when �3 is released. This

process continues, and the RM schedule of T is displayed in the below graph from time 0 to

time 30. It is worth noting that if �3's execution time were increased, the task set could not

be scheduled with RM, because there is only one time unit (from 0 until 5) for �3 to execute.

Thus, T fully utilizes the processor.

5 10 15 20 25 300

1

3

2Task

35 40 45 50 55 60

Time

It is interesting to note that the utilization of T is exactly 1
3
+ 1

4
+ 1

5
= 47

60
. There are 47 of

the 60 time units where a task is scheduled, and 13 where the processor is idle.
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4.2.2 Example 2

Let T be the task set f�ig
4
i=1 such that �1 = (1; 4; 4; 0), �2 = (3; 8; 8; 0), �3 = (5; 16; 16; 0),

and �4 = (2; 32; 32; 0). Note that the utilization of T is exactly 1 { later we will show that

RM cannot guarantee schedulability of a task set with n tasks if its utilization is greater

than n(2
1

n � 1), but that proof does not preclude the possibility that RM can schedule some

task sets of utilizations higher than the bound. The graph below displays the RM schedule

of T from time 0 to time 32.

1

4

3

2

Task

5

Time

10 15 20 25 300

Again, we see that the utilization of the task set is represented by the number of time units

where a task is scheduled. Namely, the utilization is 1
4
+ 3

8
+ 5

16
+ 2

32
= 32

32
(we leave 32

32

unsimpli�ed to show the relation of the graph to the least common multiple of the task

periods). There are 32 time units out of 32 where a task is scheduled, and there is no idle

time.

4.3 RM scheduling as an optimal scheduler

We will now show that under certain conditions, RM is optimal among static-priority schedul-

ing algorithms. These conditions are not too demanding, and since RM is easy to understand

and simple to implement, it is clear why RM is commonly used in hard real-time scheduling.

4.3.1 Necessary Conditions

For RM, we assume in what follows that deadlines of a given task are concurrent with its

releases: for all i; pi = di. As well, we assume the system to be synchronous. Since RM is
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a static-priority scheduling algorithm, (by convention) we assume that tasks are ordered by

their priorities, and thus pi � pi+1 for all 1 � i < n.

4.3.2 Preliminary Lemmas

We now proceed to prove two lemmas, designed to provide a necessary and su�cient condition

for schedule validity under a given static-priority scheduling algorithm. We will then apply

that test to RM in order to show that RM is optimal under certain circumstances.

Lemma 4.1 ([LL '73]) Given a synchronous periodic task set and a �xed-priority schedul-

ing algorithm, a critical instant in the resultant schedule of a given task occurs when that

task is requested simultaneously with all higher priority tasks.

Proof: First, we note that there exists a time when such all tasks are released simultane-

ously { at time 0 (since the task set is synchronous). Let t1; t2 2 R+ be such that task �i has

a critical instant at t1, and completes execution for that release at time t2. Thus, t2 � t1 is

the longest possible response time for task �i.

We claim that each task �j with higher-priority than �i has exactly
l
t2�t1
pj

m
releases on [t1; t2).

Assume, otherwise, that some higher-priority task �j has l <
l
t2�t1
pj

m
releases on [t1; t2). Thus,

on [t1; t2), �j executes for a total of l � ej time units. However, were �j released at time t1, it

would be released
l
t2�t1
pj

m
times on [t1; t2). Thus, �i's completion at t2 would be delayed at

least
�l

t2�t1
pj

m
� l
�
ej additional time units, and the satisfaction of �i's release at t1 would be

later than time t2. Again, this implies t1 is not a critical instant. Additionally, it implies that

if every higher priority task �j were released at t1, then each �j would have
l
t2�t1
pj

m
releases

on [t1; t2).

Hence, a critical instant for a given task occurs when that task is requested simultaneously

with all higher priority tasks. 2

It is interesting to note that (in the terms of Lemma 4.1) either t1 = 0, or there exists some

� > 0 such that on [t1��; t1), there is no active task with higher priority than �i. Assume that

for t1 > 0 and for each � > 0 there is some �j active on [t1 � �; t1) with higher priority than

�i. Then either �j or another task with higher priority is scheduled for the interval [t1��; t1).

Consider that if �i were released at time t1 � �, �i would be preempted by higher-priority
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tasks on [t1 � �; t1). Hence, a release of task �i at time t1 � � would be satis�ed at time t2,

since �i would execute on exactly the same intervals as if �i were released at t1. Thus, the

release at t1 � � would be satis�ed at t2, and �i would have a response time of t2 � t1 + �.

Hence, t1 would not be a critical instant.

Now that we have a handle on a single task (by way of its critical instant), we procede to a

result regarding schedulability of an entire task set.

Lemma 4.2 ([LL '73]) A static-priority scheduling algorithm produces a valid schedule for

a synchronous task set if and only if the �rst deadline of each task is met.

Proof: Clearly, if the �rst deadline of any task is missed, then the task set is not schedulable.

Let us then assume that the scheduling algorithm has produced a (possibly valid) schedule

for the given task set, and under that schedule, the �rst deadline of each task is met. From

Lemma 4.1, we know that a critical instant occurs when a task is requested simultaneously

with all higher priority tasks. Since all tasks are �rst requested simultaneously, all tasks

have a critical instant at that �rst release. Because all tasks meet their �rst deadline, the

longest response time for any task is exactly the response time for the �rst release of that

task - and since each task meets that �rst deadline, there is no release of any task that will

not be met. 2

4.3.3 Proof of optimality

We now proceed to show RM to be an optimal static-priority scheduling algorithm under

the condition that for each task in the task set, the task's deadline span is identical to its

period. Note that we will actually prove a more general result that will be used in Section

5.

Theorem 4.1 ([LL '73]) Any static-priority scheduling algorithm where priorities are or-

dered identically with the task's deadline spans is an optimal scheduling policy among static-

priority scheduling algorithms for synchronous task sets.

Proof: This optimality is shown in [LL '73] via a priority swapping argument. Let T be

a task set of n tasks, and since we are considering a static-priority scheduling algorithm, we

11



know that P1 < P2 < : : : < Pn. Thus, by the theorem assumption, d1 � d2 � : : : � dn. Now

let us assume that there is some valid static-priority schedule g of T . Let the priorities used

in g be Pg;i for each task �i. If Pg;i � Pg;i+1 for all i 2 f1; 2; : : : n � 1g, then the priorities

are ordered identically with the task deadline spans. Hence, the static-priority scheduling

algorithm will produce a valid schedule (as it produces exactly the schedule g).

So, assume there exists i < j 2 f1; 2; : : : ng such that di < dj and Pg;i > Pg;j. Without loss

of generality, we may assume that there is no �k such that Pg;i > Pg;k > Pg;j.

Consider the schedule h produced by swapping the priorities of �i and �j. Formally,

Ph;i = Pg;j

Ph;j = Pg;i

Ph;k = Pg;k for all k 6= i; j

We will prove that h is also a valid schedule. By swapping the priorities of all such �i's and

�j's, we produce a schedule of the given static-priority scheduling algorithm. Hence, if h is

shown to be valid, then the static-priority scheduling algorithm will produce a valid schedule

as well.

By Lemma 4.2, if we show that all �rst deadlines are met by h, then h is valid. Let �k be

some task of T . Since g is a valid schedule, the �rst deadline of �k is met in g. We can

express this result as follows:

X
l:Pg;l�Pg;k

&
t

pl

'
el � t for some t � dk

which states that there is a time t � dk such that �k and all higher priority tasks satisfy all

of their releases by time t. Additionally, if we substitute h for g and can �nd such a t, then

�k will meet its deadline in h.

We now show that all tasks meet their deadlines in h by considering three cases.

Case 1: �k 6= �i and �k 6= �j. See then that fl : Pg;l � Pg;kg = fl : Ph;l � Ph;kg. Since �k
meets its deadline in g, there exists a t � dk such that

X
l:Pg;l�Pg;k

&
t

pl

'
el � t

by substitution, we have X
l:Ph;l�Ph;k

&
t

pl

'
el � t � dk

12



Thus, �k meets its deadline in h.

Case 2: �k = �j. Since Pg;i = Ph;j, fl : Pg;l � Pg;ig = fl : Ph;l � Ph;jg. Since �i meets its

deadline in g, there is some ti � di such that

X
l:Pg;l�Pg;i

&
ti

pl

'
el � ti

by substitution, we have X
l:Ph;l�Ph;j

&
ti

pl

'
el � ti � di � dj

Thus, �j meets its deadline in h.

Prior to examining the other case, we �rst note (as in Case 2) that there exists ti � di such

that X
l:Pg;l�Pg;i

&
ti

pl

'
el � ti

Recalling that there is no �k with Pg;j < Pg;k < Pg;i, we separate the sum as follows:

0
@ X
l:Pg;l�Pg;j

&
ti

pl

'
el

1
A+

0
@ X
l:Pg;l=Pg;i

&
ti

pl

'
el

1
A � ti

By assumption for static-priority algorithms, there are no identical priorities:

0
@ X
l:Pg;l�Pg;j

&
ti

pl

'
el

1
A+

&
ti

pi

'
ei � ti (1)

Case 3: �k = �i. Let ti be as described in Case 2. Then we have

X
l:Ph;l�Ph;i

&
ti

pl

'
el =

0
@ X
l:Pg;l�Pg;j

&
ti

pl

'
el

1
A�

&
ti

pj

'
ej +

&
ti

pi

'
ei

by equation (1),

X
l:Ph;l�Ph;i

&
ti

pl

'
el � ti �

&
ti

pj

'
ej

� ti � di

13



Hence, �i meets its deadline in h.

Thus, for any �k 2 T , if �k meets its �rst deadline in g, then �k meets its �rst deadline in h.

Therefore, if g is a valid schedule of T , then so is h. 2

Corollary RM is an optimal scheduling algorithm among static-priority scheduling algo-

rithms for synchronous task sets where each task's deadline span and period are identical.

This corollary follows directly from Theorem 4.1 since under RM, priorities are ordered by

period lengths. Since we are assuming period lengths are equal to deadline spans, then the

theorem holds for RM under the given restrictions.

4.4 Utilization Results

One of the more powerful results of [LL '73] is the derivation of a su�cient test of schedu-

lability under RM related to the utilization of the given task set. This development hinges

on the determination of a \worst case" task set { one that minimizes utilization while fully

utilizing the processor. In this section, we will re-develop some of [LL '73]'s results based

upon several lemmas that we create from the works of [LL '73] and [LSD '89].

We now proceed to develop mathematical tests for schedulability and full utilization. With

these lemmas in hand, we will be able to answer the \worst case" task set question, and

de�ne the task sets that minimize utilization while fully utilizing the processor.

For schedulability, by Lemma 4.2, we only need to concern ourselves with a task's �rst

deadline. The next Lemma provides an equation to determine if a given task's �rst deadline

is met.

Lemma 4.3 Let T be a synchronous task set and g be a static priority schedule of T such

that P1 < P2 < : : : < Pn. Given �i 2 T , there exists a t � pi such that
Pi

j=1

l
t
pj

m
ej � t if

and only if �i satis�es its �rst release at or before time pi.

Proof: We �rst assume that there exists a t � pi such that
Pi

j=1

l
t

pj

m
ej � t. We will show

that by time t, task �i satis�es its �rst release at or before time t. Assume otherwise, that �i
is still active at time t. Then

R t
0 �g;�i(x)dx < ej. Let w =

R t
0 �g;�i(x)dx. The total amount of
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work requested by tasks with higher priority than �i on [0; t) is
Pi�1

j=1

l
t
pj

m
ej. The maximum

amount of work due to �i and higher priority tasks on [0; t) is then w +
Pi�1

j=1

l
t
pj

m
ej <Pi

j=1

l
t
pj

m
ej � t. Therefore, there is some time t0 2 [0; t) such that at time t0, the processor

is idle, or a lower priority (than that of �i) task is scheduled. Note, though, that at t0, �i is

active since t0 < t and �i is active at time t. By the de�nition of a static priority scheduling

algorithm, �i (or a higher priority task) must be scheduled at time t0. By contradiction, �i
is not active at time t, and therefore has satis�ed its release at time 0.

We now assume that there exists a t0 � pi such that �i satis�es its �rst release at or before

time t0. We must show that there exists a t � pi such that
Pi

j=1

l
t
pj

m
ej � t. Since �i has

satis�ed its �rst relase by time t0, there is some time t � t0 such that �i has satis�ed its �rst

release by time t, and for any � > 0, �i is still active at time t� �. Therefore, we know that

there exists a t1 � t such that �i is scheduled in g on the interval [t1; t). Thus, by de�nition

of a static priority scheduling algorithm, �i is the highest priority active task at any time

on [t1; t). Thus, at time t, we know that tasks �1; �2; : : : ; �i�1 have satis�ed all their releases

prior to time t. Therefore, every release of tasks �1; �2; : : : ; �i on [0; t) is satis�ed at or before

time t. Hence,
Pi

j=1

l
t

pj

m
ej � t, and t � pi. 2

Having shown how to determine if a particular task meets its �rst deadline, we now apply

that knowledge to the whole task set to create a necessary and su�cient test of schedulability.

Lemma 4.4 ([LSD '89]) Let T be a synchronous task set and g be a static priority schedule

of T such that P1 < P2 < : : : < Pn. g is a valid schedule of T if and only if

max
�i2T

8>><
>>: min
t2

n
k�pjjj�i;k2f1;:::;

j
pi
pj

k
g

o
8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
;
9>>=
>>; � 1 (2)

Proof: By Lemma 4.3, we know that a given task �i meets its �rst deadline if and only if

there exists a t � pi such that
Pi

j=1

l
t

pj

m
ej � t. By Lemma 4.2, we know that every task

meets its �rst deadline if and only if the schedule is valid. Therefore we have the following

chain of equivalent statements:

The schedule is valid if and only if for each �i 2 T , there exists a t � pi such thatPi
j=1

l
t
pj

m
ej � t.

The schedule is valid if and only if for each �i 2 T , there exists a t � pi such that
1
t

Pi
j=1

l
t
pj

m
ej � 1.
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The schedule is valid if and only if for all �i 2 T ,

min
t2[0;pi]

8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
; � 1:

The schedule is valid if and only if

max
�i2T

8<
: min
t2[0;pi]

8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
;
9=
; � 1: (3)

Note that we may restrict our consideration for the value of t from the set [0; pi] to the set

S =
n
k � pjjj � i; k 2 f1; : : : ;

j
pi
pj

k
g
o
. The set S represents every deadline on [0; pi] of all

tasks �j with Pj � Pi. We claim that 1
t

Pi
j=1

l
t

pj

m
ej achieves its minimums on the set S.

That is to say, we claim that for all t1 =2 S, there exists a t2 2 S such that 1
t1

Pi
j=1

l
t1
pj

m
>

1
t2

Pi
j=1

l
t2
pj

m
. Let t1 2 [0; pi) such that t1 =2 S. Since t1 < pi and pi 2 S, there is a t2 2 S

such that t1 < t2. Let t2 be the minimal element in S that is greater than t1. Thus, for

1 � j � i,
l
t1
pj

m
=
l
t2
pj

m
. To see this claim, assume otherwise, that there exists a j 2 f1; : : : ; ig

such that
l
t1
pj

m
6=
l
t2
pj

m
. Since t1 < t2,

l
t1
pj

m
<
l
t2
pj

m
. Let k =

l
t1
pj

m
. We know t1 6= kpj since

t1 =2 S. Also, kpj 2 S by the de�nition of S. Therefore, t1 < kpj < t2. However, we de�ned

t2 to be the minimal element of S that is greater than t1. By contradiction, we have shown

that for 1 � j � i,
l
t1
pj

m
=
l
t2
pj

m
. Thus,

1

t1

iX
j=1

&
t1

pj

'
ej =

1

t1

iX
j=1

&
t2

pj

'
ej

>
1

t2

iX
j=1

&
t2

pj

'
ej

Therefore, for any t1 =2 S there is a t2 2 S such that 1
t2

Pi
j=1

l
t2
pj

m
ej <

1
t1

Pi
j=1

l
t1
pj

m
ej. Hence,

1
t

Pi
j=1

l
t

pj

m
ej will acheive its minimum on S.

Therefore, we have

min
t2[0;pi]

8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
; = min

t2

n
k�pjjj�i;k2f1;:::;

j
pi
pj

k
g

o
8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
; (4)
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Combining equations (3) and (4), we have the desired result: g is a valid schedule of T if

and only if

max
�i2T

8>><
>>: min
t2

n
k�pjjj�i;k2f1;:::;

j
pi
pj

k
g

o
8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
;
9>>=
>>; � 1

2

Thus, our �rst goal of this section has been met: We have a computable test for schedulability.

We now build upon that knowledge for a test of full utilization. The �rst step in that process

is to show that full utilization is based upon idle time prior to the last �rst deadline.

Lemma 4.5 ([LL '73]) A synchronous task set fully utilizes the processor under a static-

priority scheduling algorithm if and only if there is no idle time prior to time pn and all

deadlines at or prior to pn are satis�ed.

Proof: By Lemma 4.2, all deadlines prior to pn must be satis�ed for the task set to be

schedulable. By de�nition, a task set that fully utilizes the processor must be schedulable.

Thus, we focus our consideration on idle time prior to pn.

If there is idle time prior to pn, then the execution time of the task with the longest period

may be increased by the amount of idle time. Since all �rst deadlines are still met, the

static-priority scheduling algorithm (hereafter denoted SPSA) does yield a valid schedule for

the modi�ed task set. Since a task's execution could be increased and still the task set would

be schedulable, the original task set did not fully utilize the processor. Thus, if a task set

fully utilizes the processor under SPSA, there is no idle time prior to maxfpig.

If there is no idle time prior to pn and there is some �j 2 T and � > 0 such that replacing ej
by ej + � yields a valid schedule under SPSA, consider task �n. In the original schedule, let

w be the amount of time the processor is devoted to tasks �1; �2; : : : ; �n�1 on [0; pn). Thus,

since there is no idle time prior to pn, w + en = pn. However, in the modi�ed task set, �n
will miss its deadline at pn: Consider that in the SPSA schedule of the modi�ed task set, if

j < n, then the amount of time necessary for the tasks �1; �2; : : : ; �n�1 on the interval [0; pn)

will be at least w+�, since �j has at least one deadline prior to pn. Since �n may only execute

when other tasks are inactive (because �n is the lowest priority task), in the modi�ed task

set schedule, �n has pn � w � � time units to execute. Since pn � w � � < en, �n will miss

its deadline at pn. If j = n, then consider that tasks �1; �2; : : : ; �n�1 occupy w time units

in (0; pn) in the modi�ed task set schedule, leaving en time units for �n to complete en + �
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time units of computation. Thus, there is no execution time that may be increased in the

original task set without yielding an invalid schedule under SPSA, and the original task set

fully utilizes the processor under SPSA. 2

Since we have seen full utilization is based on idle time prior to the last �rst deadline, we

now consider idle time prior to a given task's �rst deadline. We use Lemma 4.4 to determine

if a static priority schedule of a synchronous task set contains idle time prior to a given task's

�rst deadline.

Lemma 4.6 Let T be a synchronous task set and g be a valid static priority schedule of T

such that P1 < P2 < : : : < Pn. For any task �i 2 T , there is no idle time in g on the interval

[0; pi) if and only if

min
t2

n
k�pj jj�i;k2f1;:::;

j
pi
pj

k
g

o
8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
; = 1: (5)

Proof: Let �i 2 T . For ease of notation, we de�ne the set

S =
n
k � pjjj � i; k 2 f1; : : : ;

j
pi
pj

k
g
o
.

Assume there is no idle time on [0; pi). Since the schedule is valid, then by Lemma 4.4,

mint2S
n
1
t

Pi
j=1

l
t
pj

m
ej

o
� 1. By contradiction, we will show that equation (5) holds. As-

sume that there exists a t 2 S such that
Pi

j=1

l
t

pj

m
ej < t. Then there exists some t0 < t

such that
Pi

j=1

l
t

pj

m
ej = t0. Since there is no idle time on [0; t0), all task requests on

[0; t) must be satis�ed by time t0. Hence, there is no active task on [t0; t) { the proces-

sor is then idle, contradicting our assumption that there is no idle time on [0; pi). Thus,

mint2S
n
1
t

Pi
j=1

l
t

pj

m
ej

o
= 1.

Assume that equation (5) holds: mint2S
n
1
t

Pi
j=1

l
t

pj

m
ej

o
= 1. We must show that there is

no idle time on [0; pi). Again, we do this by contradiction. Assume there is idle time [t0; t)

on [0; pi). Since there is an active task when a release occurs, we may assume that a release

occurs at time t, denoting the end of the idle period. Therefore, t is in the set S. Since

equation (5) holds,
Pi

j=1

l
t
pj

m
ej � t. However, if the processor is idle on [t0; t), then we know

all task requests at or before t are satis�ed by time t0. Thus,
Pi

j=1

l
t0
pj

m
ej � t0. Since t0 < t,

we have a contradiction, and there can be no such idle time [t0; t).

We have shown that given a valid schedule, there is no idle time on [0; pi) if and only if
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mint2S
nPi

j=1

l
t
pj

m
ej

o
= t. 2

Having a means of testing full utilization in terms of idle time and �rst deadlines, and a

computational means to determine idle time, we have the tools we need to proceed. We

combine the previous two results to provide a computational test to determine if a task set

fully utilizes the processor under a given schedule.

Lemma 4.7 Let T be a synchronous task set and g be a static priority schedule of T such

that P1 < P2 < : : : < Pn. T fully utilizes the processor under g if and only if for all

�i 2 T; 1 � i < n

there exists a t 2

(
k � pjjj � i; k 2 f1; : : : ;

$
pi

pj

%
g

)
such that

iX
j=1

&
t

pj

'
ej � t (6)

and

min
t2

n
k�pjjj�n;k2f1;:::;

j
pi
pj

k
g

o
8<
:1

t

nX
j=1

&
t

pj

'
ej

9=
; = 1: (7)

Proof: By Lemma 4.5, we know that a task set fully utilizes a processor if and only if the

the schedule is valid, and there is no idle time prior to time pn. We have seen in Lemma 4.4

that a task set's schedule is valid if and only if equation (2) holds. By Lemma 4.6, we know

that given a valid schedule, there is no idle time prior to pn if and only if equation (7) holds.

We �rst assume that equations (6) and (7) hold. Clearly, these two equations imply equation

(2). As well, equation (7) implies there is no idle time prior to time pn. Thus, by Lemma

4.5, we know that equations (6) and (7) imply the task set fully utilizes the processor under

the given schedule.

Assuming the task set fully utilizes the processor, then the schedule is valid and there is no

idle time prior to time pn. Thus, equation (2) holds, and there is no idle time prior to pn.

Equation (2) implies equation (6), and the lack of idle time implies equation (7). Thus, if a

task set fully utilizes the processor, equations (6) and (7) hold. 2

We will work extensively with Lemma 4.7 in the following proof, and before we begin the

proof proper, we will make use of some assumptions on period length to considerably simplify

the set over which t is considered in equations (6) and (7).
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Lemma 4.8 For fpig
n
i=1 with p1 � p2 � : : : � pn and

pn
p1
� 2,

(
k � pjjj � i; k 2

(
1; 2; : : : ;

$
pi

pj

%))
= fpjg

i
j=1

Proof: Since p1 � p2 � : : : � pn and pn
p1
� 2, we know that for any �i 2 T; j < i, we have

pj � pi and 2pj � pi. Thus,
j
pi
pj

k
� 2 with equality if and only if 2pj = pi. The remainder

of the proof should be clear. 2

[LL '73] states the following result, but their proof is faulty (as will be shown below). The

theorem lays the groundwork for providing a necessary condition for schedulability under

RM. The signi�cance of the condition is that it may be tested in linear time, whereas a

necessary and su�cient test of schedulability requires psuedo-polynomial time (as will be

seen in Section 4.6).

Theorem 4.2 ([LL '73]) Over the set of synchronous task sets with n tasks that fully utilize

the processor under RM such that p1 � p2 � � � � � pn and
pn
p1
� 2, the execution times

ei = pi+1 � pi for 1 � i < n and en = 2p1 � pn minimize utilization.

We prove this Theorem by subdividing into three cases based on the execution times of

tasks �1 through �n�1. In cases 1 and 2, we will modify the task set in such a way that

the modi�ed task set fully utilizes the processor and whose utilization is less than or equal

to that of the original task set. Repeated modi�cations will convert the task set into one

where the execution times for tasks �1 through �n�1 are identical to the times listed in the

statement of the Theorem. Case 3 will show that given such execution times for �1 through

�n�1, task �n must have the execution time speci�ed above.

Throughout this theorem, we will make use of Lemma 4.8. Since the task set satis�es the

conditions of that lemma, the set over which we must consider t in equations (6) and (7) is

merely fpjg
i
j=1.

Proof: Since T fully utilizes the processor, we know that it satis�es the two conditions of

Lemma 4.7, namely equation (6): for all �k 2 T ,

there exists a t 2 fpjg
k
j=1 such that

kX
j=1

&
t

pj

'
ej � t
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and equation (7):

min
t2fpjg

n
j=1

8<
:1

t

nX
j=1

&
t

pj

'
ej

9=
; = 1:

We aim to prove the same for T 0, de�ned below.

Case 1: There exists an i < n such that ei > pi+1 � pi.

Let i < n be the lowest indexed such ei. Then let � = ei�(pi+1�pi). Hence, ei = pi+1�pi+�.

Consider the task set T 0, identical to T except for execution times:

e0i = pi+1 � pi

e0i+1 = ei+1 +�

e0j = ej for all j 6= i; i + 1

Let g be the schedule produced by RM for T , and g0 be the schedule produced by RM for

T 0.

Here is an example of how those schedules appear. Note the change that occurs immediately

after time pi+1.
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Case 1: Subproof that T 0 fully utilizes the processor: We must satisfy the two

conditions of Lemma 4.7, equations (6) and (7) above.

First, we handle equation (6). Let �k 2 T . Since T fully utilizes the processor, by equation

(6) we have

there exists a t 2 fpjg
k
j=1 such that

kX
j=1

&
t

pj

'
ej � t

Since pj = p0j for all 1 � j � n,

there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
ej � t (8)

Now we divide our consideration into three subcases based on the value of k in relation to i.

Our goal in each case is to show that there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
e0j � t;

thereby proving T 0 satis�es equation (6).

Subcase 1.A: k < i. In this case, ej = e0j for all 1 � j � k.

Therefore, equation (8) becomes

there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
e0j � t
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Thus, equation (6) holds for subcase 1.A.

Subcase 1.B: k = i.

We now break up the sum from equation (8) to produce the desired result:

iX
j=1

&
t

p0j

'
ej =

&
t

p0i

'
ei +

i�1X
j=1

&
t

p0j

'
ej

=

&
t

p0i

'
(pi+1 � pi +�) +

i�1X
j=1

&
t

p0j

'
e0j

=

&
t

p0i

'
(pi+1 � pi) +

&
t

p0i

'
�+

i�1X
j=1

&
t

p0j

'
e0j

=

&
t

p0i

'
e0i ++

i�1X
j=1

&
t

p0j

'
e0j +

&
t

p0i

'
�

=
iX

j=1

&
t

p0j

'
e0j +

&
t

p0i

'
�

Since 0 < p0j � p0i for all t 2 fp
0
jg

i
j=1,

l
t

p0
i

m
= 1 and we have

iX
j=1

&
t

p0j

'
ej =

iX
j=1

&
t

p0j

'
e0j +�

Therefore, by equation (8), we have

there exists a t 2 fp0jg
i
j=1 such that

iX
j=1

&
t

p0j

'
e0j +� � t

there exists a t 2 fp0jg
i
j=1 such that

iX
j=1

&
t

p0j

'
e0j < t

Thus, equation (6) holds for subcase 1.B.

Subcase 1.C: k > i.

As in subcase 1.B, we will break down equation (8)'s sum for analysis. Again, we use the

fact that for all j 2 f1; 2; : : : ; ng; j =2 fi; i+ 1g, we have e0j = ej.

kX
j=1

&
t

p0j

'
ej =

i�1X
j=1

&
t

p0j

'
e0j +

&
t

p0i

'
ei +

&
t

p0i+1

'
ei+1 +

kX
j=i+2

&
t

p0j

'
e0j
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=
i�1X
j=1

&
t

p0j

'
e0j +

&
t

p0i

'
(pi+1 � pi +�) +

&
t

p0i+1

'
(e0i+1 ��) +

kX
j=i+2

&
t

p0j

'
e0j

=
i�1X
j=1

&
t

p0j

'
e0j +

&
t

p0i

'
(pi+1 � pi) +

&
t

p0i

'
�+

&
t

p0i+1

'
e0i+1 �

&
t

p0i+1

'
�

+
kX

j=i+2

&
t

p0j

'
e0j

=
i�1X
j=1

&
t

p0j

'
e0j +

&
t

p0i

'
e0i +

&
t

p0i

'
��

&
t

p0i+1

'
�+

kX
j=i+1

&
t

p0j

'
e0j

=
kX

j=1

&
t

p0j

'
e0j +

 &
t

p0i

'
�

&
t

p0i+1

'!
�

Therefore, if
l
t

p0
i

m
=

�
t

p0
i+1

�
,

kX
j=1

&
t

p0j

'
ej =

kX
j=1

&
t

p0j

'
e0j

which would yield our desired result for this subcase. So we now focus our attention on the

set of values of t, namely fpjg
k
j=1. For t = p0j � pi (therefore j � i), we know t � pi+1, sol

t

pi

m
= 1 and

l
t

pi+1

m
= 1. For t = p0j > pi+1, we know pi � pi+1 < t < 2pi � 2pi+1, so

l
t

pi

m
= 2

and
l

t
pi+1

m
= 2. Therefore, the only value of t 2 fpjg

k
j=1 where

l
t
p0
i

m
6=

�
t

p0
i+1

�
is t = pi+1

(when pi 6= pi+1). Thus, my goal is to show that when pi 6= pi+1, equation (8) holds true for

some value of t other than pi+1. To do so, we must show that

kX
j=1

&
pi+1

p0j

'
ej > pi+1

First, we note that since pi < pi+1, for all 1 � j � i;
l
pi+1
pj

m
= 2 and for all i + 1 � j �

k;
l
pi+1
pj

m
= 1. Now, we analyze the sum

kX
j=1

&
pi+1

p0j

'
ej =

iX
j=1

2ej +
kX

j=i+1

1ej

=
i�1X
j=1

2ej + 1ei +
kX

j=i+1

1ej + 1ei

=
i�1X
j=1

2ej +
kX
j=i

1ej + ei (9)

24



Now, by the case 1 assumption, �i is the lowest indexed task such that ei > pi+1 � pi.

Therefore, ei�1 � pi � pi�1. Thus, since ei�1 > 0, we know pi�1 < pi. We have

�
pi
p0
j

�
= 2 for

all j < i,

�
pi
p0
j

�
= 1 for all j � i. Combining that knowledge with equation (9), we get

kX
j=1

&
pi+1

p0j

'
ej =

i�1X
j=1

&
pi

p0j

'
ej +

kX
j=i

&
pi

p0j

'
ej + ei

=
kX

j=1

&
pi

p0j

'
ej + ei (10)

Now, since T fully utilizes the processor, then there is no idle time prior to time pn. More

importantly here, there is no idle time prior to time pi. Therefore, by equation (5), we know

iX
j=1

&
pi

p0j

'
ej � pi

Since k > i,
kX

j=1

&
pi

p0j

'
ej > pi

Combined with equation (10), we then have

kX
j=1

&
pi+1

p0j

'
ej > pi + ei

= pi + (pi+1 � pi +�)

= pi+1 +�

Therefore, we know that when pi 6= pi+1, for t = pi+1,
Pk

j=1

�
t

p0
j

�
ej > t. Since equation (8)

holds true, then it holds true for some t 6= pi+1. We then have

there exists a t 2 fp0jg
k
j=1; t 6= pi+1 such that

kX
j=1

&
t

p0j

'
ej � t

Thus, t is such that
l
t

p0
i

m
=

�
t

p0
i+1

�
, and

kX
j=1

&
t

p0j

'
ej =

kX
j=1

&
t

p0j

'
e0j (11)
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yielding

there exists a t 2 fp0jg
k
j=1; t 6= pi+1 such that

kX
j=1

&
t

p0j

'
e0j � t

Therefore,

there exists a t 2 fp0jg
k
j=1; such that

kX
j=1

&
t

p0j

'
e0j � t

and equation (6) holds for subcase 1.C.

Having considered all subcases, we have shown that in case 1, the task set T 0 satis�es equation

(6).

We now prove that for case 1, T 0 satis�es equation (7). First note that k = n falls into

subcase 1.C above since k > i for all i < n, and case 1 assumes i < n. With that knowledge,

for k = n we have the following by equation (11):

nX
j=1

&
t

pj

'
ej =

nX
j=1

&
t

p0j

'
e0j

Since T fully utilizes the processor, equation (7) holds:

min
t2fpjg

n
j=1

8<
:1

t

nX
j=1

&
t

pj

'
ej

9=
; = 1:

Combining the previous two equations with the knowledge that pj = p0j for all 1 � j � n,

we have

min
t2fp0

j
gn
j=1

8<
:1

t

nX
j=1

&
t

p0j

'
e0j

9=
; = 1:

Thus, in case 1, T 0 satis�es equation (7).

Since T 0 satis�es both requirements of Lemma 4.7, then we have shown that in case 1, T 0

fully utilizes the processor.

Case 1: Subproof that the utilization of T 0 is at most that of T : The utilization of

T is

U =
e1

p1
+

e2

p2
+ � � �+

ei�1

pi�1

+
pi+1 � pi +�

pi
+

ei+1

pi+1

+ � � �+
en

pn
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The utilization of T 0 is

U 0 =
e1

p1
+

e2

p2
+ � � �+

ei�1

pi�1

+
pi+1 � pi

pi
+

ei+1 +�

pi+1

+ � � �+
en

pn

Hence, the di�erence in utilization is

U � U 0 =
�

pi
�

�

pi+1

=
pi+1�� pi�

pipi+1

=
pi+1 � pi

pipi+1

�

since �, pi, and pi+1 are positive, and pi+1 � pi, we have

U � U 0 =
pi+1 � pi

pipi+1

� � 0

with equality if and only if pi = pi+1. Thus, the utilization of T 0 is less than or equal to the

utilization of T .

Thus, for case 1, we have provided a task set with a utilization at most that of T that fully

utilizes the processor. Additionally, we know that for T 0, there is one less task (than in T )

� 0i such that e0i > p0i+1 � p0i. Since there are a �nite number of tasks in the task set, we may

apply the case 1 transformation repeatedly, until we know that for all i < n, ei � pi+1 � pi.

Speci�cally, repeated transformations will eventually yield a task set whose utilization is at

most that of the original task set, that fully utilizes the processor, and which falls into case

2 or 3 below.

Case 2: For all i < n, ei � pi+1 � pi and there is some ei such that ei < pi+1 � pi.

Let i < n be the lowest indexed such ei. Then let � = (pi+1�pi)�ei. Hence, ei = pi+1�pi��.

Consider the task set T 0, identical to T except for execution times:

e0i = pi+1 � pi

e0n = en � 2�

e0j = ej for all j 6= i; i + 1

Let g be the schedule produced by RM for the T , and g0 be the schedule produced by RM

for T 0.
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Here is an example of how those schedules appear. Note the change that occurs immediately

before times pi+1 � p1 and pi+1.

p
2

p
1

- p
3

-p
i

p
i+1

- p
1

p
i

p
2

p
3

p
i+1

p
i-1

1

3

2

0

i-1

i

- p p p
1 1 1

n

Time

Task

Case 2 sample graph of T

(n) (n)

(i+1)

p
2

p
1

- p
3

-p
i

p
i+1

- p
1

p
i

p
2

p
3

p
i+1

p
i-1

1

3

2

0

i-1

i

- p p p
1 1 1

n

Time

Task

Case 2 corresponding graph of T’

(n)
(i+1)

Case 2: Subproof that T 0 fully utilizes the processor: We must satisfy the two

conditions of Lemma 4.7, equation (6): for all � 0k 2 T 0,

there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
e0j � t

and equation (7):

min
t2fp0

j
gn
j=1

8<
:1

t

nX
j=1

&
t

p0j

'
e0j

9=
; = 1:
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First, we handle equation (6). Let �k 2 T . Since T fully utilizes the processor,

there exists a t 2 fpjg
k
j=1 such that

kX
j=1

&
t

pj

'
ej � t

Since pj = p0j for all 1 � j � n,

there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
ej � t (12)

Now we divide our consideration into two subcases based on the value of k in relation to i.

Our goal in each case is to show that there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
e0j � t;

thereby proving T 0 satis�es equation (6).

Subcase 2.A: k < n. By the case 2 assumption, we know that for all �j with 1 � j � k,

ej � pj+1 � pj. Additionally, note that the conversions for T 0 preserve this statement.

Namely, for all � 0j with 1 � j � k, e0j � p0j+1 � p0j. Let t = p01. Note that since t � p01 for all

� 0j with 1 � j � k, then

�
t

p0
j

�
= 1. We then have

kX
j=1

&
pk

p0j

'
e0j �

kX
j=1

&
pk

p0j

'
(pj+1 � pj)

=
kX

j=1

1(pj+1 � pj)

= pk+1 � p1 (13)

Now, by the assumptions on period length for this theorem,

pk+1 � 2p1

pk+1 � p1 � p1 (14)

Combining equations (13) and (14), we have

kX
j=1

&
pk

p0j

'
e0j � p1
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Therefore, for � 0k 2 T 0 such that k < n,

there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
e0j � t

Thus, for subcase 2.A, equation (6) holds.

Subcase 2.B: k = n. By assumption, T fully utilizes the processor. Therefore,

there exists a t 2 fpjg
n
j=1 such that

nX
j=1

&
t

pj

'
ej = t

We will break our consideration down into two subsubcases based on the value of t.

Subsubcase 2.B.i: t = pk � pi. In this subsubcase, we will show that we cannot satisfy

equation (6) for T . The goal is to eliminate this subsubcase from consideration, so that we

know equation (6) is satis�ed for T from a value of t considered in subsubcase 2.B.ii.

We de�ne pl such that pl is the highest indexed period such that pl < pk. Therefore, we know

that for 1 � j � l,
l
pk
pj

m
= 2, and that for l < j � n,

l
pk
pj

m
= 1. Knowing these equalities, we

have

nX
j=1

&
pk

pj

'
ej =

lX
j=1

&
pk

pj

'
ej +

nX
j=l+1

&
pk

pj

'
ej

=
lX

j=1

2ej +
nX

j=l+1

1ej

=
lX

j=1

1ej +
nX

j=1

1ej

=
lX

j=1

ej +
nX

j=1

&
p1

pj

'
ej (15)

Since T satis�es equation (7), then we know that for t = p1,

1

p1

nX
j=1

&
p1

pj

'
ej � 1

nX
j=1

&
p1

pj

'
ej � p1 (16)
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Combining equations (15) and (16), we have

nX
j=1

&
pk

pj

'
ej �

lX
j=1

ej + p1

And by the assumptions of Case 2, we know that for 1 � j � l < i, we have ej = pj+1 � pj.

Therefore,

nX
j=1

&
pk

pj

'
ej �

lX
j=1

(pj+1 � pj) + p1

= pl+1 � p1 + p1

= pl+1

Since pl is the highest indexed period that is strictly less than pk, pl+1 must be equal to pk.

Therefore, we have
nX

j=1

&
pk

pj

'
ej � pk (17)

with equality if and only if

nX
j=1

&
p1

pj

'
ej = p1

nX
j=1

1ej = p1 (18)

Recall that we are trying to show that

nX
j=1

&
pk

pj

'
ej > pk

and therefore we wish to show that equation (18) is false. Note that by the de�nitions of

Case 2, we have ei < pi+1 � pi. Since ej > 0 for all 1 � j � n, then clearly pi+1 > pi.

Therefore, for all 1 � j � i,
l
pi+1
pj

m
= 2, and for all i < j � n,

l
pi+1
pj

m
= 1. Knowing these

equalities, we have

nX
j=1

&
pi+1

pj

'
ej =

iX
j=1

&
pi+1

pj

'
ej +

nX
j=i+1

&
pi+1

pj

'
ej

=
iX

j=1

2ej +
nX

j=i+1

1ej

=
i�1X
j=1

ej + ei +
nX

j=1

1ej
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By the de�nitions of Case 2, recall that for 1 � j < i, ej = pj+1� pj and ei = pi+1 � pi��.

Therefore,

nX
j=1

&
pi+1

pj

'
ej =

i�1X
j=1

(pj+1 � pj) + ei +
nX

j=1

ej

= pi � p1 + (pi+1 � pi ��) +
nX

j=1

ej

= pi+1 � p1 ��+
nX

j=1

ej (19)

Consider that since T fully utilizes the processor, then by equation (7),

nX
j=1

&
pi+1

pj

'
ej � pi+1

Applying equation (19),

pi+1 � p1 ��+
nX

j=1

ej � pi+1

nX
j=1

ej � p1 +� (20)

Which holds for all pk � pi. Equation (17) then becomes

nX
j=1

&
pk

pj

'
ej > pk

Therefore we know that

for all t 2 fpjg
n
j=1 with t � pi;

nX
j=1

&
t

pj

'
ej > t (21)

Therefore, for �n in T , equation (6) must be satis�ed for some t = pk > pi. That is to say, t

must fall into in subsubcase 2.B.ii, since we know equation (6) is true for T .

Subsubcase 2.B.ii: t = pk > pi. In this subsubcase, we know that
l
pk
pi

m
= 2. As well, since

pk � pn,
l
pk
pn

m
= 1. With those considerations in mind, we see that

nX
j=1

&
pk

pj

'
ej =

nX
j=1

&
pk

pj

'
e0j +

&
pk

pi

'
ei +

&
pk

pn

'
en �

&
pk

p0i

'
e0i �

&
pk

p0n

'
e0n

=
nX

j=1

&
pk

pj

'
e0j + 2ei + en � 2e0i � e0n
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By the de�nitions of ei and e0n, we then have

nX
j=1

&
pk

pj

'
ej =

nX
j=1

&
pk

pj

'
e0j + 2(e0i ��) + en � 2e0i � (en � 2�)

=
nX

j=1

&
pk

pj

'
e0j + 2e0i � 2� + en � 2e0i � en + 2�

=
nX

j=1

&
pk

pj

'
e0j

=
nX

j=1

&
p0k

p0j

'
e0j (22)

Now, since T fully utilizes the processor, by equation (6), we know that

there exists a t 2 fpjg
n
j=1 such that

nX
j=1

&
t

pj

'
ej � t

However, considering equation (21), the above becomes

there exists a t 2 fpjg
n
j=1; t > pi such that

nX
j=1

&
t

pj

'
ej � t

And since pj = p0j for all 1 � j � n,

there exists a t 2 fp0jg
n
j=1; t > p0i such that

nX
j=1

&
t

p0j

'
ej � t

Then by equation (22), we have

there exists a t 2 fp0jg
n
j=1; t > p0i such that

nX
j=1

&
t

p0j

'
e0j � t

Therefore, we know that for k = n,

there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
e0j � t

Thus, since subsubcase 2.B.i cannot hold, and since equation (6) holds for subsubcase 2.B.ii,

then equation (6) holds for subcase 2.B. Additionally, since equation (6) holds for subcase

2.A, then it holds for case 2 as a whole. So, we have shown that for all � 0k in T 0,

there exists a t 2 fp0jg
k
j=1 such that

kX
j=1

&
t

p0j

'
e0j � t
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And therefore, in case 2, task set T 0 satis�es equation (6).

We now prove that, in case 2, T 0 satis�es equation (7). Since T fully utilizes the processor,

then by equation (7)

min
t2fpjg

n
j=1

8<
:1

t

nX
j=1

&
t

pj

'
ej

9=
; = 1

Since we're considering a value where k = n, then we may use the results from subsubcase

2.B. Then by equation (21),

min
t2fpjg

n
j=1

;t>pi

8<
:1

t

nX
j=1

&
t

pj

'
ej

9=
; = 1

Since pj = p0j for all 1 � j � n,

min
t2fp0

j
gn
j=1

;t>p0
i

8<
:1

t

nX
j=1

&
t

p0j

'
ej

9=
; = 1

which, when combined with equation (22), yields

min
t2fp0

j
gn
j=1

;t>p0
i

8<
:1

t

nX
j=1

&
t

p0j

'
e0j

9=
; = 1 (23)

Therefore, for equation (7) to hold for T 0, it remains to prove that

min
t2fp0

j
gn
j=1

;t�p0
i

8<
:1

t

nX
j=1

&
t

p0j

'
e0j

9=
; � 1

First, we will prove a preliminary result...

nX
j=1

e0j =
nX

j=1

ej + e0i + e0n � ei � en

=
nX

j=1

ej + (e0i � ei) + (e0n � en)

By the case 2 de�nitions of ei; e
0
i; en; and en, we then have

nX
j=1

e0j =
nX

j=1

ej +�� 2�

=
nX

j=1

ej ��
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By equation (20), we then have

nX
j=1

e0j � (p1 +�)��

� p1 (24)

Now let us take a look at the sum under consideration for equation (7). Let t = p0k � p0i.

Then, by equality of period lengths, we have

nX
j=1

&
t

p0j

'
e0j =

nX
j=1

&
t

pj

'
e0j

=
k�1X
j=1

&
t

pj

'
e0j +

nX
j=k

&
t

pj

'
e0j (25)

We know by the case 2 assumptions that ej = pj+1 � pj for all 1 � j < i. Since ej > 0 for

all such �j, then we know that pj < pj+1 for all 1 � j < i. Speci�cally, we know that since

k � i, for all j � k � 1, pj < pk�1 and for all j > k � 1, pk�1 < pj. Therefore, if j � k � 1,

then
l
t

pj

m
= 2 and if j � k, then

l
t

pj

m
= 1. Thus the equation (25) becomes

nX
j=1

&
t

p0j

'
e0j =

k�1X
j=1

2e0j +
nX

j=k

1e0j

=
k�1X
j=1

e0j +
nX

j=1

e0j

By the case 2 de�nitions of ej for 1 � j � k � 1 < i, ej = pj+1 � pj. Thus we have

nX
j=1

&
t

p0j

'
e0j =

k�1X
j=1

(pj+1 � pj) +
nX

j=1

1e0j

= pk � p1 +
nX

j=1

1e0j

Combining with equation (24),

nX
j=1

&
t

p0j

'
e0j � pk � p1 + p1

� pk

Thus, for any t 2 fp0jg
n
j=1; t � p0i, we know that

1

t

nX
j=1

&
t

p0j

'
e0j � 1
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Combining with equation (23),

min
t2fp0

j
gn
j=1

8<
:1

t

nX
j=1

&
t

p0j

'
e0j

9=
; = 1

which proves that, for case 2, T 0 satis�es equation (7).

Case 2: Subproof that the utilization of T 0 is at most that of T : The utilization of

the original task set is

U =
e1

p1
+

e2

p2
+ � � �+

ei�1

pi�1

+
pi+1 � pi ��

pi
+

ei+1

pi+1

+ � � �+
en

pn

The utilization of the modi�ed task set is

U 0 =
e1

p1
+

e2

p2
+ � � �+

ei�1

pi�1

+
pi+1 � pi

pi
+

ei+1

pi+1

+ � � �+
en � 2�

pn

Hence, the di�erence in utilization is

U � U 0 =
��

pi
+

2�

pn

=
2pi�� pn�

pipn

=
2pi � pn

pipn
�

Since �, pi, and pn are positive, and 2pi � pn, we have

U � U 0 =
2pi � pn

pipn
� � 0

with equality if and only if 2pi = pn. Thus, for case 2, we have provided a task set with a

utilization at most that of T that fully utilizes the processor. Additionally, we know that for

T 0, e0i � p0i+1� p0i for all i < n. Thus, T 0 cannot fall into case 1, and must fall into cases 2 or

3. Also, T 0 has one less task (than in T ) � 0i such that e0i < p0i+1 � p0i. Since there are a �nite

number of tasks in the task set, we may apply the case 2 transformation repeatedly, until we

know that for all i < n, ei = pi+1� pi. Speci�cally, repeated transformations will eventually

yield a task set whose utilization is at most that of the original task set, that fully utilizes

the processor, and which falls into case 3 below.

Case 3: For all i < n; ei = pi+1 � pi.
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Here is an example graph of how the schedule would look.
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Case 3 sample graph

We must show that this is a nonempty case, and we will also show that the only possible

value of en is exactly 2p1� pn. Any other value of en will yield a task set that does not fully

utilize the processor (a lesser value creates idle time, and a greater value causes an overow).

To do so, we must �nd the value(s) of en such that T satis�es equations (6) and (7). We

break our consideration into two cases based on the index of the task in question.

Subcase 3.A: i < n. Since we're considering a task other that �n, we simply must satisfy

equation (6). Namely, we must �nd a value of t 2 fpjg
i
j=1 such that

iX
j=1

&
t

pj

'
ej � t

We let t = p1. Then, since p1 � pj for all j = 1; 2; : : : ; i,

iX
j=1

&
t

pj

'
ej =

iX
j=1

1 � ej

=
iX

j=1

(pj+1 � pj)

= pi+1 � p1

Since pi+1 � pn � 2p1,

iX
j=1

&
t

pj

'
ej � 2p1 � p1
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= p1

� pi

and we have the desired result,
iX

j=1

&
p1

pj

'
ej � p1

Subcase 3.B: i = n. Since we're considering i = n, we must �nd en such that equation (7)

holds, which then implies that equation (6) holds for i = n. We must �nd en such that

min
t2fpjg

n
j=1

8<
:1

t

nX
j=1

&
t

pj

'
ej

9=
; = 1:

So, let pl 2 fpjg
n
j=1. Let k � n such that if p1 = pl, then k = 1 (and we then know that

pk = pl). Otherwise, let k be such that pk�1 < pl and pk = pl. Then we have
l
pl
pj

m
= 2 if

j < k, and
l
pl
pj

m
= 1 if j � k. Thus,

1

pl

nX
j=1

&
pl

pj

'
ej =

1

pl

0
@k�1X

j=1

&
pl

pj

'
ej +

n�1X
j=k

&
pl

pj

'
ej + en

1
A

=
1

pl

0
@k�1X

j=1

2ej +
n�1X
j=k

ej + en

1
A

=
1

pl

0
@k�1X

j=1

2(pj+1 � pj) +
n�1X
j=k

(pj+1 � pj) + en

1
A

=
1

pl
(2(pk � p1) + (pn � pk) + en)

=
1

pl
(pk + pn � 2p1 + en)

=
1

pk
(pk + pn � 2p1 + en) (26)

Now we consider possible values of en in comparison with 2p1 � pn.

If en < 2p1 � pn, equation (26) becomes

1

pl

nX
j=1

&
pl

pj

'
ej =

1

pk
(pk + pn � 2p1 + en)
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<
1

pk
(pk + pn � 2p1 + 2p1 � pn)

=
1

pk
(pk)

= 1

Since this is true for all pl 2 fpjg
n
j=1, equation (7) fails to hold and T does not fully utilize

the processor.

If en > 2p1 � pn, equation (26) becomes

1

pl

nX
j=1

&
pl

pj

'
ej =

1

pk
(pk + pn � 2p1 + en)

>
1

pk
(pk + pn � 2p1 + 2p1 � pn)

=
1

pk
(pk)

= 1

Since this is true for all pl 2 fpjg
n
j=1, equations (6) and (7) fail to hold, and T does not fully

utilize the processor.

If en = 2p1 � pn, equation (26) becomes

1

pl

nX
j=1

&
pl

pj

'
ej =

1

pk
(pk + pn � 2p1 + en)

=
1

pk
(pk + pn � 2p1 + 2p1 � pn)

=
1

pk
(pk)

= 1

And therefore equations (6) and (7) hold for �n.

Therefore, case 3 is valid only for en = 2p1� pn, and when that holds, we know that T fully

utilizes the processor.

Thus, we know that if our task set falls into case 1 or case 2, then by repeated transformations

as de�ned in those cases, we will arrive at a task set under case 3. The resultant task set

has the same period lengths as the original, fully utilizes the processor, and the utilization
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is at most that of the original task set. We have thus shown that for all task sets with

p1 � p2 � � � � � pn and pn
p1
� 2, the execution times ei = pi+1 � pi for 1 � i < n and

en = 2p1 � pn minimize utilization. 2

It should be noted that if there is some pj = pj+1, then e0j = 0, and the task set T 0 = f(pi+1�

pi; pi; pi; 0)gi2f1;2;:::;j�1;j+1;j+2;:::;n�1g [ f(2p1 � pn; pn; pn; 0)g has e�ectively been \pruned" by

one task since what would be task � 0j has an execution time of 0, and is therefore degenerate.

In a similar fashion, T 0 is \pruned" by one task if 2p1 = pn, which would make e0n = 0.

Additionally, note that the utilization of T is strictly greater than that of T 0 unless three

conditions hold: 1) ei � pi+1 � pi for all �i 2 T , 2) for all �j 2 T such that ej > pj+1 � pj,

pj = pj+1, and 3) 2pi 6= pn. Thus, if those three conditions hold, T has the same utilization

of the task set T 0 (which has less than n tasks) that fully utilizes the processor.

It is in [LL '73]'s case 2 that the proof is faulty. There, case 2 is when there exists some �i
such that ei < pi+1 � pi, and for all j < i, ej = pj+1 � pj. The modi�ed execution times are

de�ned as follows, where � = (pi+1 � pi)� ei.

e0i = pi+1 � pi

e0i+1 = ei+1 � 2�

e0j = ej for all j 6= i; i + 1

The claim is that the modi�ed task set fully utilizes the processor. But consider the following

task set T :

�1 = (3; 12; 12; 0)

�2 = (4; 16; 16; 0)

�3 = (6; 20; 20; 0)

T fully utilizes the processor since there is no idle time prior to time 20, the latest �rst

deadline. Thus, we have the following valid schedule on [0; 20).

T ime j Task

0� 3 j �1

3� 7 j �2

7� 12 j �3

12� 15 j �1

15� 16 j �3

16� 20 j �2

5

Time

10 15 20

1

3

2

0

Task
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The modi�ed task set then becomes (� = 1)

� 01 = (4; 12; 12; 0)

� 02 = (2; 16; 16; 0)

� 03 = (6; 20; 20; 0)

and the processor executes as follows

T ime j Task

0� 4 j � 01

4� 6 j � 02

6� 12 j � 03

12� 16 j � 01

16� 18 j � 02

18� 20 j idle(!)

5

Time

10 15 20

1

3

2

0

Task

Thus, the transformation in case 2 described in [LL '73] does not necessarily produce a task

set that fully utilizes the processor. Hence, the induction used in that proof does not hold.

Now we expand our consideration to all task sets, and show that the minimum acheived in

Theorem 4.2 is a miminum over all task sets.

Lemma 4.9 ([LL '73]) Let T be a synchronous task set of n tasks that fully utilizes the

processor under RM such that there is some task with a period pi such that
pn
pi

> 2. There

exists a corresponding synchronous task set T 0
of n tasks that fully utilizes the processor such

that U(T 0) � U(T ), and T 0
has one less task than T where the corresponding ratio of periods

is greater than 2.

We will prove this lemma by generating the task set T 0 such that T 0 has one less task (�i)

such that pn
pi

> 2, and U(T 0) will be at most U(T ).

Proof: Let task �i be such that pn
pi

> 2. We will construct T 0 identical to T except for

tasks �i and �n. Let q 2 Z+; r 2 R+ be such that pn = qpi + r, and 0 � r < pi. Thus, q � 2.

We de�ne � 0i identically to �i, except that p
0
i = qpi. We de�ne p0n = pn, and for the moment

we will leave en unde�ned.
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We �rst show that under RM scheduling of T 0, tasks � 01; �
0
2; : : : ; �

0
n�1 all meet their �rst dead-

lines. Consider that for tasks � 01; �
0
2; : : : ; �

0
i�1, no execution times or periods have changed.

Additionally, pi�1 � pi < qpi, and therefore task � 0i has a lower priority than any of

� 01; �
0
2; : : : ; �

0
i�1. Hence, tasks �

0
1; �

0
2; : : : ; �

0
i�1 are scheduled in T 0 exactly as tasks �1; �2; : : : ; �i�1

are scheduled in T . Since the latter all meet their �rst deadlines, then we know the former

all meet their deadlines.

Let us now consider tasks � 0i+1; �
0
i+2; : : : ; �

0
n�1. Let � 0j be any of those tasks. Since T fully

utilizes the processor, its schedule under RM is valid. Thus, we know that �j meets its �rst

deadline in the schedule of T ; we denote the time that �j completes execution by time t.

Then we have

jX
k=1

&
t

pk

'
ek = t

0
@ jX
k=1

&
t

p0k

'
e0k

1
A�

&
t

p0i

'
e0i +

&
t

pi

'
ei = t

0
@ jX
k=1

&
t

p0k

'
e0k

1
A�

&
t

qpi

'
ei +

&
t

pi

'
ei = t

Since qpi > pi, then we know 1
qpi

< 1
pi
and therefore

l
t
qpi

m
�
l
t
pi

m
. Thus we have

0
@ jX
k=1

&
t

p0k

'
e0k

1
A+

 &
t

pi

'
�

&
t

qpi

'!
ei = t

0
@ jX
k=1

&
t

p0k

'
e0k

1
A � t

Therefore, if � 0i had the same priority position in T 0 as does �i in T , then � 0j would meet its

�rst deadline in the schedule of T 0. However, � 0i may have a lower priority than �j { but this

would mean that � 0j would satisfy its �rst release even sooner than time t. Thus, � 0j will meet

its �rst deadline, regardless of the priority of � 0i .

Lastly, we must show that � 0i meets its deadline in the RM schedule of T 0. Thus, we must

show that Lemma 4.3 is sastis�ed. However, it is no longer the case that P 0
1 < P 0

2 < : : : < P 0
n

since the period of task � 0i has changed. Thus, the consideration is if there exists a t � p0i
such that X

P 0

j
�P 0

i

&
t

p0j

'
e0j � t
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Since � 0i is the only task whose period has changed, then we know that p01 � p02 � : : : �

p0i�1 � p0i+1 � p0i+2 � : : : p0n. We let k be such that if there is no p0j > p0i, k = n. Otherwise,

we de�ne k such that p0k � p0i and p0k+1 > p0i. Therefore,

f�jjP
0
j � P 0

ig = f�jg
k
j=1

Since �k meets its �rst deadline in the RM schedule of T , there is a t � pk such that

jX
k=1

&
t

pk

'
ek = t

Now we determine if � 0i will meet its �rst deadline:

X
P 0

j
�P 0

i

&
t

p0j

'
e0j =

kX
j=1

&
t

p0j

'
e0j

=
i�1X
j=1

&
t

p0j

'
e0j +

kX
j=i+1

&
t

p0j

'
e0j +

&
t

p0i

'
ei

Since p0i � pi, then
1
p0
i

� 1
pi
, and thus

l
t
p0
i

m
�
l
t
pi

m
. Therefore,

X
P 0

j
�P 0

i

&
t

p0j

'
e0j �

i�1X
j=1

&
t

p0j

'
e0j +

kX
j=i+1

&
t

p0j

'
e0j +

&
t

pi

'
ei

By de�nition of each p0j and e0j, we know that p0j = pj and e0j = ej for all j 6= i; n. That leads

to

X
P 0

j
�P 0

i

&
t

p0j

'
e0j �

i�1X
j=1

&
t

pj

'
ej +

kX
j=i+1

&
t

pj

'
ej +

&
t

pi

'
ei

=
kX

j=1

&
t

pj

'
ej

� p0k

= pk � p0i

Therefore, task � 0i meets its deadline in the RM schedule of T 0.

Since we know that all tasks � 01; �
0
2; : : : ; �

0
n�1 meet their deadlines in the RM schedule of T 0,

then there is some value of e0n (possibly zero) such that T 0 is schedulable under RM. In fact,

there is then some value of e0n such that T 0 fully utilizes the processor under RM. That leads
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us to our de�nition of e0n: we de�ne � 0n identically to �n, except that e
0
n is set to whatever

value fully utilizes the processor under RM for T 0.

We begin by showing the following lemma, which will be needed in the remainder of the

proof of this theorem.

Lemma 4.10 Let T and T 0
be as described above. Then en + (q � 1)ei � e0n.

We prove this lemma by contradiction. We will divide our consideration into two

cases, based on a time value determined from Lemma 4.7, equation (7).

Proof: Assume otherwise, that en + (q � 1)ei < e0n. Since T
0 fully utilizes the

processor, then by equation (7) we know there is some t � pn such that

nX
j=1

&
t

p0j

'
e0j = t

0
@ nX
j=1

&
t

pj

'
ej

1
A�

&
t

pi

'
ei �

&
t

pn

'
en +

&
t

p0i

'
e0i +

&
t

p0n

'
e0n = t

0
@ nX
j=1

&
t

pj

'
ej

1
A�

&
t

pi

'
ei �

&
t

pn

'
en +

&
t

qpi

'
ei +

&
t

pn

'
e0n = t (27)

Since T fully utilizes the processor, then by equation (7),

t �
nX

j=1

&
t

pj

'
ej (28)

Combining equations (27) and (28), we have

t�

&
t

pi

'
ei �

&
t

pn

'
en +

&
t

qpi

'
ei +

&
t

pn

'
e0n � t

&
t

qpi

'
ei +

&
t

pn

'
e0n �

&
t

pi

'
ei +

&
t

pn

'
en&

t

pn

'
e0n �

&
t

pn

'
en �

&
t

pi

'
ei �

&
t

qpi

'
ei&

t

pn

'
(e0n � en) �

 &
t

pi

'
�

&
t

qpi

'!
ei

By the Lemma's assumption, (q � 1)ei < e0n � en, so we have&
t

pn

'
(q � 1)ei <

 &
t

pi

'
�

&
t

qpi

'!
ei
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&
t

pn

'
(q � 1) <

&
t

pi

'
�

&
t

qpi

'

If t = 0, then we have

0 � (q � 1) < 0� 0

which is clearly false. Thus, 0 < t < pn, which implies that
l

t

pn

m
= 1, yielding

(q � 1) <

&
t

pi

'
�

&
t

qpi

'
(29)

We will now show that equation (29) cannot be satis�ed for any t 2 (0; pn] {

thereby contradicting our assumption that en + (q � 1)ei < e0n.

We divide our consideration into two cases based on the value of t in relation to

qpi.

Case 1: t 2 (0; qpi]. Therefore we have&
t

qpi

'
= 1

&
t

pi

'
� q

which shows &
t

pi

'
�

&
t

qpi

'
� q � 1

and contradicts Equation (29).

Case 2: t 2 (qpi; pn]. By the de�nition of q, we know that qpi � pn < (q + 1)pi.

Therefore we have &
t

qpi

'
= 2

&
t

pi

'
= q + 1

which shows &
t

pi

'
�

&
t

qpi

'
= (q + 1)� 2 = q � 1

and contradicts equation (29).
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Since we have already eliminated the case where t = 0, and cases 1 and 2 cover

all possibilities for t 2 (0; pn], then we know that for t 2 [0; pn], equation (29) is

false:
nX

j=1

&
t

p0j

'
e0j 6= t

which contradicts equation (7). However, T 0 fully utilizes the processor, so equa-

tion (7) must hold. So by contradiction of the Lemma assumption,

en + (q � 1)ei � e0n

2

Now back to the main proof of the theorem... The utilization, U 0, of T 0 is

U 0 =
nX

j=1

e0j

p0j

Since T and T 0 only di�er in tasks �i and �n,

U 0 =

0
@ nX
j=1

ej

pj

1
A� ei

pi
�

en

pn
+

e0i

p0i
+

e0n

p0n

Since
e0
i

p0
i

= ei
qpi

and p0n = pn, we have

U 0 =

0
@ nX
j=1

ej

pj

1
A� ei

pi
+

ei

qpi
�

en

pn
+

e0n

pn

= U +
ei � qei

qpi
+

e0n � en

pn

Since qpi � pn, then
1
qpi

� 1
pn

and

U 0
� U +

ei � qei

qpi
+

e0n � en

qpi

= U +
ei � qei + e0n � en

qpi

= U +
e0n � (en + (q � 1)ei)

qpi

By Lemma 4.10, we know that en + (q � 1)ei � e0n, and therefore e0n � (en + (q � 1)ei) � 0.

U 0
� U
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Additionally,
p0n
p0
i

< 2: By de�nition of p0i, p
0
i = qpi + r such that (q + 1)pi > pn. Therefore,

2p0i > 2qpi � (q + 1)pi > pn = p0n. Since p
0
i < p0n and 2p0i > p0n, we have

p0n
p0
i

< 2.

Thus, we have produced T 0 as desired: T 0 fully utilizes the processor and U(T 0) � U(T ). 2

By repeating this transformation for all tasks �i 2 T such that pn
pi

> 2, we produce a sequence

of modi�ed task sets, each of which has one less task where pn
pi

> 2, and the utilization of

each task set in the sequence is at most the utilization of the previous task sets. We therefore

arrive at a task set that has a utilization at most that of the original task set, and the ratios

of the periods of the modi�ed tasks are all less than or equal to 2.

4.5 Utilization least upper bound

Having found a minimization based on period length, we now expand our consideration to

vary the period lengths. We will derive a minimum utilization over all tasks sets that fully

utilize the processor under RM. That utilization value will then determine a break point for

considering other task sets: Any task set whose utilization is at most that value must be

schedulable.

Theorem 4.3 ([LL '73]) Over the set of synchronous task sets with n tasks which fully

utilize the processor under RM, the minimum utilization is n(2
1

n �1), which is achieved with

the values pi = 2
i�1
n p1 for 1 � i � n.

Proof: By Theorem 4.2 and Lemma 4.9, we know for periods p1 � p2 � : : : � pn, the

utilization of a task set with those periods is minimized when pn
p1
� 2 and the execution

times are de�ned by en = 2p1 � pn, ei = pi+1 � pi for 1 � i < n. Let us then minimize the

processor utilization for such a task set.

U =
p2 � p1

p1
+ � � �+

pi+1 � pi

pi
+ � � �+

pn � pn�1

pn�1

+
2p1 � pn

pn

U =

 
p2

p1
+ � � �+

pi+1

pi
+ � � �+

pn

pn�1

+
2p1

pn

!
� n (30)

Note that equation (30) may be re-written as

U = (x1 + x2 + : : :+ xn)� n (31)
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where x1 =
p2
p1
; x2 =

p3
p2
; : : : ; xn�1 =

pn
pn�1

; xn = 2p1
pn
. By the given restrictions on the periods,

we then know that for each xi, xi � 1. Additionally,
Qn

i=1 xi = 2:

nY
i=1

xi =
2p1

pn

n�1Y
i=1

pi+1

pi

=
2p1

pn
�
p2

p1
�
p3

p2
� � � � �

pn�1

pn�1

�
pn

pn�1

=
2
Qn

i=1 piQn
i=1 pi

= 2

Since the geometric mean of a set of positive real numbers is less than or equal to the

arithmetic mean (see [Ru '66], page 61, for a proof of this claim),

 
nY
i=1

xi

! 1

n

�
1

n

nX
i=1

xi

n(2)
1

n �

nX
i=1

xi

n(2)
1

n � n �

 
nX
i=1

xi

!
� n

Then by equation (31)

n(2
1

n � 1) � U

Thus, the minimum possible utilization for a task set that fully utilizes the processor under

RM is n(2
1

n � 1).

To show the origins of the values pi = 2
i�1
n p1, we take the partial of U with respect to pi:

@U

@p1
=

2

pn
�

p2

p21
@U

@pi
=

1

pi�1

�
pi+1

p2i
8 1 < i < n

@U

@pn
=

1

pn�1

�
2p1

p2n

Solving each equation for zero, we have

2p21 = p2pn
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p2i = pi+1pi�1 8 1 < i < n (32)

p2n = 2pn�1p1

Note that the second equation above shows that the pi's form a geometric progression, which

can easily be proven by induction: Let a be such that p2 = ap1. Then for i = 2, pi = api�1.

Now assume that for pi; (2 � i < n), pi = api�1. Then by equation (32)

p2i = pi+1pi�1

(appi�1)
2 = pi+1pi�1

a2p2i�1 = pi+1pi�1

a(api�1) = pi+1

a(pi) = pi+1

Thus, by induction, there is some a such that

pi = p1 � a
i�1 for all i, 1 < i � n

In fact, simple algebra dictates that p1 = p1 � a
1�1, and therefore

pi = p1 � a
i�1 for all i, 1 � i � n

Thus, we have

2p21 = (p1a
1)(p1a

n�1)

= p21a
n

2
1

n = a

Therefore,

pi = 2
i�1
n p1 81 � i � n

which also shows p1 < p2 < : : : < pn < 2p1. By equation (30), the corresponding utilization

above becomes

U =

 
p2

p1
+ � � �+

pi+1

pi
+ � � �+

pn

pn�1

+
2p1

pn

!
� n

=

0
@2

1

np1

p1
+ � � �+

2
i
np1

2
i�1
n p1

+ � � �+
2
n�1
n p1

2
n�2
n p1

+
2p1

2
n�1
n p1

1
A� n

=
�
2
1

n + � � �+ 2
1

n + � � �+ 2
1

n + 2
1

n

�
� n

= n2
1

n � n

= n(2
1

n � 1)
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Therefore, the values

pi = 2
i�1
n for all 1 � i � n

achieve the minimum utilization for task sets with n tasks that fully utilize the processor

under RM. 2

See then the corresponding execution times are

ei = pi+1 � pi for 1 � i < n

= 2
i
np1 � 2

i�1
n p1

en = 2p1 � pn

= 2
n
np1 � 2

n�1
n p1

Thus,

ei = (2
i
n � 2

i�1
n )p1 for 1 � i � n

Thus, for any n 2 Z+ and any p1 2 R+, there is a task set (which fully utilizes the processor)

with a utilization of n(2
1

n � 1): the task set Tn;p1 =
n�
(2

i
n � 2

i�1
n )p1; 2

i�1
n p1; 2

i�1
n p1; 0

�on
i=1

.

The signi�cance of Tn;p1 is that we have de�ned the task sets which minimize utilization

while fully utilizing the processor. These task sets each have a utilization of n(2
1

n �1). Since

they minimize utilization while fully utilizing the processor, then (as we will see below in

Theorem 4.4) we know that any task set of n tasks whose utilization is less than n(2
1

n � 1)

has a valid schedule under RM.

Note that n(2
1

n � 1) monotonically decreases in n for n � 1:

2
1

n = e
1

n
ln 2

=
1X
i=0

�
1
n
ln 2

�i
i!

= 1 +
1

n

1X
i=1

�
1
n

�i�1
(ln 2)i

i!

2
1

n � 1 =
1

n

1X
i=1

�
1
n

�i�1
(ln 2)i

i!

n(2
1

n � 1) =
1X
i=1

�
1
n

�i�1
(ln 2)i

i!

= ln 2 +
1X
i=2

�
1
n

�i�1
(ln 2)i

i!
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Note that every term in the in�nite sum montonically decreases in n for n � 1, thus the sum

(and n(2
1

n � 1)) monotonically decreases in n for n � 1.

Additionally, the in�nite sum summand decreases to 0 as n tends to 1:

1X
i=2

�
1
n

�i�1
(ln 2)i

i!
=

1

n

1X
i=2

�
1
n

�i�2
(ln 2)i

i!

<
1

n

1X
i=0

(ln 2)i

i!

=
1

n
eln 2

=
2

n

lim
n!1

1X
i=2

�
1
n

�i�1
(ln 2)i

i!
= lim

n!1

2

n
= 0

Thus, n(2
1

n � 1) monotonically decreases to ln 2.

We now summarize the previous results regarding the utilization value n(2
1

n � 1).

Theorem 4.4 ([LL '73]) Under RM,

1) every synchronous task set of n tasks which satis�es U � n(2
1

n � 1) is schedulable,

2) there is a schedulable task set of n tasks with U = n(2
1

n � 1), and

3) for any value of U > n(2
1

n � 1), there exists a task set of n tasks (with such a utilization)

that is not schedulable.

Proof of part 1: Let T be a task set of n tasks such that U(T ) � n(2
1

n � 1). We will

prove that T has a valid schedule under RM by contradiction. Assume T is not schedulable

by RM. Since T is not schedulable, there exists some �i 2 T that does not meet its �rst

deadline RM. Let �i be the lowest indexed such task. Since lower priority tasks do not a�ect

the scheduling of higher priority tasks under a SPSA, the task set T 0 = f�jg
i
j=1 doesn't fully

utilize the processor (by de�nition of full utilization) because task �i misses its �rst deadline.

Additionally,

U(T 0) =
iX

j=1

ej

pj
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�

nX
j=1

ej

pj

= U(T )

� n(2
1

n � 1)

Since i � n and n(2
1

n � 1) decreases monotonically in n, we then have

U(T 0) � i(2
1

i � 1)

Based on this information, we will build a task set T 00 that will contradict Theorem 4.3.

Thus, T must be schedulable. We de�ne T 00 as follows: for all 1 � j < i, let � 00j = � 0j (which

is the same as �j). We let � 00i = � 0i , except that we decrease the execution time of ei such

that in RM scheduling of T 00, � 00i meets its �rst deadline, and there is no idle time prior to

pi. Thus, T
00 has either i or i� 1 tasks (if e00i has been set to 0), and all deadlines on [0; pi]

are met. Then, by Lemma 4.5, we know T 00 fully utilizes the processor. Now consider the

utilization of T 00:

U(T 00) =
iX

j=1

e00j

p00j

=
i�1X
j=1

e00j

p00j
+

e00i

p00i

=
i�1X
j=1

ej

pj
+

e00i

pi

<
iX

j=1

ej

pj

= U(T 0) � i(2
1

i � 1)

Thus, U(T 00) < i(2
1

i � 1). By the monotonicity of n(2
1

n � 1), we also know U(T 00) <

(i�1)(2
1

i�1�1). Therefore, whether T 00 has i or i�1 tasks, we have produced a contradiction

to Theorem 4.3. Thus, task set T must be schedulable. Therefore, every synchronous task

T set of n tasks such that U(T ) � n(2
1

n � 1) is schedulable.

Proof of part 2: As de�ned immediately after Theorem 4.3, the task sets Tn;p1 have

utilizations of n(2
1

n � 1) and are schedulable under RM. Thus, there is a schedulable task

set of n tasks whose utilization is n(2
1

n � 1).

Proof of part 3: Let U > n(2
1

n � 1). My goal is then to create a task set with a utilization

of U such that the task set is not schedulable. We construct T identical to Tn;1 with one
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task's execution altered:

e1 = 2
1

n � 1 + �

where � = U � n(2
1

n � 1).

First, we must show that U(T ) = U :

U(T ) =
nX
i=1

ei

pi

=
e1

p1
+

nX
i=2

2
i
n � 2

i�1
n

2
i�1
n

=
2
1

n � 1 + �

2
0

n

+
nX
i=2

(2
1

n � 1)

=
�

1
+

nX
i=1

(2
1

n � 1)

= n(2
1

n � 1) + � = U

We will now show that T has no valid schedule under RM by contradicting equation (2) in

Lemma 4.4. Since the periods of Tn;1, and therefore T , follow the descriptions in Lemma

4.8. the set over which we must consider t in equations (6) and (7) is merely fpjg
i
j=1.

Let t 2 fpjg
n
j=1. Then

1

t

nX
j=1

&
t

pj

'
ej =

1

pl

0
@l�1X
j=1

&
pl

pj

'
ej +

nX
j=l

&
pl

pj

'
ej

1
A

=
1

pl

0
@l�1X
j=1

2ej +
nX
j=l

1ej

1
A

=
1

pl

0
@ nX
j=1

ej +
l�1X
j=1

ej

1
A

If l = 1, then we have

1

t

nX
j=1

&
t

pj

'
ej =

1

p1
(2

n
n � 1 + �)

=
1

1
(2� 1 + �)

= 1 +� > 1
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If l > 1, then we have

1

t

nX
j=1

&
t

pj

'
ej =

1

pl

0
@
2
4 nX
j=1

�
2

j

n � 2
j�1

n

�
+�

3
5 + l�1X

j=1

�
2

j

n � 2
j�1

n

�
+�

1
A

=
1

pl

�h
2
n
n � 1 + �

i
+
h
2
l�1
n � 1 + �

i�

=
1

2
l�1
n

�
1 + �+ 2

l�1
n � 1 + �

�

=
1

2
l�1
n

�
2
l�1
n + 2�

�

=
2
l�1
n + 2�

2
l�1
n

> 1

Therefore,

mint2fpjgnj=1

8<
:1

t

nX
j=1

&
t

pj

'
ej

9=
; > 1

and equation (2) does not hold. Thus, T has no valid schedule under RM. 2

4.6 Complexity of feasibility tests

Clearly, there is a polynomial time algorithm that is su�cient to determine if the task set

is schedulable { namely, determining if U � n(2
1

n � 1). In practice, one would probably

avoid computing 2
1

n by checking if
�
U

n
+ 1

�n
� 2. Additionally, we should note that com-

puting utilization of task sets with irrational parameters (and therefore, computing a sum

of irrational numbers to compare with a given bound) may not be a polynomial time com-

putation, depending upon the given inputs. However, it is highly probable that all inputs

will be rational, making the utilization sum truly a linear time computation. In any event,

this test is not necessary for schedulability. We discussed one such necessary and su�cient

test above, which is to determine if the �rst deadline of each task is met. Such an algorithm

is pseudo-polynomial, however, since the algorithm must compute the schedule until time

maxfpig. The prioritization phase is computable in O(n log2 n) time, since one must sort

the n priorities. In [LSD '89], another pseudo-polynomial time algorithm is developed that

does not require computation of the full schedule from time 0 to time maxfpig, as discussed
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above. [LSD '89]'s method is based on Lemma 4.4:

max
�i2T

8>><
>>: min
t2

n
k�pjjj�i;k2f1;:::;

j
pi
pj

k
g

o
8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
;
9>>=
>>; � 1

The given computation indicates that the RM feasibility question is in NP : Given a task set

such that RM yields a valid schedule, nondeterministically choose ftig
n
i=1 such that for all

1 � i � n, 0 � ti � pi and

1

ti

iX
j=1

&
ti

pj

'
ej � 1

By the necessary and su�cient nature of Lemma 4.4, we know that such ti's exist. Each

such computation is clearly in O(n), and there are n such computations. Hence, the nonde-

terministic choices yield a computation time in O(n2).

To deterministically decide if a task set is schedulable, one would use Lemma 4.4 as well.

It is noted in [LSD '89] that the maximum is only necessary for a subset of the given tasks.

The idea is that one can use the utilization test de�ned in Theorem 4.4 to test subsets of

the entire task set. Computing the utilization is a linear time computation, and one should

make the most of it before switching to that in Lemma 4.4. Namely, one could �nd the

maximal subset of tasks, �1; �2; : : : ; �m (where the tasks are ordered by priority) such that

mX
j=1

ej

pj
< m(2

1

m � 1)

Since this subset of tasks meets the utilization criterion, then we know this subset will meet

all its deadlines { no lower priority task can interfere with the scheduling of these tasks.

Hence, the actual computation for equation (2) would be (note the set over which we're now

maximizing)

max
�i2T;i>m

8>><
>>: min
t2

n
k�pjjj�i;k2f1;:::;

j
pi
pj

k
g

o
8<
:1

t

iX
j=1

&
t

pj

'
ej

9=
;
9>>=
>>; � 1

because we already know that tasks �1; �2; : : : ; �m will all meet their �rst deadline. By

Theorem 4.4, we know those tasks already satisfy Lemma 4.3. In practice, one would sort

the tasks in increasing order by pi (as assumed in this section), and step through that sorted

task list, summing the ei
pi
's along the way, and comparing that running sum to m(2

1

m � 1).

So long as that sum is less than or equal to that bound, then we know that subset of tasks is

schedulable (since we know that to be a su�cient, but not necessary, test for schedulability).

As soon as the sum became greater than m(2
1

m �1) for m tasks considered, then there would
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be no guarantee that the m task subset was schedulable. In fact, since m(2
1

m � 1) decreases

as m grows, then every additional task considered will make the utilization (of the subset of

tasks) above the m(2
1

m �1) bound. Thus, one would have to resort to a test that is su�cient

and necessary. Namely, one would use equation (2) for the remaining tasks, as described

above. Even with this modi�cation, the algorithm is still pseudo-polynomial.

5 Deadline Monotonic Scheduling and Asynchronous

Task Sets

5.1 De�nition

Deadline Monotonic scheduling (DM) is a static-priority scheduling algorithm for periodic

tasks. DM uses the deadline span of each task for its priority. Thus, tasks with the smallest

deadline span will have highest priority, and tasks with the largest deadline span will have

the lowest priority. The intuition behind DM is that the task with the smallest deadline

span (not necessarily the one with the smallest period) should be the task considered \most

urgent," and therefore the task with the highest priority. As in all priority based algorithms,

any priority ties may be broken arbitrarily. Formally, DM is a static priority scheduling

algorithm with Pi = di for all tasks �i in the given task set.

5.2 Example

In Section 4, we saw two examples where each task's deadline span was identical to its period.

Since RM assigns priorities by period, and DM assigns priorities by deadline span, when the

periods are equal to deadline spans, then RM is identical to DM. Thus, the examples in

Section 4 are also valid for DM. We present one additional example that will be used later

on in this section.

Let T be the task set f�ig
3
i=1 such that �1 = (1; 2; 3; 6), �2 = (1; 3; 12; 3), and �3 = (2; 4; 4; 1).

By de�nition of DM, task �1 has the highest priority, followed by task �2, and then �3. It

should be noted that under RM, the priorities of �2 and �3 would be switched. Since no

task is released until time 1, the processor is idle at time 0. At time 1, task �3 is released,

and is the only active task until time 3 { so �3 executes to completion. At that time, �2 is
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released, and executes to completion since it is the only active task. No task is active at

time 4, so the processor is idle. At time 5, �3 is released, and is the only active task { hence

it is scheduled until time 6, when task �1 is �rst released. Since �1 has a higher priority than

�3, �1 preempts �3 and executes at time 6. When �1 completes its execution at time 7, �3
is no longer preempted (it's now the only active task) and executes. The rest of the graph

should be clear.

5 10 15 20 25 30

1

3

2

0

Task

Time

5.3 DM as an optimal scheduler

As mentioned above, if pi = di for all tasks �i in the task set, then DM is identical to RM.

Thus, by the work in Section 4.3.3, in those conditions DM is optimal. The bene�t derived

from DM that is not available in RM is that for synchronous task sets with some dj 6= pj,

DM is optimal, and RM is not. DM is therefore optimal for all synchronous periodic task

sets.

Theorem 5.1 ([LW '82]) DM is an optimal scheduling algorithm among static priority

scheduling algorithms for synchronous task sets.

Proof: Since task priorities are ordered according to increasing deadline span, this result

follows directly from Theorem 4.1. 2

5.4 Asynchronous task sets and a feasibility test

Unfortunately, DM is not optimal for asynchronous task sets. Consider

T = f�1 = (2; 3; 4; 2); �2 = (3; 4; 8; 0)g. Since �1 has the shorter deadline span, DM will assign

it a higher priority. Thus, �2 will execute on [0; 2), when �1 is released. �1 will execute on
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[2; 4) { at which point �2 has reached its deadline and has not completed execution. Thus

DM does not yield a valid schedule for this task set. However, granting higher priority to

task �2 will yield a valid schedule: �2 will execute on [0; 3), �1 will execute on [3; 5), �1 will

execute on [6; 8), �2 will execute on [8; 11), �1 will execute on [11; 13), �1 will execute on

[14; 16), �2 will execute on [16; 19), and the schedule repeats the pattern de�ned on [8; 16)

inde�nitely. The graph below shows both the \failed" prioritization and the valid schedule.

deadline at time 4.

Task 2 misses its

5

Time

10 15 20 25 30

1

2

0

Task

Swapping task priorities, we have the following (valid) schedule

5

Time

10 15 20 25 30

1

2

0

Task

According to [LW '82], no static-priority scheduling algorithm has been discovered which is

optimal for an arbitrary asynchronous system and produces task prioritizations in polynomial

time { we were unable to �nd either a more recent con�rmation of this claim or a development

of such an algorithm. Clearly, one means would be to compute all possible prioritizations,

and test each one with the feasibility test we will derive in Theorem 5.2. However, simply

computing all possible prioritizations requires a factorial (of the number of tasks) amount of

time, which doesn't even consider the amount of time it takes to compute feasibility.

Results from [LW '82] show that DM is also optimal for asynchronous task sets under either

of two speci�c conditions. First, if the task sets under consideration contain only two tasks,

and di = pi for i 2 f1; 2g. Second, if the task sets are such that di = pi for all �i 2 T and for

any �i; �j such that pi < pj, there exists a k 2 Z+ such that kpi = pj. We do not duplicate

those results here.

[LW '82] then provides a valuable tool, an algorithm to determine schedulability of discrete

static priority scheduling algorithms for asynchronous task sets with integer valued param-
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eters. The idea for the algorithm is that under a discrete schedule, the scheduling of the

processor will become periodic at time max�i2Tfrig+ lcmfpig (or before). Thus, if all dead-

lines up to time max�i2Tfrig+ 2 � lcmfpig are met, then all deadlines in the entire schedule

are met (since the scheduler will repeat itself after that time). Note that this test does not

show DM to be optimal.

We �rst will make a few de�nitions and present some necessary preliminary lemmas. We

de�ne r = max�i2Tfrig and P = lcmfpig.

To see why we check deadlines up to r + 2P and not just r + P , consider the task set

T = f�1; �2g, where �1 = (1; 2; 2; 2), and �2 = (4; 6; 6; 0). Note that U(T ) = 1
2
+ 4

6
> 1, and

therefore T has no valid schedule. However, using DM, overow doesn't occur until time 12

{ speci�cally, a timestamp later than r + P = 2 + 6 = 8.

T ime j Task

0� 2 j �2

2� 3 j �1

3� 4 j �2

4� 5 j �1

5� 6 j �2

6� 7 j �1

7� 8 j �2

8� 9 j �1

9� 10 j �2

10� 11 j �1

11� 12 j �2 Overow!

5

Time

10 15 20 25 30

1

2

0

Task Task 2 overflows at time 12.

Given a task set with integer valued parameters, the releases and deadlines become periodic

after the last release. We will state this claim as a lemma, which will be useful in the ensuing

proof.

Lemma 5.1 Let T be any task set with tasks that have integer valued parameters, �i be a task

in T , and t0 be a release of �i. As above, we denote max�j2Tfrjg = r, and P = lcm�j2Tfpjg.

Then

1) if t0 2 [r; r+P ), then for all k 2 Z such that kP + t0 � ri, �i has a release at time kP + t0,
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and

2) if t0 =2 [r; r+ P ), then there exists t1 2 [r; r + P ) such that (t1 � t0) mod P � 0, and t1 is

a release of �i.

In essence, this lemma is stating that whatever \happens" on the interval [r; r + P ) wholly

de�nes all the releases (and therefore deadlines) for the entire schedule of T .

Proof of part 1: We know that �i has releases at all times ri + lpi for l 2 Z+. Since t0 is a

release of �i, there is some l0 such that ri + l0pi = t0. Since P = lcm�j2Tfpjg, then
P
pj

is an

integer, which we will denote c. Let k 2 Z be such that kP + t0 � ri. Then see that

ri + (kc+ l0)pi = ri + kcpi + l0pi

= ri + l0pi + kP

= t0 + kP

Therefore, by de�nition of k,

ri + (kc + l0)pi � ri

(kc + l0)pi � 0

kc + l0 � 0

kc + l0 2 Z+

Thus, we have found an l 2 Z+ (namely, kc + l0) such that ri + lpi = kP + t0. This holds

for all k 2 Z such that kP + t0 � ri. For all such k, by de�nition of release times, �i has a

release at time kP + t0.

Proof of part 2: Let t0 =2 [r; r + P ) be a release of �i. Since t0 is a release of �i, then

there exists an l0 2 Z+ such that ri + l0pi = t0. We de�ne t1 = r + (t0 � r) mod P . Clearly,

r � t1 < r+P . We �rst must show that (t1� t0) mod P � 0. By de�nitions of the variables,

(t1 � t0) mod P � (r + (t0 � r) mod P � t0) mod P

� r mod P + t0 mod P � r mod P � t0 mod P

� 0

Since (t1 � t0) mod P � 0, then there exists some d 2 Z such that t1 � t0 = Pd. Since

P = lcm�j2Tfpjg, then
P

pi
is an integer, which we denote c. Thus, t1 � t0 = picd. Then we

have

t1 = (t1 � t0) + t0

= picd+ ri + l0pi

= ri + (l0 + cd)pi
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Since t1 � r, then t1 � ri. Thus, l0 + cd 2 Z+, and there exists an l (namely l0 + cd) such

that ri + lpi = t1. Thus, t1 is a release of �i in [r; r + P ) and (t1 � t0) mod P � 0. 2

We now move on to make claims about the schedule of a task set, and compare the schedule

on the two intervals [r + P ) and [r + P; r + 2P ). To do so, we will need the following

de�nitions. We de�ne eg;i;t to be the amount of time for which task �i executes in schedule

g between the release of �i immediately prior to (or at) t, and time t. We de�ne eg;i;t = ei
if t < ri { which indicates that it has no execution pending. Formally, we de�ne eg;i;t as

follows: Let R = maxj2Z+fri + jpi � tg. Then

eg;i;t =

( R t
R �g;�i(x)dx : t � ri

ei : t < ri

Since a task only executes until completion, then for all g; i; t we know that eg;i;t � ei. When

it is clear, the g subscript will be omitted. Given a schedule g of a task set T , we de�ne

Cg(T; t) = (e1;t; e2;t; : : : ; en;t).

Lemma 5.2 ([LW '82]) Let T be an asynchronous task set with integer parameters. Con-

sider a partial schedule of T for all releases on the interval [r; r+2P ) by some static priority

scheduling algorithm that meets all deadlines on (r; r + 2P ]. Then for each task �i 2 T and

each t such that r � t � r + P , ei;t � ei;t+P .

Intuitively, this lemma indicates a relationship between the intervals [r; r+P ) and [r+P; r+

2P ). The relationship is characterized by the fact that a task may not execute any \quicker"

on [r + P; r + 2P ) than it does on [r; r + P ).

Proof: We prove the lemma by contradiction. Assume the lemma is false; that there is

some �k and some t such that r � t � r+P and ek;t < ek;t+P . Let �k be the highest priority

task for which there is such a time t. Let R be the release of �k immediately prior to (or

at) time t. We know such an R exists since ek;t < ek;t+P � ek, and ek;t0 = ek for all t0 prior

to �k's �rst release. Additionally, since we are only considering the partial schedule of T for

releases on [r; r + 2P ), R � r. By Lemma 5.1, R + P is the release of �k immediately prior

to (or at) time t + P . Thus, ek;R = ek;R+P = 0 since R and R + P are both releases of �k.

Since ek;t < ek;t+P , there is some time in (R; t) where �k does not execute, but does execute

at the corresponding time on (R + P; t + P ). Thus, there exists some time t0, R � t0 < t,

such that �k is not on the processor at time t0, but �k is on the processor at time t0 + P . We

know that �k is active at time t0 since ek;t0 < ek;t < ek. Therefore, there must be some task �l
that preempts �k at time t0 { therefore �l has a higher priority than �k. Additionally, �l must
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not be active at time t0 + P since �k, a lower priority task, is on the processor. Thus, �l is

active at time t0, but not at time t0 + P . Therefore, el;t0 < el = el;t0+P . Since R � r, then we

also know that t0 � r. However, this means that we have found a task with higher priority

than �k such that there exists a time t0 2 [r; r + P ] such that el;t0 < el;t0+P . This contradicts

our assumption that �k is the highest priority task with such a time t. Thus, no such task

�k exists, and the lemma is true. 2

We now have a handle on the relation between execution times on the given intervals, and

apply that knowledge to derive information about the idle times.

Lemma 5.3 Let T be an asynchronous task set with integer parameters. Consider any

discrete schedule of T . Let t � 0 be such that ei;t � ei;t+P for all �i 2 T . If the processor is

idle at time t+ P , it must also be idle at time t.

Proof: Let t be as described above. Then the processor is idle at time t + P , and there

are no active tasks at time t+P . Therefore, for all �i 2 T , we know that ei;t+P = ei. By the

lemma assumption, for all �i 2 T , ei;t � ei;t+P = ei. Thus, ei;t = ei and �i is not active at

time t. Since this holds true for all �i 2 T , the processor is idle at time t. 2

We now use Lemma 5.3 to show that the con�guration of the schedule at time r + P is

identical to its con�guration at time r+ 2P . This result is key in showing that the schedule

of a task set is periodic beginning at time r + P .

Lemma 5.4 ([LW '82]) Let T be an asynchronous task set with integer parameters. Con-

sider any discrete (possibly partial) schedule of T that contains all releases on the interval

[r; r + 2P ) by some scheduling algorithm such that all deadlines on (r; r + 2P ] and met,

and such that for each task �i 2 T and each t such that r � t � r + P , ei;t � ei;t+P . If

the scheduling algorithm is such that o�setting all task releases by P time units yields an

identical schedule (o�set by P time units), then Cg(T; r + P ) = Cg(T; r + 2P ).

To prove the claim, we must show that for each task �i 2 T , ei;t = ei;t+P .

We consider two cases, based on whether there is any idle time on the interval [r+P; r+2P ).

Proof:
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Case 1: There exists idle time on [r + P; r+ 2P ). Let t+ P 2 [r + P; r+ 2P ) be such that

the processor is idle at time t+P . By Lemma 5.1, we know that all releases on [t+P; r+2P )

correspond exactly (o�set by a value of P ) with the releases on [t; r+P ). By Lemma 5.3, we

know that the processor is idle at time t. Since all tasks are idle at times t and t + P , then

Cg(T; t) = Cg(T; t + P ) (all values are zero). Therefore, the initial values (at t and t + P )

presented to the scheduler are the same, and all the releases (on [t; r+P ) and [t+P; r+2P ))

are (o�set by P ) the same. Since the scheduling algorithm is such that o�setting all task

releases by P time units yields an identical schedule (o�set by P time units), the scheduler

then must schedule exactly the same on the intervals [t; r + P ) and [t + P; r + 2P ). Thus,

Cg(T; r + P ) = Cg(T; r + 2P ).

Case 2: There is no idle time on [r + P; r + 2P ). We will use the fact that there is no

idle time on this interval to show that for all �i 2 T , ei;r+P = ei;r+2P . Let �i 2 T , and Ri

be the �rst release of �i on the interval (r + P; r + 2P ]. Since �i meets all its deadlines on

(r+P; r+2P ], then it meets its deadline immediately prior to time Ri, which occurs at time

Ri� pi + di. Therefore, by the de�nition of ei;t, �i must execute for ei� ei;r+P time units on

[r; Ri).

On [Ri; Ri+P�pi), �i has
j
P�pi
pi

k
= P

pi
�1 complete periods. Additionally, [Ri; Ri+P�pi) �

[r + P; r + 2P ]: Since Ri is the time of �i's �rst release after time r + P , then it cannot be

any later than r + P + pi. Thus,

Ri � r + P + pi

Ri � pi � r + P

Ri + 2P � pi � r + 2P

Therefore, �i must meet all its deadlines in [Ri; Ri + P � pi]. There are as many deadlines

as there are complete periods, and for each period, there must be ei time units of execution.

Thus, on [Ri; Ri + P � pi), �i executes for (
P

pi
� 1)ei time units.

We now must consider the interval [Ri + P � pi; r + 2P ). Since Ri > r + P , we know that

Ri + P � pi > r + P + P � pi

(Ri + P � pi) > r + 2P � pi

(Ri + P � pi) + pi > r + 2P

Therefore, the release of �i after time Ri + P � pi falls after time r+ 2P . Thus, the amount

of execution that �i completes on [Ri + P � pi; r + 2P ) is (by the de�nition of ei;t) exactly

ei;r+2P .

63



Therefore, �i is scheduled for

ei � ei;r+P +

 
P

pi
� 1

!
ei + ei;r+2P = ei � ei;r+P + P

ei

pi
� ei + ei;r+2P

= P
ei

pi
+ ei;r+2P � ei;r+P

time units on the entire interval [r + P; r + 2P ). So, for all tasks, the amount of total

execution on [r + P; r + 2P ) is

nX
i=1

 
P
ei

pi
+ ei;r+2P � ei;r+P

!

Since there is no idle time on [r + P; r + 2P ), we know that the total amount of execution

is identical to the interval length. Thus,

P =
nX
i=1

 
P
ei

pi
+ ei;r+2P � ei;r+P

!

= P
nX
i=1

ei

pi
+

nX
i=1

(ei;r+2P � ei;r+P )

= PU(T ) +
nX
i=1

(ei;r+2P � ei;r+P )

P (1� U(T )) =
nX
i=1

(ei;r+2P � ei;r+P ) (33)

Note that since P is positive and U(T ) � 1, the left hand side of equation (33) is not

negative. Additionally, by the lemma assumption that for each t such that r � t � r + P ,

ei;t � ei;t+P , we know the right hand side of equation (33) is not positive, and that the right

hand side is zero if and only if ei;r+2P = ei;r+P for all �i 2 T . Since equation 33 is true, then

we must have both sides of the equation equal to zero. Thus, by de�nition of Cg(T; t), we

know that Cg(T; r + P ) = Cg(T; r + 2P ). 2

With the lemmas behind us, we now proceed to prove the main theorem of this section.

Theorem 5.2 ([LW '82]) Let g be a discrete static priority schedule of T , an asynchronous

task set with integer valued parameters. Let g0 be the partial schedule of the releases of T on

the interval [r; r + 2P ) by the same static priority scheduling algorithm used for g. Then g

is valid if and only if all deadlines in g0 on the interval (r; r + 2P ] are met.
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Prior to getting into the proof proper, we note that the theorem assumptions satisfy lemma

5.2, and therefore the theorem assumptions also satisfy lemma 5.3. Additionally, since the

schedule is produced by a static priority scheduling algorithm, then o�setting all releases

by any time value will not a�ect prioritization { and therefore not a�ect how the tasks are

scheduled. Thus, the scheduling algorithm is such that o�setting all task releases by P time

units yields an identical schedule (o�set by P time units), and lemma 5.4 holds.

Proof: We �rst assume that g is valid, and must show that all deadlines in g0 on the interval

(r; r + 2P ] are met. Assume that some deadline in g0 is not met. Since the schedule of g

contains every release and deadline considered in g0, and g0 schedules by the same algorithm

as g, then the missed deadline in g0 must also be missed in g. Informally, g0 has \less work"

to do on the interval than g has. If g0 is unable to meet the deadline, then g certainly won't

be able to do so. Therefore, if g is valid, all deadlines in g0 on the interval (r; r + 2P ] are

met.

We now assume that in g0 all deadlines on (r; r + 2P ] are met. We will build a schedule, g00,

where all deadlines are met, and then compare g00 to g to show that all deadlines in g are

met as well. The schedule g00 will be created by \copying" the interval [r + P; r + 2P ) from

g0.

Without loss of generality, assume that min�i2Tfrig = 0. We build the schedule g00 starting

at time s = r �
j
r

P

k
P by repeating the schedule interval [r + P; r + 2P ) in g0: That is to

say, for any k 2 Z+, g
00 on [s + kP; s + (k + 1)P ] is identical to g0 on [r + P; r + 2P ]. We

complete the schedule g00 on [0; s) by repeating the schedule interval [r + 2P � s; r + 2P )

from g0. However, there may be execution in g00 on [0; r + P ) corresponding to releases that

do not occur in T . Thus, we �nalize g00 by replacing all such execution time with idle time.

To help visualize how these schedules are related, here are the DM schedules of g, g0, and

g00 for the sample task set T = f�ig
3
i=1 such that �1 = (1; 2; 3; 6), �2 = (1; 3; 12; 3), and

�3 = (2; 4; 4; 1) on the interval [0; 32]. Note that in this example, r = 6, and P = 12.

Therefore, r + P = 18, and r + 2P = 30.
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The partial schedule g’ of task set T on [0,32]
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The schedule g’’ of task set T produced by copying

extraneous execution.

the interval [18,30) from g’ before removal of

Time

5 10 15 20 25 30
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Task
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The schedule g’’ of task set T

(after removal of extraneous execution)

And here is the schedule g of T . Note the minor di�erence between g and g00 { namely, at

times 3 and 4.
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Now back to the proof...

By Lemma 5.4, Cg0(T; r+P ) = Cg0(T; r+2P ), and we know by the theorem assumption that

all deadlines are met in g0 on (r+P; r+ 2P ]. Since for times at or after r+ P , g00 is created

by repeating the interval [r+P; r+2P ] from g0, there can be no missed deadlines in g00 at or

after time r + P . Additionally, for times before r + P , g00 is created by repeating the same

interval from g0, but with some execution (possibly) removed. The removal of execution time

will not delay any other execution, and therefore there can be no missed deadlines in g00 on

[0; r + P ). Thus, g00 is a valid schedule of T . Additionally, all deadlines and releases are

identical to those in g by lemma 5.1.

Now we compare the schedule g00 to the schedule g. We know that g00 has the same releases

and deadlines as those in g, and that all deadlines are met in g00. Therefore, if we can show

that eg;i;t � eg00;i;t for all �i 2 T and all t � 0, then all deadlines in g are met (by applying

the result to the time and task of each deadline). We do this by contradiction.

Assume there is some time t � 0 and some �i such that eg;i;t < eg00;i;t. Since neither schedule

has scheduled any task by time zero, we know t > 0. Without loss of generality, let t be

the minimal time such that there is a task �k with eg;k;t < eg00;k;t. Since we are dealing with

discrete units of time, we know that this minimum is attained. Additionally, we know that

the priorities used in g and g00 are identical, and therefore discussing task priorities is not

dependent on a particular schedule. Without loss of generality, we then assume that �k is

the highest priority task such that eg;k;t < eg00;k;t. Therefore, there is either 1) some task

�l with a higher priority than �k that preempts �k at time t in g, but does not preempt �k
at time t in g00, or 2) g schedules no task at time t. Since g schedules by (unaltered) DM,

we know that g cannot be idle at t since task �k is active. Therefore, there must be a �l as

described. Since priorities in g and g00 are identical, then �l must be active in g at time t

and not active in g00 at time t. Therefore, eg;l;t < el while eg00;l;t = el. Thus, �l is such that

eg;l;t < eg00;l;t, which contradicts our assumption about �k. Therefore, there can be no such

time t, and eg;i;t � eg00;i;t for all �i 2 T and all t � 0. 2
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5.5 Complexity of feasibility tests

Clearly, since DM is a more general case of RM, then feasibilty tests for DM will be at

least as complex as those of RM. In the synchronous case, by lemma 4.2, we have a pseudo-

polynomial time algorithm to determine if the schedule produced by DM is valid: Produce

the schedule until time max�i2Tfdig. If all �rst deadlines are met, then the schedule is valid.

Additionally, we have seen that for a given static priority scheduling algorithm, we have

a feasibility test, as shown in Theorem 5.2. Note, however, that the feasibility test there

is polynomial in n and in the least common multiple of fpig
n
i=1. In particular, it is not

polynomial in n and maxfpig
n
i=1 since the least common multiple may very well be on the

order of
Qn

i=1 pi, which can approach (p1)
n. Thus, we do not know of a pseudo-polynomial

time algorithm for feasibility in the asynchronous case.

In fact, given some task set T , determining if there is a valid static-priority schedule of T

is co-NP -complete in the strong sense. This is shown in [LW '82] by a reduction of the

Simultaneous Congruences Problem (SCP) to the feasibility problem above. SCP has been

shown to be NP -complete in the strong sense in [BHR '93].

First, we de�ne SCP: Given n ordered pairs of positive integers (a1; b1); (a2; b2); : : : ; (an; bn)

and a positive integer K(2 � K � n), is there a subset of l � K ordered pairs

(ai1 ; bi1); (ai2; bi2); : : : ; (ail; bil) such that there is a positive integer x such that x � aij mod bij
for each 1 � j � l?

Now, the reduction. Given an instance of SCP, (a1; b1); : : : ; (an; bn) and K, we construct the

following task system, T , of n tasks: for all i; 1 � i � n; �i = (1; K� 1; (K� 1)bi; (K� 1)ai).

Since each task has a computation time of 1, a deadline span of K�1, and release times and

periods that are multiples of K � 1, then an overow will occur if and only if K (or more)

tasks are released at a given multiple of K� 1. By simple algebra, task �i is released at time

x if and only if x � (K � 1)ai mod (K � 1)bi. Hence, there is overow if and only if there

is some positive integer x and there are l � K tasks f�i1 ; �i2 ; : : : ; �ilg � f�jg
n
j=1 such that

x � (K � 1)aik mod (K � 1)bik for all 1 � k � l. Therefore x is a multiple of K � 1, and for

y = x
K�1

, y � aik mod bik . Note that this condition on y is exactly the condition for a solution

to SCP. Clearly this reduction is polynomial in time, so if there exists a polynomial time

algorithm to determine if a task set is not schedulable on a uniprocessor system, then there

exists a polynomial time algorithm to solve SCP. Since SCP is NP -complete, determining if

a task set is not schedulable on a uniprocessor is NP -hard. Thus, the feasibility problem

(determining if a task set is schedulable on a uniprocessor) is co-NP -hard.
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Now we must show that the feasibility problem is in co-NP. Consider any task set that does

not have a valid schedule under the given static priority scheduling algorithm. By Theorem

5.2, we know that the partial schedule of all task releases on [r; r+2P ) will then have a missed

deadline on (r; r+2P ]. If a deadline is missed, then the amount of execution requested over

a given amount of time is greater than the amount of time available. Let us assume that,

in the partial schedule, overow occurs at time t2. Then there must be some time t1 � R

such that there is no idle time on [t1; t2). We de�ne t1 as the minimum over all such times.

Therefore, the processor is idle prior to t1. Consider any task �i in the task set. We know

that the index of �j's release immediately prior to t2 is
l
t2�rj

pj

m
, and that the index of �j's

release immediately prior to t1 is
l
t1�rj

pj

m
. Therefore, �j has exactly

l
t2�rj

pj

m
�
l
t1�rj

pj

m
releases

on [t1; t2). Thus, if there is an overow at time t2 by some task �i, then we know that the

amount of work requested by �i and all higher priority tasks on the interval [t1; t2) is greater

than the amount of time available. Namely,

iX
j=1

 &
t2 � rj

pj

'
�

&
t1 � rj

pj

'!
ej > t2 � t1

Thus, given a task set without a valid schedule, there must exist such times t1 and t2. To

see that the feasibility problem is in co-NP, we simply choose (non-deterministically) the

appropriate t1 and t2. The computation above is polynomial in time, and con�rms that the

task set has no valid schedule. Thus, the feasibility question is in co-NP.

Since the general feasibility problem is co-NP -hard and in co-NP, it is co-NP -complete.

6 Earliest Deadline First

Earliest-deadline-�rst scheduling (EDF) is one of the most signi�cant scheduling algorithms

in the �eld. The main reason is that EDF is optimal for scheduling any task set. In fact, for

task sets where each task's period is identical to its deadline span, EDF will produce a valid

schedule if and only if the utilization of the task set is one or less. We've already seen that

if a task set has a utilization over one that the task set has no valid schedule, so the power

of EDF is the wide range of task sets over which EDF is optimal.
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6.1 De�nition

EDF is a dynamic-priority scheduling algorithm that assigns highest priority to whatever

task has the \nearest deadline". Formally, a task �i's priority at time t is given by

Pi = di(t)� t

where di(t) is the next deadline of �i (at or after t).

6.2 Example

As we will see below, EDF is able to schedule task sets that RM is unable to schedule. For

example, in Section 4 we stated that for the task set f(1; 3; 3; 0); (1; 4; 4; 0); (1; 5; 5; 0)g, the

third task's execution could not be increased if RM were to produce a valid schedule for the

task set. However, this is not the case for EDF. Consider the task set T = f�ig
3
i=1, where

�1 = (1; 3; 3; 0), �2 = (1; 4; 4; 0), and �3 = (2; 5; 5; 0). Since ties in priority may be broken

arbitrarily, we will schedule this task set with EDF where, in the case of a priority tie, the

task set with the lowest index is scheduled.

At time 0, all three tasks are active, but �1 has the nearest deadline (at time 3). Thus, �1
is scheduled at 0. At time 1, �2 has a nearer deadline than �3, so �2 is scheduled at time

1. At time 2, �3 is the only active task and therefore is scheduled. At time 3, �1 is also

active, but �3's deadline is at 5, whereas �1's deadline is at 6 { so �3 is scheduled at time 3

and completes, satisfying its deadline at 5 (in RM, �1 would have preempted �3 and there

would have been a missed deadline). At time 4, �2 is active, but �1 has a nearer deadline

and is therefore scheduled. A continuation of this process completes the schedule. A couple

of times of interest are at time 12, where �1 preempts �3 since their corresponding deadlines

are identical { so a di�erent choice of how to break ties might yield a di�erent scheduled

task at time 12; and at time 18, where task �3 preempts task �1 since �3's deadline is nearer.

5

Time

10 15 20 25 300

1

3

2Task
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6.3 EDF as an optimal scheduler

As mentioned above, EDF is an optimal scheduler for task sets where each task's period

is identical to its deadline span. In fact, we will show that EDF is optimal for all task

sets. The distinction of task sets where periods equal deadline spans is worth invesitigating,

however, because for those task sets, there is a very simple (necessary and su�cient) means

of determining schedulability { is the utilization of the task set one or less? If so, the task

set is schedulable by EDF, as we will now see.

Theorem 6.1 ([LL '73]) For task sets T where pi = di for all �i 2 T , EDF produces a

valid schedule if and only if the given task set has a utilization less than or equal to 1.

Note that we are not assuming that ri = 0 for all i, as is assumed in [LL '73].

Proof: Assume that for some task set T , the schedule produced by EDF is not feasible.

Then there must exist some time t2 when overow occurs. Let us assume that task �j
overows at t2. Thus, �j has a deadline at t2, and we assume that t2 > 0 (if t2 = 0, then

dj = 0, and task �j is degenerate). Since �j overows at t2, then �j is active on the entire

interval [t2� dj; t2). Thus, there can be no idle time on that interval (otherwise �j would be

executing in it!). Therefore, some task(s) is(are) executing on the processor on [t2 � dj; t2).

Let t1 be the time such that t1 = 0 or there is some � > 0 such that the processor is idle on

[t1 � �; t1), and there is no idle time on [t1; t2). Note that t2 � t1 > 0 because the processor

is not idle on [t2 � dj; t2). Additionally, for some portion of the interval [t2 � dj; t2), �j must

be preempted by another task with the same or higher priority, and may only be preempted

such a task { hence, the preempting task(s) must have a deadline at or before t2. In other

words, no task invocation whose deadline is after t2 will preempt �j for the release at time

t2�dj. Note that this situation is very di�erent from RM or DM, since proximity to deadlines

has no e�ect on prioritization in those schemes. It is for that reason that this proof does not

hold for those scheduling policies.

Let t2 � t1 = t. By the explanation above, we know t � t2 � dj > 0. Since there is overow

at time t2 and from t1 to t2, the processor is not idle, then the time required for the amount

of work requested from t1 to t2 is greater than the time available. Knowing that the number

of releases (that must be satis�ed) of any task �i in [t1; t2) is at most
j
t
di

k
, that there is no

idle time from t1 to t2, and that there is overow at time t2, we know that the amount of

execution requested on [t1; t2) is more than the amount of time available, namely:

nX
i=1

�
t

di

�
ei > t
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nX
i=1

�
t

di

�
ei > t

t
nX
i=1

ei

di
> t

nX
i=1

ei

di
> 1

Thus, if EDF produces an invalid schedule for some task set such that for all i; di = pi, that

task set has a utilization greater than 1. Hence, if the task set has a utilization of 1 or less,

then EDF will produce a valid schedule.

Combining the result above with Theorem 3.1, we have the desired result: EDF produces a

valid schedule if and only if the utilization of the given task set is less than or equal to 1. 2

Since any task set with a utilization greater than 1 is not schedulable (as shown by Theorem

3.1), then EDF is optimal in the case where di = pi for all i. Note that we have a linear

time feasibilty test { merely discern the utilization of the task set (as noted in Section 4.6,

the computation of the utilization may not be computable in polynomial time if the task set

has irrational parameters).

If there exists some �i such that di 6= pi, then the above proof still holds, but the feasibility

test no longer considers the utilization of the task set: the denominators of the summands

are not the periods of the tasks. For example, consider the task set f(1,1,4,0), (1,1,4,0)g.

The utilization is 1
4
+ 1

4
= 1

2
, and yet

nX
i=1

ei

di
=

1

1
+

1

1
= 2 > 1

And this task set is not schedulable via EDF because both tasks require one unit of execution

by time one. However, the task set f(1,1,4,0), (1,1,4,2)g yields the same computations as

above, and yet this task set is schedulable (the �rst task executes at times 0; 4; 8; 12; : : :,

while the second executes at 2; 6; 10; 14; : : :). This example shows that the test of
Pn

i=1
ei
di

is su�cient for schedulabilty, but not necessary. It is solely when this sum is identical to

computing utilization that we have a necessary and su�cient test.

So, the question remains: Is EDF optimal for task sets whose task periods are not identical

to their deadline spans?

Theorem 6.2 ([La '74]) EDF is an optimal scheduling algorithm for all task sets.
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In this case, we must show that if there exists a valid schedule for a given task set, then

EDF produces a valid schedule.

Proof: As in the proof of Theorem 6.1, let us assume that there is some task set T that

is not schedulable via EDF. We de�ne t2 and t1 in the same manner { t2 is the time of the

�rst missed deadline, and t1 is either 0, or the last time prior to t2 such that the processor

is idle immediately prior to t1. As above, t1 < t2. By the de�nition of t1 and t2, any task

scheduled in [t1; t2) must correspond to a release of that task in [t1; t2) (since the processor is

idle prior to t1, then there can be no active task immediately prior to t1). As well, any task

deadline prior to t2 is met. Lastly, there is a task release in [t1; t2) whose deadline is not met

(namely, at t2). Let � be the amount of time scheduled in [t1; t2) for task invocations with

deadlines at t2. Since the processor is never idle in [t1; t2), then the amount of time scheduled

in [t1; t2) for task invocations with deadlines prior to t2 is exactly t2 � t1 � �. Suppose there

is an algorithm, A, that produces a valid schedule for T . Then, in [t1; t2), A must devote at

least t2� t1� � time units to task invocations whose deadlines are prior to t2. Additionally,

in [t1; t2), A must devote more than � time units to tasks invocations with deadlines at t2 {

otherwise, an overow will occur at t2. Since t2 � t1 � � + � = t2 � t1, it is impossible for A

to schedule more than � time units to those task invocations. Hence, A will overow at t2.

Thus, if EDF cannot schedule the task set, neither can any other scheduling algorithm. 2

6.4 A feasibility test

Note that much of this work parallels work in Section 5.4, and we are able to use the lemmas

there to greatly simplify our e�orts here.

[LM '80] derives an algorithm to determine the feasibility of producing a valid schedule under

EDF for asynchronous task sets with integer valued parameters. The idea for the algorithm

is that under a discrete schedule, the scheduling of the processor will become periodic at time

max�i2Tfrig+lcmfpig (or before). Thus, if all deadlines up to time max�i2Tfrig+2 � lcmfpig

are met, then all deadlines in the entire schedule are met (since the scheduler will repeat

itself after that time).

Prior to the proof of this claim, we �rst will recall a few de�nitions and present some

preliminary lemmas. eg;i;t is de�ned as the amount of time for which task �i has executed in

schedule g since its last request up until time t. eg;i;t = ei if t < ri. When it is clear, the g

subscript will be omitted. Given a schedule g, Cg(T; t) = (e1;t; e2;t; : : : ; en;t). As in Section

5.4, we de�ne r = max�i2Tfrig and P = lcmfpig.
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Lemma 6.1 ([LM '80]) Let T be an asynchronous task set with integer parameters. Let

g be the discrete schedule of T produced by EDF. For each task �i 2 T and each t � ri,

ei;t � ei;t+P

Proof: Assume otherwise, that there is some �k1 and some t � rk1 such that ek1;t < ek1;t+P .

Then there must be some time t0 such that rk1 � t0 < t, �k1 is active at both t0 and t0 + P ,

and �k1 is scheduled at time t0 + P but not at t0. Thus, there is some task �k2 with a nearer

deadline than �k1 that is active at time t0 and not active at time t0+P . Thus, ek2;t0 < ek2;t0+P .

By repeating the above argument, then we see that there must be another such task �k3 which

has a nearer deadline than that of �k2 , then another such task �k4 with a nearer deadline

than that of �k3 , and so on. Since there are only a �nite number of tasks in the task set,

then such an in�nite sequence cannot exist. Hence, no such �k1 exists. 2

Lemma 6.2 ([LM '80]) Let T be an asynchronous task set with integer parameters. Let g

be the discrete schedule of T produced by EDF, and assume that g meets all deadlines on the

interval (r + P; r + 2P ]. Then Cg(T; r + P ) = Cg(T; r + 2P ).

Proof: By lemma 6.1, we know that for each task �i 2 T and each t such that r � t � r+P ,

ei;t � ei;t+P . By the lemma assumption, g is a discrete schedule that contains all releases on

the interval [r; r + P ) and meets all deadlines on the interval (r + P; r + 2P ]. Additionally,

the scheduling of EDF is not a�ected by o�setting all release times by the same amount {

since when releases are o�set, so are the corresponding deadlines. EDF prioritizes by the

di�erence between the given time and respective deadline, so an o�set will not change the

prioritization produced by EDF. Thus, lemma 5.4 holds, and Cg(T; r + P ) = Cg(T; r + 2P ).

2

Theorem 6.3 ([LM '80]) Let g be the schedule of T , an asynchronous task set with integer

valued parameters, produced by EDF. g is a valid schedule if and only if all deadlines in the

interval [0; r + 2P ] are met.

Proof: Assume g is valid. Then all deadlines in g are met, including those on [0; r + 2P ].

Assume all deadlines in [0; r+2P ] are met. Then by lemma 6.2, we know that Cg(T; r+P ) =

Cg(T; r+2P ). By the same explanation in lemma 6.2, we know that o�setting task releases
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by a value of P will yield the same schedule (o�set by P ) under EDF. By lemma 5.1, we know

that all releases and deadlines correspond exactly to those on [r; r+P ). Thus, we know that

for any k 2 Z+, the schedule on [r+ kP; r+ (k + 1)P ) is identical to that on [r+ P; r+ 2P )

{ where all deadlines are met. Therefore, all deadlines at or after time r + 2P are met. By

the lemma assumption, all deadlines in [0; r + 2P ] are met. Therefore, all deadlines of T in

g are met, and g is valid. 2

[BRH '90] followed the work of [LM '80], and produced another feasibility test for EDF

which does not require one to compute the entire schedule on the interval [0; r + 2P ]. Prior

to stating their claim, we �rst de�ne �i(t1; t2) to be the total number of natural numbers k

such that

t1 � ri + kpi (a release occurs at or after time t1) and

ri + kpi + di � t2 (its corresponding deadline falls at or before time t2)

Thus, �i(t1; t2) is the number of times task �i must execute to completion on [t1; t2) to meet

all its deadlines on (t1; t2].

Theorem 6.4 ([BHR '93]) EDF produces a valid schedule for T , a task set with integer

valued parameters, if and only if

1) U(T ) � 1 and

2)
nX
i=1

�i(t1; t2)ei � t2 � t1 for all 0 � t1 < t2 � r + 2P

Proof: We �rst show that if EDF produces a valid schedule, then conditions 1 and 2 are

true.

Clearly, if condition 1 fails, then the task set is not schedulable by Theorem 3.1. As well, if

condition 2 fails, then there exists some t1; t2 such that
Pn

i=1 �i(t1; t2)ei > t2 � t1. Thus, the

amount of execution required on [t1; t2) is greater than the amount of time available. Hence,

there must be a missed deadline. Thus, if conditions 1 or 2 fail to hold, there is no valid

schedule of T . Therefore, if there exists a valid schedule of the task set, conditions 1 and 2

must be met. Since EDF is optimal for this type of task set, if there exists a valid schedule

of the task set, then EDF also produces a valid schedule. Thus, if EDF produces a valid

schedule for T , then conditions 1 and 2 hold.

We now show that if conditions 1 and 2 are true, then EDF produces a valid schedule.
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Let g be the schedule of T produced by EDF. Suppose g is not valid and both conditions

hold. By Theorem 6.3, we then know some deadline in (0; r+2P ] is not met. Let t2 be such

a deadline, and task �k be such that �k overows at time t2. Then let t1 � 0 be the minimal

value such that there is no idle time on [t1; t2), and all execution of tasks on [t1; t2) correspond

to deadlines at or before t2. Note that these conditions guarantee that 0 � t1 < t2, since

there can be no idle time on [t2� dk; t2), and the only tasks executing on that interval must

have deadlines at or before t2 by de�nition of EDF. By the de�nition of t1, we know that all

execution on [t1; t2) must correspond to a release at or after t1. Since there is no idle time on

[t1; t2) and all execution corresponds to releases on that interval,
Pn

i=1 �i(t1; t2)ei > t2 � t1.

Thus, we have a contradiction to condition 2. Hence, there is no such missed deadline t2. 2

To prepare for the complexity analysis, [BHR '93] shows that �i(t1; t2) can be e�ciently

computed.

Lemma 6.3 ([BHR '93])

�i(t1; t2) = max

(
0;

$
t2 � ri � di

pi

%
�max

(
0;

&
t1 � ri

pi

'
+ 1

))

Proof: By de�nition of �i(t1; t2), we know t1 � ri + kpi. Solving for k, we have k � t1�ri
pi

.

The minimal such k is exactly max
n
0;
l
t1�ri
pi

mo
. Also from the de�nition of �i(t1; t2), we know

ri + kpi + di � t2. Solving again for k, we have k � t2�ri�di
pi

. The maximal such k is thenl
t2�ri�di

pi

m
. Hence, the total number of k's satisfying the de�nition of �i(t1; t2) is exactly the

di�erence between the maximal k and the minimal k, or zero if
l
t2�ri�di

pi

m
�max

n
0;
l
t1�ri
pi

mo
�

0. 2

6.5 Complexity of feasibility tests

As mentioned above, if for all i; di = pi, then comparing the utilization of the given task

set to one is a polynomial (linear) time algorithm that determines feasibility. Without that

restriction, the feasibility problem is co-NP -complete in the strong sense. Note that since

EDF is optimal among scheduling algorithms for all tasks sets, this result then implies that

the general question of schedulability of a given task set on a uniprocessor system is also

co-NP -complete in the strong sense. We will follow the work of [LM '80] to reduce the

Simultaneous Congruences Problem (SCP), which is shown to be NP -complete in the strong
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sense in [BHR '93], to determining if a task set is not feasible. Note that this reduction is

very similar to the reduction found in Section 5.5.

First, we recall SCP: Given n ordered pairs of positive integers (a1; b1); (a2; b2); : : : ; (an; bn)

and a positive integer K; 2 � K � n, is there a subset of l � K ordered pairs

(ai1 ; bi1); (ai2; bi2); : : : ; (ail; bil) such that there is a positive integer x such that x � aij mod bij
for each 1 � j � l?

Now, the reduction. Given an instance of SCP, (a1; b1); : : : ; (an; bn) and K, we construct

the following task system, T , of n + 1 tasks: for all i; 1 � i � n; �i = (1; K;Kbi; Kai).

�n+1 = (1; K;K; 0). Since each task has a computation time of 1, a deadline span of K, and

its release times, deadline spans and periods are multiples of K (thus releases only occur at

time values that are multiples of K), then an overow will occur if and only if K + 1 (or

more) tasks are released at a given timestamp that is a multiple of K. As �n+1 is requested

at every timestamp that is a multiple of K, then there is overow if and only if K (or more)

other tasks (namely, �1 through �n) release at any given timestamp that is a multiple of

K. Given some time x, simple algebra dictates that a task �i has a release at time x if

and only if x � Kai mod Kbi. Hence, there is overow if and only if there is some positive

integer x and l � K tasks f�i1 ; �i2 ; : : : ; �ilg � f�jg
n
j=1 such that x � Kaik mod Kbik for all

1 � k � l. Therefore x is a multiple of K, and for y = x

K
, y � aik mod bik . Note that

this condition is exactly the condition for a solution to SCP. This reduction is polynomial

in time, so if there exists a polynomial time algorithm to determine if a task set is not

schedulable on a uniprocessor system, then there exists a polynomial time algorithm to

solve SCP. Since SCP is NP -complete in the strong sense, determining if a task set is not

schedulable on a uniprocessor is also NP -complete in the strong sense. Thus, the feasibility

problem (determining if a task set is schedulable on a uniprocessor) is co-NP -hard in the

strong sense.

Now, we must show that the feasibility question is in co-NP. Using Theorem 6.4, we see that

given a task set T for which EDF will not produce a valid schedule, either U(T ) > 1 (which

is computable in polynomial time), or

nX
i=1

�i(t1; t2)ei � t2 � t1 for all 0 � t1 < t2 � r + 2P

fails to hold. Thus, if U(T ) � 1 there is some t1 and t2 for which
Pn

i=1 �i(t1; t2)ei > t2�t1. By

nondeterministically choosing such t1 and t2, one may compute
Pn

i=1 �i(t1; t2) in polynomial

time: There are n computations of the �i's, each of which may be computed in O(1) time

(by Lemma 6.3). Thus, the feasibility question is in co-NP and is co-NP -hard in the strong

sense. Hence, it is co-NP -complete in the strong sense.
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7 Modi�ed Least Laxity First

In covering EDF and a scheduling algorithm known as Least Laxity First (LLF) found in

[Mo '83], we noticed that both shared a common structure in determining task priorities.

Both used the next deadline of a given task and the current time in computing priorities. LLF

also used the remaining amount of execution for the current release of the task. We noted

that EDF and LLF could be seen as the same type of scheduling, by using a multiplicative

factor on the remaining amount of execution { EDF using a factor of 0, and LLF using a

factor of 1. This prompted us to question what would occur if that factor were something

other than 0 or 1, and we discovered a resulting scheduling technique that was also optimal,

but more general than either EDF, LLF, or any scheduling algorithm that was a hybrid of

the two.

7.1 De�nition

We de�ne modi�ed least laxity scheduling (MLLF) with a factor of f , f 2 R, as a dynamic

priority scheduling algorithm. The priority of a given task �i at time t is exactly its modi�ed

laxity at time t,

mli(t) = di(t)� t� f � ei(t)

where di(t) is the next deadline of �i after time t, and ei(t) is the amount of execution

remaining for �i to complete this invocation. Formally,

di(t) =

(
ri + di : t < ri

ri +
j
t�ri
pi

k
pi + di : t � ri

and

ei(t) =

8<
:

0 : t < ri
ei �

R t
ri+

j
t�ri
pi

k
pi
�g;�i(x) dx : t � ri

It should be noted that if f = 0,

mli(t) = di(t)� t

and MLLF is identical to EDF. Additionally, if f = 1,

mli(t) = di(t)� t� ei(t)

and MLLF is identical to LLF. Therefore MLLF is a general scheduling algorithm encom-

passing both EDF and LLF.
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7.2 Example

As we mentioned above, MLLF is a generalization of EDF. Therefore, the example discussed

for EDF is also a sample of MLLF with a laxity factor of 0.

We now consider the task set T = f�ig
2
i=1, where �1 = (3; 6; 6; 0) and �2 = (4; 8; 9; 0). Under

MLLF with a laxity factor of 1, the schedule is determined as follows (where the task with

the lower modi�ed laxity executes, and ties are broken arbitrarily):

0 ml1(0) = 6� 0� 1 � 3 = 3 ml2(0) = 8� 0� 1 � 4 = 4

1 ml1(1) = 6� 1� 1 � 2 = 3 ml2(1) = 8� 1� 1 � 4 = 3

2 ml1(2) = 6� 2� 1 � 1 = 3 ml2(2) = 8� 2� 1 � 4 = 2

3 ml1(3) = 6� 3� 1 � 1 = 2 ml2(3) = 8� 3� 1 � 3 = 2

4 �1 not active ml2(4) = 8� 4� 1 � 3 = 1

5 �1 not active ml2(5) = 8� 5� 1 � 2 = 1

6 ml1(6) = 12� 6� 1 � 3 = 3 ml2(6) = 8� 6� 1 � 1 = 1

7 ml1(7) = 12� 7� 1 � 3 = 2 �2 not active

8 ml1(8) = 12� 8� 1 � 2 = 2 �2 not active

9 �1 not active ml2(9) = 17� 9� 1 � 4 = 4

10 �1 not active ml2(10) = 17� 10� 1 � 3 = 4

11 �1 not active ml2(11) = 17� 11� 1 � 2 = 4

12 ml1(12) = 18� 12� 1 � 3 = 3 ml2(12) = 17� 12� 1 � 1 = 4

etc.

5 10 15 20 25 30

1

2

0

Task

Time

And compare those results to a schedule using MLLF with a factor of 1
2
:

0 ml1(0) = 6� 0� 1
2
� 3 = 41

2
ml2(0) = 8� 0�

1

2
� 4 = 6

1 ml1(1) = 6� 1� 1
2
� 2 = 4 ml2(1) = 8� 1�

1

2
� 4 = 5
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2 ml1(2) = 6� 2� 1
2
� 1 = 31

2
ml2(2) = 8� 2�

1

2
� 4 = 4

3 �1 not active ml2(3) = 8� 3�
1

2
� 4 = 3

4 �1 not active ml2(4) = 8� 4�
1

2
� 3 = 2

1

2

5 �1 not active ml2(5) = 8� 5�
1

2
� 2 = 2

6 ml1(6) = 12� 6� 1
2
� 3 = 41

2
ml2(6) = 8� 6�

1

2
� 1 = 1

1

2
7 ml1(7) = 12� 7� 1

2
� 3 = 31

2
�2 not active

8 ml1(8) = 12� 8� 1
2
� 2 = 3 �2 not active

9 ml1(7) = 12� 7� 1
2
� 1 = 21

2
ml2(9) = 17� 9�

1

2
� 4 = 6

10 �1 not active ml2(10) = 17� 10�
1

2
� 4 = 5

11 �1 not active ml2(11) = 17� 11�
1

2
� 3 = 4

1

2

12 ml1(12) = 18� 12� 1
2
� 3 = 41

2
ml2(12) = 17� 12�

1

2
� 1 = 4

etc.

5 10 15 20 25 30

1

2

0

Task

Time

7.3 MLLF as an optimal scheduler

Our goal in this section is to show that if a given task set has a valid schedule, then MLLF

with 0 � f � 1 will also produce a valid schedule. After proving this result, we will show

that the restrictions on f are necessary for optimality. Prior to the main theorem, we will

�rst prove a preliminary lemma regarding the change of laxity factors over time.

Lemma 7.1 Given a task set T , a task �i 2 T , and a schedule g of T created by MLLF, If
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di(t) 6= t + 1 and �i is active at time t, then

mli(t + 1) =

(
mli(t)� 1 : g(t) 6= �i

mli(t)� 1 + f : g(t) = �i

Proof: By de�nition of MLLF,

mli(t+ 1) = di(t+ 1)� (t+ 1)� fei(t+ 1)

= di(t+ 1)� t� fei(t+ 1)� 1 (34)

Since di(t) 6= t + 1, we know di(t) = di(t + 1). If g(t) 6= �i, then ei(t + 1) = ei(t). Thus,

equation (34) becomes

mli(t) = di(t)� t� fei(t)� 1

which proves the �rst part of the lemma. If g(t) = �i, then ei(t) = ei(t + 1) + 1. Thus,

equation (34) becomes

mli(t+ 1) = di(t)� t� f(ei(t)� 1)� 1

= di(t)� t� fei(t) + f � 1

which proves the second part of the lemma. 2

7.3.1 Necessary conditions for optimality

With MLLF, we make no assumptions about synchronicity. We assume that for any given

task �i, di � pi. MLLF will be proven optimal where 0 � f � 1.

7.3.2 Proof of optimality

We will do most of the work of this section in the following theorem. This theorem provides

all the tools we need to use induction to show that MLLF with 0 � f � 1 is optimal.

Theorem 7.1 Let T be a task set of n tasks, and g be a valid schedule of T . Let t 2 Z+,

and 0 � f � 1. Then there exists a valid schedule h of T such that for all u 2 Z+ such that

u < t, h(u) = g(u); and h schedules by MLLF with a laxity factor of f at time t.
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To prove this theorem, we will construct h past time t, and prove that h is a valid schedule

of T .

Proof: We divide our considerations according to the tasks g(t) and h(t).

Case 1: g(t) = h(t). We then de�ne h = g. Thus, h schedules at time t by MLLF, is

identical to g on the interval [0; t), and is a valid schedule of T .

Case 2: g(t) 6= h(t). Let �i be the task such that g(t) = �i. Let �j be the task such that

h(t) = �j. Note that then both �i and �j must be active at time t in both g and h, since g = h

for all u 2 [0; t), and neither �i nor �j have satis�ed their releases prior to time t. Recall

that �i's �rst deadline past a given time u is denoted di(u), and �j's �rst deadline past u is

denoted dj(u).

Subcase 2.A: If there exists some time v such that t < v < min(dj(t); di(t)) where g(v) = �j,

de�ne

h(u) =

8><
>:

g(u) : 8u =2 ft; vg

�i : u = v

�j : u = t

Note that h is identical to g except at times t and v. Since

g(t) = �i h(t) = �j

g(v) = �j h(v) = �i

we know that all tasks other than �i and �j are scheduled in h exactly as they are in g. In

fact, �i and �j are scheduled in h exactly as they are in g with the exception of the executions

corresponding to their deadlines at di(t) and dj(t). Since all deadlines are met in g, then we

know all deadlines other than di(t) for �i and dj(t) for �j are met in h. Thus, to show that h

is valid, we merely must show that those deadlines are met in h. Thus, we must prove that

di(t)�1X
u=t

�h;�i(u) = ei(t)

and
dj(t)�1X
u=t

�h;�j(u) = ej(t)

We will prove the result for �i; the proof for �j is identical with the exception of the subscript.
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Since �i meets its deadline at di(t) in g, then

di(t)�1X
u=t

�g;�i(u) = ei(t)

di(t)�1X
u=t

�g;�i(u)� 1� 0 + 0 + 1 = ei(t)

di(t)�1X
u=t

�g;�i(u)� �g;�i(t)� �g;�i(v) + �h;�i(t) + �h;�i(v) = ei(t)

Since g(u) = h(u) for all u 2 [t; di(t)) where u 6= t and u 6= v, then we have the desired

result, namely
di(t)�1X
u=t

�h;�i(u) = ei(t)

Note that for this proof to work, it is required that v 2 [t; di(t)).

For the same reasons, �j meets its deadline at dj(t) in h. Hence, h is a valid discrete schedule

of T . By de�nition of h, h is identical to g on [0; t), and schedules by MLLF at time t.

Subcase 2.B: The last case to consider is when there is no such time v such that

t < v < min(dj(t); di(t)) with g(v) = �j. By contradiction, we will show that this subcase

can never hold. To do so, we will focus on the the modi�ed laxities of �i and �j at times t

and di(t)� 1.

In g, �j is active at time t and �j meets its deadline at dj(t), so �j must be scheduled in g for

at least one time unit between t and dj(t). By the subcase assumption, �j is not scheduled

in g on [t;min(dj(t); di(t))). For �j to meet its deadline at dj(t), we must have di(t) < dj(t)

{ otherwise �j is active at t, and is not scheduled before its corresponding deadline. By the

same logic, there must exist ej(t) time units on [di(t); dj(t)) where �j is scheduled. Therefore,

1 � ej(t) � dj(t)� di(t). Now we compare the modi�ed laxities of �i and �j at time t. First,

we consider �i:

mli(t) = di(t)� t� fei(t)

Since f � 0 and ei(t) > 0,

mli(t) � di(t)� t (35)

with equality if and only if f = 0. Now, for �j we have the following:

mlj(t) = dj(t)� t� fej(t)
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Since 0 � f � 1 and 0 < ej(t) � dj(t)� di(t),

mlj(t) � dj(t)� t� ej(t)

� dj(t)� t� (dj(t)� di(t))

= di(t)� t (36)

with equality if and only if f = 1 (and ej(t) = dj(t) � di(t)). Combining equations (35)

and (36) along with the knowledge that f cannot be both 0 and 1 at the same time, we

have mli(t) < mlj(t). Therefore, at time t, task �i has a lower modi�ed laxity than task

�j. However, this contradicts the case 2 assumption that h(t) = �j, since h schedules by

MLLF at time t. Therefore, there must be some time v with t < v < min(dj(t); di(t)) with

g(v) = �j.

We have thus shown that we may produce an h as dictated by the theorem in all possible

cases.

Thus, if g is valid, then there is a schedule identical to g on [0; t), that schedules by MLLF

at time t, and is valid. 2

7.3.3 MLLF as an optimal scheduler

Since MLLF is a generalization of EDF, it should follow that MLLF, like EDF, is optimal.

However, there are some restrictions that must be applied to ensure MLLF is optimal. The

laxity factor must be between zero and one (inclusive), and the task sets must have integer

parameters.

Theorem 7.2 MLLF with a varying laxity factor between zero and one (inclusive) is an

optimal scheduling algorithm for task sets with integer valued parameters.

Proof: We prove this theorem by induction. Let T be a task set, and let g be a valid

schedule of T . Let f0 be such that 0 � f0 � 1. Then by Theorem 7.1 applied to time 0, we

know that there is a valid schedule of T that schedules by MLLF at time 0.

Now let t > 0. For all u such that 0 � u < t, let fu be such that 0 � fu � 1. Our inductive

assumption is that there is a valid schedule h of T such that for each u in [0; t), h schedules

by MLLF with the factor fu at the time u. Thus, h is a valid schedule of T . Let ft be such
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that 0 � ft � 1. By Theorem 7.1, we know that there is a valid schedule of T , identical to

h on [0; t) which schedules at time t by MLLF with the factor ft.

By induction, we have shown that for any task set with a valid schedule, MLLF with varying

laxity factors (between zero and one inclusive) produces a valid schedule.

That is to say, the result shows that given a function z : Z+ 7! [0; 1], and some valid discrete

schedule g, the schedule h produced by using MLLF with factor z(t) at time t for all t � 0

is valid. Therefore, MLLF with varying laxity factors is optimal since it produces a valid

schedule for any task set that has a valid schedule.

A direct result of this theorem is that MLLF with a �xed laxity factor (between zero and

one inclusive) is optimal. 2

We now will prove that the limitations on the laxity factor are strict. That is to say, for

f < 0 or f > 1, there exists a task set with utilization equal to one such that MLLF with a

laxity factor of f yields an invalid schedule.

We now proceed to prove that the laxity factor must be at least zero for MLLF to be optimal.

Given a laxity factor less than zero, we will produce a task set with a utilization of one, yet

that MLLF with that laxity factor will not yield a valid schedule.

Theorem 7.3 MLLF is not optimal for �xed laxity factors less than zero.

Our proof obligation here is merely to show that given a laxity factor less than zero, there

is a task set that has a valid schedule such that MLLF with the given laxity factor does not

produce a valid schedule of that task set.

Proof: Let f < 0. Then there exists some n > 3 such that f � � 1
n
. Let T be the task set of

two tasks such that �1 = (3n+1; 18n2+6n; 18n2+6n; 0) and �2 = (36n2�6n; 36n2; 36n2; 0).

First, we show that U(T ) = 1 (therefore by Theorems 6.1 and 7.2, T is schedulable by EDF

and by MLLF with a laxity factor between 0 and 1).

U(T ) =
e1

p1
+

e2

p2

=
3n+ 1

18n2 + 6n
+

36n2 � 6n

36n2
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=
(3n+ 1)(36n2)

(18n2 + 6n)(36n2)
+

(36n2 � 6n)(18n2 + 6n)

(18n2 + 6n)(36n2)

=
(108n3 + 36n2) + (648n4 + 108n3 � 36n2)

648n4 + 216n3

=
648n4 + 216n3

648n4 + 216n3

= 1

Next, we show that if �1 meets its deadline at p1 = 18n2 + 6n, then �2 will overow at

time p2 = 36n2. If �1 meets its deadline at p1, then �1 executed for 3n + 1 time units on

(0; 18n2 + 6n). Therefore, �2 executed for 18n2 + 6n � (3n + 1) time units on the same

interval. Thus, at time 18n2 + 6n, �2 has (36n2 � 6n) � (18n2 + 6n � (3n + 1)) time units

left to execute. Thus, e2(18n
2 + 6n) = 18n2 � 9n + 1. Now, let us discern which task has

priority at time 18n2 + 6n: For �1,

ml1(18n
2 + 6n) = d1(18n

2 + 6n)� (18n2 + 6n)� fe1(18n
2 + 6n)

= 36n2 + 12n� 18n2
� 6n� f(3n+ 1)

= 18n2 + 6n� f(3n+ 1) (37)

For �2,

ml2(18n
2 + 6n) = d2(18n

2 + 6n)� (18n2 + 6n)� fe2(18n
2 + 6n)

= 36n2
� 18n2

� 6n� f(18n2
� 9n + 1)

= 18n2
� 6n� f(18n2

� 9n+ 1) (38)

So, we must compare 18n2+6n�f(3n+1) and 18n2�6n�f(18n2�9n+1). By assumption

on n, we know n � 3.

n > 2

6n > 12

18n� 12 > 12n
1

n
(18n2

� 12n) > 12n

Since f � �
1
n
, then �f � 1

n
. Hence,

�f(18n2
� 12n) > 12n

f(12n� 18n2) > 12n

f(3n+ 1� 18n2 + 9n� 1) > 12n
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f(3n+ 1)� f(18n2
� 9n + 1) > 12n

�6n� f(18n2
� 9n + 1) > 6n� f(3n+ 1)

18n2
� 6n� f(18n2

� 9n + 1) > 18n2 + 6n� f(3n+ 1) (39)

Combining equations (37), (38), and (39), we have

ml2(18n
2 + 6n) > ml1(18n

2 + 6n)

Additionally, by Lemma 7.1, we know that the modi�ed laxity of the task on the processor

changes by (�1 + f) each time unit. The modi�ed laxity of any task not on the processor

changes by �1 every time unit. Since f < 0, then the modi�ed laxity of the task on the

processor will decrease by more than that of the non-scheduled task every time unit. Thus,

once a task is on the processor, it can be pre-empted only if another task is released. Since

�1 is on the processor at time 18n2 + 6n, then it will execute to completion (there are no

releases until time 36n2). Thus, �1 is on the processor for 3n + 1 time units on the interval

(18n2 + 6n; 36n2). Note, however, that at time 18n2 + 6n, task �2 has 18n2 � 9n + 1 time

units of execution remaining, and there are 18n2�6n time units until �2's deadline. Since �1
is scheduled for 3n+1 of those time units, then there are 18n2� 6n� (3n+1) time units for

�2 to execute. Therefore the amount of time available, 18n2� 9n� 1 is less than the amount

of execution remaining, 18n2 � 9n+ 1 for �2. �2 will therefore miss its deadline at 36n2. 2

We now proceed to prove that the laxity factor must be at most one for MLLF to be optimal.

Given a laxity factor greater than one, we will produce a task set with a utilization of one,

yet that MLLF with that laxity factor will not yield a valid schedule.

Theorem 7.4 MLLF is not optimal for �xed laxity factors greater than one.

Our proof obligation here is merely to show that given a laxity factor greater than one, there

is a task set that has a valid schedule such that MLLF with the given laxity factor does not

produce a valid schedule of that task set.

Proof: Let f > 1. Then there exists some n > 0 such that f � n+1
n
. Let T be the task set

of two tasks, �1 = (1; n+2; n+2; 0) and �2 = ((n+3)(n+1); (n+3)(n+2); (n+3)(n+2); 0).

First, we show that U(T ) = 1 (therefore by Theorems 6.1 and 7.2, T is schedulable by EDF

and MLLF with a laxity factor between 0 and 1).

U(T ) =
e1

p1
+

e2

p2
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=
1

n+ 2
+

(n + 3)(n+ 1)

(n + 3)(n+ 2)

=
(n+ 3) + (n+ 3)(n+ 1)

(n+ 3)(n+ 2)

=
(n+ 3)(n+ 2)

(n+ 3)(n+ 2)

= 1

Next, we show that �1 will not be scheduled at any time on the interval [0; n+ 1]. If it isn't

scheduled at any of those times, then we know it cannot meet its deadline at n + 2.

Consider that for t � n + 1, if �1 is not scheduled before time t, then

ml1(t) = d1(t)� t� fe1(t)

= (n+ 2)� t� f � 1

= n+ 2� t� f � 1 (40)

For t � n+ 1, if �2 is scheduled on the entire interval [0; t), then

ml2(t) = d2(t)� t� fe2(t)

= (n+ 3)(n+ 2)� t� f((n+ 3)(n+ 1)� t) (41)

So now we wish to show that for t 2 [0; n+ 1], (n+ 3)(n+ 2)� t� f((n+ 3)(n+ 1)� t) <

n+ 2� t� f . By showing this equation to be true, then (by induction), we know that �1 is

not scheduled at any time on the interval [0; n+ 1].

0 < 1

n3 + 4n2 + 4n < n3 + 4n2 + 4n+ 1

n3 + 4n2 + 4n < n3 + 3n2 + n + n2 + 3n+ 1

n3 + 4n2 + 4n < (n+ 1)(n2 + 3n+ 1)

n3 + 4n2 + 4n < (n+ 1)(n2 + 3n+ 2� 1)

n(n+ 2)(n+ 2) < (n+ 1)((n+ 2)(n+ 1)� 1)

(n+ 2)(n+ 2) <
n+ 1

n
((n+ 2)(n+ 1)� 1)

(n+ 2)(n+ 2) <
n+ 1

n
((n+ 3)(n+ 1)� (n+ 1)� 1)
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Since t � n+ 1,

(n+ 2)(n+ 2) <
n+ 1

n
((n+ 3)(n+ 1)� t� 1)

(n+ 2)(n+ 2) < f((n+ 3)(n+ 1)� t� 1)

(n+ 2)(n+ 2)� f((n+ 3)(n+ 1)� t) < �f

(n+ 3)(n+ 2)� t� f((n+ 3)(n+ 1)� t) < (n+ 2)� t� f

Therefore, by equations (40) and (41),

ml2(t) < ml1(t) (42)

We now show (by induction) that �2 is scheduled on the entire interval [0; n+ 2). Equation

(42) is true for t = 0, so �2 is scheduled at time 0. Let t be such that 0 < t < n + 1. Now

we assume that �2 is scheduled on the entire interval [0; t). Thus equation (42) holds for

time t, and therefore ml2(t) < ml1(t). Thus, �1 is not scheduled at any time on the interval

[0; n+ 1], and it therefore misses its deadline at n+ 2. 2

It is interesting to note that [Mo '83] remarks that, \There are in fact an in�nite number of

totally on-line optimal schedulers, e.g., any combination of the earliest deadline �rst and the

least slack algorithm may conceivably be used in a run-time scheduler to minimize process

switching overheads." In essence, MLLF with a variable laxity factor extends that remark

{ since the remark in [Mo '83] is merely a restriction of the above function z (to the range

f0; 1g). In fact, our result is strictly more general in the types of allowable schedules (that is

to say, EDF and LLF swapping cannot produce all schedules that variable laxity factors can

produce). Consider the task set f�1 = (2; 16; 16; 0); �2 = (6; 17; 17; 0); �3 = (10; 20; 20; 0)g, a

synchronous task set with a utilization approximately equal to .978 (which is less than 1, so

the task set is schedulable with any of the algorithms under discussion). At time 0, EDF will

discern that the nearest deadline is that of task �1, hence EDF would schedule �1 at time 0.

At time 0, LLF (MLLF with a factor of 1) determines that the laxity of �1 is 14, the laxity

of �2 is 11, and the laxity of �3 is 10. Hence, LLF would schedule �3 at time 0. At time 0,

MLLF with a factor of 1
2
will determine the modi�ed laxities of the tasks are 15, 14, and

15 (respectively). Thus, MLLF with a factor of 1
2
will schedule �2 at time 0. Since neither

EDF nor LLF schedules �2 at time 0, we have a valid schedule under MLLF that cannot

be produced with EDF/LLF swapping. Therefore, MLLF with a variable laxity factor is

strictly more general than EDF and LLF swapping.

Another note of interest regarding MLLF is that if one is producing a non-discrete schedule,

then MLLF is probably an unwise choice (unless one uses a laxity factor of 0 to produce

EDF). The reason is that when two (or more) tasks have identical laxity, if the processor

schedules one, it must then swap back and forth between the two until one has completed
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execution. The number of task swaps will be quite high, and usually the cost associated with

swapping tasks is non-trivial. Speci�cally, if tasks �1 and �2 have identical modi�ed laxities

at time t, then the algorithm may select either to schedule. Without loss of generality, let

us assume that �1 is then scheduled for � time units. Consider that for f > 0:

ml1(t) = d1(t)� t� fe1(t)

�1 is then scheduled for � time units:

ml1(t + �) = d1(t)� (t+ �)� f(e1(t)� �)

ml1(t + �) = d1(t)� t� f(e1(t))� �+ f�

ml1(t + �) = ml1(t)� � + f�

And

ml2(t) = d2(t)� t� fe2(t)

�2 is not scheduled for � time units:

ml2(t+ �) = d2(t)� (t+ �)� fe2(t)

ml2(t+ �) = d2(t)� t� fe2(t)� �

ml2(t+ �) = ml2(t)� �

since ml1(t) = ml2(t)

ml2(t+ �) = ml1(t)� �

Thus,

ml1(t+ �) > ml2(t + �)

and so at time t + �, task �2 will be scheduled. Note that (by similar computations) after

� further time units, �1 and �2 will again have identical modi�ed laxities, and the swapping

process will begin again. Note that the only laxity factor that can avoid this swapping is 0

{ when one schedules with EDF. Clearly, as � tends to 0, the amount of swapping becomes

in�nite. If for no other reason, this explanation provides the motivation to use MLLF solely

for discrete scheduling.

7.4 Complexity of feasibility tests

As we have already shown in Section 6.5, the feasibility problem for a task set without

resources is co-NP -complete. Since both EDF and MLLF are optimal, then any feasibility
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algorithm for one will also determine feasibility for the other. Hence, if di = pi for all tasks

�i, then MLLF produces a valid schedule if and only if U � 1. Additionally, a su�cient test

for schedulability is
nX
i=1

ei

di
� 1

As explained in Section 6.5, the above test is not necessary for schedulability.

The general feasibility test, as shown in Section 6.5, is co-NP -complete in the strong sense.

8 Conclusions

We have seen that all four scheduling algorithms have their drawbacks { namely, from the

development in our work on EDF, we know that the general question of schedulability for a

task set is co-NP -complete in the strong sense. However, this does not rule out the possiblity

that a given task set will lend itself to a less demanding feasibility test. For example, we

know that for synchrounous task sets where deadline spans are identical to periods, that any

task set of n tasks has a valid schedule under RM if the utilization of that task set is at most

n(2
1

n � 1) { and therefore the task set also has a valid schedule under DM. Additionally, if

the utilization is at most 1, we know that EDF will produce a valid schedule for the task

set { and therefore the task set also has a valid schedule under MLLF with any laxity factor

between zero and one (inclusive).

The di�culty arises for task sets where deadline spans are not identical to periods. In these

cases, the utilization of a task set may have very little to do with its schedulablity. For

example, for n 2 Z
+, the task set f(1; 1; n; 0); (1; 1; n; 0)g has no valid schedule. Since this

holds for any n > 0, we see that a task set may have an extremely small utilization, and still

have no valid schedule. In these cases, feasibility tests appear to become quite intractible

for large task sets since the general question of feasibility is co-NP -complete in the strong

sense.

Some open questions remain, however, whose answers may paint a brighter picture on the

feasibility question. We do have a pseudo-polynomial time test for feasibility under RM

for synchronous task sets where deadline spans are identical to periods. We know that in

that case the feasibility question for RM is in NP, but have no results stating whether the

question is NP -complete. We do not know if there is an optimal static priority scheduling

algorithm for asynchronous task sets. We also have provided a new scheduling algorithm
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(MLLF) that generalizes the two optimal dynamic priority scheduling algorithms one sees in

the literature. Perhaps this uni�cation will provide new light in which to consider dynamic

priority scheduling, and may lead to discerning new classes of task sets that have polynomial

time feasibility tests. However, MLLF was shown to be optimal when considering discrete

schedules { this is also how LLF (see [Mo '83]) is considered { but was not developed for

schedules over continuous time.

Overall, we have tried to provide clarity to some of the major scheduling algorithms in the

�eld, and to show their relationships. There are many issues to consider in hard-real-time

scheduling, and hopefully this paper has provided solid groundwork for the algorithms we've

covered.
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9 Glossary

Notation: A periodic task �i = (ei; di; pi; ri) is said to have an execution time of ei, a deadline

span of di, a period of pi, and an initial release time of ri. We concern ourselves solely with

tasks where ei � di � pi.

R+ = fx 2 R ^ x � 0g

Z+ = fx 2 Z ^ x � 0g

�f;b(a) =

(
0 : f(a) 6= b

1 : f(a) = b

Active: A task �i is active at time t if and only if there exists k 2 Z+ such that ri;k � t <

ri;k + di and
R t
x=ri;k

�g;�i(x) dx < e.

Critical instant : A task has a critical instant (under a given scheduling algorithm) at any

release that yields the longest possible response time of that task for the speci�ed scheduling

algorithm and task set.

Deadline: �i is said to have deadlines at di;k, k 2 Z+, where di;k+1 = ri + kpi + di. di(t) is

the deadline of �i after time t, formally

di(t) =

(
ri + di : t < ri

ri +
j
t�ri
pi

k
pi + di : t � ri

Discrete Schedule: A function g : Z+ 7! T

Execution: �i is said to have an execution time of ei. Given a schedule g, ei;g(t) is the amount

of execution remaining for the invocation of �i at time t. When clear, the g subscript will be

omitted. Formally,

ei(t) =

8<
:

0 : t < ri
ei �

R t
ri+

j
t�ri
pi

k
pi
�g;�i(x) dx : t � ri

eg; i; t is the amount of execution completed for the invocation of �i at time t. Formally,

eg;i;t =

( R t
R �g;�i(x)dx : t � ri

ei : t < ri
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where R = maxj2Z+fri + jpi � tg. Thus, ei;g(t) + eg;i;t = ei for all i; g, and t � 0.

Fully utilized : A task set fully utilizes the processor under a given scheduling algorithm if

that algorithm yields a valid schedule for the task set, but that algorithm fails to yield a

valid schedule if any task's execution time is increased.

Meeting a deadline: �i meets its deadline at di;k if there exists l 2 Z+ such thatR t
x=ri;k

�g;�i(x) dx � e

Optimality : Under given constraints, a scheduling algorithm is optimal if it produces a valid

schedule for every task set that has a valid schedule under the same constraints.

Overow : A task �i overows or misses its deadline at di;k if there exists l 2 Z+ such that

di;k = ri;l + di and
R di;k
ri;k

�g;�i(x) dx < e.

Periodic task without resources: �i = (ei; di; pi; ri)

Prioritizing : Each task �i is assigned a corresponding number, Pi. Pi is �i's priority. Priorities

may be either static (constant over time) or dynamic (change over time). Lower priority

numbers correspond to higher priorities.

Priority based scheduling algorithm: An algorithm that assigns priorities to the tasks, and

produces the following schedule: gP (t) = �i such that �i is active at time t, and 8j 6= i,

Pj < Pi ) Pj is not active. If there are no active tasks at time t, then gP (t) = ;. Note that

if two (or more) active process have the same priority, ties may be broken arbitrarily.

Release (Release time): A task �i is said to release (or have release times) at ri;k+1, k 2 Z+,

where ri;k+1 = ri+ kpi. We use the shift of one unit on k so that the �rst release, at time ri,

corresponds to ri;1 (instead of ri;0).

Response time: The response time of the kth release of a task �i is the amount of time

required to for �i to execute to completion (for that release). Technically, the response time

for a schedule g of task �i's k
th release is

minn
t:
R t

ri;k
�g;�i(x) dx=e

o t� ri;k

Schedule: A function g : R+ 7! T
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Satis�ed release: Task �i's release at ri;k is satis�ed if the given schedule meets �i's deadline

di;k = ri;k + di.

Task set T : A set of tasks, f�ig
n
i=1, such that each task has a corresponding execution time

(ei), and a period (pi).

Utilization: U : T 7! R+ is de�ned by

U(T ) =
nX
i=1

ei

pi

Valid : A valid schedule is one where all deadlines are met.
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