
Efficient and Flexible Fair Scheduling of Real-time
Tasks on Multiprocessors

by
Anand Srinivasan

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2003

Approved by:

James H. Anderson, Advisor

Sanjoy K. Baruah, Reader

Kevin Jeffay, Reader

Giorgio Buttazzo, Reader

Prasun Dewan, Reader

Ketan Mayer-Patel, Reader

ii

c© 2003

Anand Srinivasan

ALL RIGHTS RESERVED

iii

ABSTRACT

Anand Srinivasan

Efficient and Flexible Fair Scheduling of Real-time Tasks on
Multiprocessors

(Under the direction of James H. Anderson)

Proportionate fair (Pfair) scheduling is the only known way to optimally schedule

periodic real-time task systems on multiprocessors in an on-line manner. Under Pfair

scheduling, the execution of each task is broken into a sequence of quantum-length sub-

tasks that must execute within intervals of approximately-equal lengths. This schedul-

ing policy results in allocations that mimic those of an ideal “fluid” scheduler, and in

periodic task systems, ensures that all deadlines are met.

Though Pfair scheduling algorithms hold much promise, prior to our work, research

on this topic was limited in that only static systems consisting of synchronous periodic

tasks were considered. My dissertation thesis is that the Pfair scheduling framework for

the on-line scheduling of real-time tasks on multiprocessors can be made more flexible

by allowing the underlying task model to be more general than the periodic model and

by allowing dynamic task behaviors. Further, this flexibility can be efficiently achieved .

Towards the goal of improving the efficiency of Pfair scheduling algorithms, we de-

velop the PD2 Pfair algorithm, which is the most efficient optimal Pfair scheduling

algorithm devised to date. Through a series of counterexamples, we show that it is

unlikely that a more efficient optimal Pfair algorithm exists. We also introduce the

concept of ERfair scheduling, which is a work-conserving extension of Pfair scheduling.

In addition, we study the non-optimal earliest-pseudo-deadline-first (EPDF) Pfair al-

gorithm, which is more efficient than PD2, and present several scenarios under which

it is preferable to PD2.

We address the flexibility issue by developing the intra-sporadic (IS) task model

and by considering the scheduling of dynamic task systems. The well-known sporadic

model generalizes the periodic model by allowing jobs to be released late. The IS model

generalizes this notion further by allowing late as well as early subtask releases. Such

a generalization is useful for modeling applications in which the instantaneous rate

of releases differs greatly from the average rate of releases (e.g., an application that

iv

receives packets over a network). We prove that PD2 is optimal for scheduling static

IS task systems on multiprocessors. In dynamic task systems, tasks are allowed to

join and leave, i.e., the set of tasks is allowed to change. This flexibility also allows

us to model systems in which the weights of tasks may change. We present sufficient

conditions under which joins and leaves can occur under PD2 without causing missed

deadlines. Further, we show that these conditions are tight.

Finally, we also provide schemes for multiplexing the scheduling of aperiodic tasks

and real-time IS tasks. These approaches aim at improving the response times of

aperiodic tasks while ensuring that the real-time IS tasks meet their deadlines. We also

provide bounds on aperiodic response times under these schemes; these bounds can be

used to obtain admission-control tests for aperiodic tasks with deadlines.

v

ACKNOWLEDGMENTS

I want to thank my advisor, Jim Anderson, for his support, enthusiasm, and pa-

tience. I have learnt an enormous amount from working with him, and have thoroughly

enjoyed doing so. I am also grateful to him for arranging financial support for me

throughout my stay at UNC.

Many thanks to Sanjoy Baruah for giving me the opportunity to collaborate with

him, and for many lively discussions from which my work has benefited tremendously.

Thanks, too, to the rest of my committee: Kevin Jeffay, Prasun Dewan, Giorgio But-

tazzo, and Ketan Mayer-Patel. I greatly appreciate their willingness to bend their

schedules to accommodate the myriad meetings and exams, and also for being support-

ive and encouraging of my work. I am also grateful to them for enduring much of this

pain by means of phone and video conference.

In addition, I would like to thank all my colleagues over the past few years who have

helped me become a better researcher. The list would definitely include the following

people: Aaron Block, John Carpenter, Uma Devi, Shelby Funk, Phil Holman, Mark

Moir, Srikanth Ramamurthy, Jasleen Sahni, and Montek Singh. I am also grateful to

the staff of the computer science department at UNC for helping me in innumerable

ways and for being a pleasure to work with. Life would be much more difficult (and

no fun) without the support and companionship of many good friends. Thanks to all

my fellow graduate students, especially, Vibhor, Anu, Ajith, Bala, Gopi, and Aditi for

making my stay at UNC a very memorable one.

I thank God for providing me the love and support of a wonderful family. I am

grateful to them for encouraging my education from a young age, and allowing my

inquisitive nature to blossom. I am also very fortunate to have wonderful in-laws who

encouraged me at every step of my Ph.D. Finally, I am forever indebted to my wife

Chandna: without her love and constant encouragement, none of this would have been

possible. She has been incredibly supportive of me through the ups and downs over the

past few years. I cannot thank her enough for being such a wonderful wife and friend.

vi

Contents

List of Figures ix

1 Introduction 1

1.1 Background on Real-time Systems . 2

1.2 Real-time Scheduling on Multiprocessors 7

1.3 Contributions . 9

1.3.1 The PD2 Pfair Algorithm . 10

1.3.2 Early-release Fair Scheduling . 10

1.3.3 The Intra-sporadic Task Model 11

1.3.4 Scheduling of Dynamic Task Systems 11

1.3.5 Scheduling of Soft Real-time Multiprocessor Systems 12

1.3.6 Scheduling of Aperiodic Tasks 12

1.4 Organization . 12

2 Background and Related Work 14

2.1 Partitioning . 16

2.1.1 Schedulability Results for Uniprocessor Systems 16

2.1.2 Bin-packing Approaches . 17

2.1.3 Disadvantages of Partitioning 22

2.2 Proportionate Fair Scheduling . 23

2.2.1 Feasibility . 27

2.2.2 The PF Pfair Algorithm . 27

2.2.3 Related Work on Fair Scheduling 30

2.3 Summary . 31

3 The PD2 Scheduling Algorithm 33

3.1 The PD2 Priority Definition . 33

vii

3.2 Minimality of the PD2 Priority Definition 38

3.3 Early-release Fair Scheduling . 45

3.4 Optimality Proof of PD2 . 47

3.4.1 Properties About Subtask Windows 48

3.4.2 Optimality Proof . 53

3.5 Experimental Comparison with Partitioning 76

3.6 Summary . 83

4 Rate-based Scheduling 88

4.1 The Intra-sporadic Task Model . 89

4.2 Scheduling of Dynamic Task Systems 99

4.3 Sufficiency of (J2) and (L2) . 105

4.3.1 Displacements . 106

4.3.2 Flows and Lags in GIS Task Systems 109

4.3.3 Proof . 111

4.4 Summary . 126

5 The Earliest-pseudo-deadline-first Algorithm 127

5.1 Hard Real-time Systems . 129

5.1.1 Improving (M0) . 134

5.1.2 Tightness . 135

5.1.3 Other Schedulability Results . 136

5.2 Soft Real-time Systems . 139

5.2.1 Sufficient Condition for Tardiness of at most One 139

5.2.2 Sufficient Condition for Tardiness of at most k 147

5.2.3 Experimental Evaluation . 149

5.3 Summary . 152

6 Scheduling of Aperiodic Tasks 153

6.1 The Single Server Case . 154

6.1.1 Admission-control Test for Hard Aperiodic Tasks 155

6.1.2 Pfair Servers . 157

6.1.3 ERfair Servers . 161

6.2 The Multiple Server Case . 164

6.3 Performance Studies . 166

6.4 Summary . 182

viii

7 Conclusions and Future Work 183

7.1 Summary . 183

7.2 Future Work . 185

7.2.1 Quantum Size . 185

7.2.2 Fair Distribution of Spare Capacity 186

7.2.3 Tasks with Relative Deadlines less than Periods 187

A Properties about Flows for IS Tasks 190

Bibliography 193

ix

List of Figures

1.1 Periodic and sporadic task examples 3

1.2 Illustration of EDF and RM scheduling 6

1.3 Static-priority scheduling algorithms are not optimal 7

1.4 Pfair windows of an example periodic task 8

2.1 Partitioning is not optimal . 15

2.2 Global scheduling using EDF and RM 16

2.3 The next-fit partitioning heuristic . 18

2.4 The first-fit partitioning heuristic . 19

2.5 The best-fit partitioning heuristic . 19

2.6 Pfair windows of an example periodic task 26

2.7 Illustration of cases in the optimality proof of PF 29

3.1 Group deadlines of a task of weight 8/11 35

3.2 An O(M log N) implementation of PD2 38

3.3 Schedules used in Theorem 3.2 and Theorem 3.3 40

3.4 Schedule used in Theorem 3.4 (and Theorem 3.7) 41

3.5 Schedule used in Theorem 3.5 . 42

3.6 Schedule used in Theorem 3.6 . 43

3.7 Schedules used in Theorem 3.8 and Theorem 3.9 45

3.8 Example illustrating ERfair scheduling 46

3.9 Difference between group deadlines . 52

3.10 Illustration of various cases in the proof of Lemma 3.3 56

3.11 Setup of Lemma 3.4 . 58

3.12 Case 2 in the proof of Lemma 3.4 . 59

3.13 Subcases of Case 3 in the proof of Lemma 3.4 60

3.14 Various subcases of Case 3 in the proof of Lemma 3.4 61

3.15 Subcase 3.B of Case 3 in the proof of Lemma 3.4 64

3.16 A subcase in Case 4 in the proof of Lemma 3.4 67

3.17 Two possibilities in Case 4 in the proof of Lemma 3.4 68

3.18 A subcase in Case 4 in the proof of Lemma 3.4 69

3.19 Subcase 4.A of Case 4 in the proof of Lemma 3.4 70

x

3.20 Two possibilities in Subcase 4.B of Case 4 in the proof of Lemma 3.4 . 73

3.21 Two possibilities in Subcase 4.B in the proof of Lemma 3.4 74

3.22 Final possibility in Subcase 4.B in the proof of Lemma 3.4 75

3.23 Scheduling overhead of EDF and PD2 on one processor 79

3.24 Scheduling overhead of PD2 on 2, 4, 8, and 16 processors 80

3.25 Effect of incorporating system overheads under EDF-FF and PD2 . . . 82

3.26 Schedulability loss due to partitioning and system overheads 83

3.27 Comparison of PD2 and EDF-FF for system of 100 tasks 84

3.28 Comparison of PD2 and EDF-FF for system of 250 and 500 tasks . . . 85

4.1 PF-windows of an example IS task . 89

4.2 A server modeled by an IS task . 91

4.3 Flow graph used in the feasibility proof for IS task systems 94

4.4 Difficulty in extending uniprocessor proofs to IS task systems 98

4.5 Unbounded tardiness under unrestricted leaves and joins 100

4.6 Theorem 4.3: demonstration of insufficiency of (L1) 102

4.7 Theorem 4.4: tightness of (L2) . 104

4.8 PF-windows of an example GIS task 106

4.9 A chain of displacements . 107

4.10 Proof of Lemma 4.4: a chain of displacements 108

4.11 Fluid schedule for an IS task of weight 5/16 110

4.12 Sufficiency of (J2) and (L2): sets A, B, and I 114

4.13 Illustration of cases in the proof of Lemma 4.10 and Lemma 4.11 116

4.14 Illustration of cases in the proof of Lemma 4.13 120

4.15 Illustration of a case in the proof of Lemma 4.14 123

5.1 Theorem 5.1: a representative subtask from each set A, B, and I . . . 131

5.2 Tightness of Theorem 5.3 . 136

5.3 Theorem 5.6: example illustrating transformation of a task 138

5.4 Illustration of Case 4 of Lemma 5.12 141

5.5 M − 2 tasks can simultaneously miss a deadline under EPDF 147

5.6 Percentage of task sets with non-zero tardiness under EPDF 150

5.7 Percentage of deadlines missed under EPDF 151

6.1 A generic admission-control procedure for hard aperiodic tasks 156

6.2 Examples illustrating working of Pfair servers 158

xi

6.3 Examples illustrating working of ERfair servers 162

6.4 Example illustrating usefulness of background servers 167

6.5 Comparison of aperiodic servers on two processors (uniform) 169

6.6 Comparison of aperiodic servers on two processors (bursty) 170

6.7 Comparison of aperiodic servers on four processors (uniform) 171

6.8 Comparison of aperiodic servers on four processors (bursty) 172

6.9 Comparison of aperiodic servers on eight processors (uniform) 173

6.10 Comparison of aperiodic servers on eight processors (bursty) 174

6.11 Comparison of aperiodic servers on 16 processors (uniform) 175

6.12 Comparison of aperiodic servers on 16 processors (bursty) 176

6.13 Comparison of aperiodic servers on 32 processors (uniform) 177

6.14 Comparison of aperiodic servers on 32 processors (bursty) 178

6.15 Comparison of equal-weight and greedy policies (uniform) 180

6.16 Comparison of equal-weight and greedy policies (bursty) 181

7.1 Example showing insufficiency of demand-based tests 188

Chapter 1

Introduction

A real-time system has two notions of correctness: logical and temporal . In par-

ticular, in addition to producing correct outputs (logical correctness), such a system

needs to ensure that these outputs are produced at the correct time (temporal correct-

ness). As an example, consider a computer-controlled robot that is designed to pick

up objects from a moving conveyor belt. If the robot moves too early, then the next

object may not have arrived and may get blocked by the robot; on the other hand, if

it moves late, then it may completely miss the object. The speed of the conveyor belt

imposes timing constraints on the operations performed by the robot, and hence it is

a real-time system.

Selecting appropriate methods for scheduling activities is one of the important con-

siderations in the design of a real-time system; such methods are essential to ensure

that all activities are able to meet their timing constraints. The timing constraint of an

operation is usually specified using a deadline, which corresponds to the time by which

that operation must complete. Real-time systems can be broadly classified as hard or

soft depending on the criticality of deadlines. In a hard real-time system, all deadlines

must be met; equivalently, a deadline miss results in an incorrect system. For example,

the robot described earlier would be a hard real-time system if not picking up an object

leads to an incorrect operation such as a chemical spill or a complete halting of the

assembly line. Other examples of hard real-time systems include fly-by-wire controllers

for airplanes, monitoring systems for nuclear reactors, and automotive braking systems.

On the other hand, in a soft real-time system, timing constraints are less stringent; oc-

casional deadline misses do not affect the correctness of the system. Multimedia and

gaming applications are very common examples of soft real-time systems. The robot

example above may be categorized as a soft real-time system if a timing error only leads

2

to a slight drop in productivity. However, note that it might still be beneficial to view

the robot as a hard real-time system because timing requirements are easier to specify

in such a system. In particular, if the robot were to be implemented as a soft real-time

system, then in addition to timing constraints, we would need to specify the level of

productivity loss that is acceptable, and guarantee that this specification is met.

There are several emerging real-time applications that are very complex and have

high computational requirements. Examples of such systems include automatic track-

ing systems and telepresence systems. These applications have timing constraints that

are used to ensure high system fidelity and responsiveness, and may also be crucial

for correctness in certain applications such as telesurgery. Also, their processing re-

quirements may easily exceed the capacity of a single processor, and a multiprocessor

may be necessary to achieve an effective implementation. In addition, multiprocessors

are more cost-effective than a single processor of the same capacity because the cost

(monetary) of a k-processor system is significantly less than that of a processor that is

k times as fast (if a processor of that speed is indeed available) [WH95].

The above observations clearly underscore the growing importance of multiproces-

sors in real-time systems. In this dissertation, we focus on several fundamental issues

pertaining to the scheduling of multiprocessor real-time systems. Before discussing the

contributions of this dissertation in more detail, we briefly describe some basic concepts

pertaining to real-time systems.

1.1 Background on Real-time Systems

A real-time system is typically composed of several (sequential) processes with tim-

ing constraints. We refer to these processes as tasks . In most real-time systems, tasks

are recurrent , i.e., each task is invoked repeatedly. The periodic task model of Liu and

Layland [LL73] provides the simplest notion of a recurrent task. Each periodic task T

is characterized by a phase T.φ, a period T.p, a relative deadline T.d, and an execution

requirement T.e (≤ T.d). Such a task is invoked every T.p time units, with its first

invocation occurring at time T.φ. We refer to each invocation of a task as a job, and

the corresponding time of invocation as the job’s release time. Each job of T requires

at most T.e units of processor time to complete, and it must complete within T.d time

units after its release. Thus, the relative deadline parameter is used to specify the

timing constraints of the jobs of a periodic task. Unless stated otherwise, we assume

in this dissertation that T.d = T.p, i.e., the relative deadline of a periodic task equals

3

���������
���������
���������

���������
���������
��������� ���������

���������
���������

���������
���������
���������

���������
���������
���������

�������
�������
������� �������

�������
�������

�������
�������
�������

delay
sporadic

(a) (b)

2 4 6 8 16141210 0 2 4 6 8 10 12 14 16 18 200

Figure 1.1: Each job is shown on a separate line. The up arrows corresponds to job
releases and down arrows correspond to job deadlines. Inset (a) shows a periodic task
T with T.φ = 0, T.e = 3, T.p = 8, T.d = 8. Inset (b) shows a sporadic task with the
same parameters; the second job is released four time units late.

its period. In other words, each job must complete before the release of the next job

of the same task.

As an example of a periodic task, consider the application controlling the robot in

the example described earlier. Since the robot periodically picks an object from the

conveyor belt, the controller application consists of several periodic tasks. Most of

these tasks will be in one of two categories: tasks that process information received

from the robot such as its position, velocity, orientation, etc., and tasks that generate

signals sent to the robot to change its velocity or direction, if necessary. Note that the

second type of task may depend on the information processed by the first type; such a

dependency can be enforced by making the phase of the dependent task equal to the

period of the task on which it depends.

While the periodic task model can model time-driven processes effectively, it may

not be sufficient to model processes that are driven by external interrupts occurring at

approximately periodic intervals. In the sporadic task model, the notion of a periodic

task is generalized by allowing the time interval between consecutive invocations of a

task to be more than the task’s period. In other words, T.p refers to the minimum sep-

aration between consecutive job releases of task T . Figure 1.1 illustrates the difference

between a periodic and a sporadic task.

A periodic task system is comprised of a collection of periodic tasks. (A sporadic

task system is defined similarly.) A periodic task system in which all tasks have a

phase of zero is called a synchronous periodic task system. The weight or utilization 1

of a task T , denoted wt(T), is the ratio of its execution requirement to its period, i.e.,

1We use the terms “weight” and “utilization” interchangeably in this dissertation.

4

wt(T) = T.e
T.p . Because 0 < T.e ≤ T.p, we have 0 < wt(T) ≤ 1. The weight of a task

determines the fraction (i.e., share) of a single processor that it requires. For example,

the task shown in Figure 1.1 has a weight of 3/8, i.e., it requires a processor share of

37.5% to meet its timing constraints. The weight (or utilization) of a task system is

the sum of the weights of all tasks in the system.

In this dissertation, we assume that all tasks are preemptive, i.e., a task can be

interrupted during its execution and resumed later from the same point. Unless stated

otherwise, we assume that the overhead of a preemption is zero. We further assume that

all tasks are independent , i.e., the execution of a task is not affected by the execution

of other tasks. In particular, we assume that tasks do not share any resources other

than the processor, and that they do not self-suspend during execution.

Feasibility and optimality. A task system τ is said to be feasible if there exists a

schedule for τ in which each job released by a task in τ meets its deadline. A feasibility

test for a class of task systems is specified by giving a condition that is necessary and

sufficient to ensure that any task system in that class is feasible.

The algorithm that is used to schedule tasks (i.e., allocate processor time to tasks)

is referred to as a scheduling algorithm. A task system τ is said to be schedulable by

algorithm A if A can guarantee the deadlines of all jobs of every task in τ . A condition

under which all task systems within a class of task systems are schedulable by A is

referred to as a schedulability test for A for that class of task systems. A scheduling

algorithm is defined as optimal for a class of task systems if its schedulability condition

is identical to the feasibility condition for that class.

On-line versus off-line scheduling. In off-line scheduling, the entire schedule for

a task system (up to a certain time such as the the least common multiple (LCM) of

all task periods) is pre-computed before the system actually runs; the actual run-time

scheduling is done using a table based on this pre-computed schedule. On the other

hand, an on-line scheduler selects a job for scheduling without any knowledge of future

job releases. (Note that an on-line scheduling algorithm can also be used to produce

an off-line schedule.) Clearly, off-line scheduling is more efficient at run-time; however,

this efficiency comes at the cost of flexibility. In order to produce an off-line schedule,

it is necessary to know the exact release times for all jobs in the system. However,

such knowledge may not be available in many systems, in particular, those consisting

of sporadic tasks, or periodic tasks with unknown phases. Even if such knowledge is

5

available, then it may be impractical to store the entire pre-computed schedule (e.g., if

the LCM of the task periods is very large). On the other hand, on-line schedulers need

to be very efficient, and hence, may need to make sub-optimal scheduling decisions,

resulting in schedulability loss. In this dissertation, we focus only on on-line scheduling

algorithms.

Static versus dynamic priorities. Most scheduling algorithms are priority-based:

they assign priorities to the tasks or jobs in the system and these priorities are used

to select a job for execution whenever scheduling decisions are made. A priority-based

scheduling algorithm can determine task or job priorities in different ways.

A scheduling algorithm is called a static-priority algorithm if there is a unique

priority associated with each task, and all jobs generated by a task have the prior-

ity associated with that task. Thus, if task T has higher priority than task U , then

whenever both have active jobs, T ’s job has higher priority than U ’s job. An example

of a scheduling algorithm that uses static priorities is the rate-monotonic (RM) algo-

rithm [LL73]. The RM algorithm assigns higher priority to tasks with shorter periods.

Liu and Layland [LL73] proved that RM is optimal among all static-priority algorithms

for scheduling periodic tasks on uniprocessors.

Dynamic-priority algorithms allow more flexibility in priority assignments; a task’s

priority may vary across jobs or even within a job. An example of a scheduling algorithm

that uses dynamic priorities is the earliest-deadline-first (EDF) algorithm [LL73]. EDF

assigns higher priority to jobs with earlier deadlines, and has been shown to be optimal

for scheduling periodic and sporadic tasks on uniprocessors [LL73, Mok83]. The least-

laxity-first (LLF) algorithm [Mok83] is also an example of a dynamic-priority algorithm

that is optimal on uniprocessors. The laxity of a job at time t is d − t − e, where d is

the job’s deadline and e is the job’s remaining execution time at time t. As its name

suggests, under LLF, jobs with lower laxity are assigned higher priority.

Figure 1.2 illustrates the behavior of the EDF and RM algorithms on a uniprocessor

for two tasks T and U with the following parameters: T.φ = U.φ = 0, T.e = 3, T.p = 5,

U.e = 1, and U.p = 3. Inset (a) shows the schedule produced by the RM algorithm.

RM assigns higher priority to task U because it has a smaller period. At time 1, U ’s

job completes and T ’s job is scheduled. U ’s second job, which is released at time

3, preempts T ’s job. At time 4, U ’s job completes execution and T ’s job resumes

execution. T ’s job finally completes at time 5. Since U has no unfinished jobs at time

5, when T releases a new job at time 5, RM schedules T again. By reasoning in a similar

6

��
��

������������������������������
������������������������������

	�	�	�	�	�	�		�	�	�	�	�	�	
�
�
�
�
�
�

�
�
�
�
�
�
 ��
�
�
�

�
�
�
��������������

��

�� ��

����������������������������
������������������������������

��

������������������������������

������������������������������ � � � � � � � � � � � � � � !�!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!�!"�"�"�"�"�"�"�"�""�"�"�"�"�"�"�"�"

#�#�#�##�#�#�##�#�#�#$�$�$�$$�$�$�$$�$�$�$

%�%�%�%%�%�%�%%�%�%�%&�&�&�&&�&�&�&&�&�&�&

'�'�'�''�'�'�'(�(�(�((�(�(�(

Task U

Task T

Task T

Task U

(a)

(b)

1 2 30 14121084 5 6 7 9 11 13 15

1 2 30 14121084 5 6 7 9 11 13 15

Figure 1.2: The notation used in this figure is the same as in Figure 1.1. Insets (a)
and (b), respectively, show the RM and EDF schedules for the following periodic task
system consisting of two tasks T and U : T.φ = U.φ = 0, T.e = 3, T.p = 5, U.e = 1, and
U.p = 3. This pattern of job releases repeats after time 15, and hence, the schedule
also repeats.

manner, we can show that the rest of the schedule is as illustrated in Figure 1.2(a).

Inset (b) shows the schedule produced by the EDF algorithm. At time 0, U ’s job has

a deadline at time 3, while T ’s job has a deadline at time 5. Therefore, EDF schedules

U ’s job at time 0. At time 1, U ’s job finishes execution and T ’s job is scheduled by

EDF. At time 3, U releases a new job that has a deadline at time 6, which is greater

than the deadline of T ’s job. Therefore, EDF continues executing T until time 4, at

which time U is scheduled. By reasoning in a similar manner, we can show that the

rest of the schedule is as illustrated in Figure 1.2(b).

The set of dynamic-priority algorithms is a super-set of the set of static-priority al-

gorithms because every static-priority scheduling algorithm is also a dynamic-priority

algorithm. Static-priority algorithms are more efficient as they incur lower overhead

while making scheduling decisions; however, there exist task systems that can be cor-

7

��������������������

�������������������� ��������������������
��������������������

�����
�����
�����

�����
�����
�����

���������
���������
���������

�������
�������
�������

	�	�		�	�		�	�		�	�	

�
�

�
�

�
�

�
�
 ��������������������
��������������������

�
�
�

�
�
�

�
�
�

�
�
�

��������������������

�����
�����
�����

���
���
���

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

��������������������

�������������������� ����������������������������
����������������������������

�����
�����
�����

�����
�����
�����

��������������������

��������������������

�������
�������
�������

�����
�����
�����Task T

Task U

Task T

Task U

(a) (b)

Deadline
missed

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12

Figure 1.3: Insets (a) and (b), respectively, show the EDF and RM schedules for the
following periodic task system consisting of two tasks T and U : T.φ = U.φ = 0, T.e = 5,
T.p = 10, U.e = 2, and U.p = 4. The first job of task T misses its deadline at time 10.

rectly scheduled if and only if dynamic priorities are allowed. For example, consider

the following periodic task system with two tasks T and U : T.e = 5, T.p = 10 and

U.e = 2, U.p = 4. Figure 1.3(a) shows the schedule under EDF, and Figure 1.3(b)

shows the schedule under RM — a deadline is missed at time 10 under RM. Since RM

is an optimal static-priority algorithm on uniprocessors, no other static-priority algo-

rithm can correctly schedule this task system. (In particular, if T is assigned higher

priority, then U ’s first job will miss its deadline at time 4.)

1.2 Real-time Scheduling on Multiprocessors

As mentioned earlier, our focus in this dissertation is the scheduling of multipro-

cessor real-time systems. We now give a brief introduction to prior research in this

area.

In this dissertation, we assume that all tasks are sequential and can execute on only

one processor at a time. However, tasks are allowed to be preempted, and resumed at

a later time, maybe on a different processor. In other words, a task is also allowed to

migrate to a different processor. In general, there are two approaches for scheduling

on multiprocessors depending on whether task migration is allowed: partitioning and

global scheduling .

Under partitioning, the workload is partitioned among the available processors and

tasks are then scheduled on a per-processor basis. Thus, a task is assigned to a par-

ticular processor and always executed on that processor. On the other hand, under

global scheduling, all eligible tasks are placed in a single ready queue, and the sched-

8

Pfair
windows

Not a Pfair
schedule �� ����������������������

������������������ ����������
����������

A Pfair
schedule �� 	�	�	�		�	�	�	

�
�
�

�
�
�
������������������������
�
�
�

�
�
�
����������������������������������
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1.4: The Pfair windows of the first two jobs (or six subtasks) of a task T such
T.e = 3 and T.p = 8. During each job of T , each of the three subtasks must be executed
during its window in order to satisfy the Pfairness rate constraint.

uler selects the highest-priority tasks from this queue for execution. Thus, under global

scheduling, a task is not fixed to a processor and is allowed to migrate. Until recently,

no optimal polynomial-time global algorithm for scheduling real-time recurrent tasks

was known; it was also not known whether such an algorithm even exists. The seminal

work of Baruah, Cohen, Plaxton, and Varvel [BCPV96] on proportionate fair (Pfair)

scheduling proved that periodic task systems could be optimally scheduled on-line in

polynomial time using global scheduling algorithms based on Pfairness.

Pfair scheduling differs from more conventional real-time scheduling approaches

in that tasks are explicitly required to execute at steady rates. In most real-time

scheduling disciplines, the notion of a rate is implicit. For example, in an EDF or RM

schedule, a task T executes at a rate defined by its required utilization (T.e/T.p) over

large intervals. However, its execution rate over short intervals, e.g., individual periods,

may vary significantly. Hence, the notion of a rate under the periodic task model is a

bit inexact.

Under Pfair scheduling, each task is executed at an approximately-uniform rate by

breaking it into a series of quantum-length subtasks . Each period of a task is then

subdivided into a sequence of (potentially overlapping) subintervals of approximately

equal lengths, called windows. To satisfy the Pfairness rate constraint, each subtask

must execute within its associated window. (Refer to Figure 1.4.) Pfair scheduling

algorithms typically assign priorities to subtasks and try to ensure that each subtask

is scheduled in its window; this, in turn, is sufficient to guarantee that each job meets

its deadline.

9

By breaking tasks into uniform-sized subtasks, Pfair scheduling circumvents many

of the bin-packing-like problems that lie at the heart of intractability results pertaining

to multiprocessor scheduling. Indeed, Pfair scheduling is presently the only known

approach for optimally scheduling periodic tasks on multiprocessors. Baruah et al.

presented two optimal Pfair algorithms, PF [BCPV96] and PD [BGP95]; PD is the

more efficient of the two. (Baruah [Bar95] also presented a non-optimal static-priority

Pfair algorithm called the weight-monotonic (WM) algorithm.)

In spite of the optimality of Pfair scheduling algorithms, partitioning is currently

the favored approach. There are three main reasons for this. First, though partitioning

approaches are not theoretically optimal, they tend to perform well in practice. Second,

Pfair scheduling algorithms can result in frequent preemptions and migrations resulting

in excessive overhead. Third, until our work, all work on Pfair scheduling was limited

to periodic tasks, and it was not known whether more efficient Pfair schedulers could

be obtained.

However, some of these reasons for always favoring partitioning are no longer valid.

In particular, many emerging real-time applications are highly dynamic: the set of

tasks in the system may change or their timing requirements may change. Partitioning

is not suitable for such systems because any change in the set of tasks may lead to a

re-partitioning of the entire system causing unacceptable overhead. Further, recent ar-

chitectural advances have led to the development of multiprocessors with low migration

overheads (e.g., single chip multiprocessors [FGP+00]).

Finally, as we demonstrate in this dissertation, Pfair scheduling algorithms can be

made more efficient and flexible. Experimental results also indicate that the perfor-

mance of these algorithms is comparable to partitioning approaches, even for static

task systems.

1.3 Contributions

The main thesis supported by this dissertation is the following.

The Pfair scheduling framework for the on-line scheduling of real-time tasks

on multiprocessors can be made more flexible by allowing the underlying task

model to be more general than the periodic model and by allowing the task

system to be dynamic. Further, this flexibility can be efficiently achieved.

10

In the following subsections, we describe the contributions of this dissertation in more

detail. In addition to efficiency (which is clearly important), flexibility is essential in

several of the emerging real-time applications as described earlier. In this dissertation,

we address the flexibility issue by developing the intra-sporadic (IS) task model (briefly

described in Section 1.3.3) and by considering the scheduling of dynamic task systems

(Section 1.3.4). The IS model is a generalization of the sporadic task model. We also

provide schemes to improve response times of non-recurrent real-time tasks while en-

suring deadlines of the real-time tasks (Section 1.3.6). Towards the goal of improving

the efficiency of Pfair scheduling algorithms, we develop the PD2 Pfair algorithm (Sec-

tion 1.3.1), which is the most efficient optimal Pfair scheduling algorithm devised to

date, and the concept of ERfair scheduling (Section 1.3.2). We also study the sim-

pler (non-optimal) earliest-pseudo-deadline-first (EPDF) Pfair algorithm, and present

several scenarios under which it is preferable to other Pfair algorithms (Section 1.3.5).

1.3.1 The PD2 Pfair Algorithm

The PD2 algorithm was obtained by simplifying the priority definition in the PD

algorithm of Baruah et al. [BGP95]. We prove that PD2 is optimal for scheduling peri-

odic tasks on multiprocessors; it is currently the most efficient among all known optimal

Pfair scheduling algorithms. We also show through several counterexamples that the

priority definition in PD2 cannot be simplified further without sacrificing optimality.

These counterexamples illustrate the minimality of the PD2 priority definition.

As mentioned earlier, Pfair scheduling can lead to frequent preemptions and mi-

grations. In order to study the effect of preemption and migration overheads on the

performance of PD2, we conducted experiments comparing PD2 to a partitioning ap-

proach. Our results demonstrate that PD2 performs competitively because the schedu-

lability loss due to these overheads is offset by the fact that PD2 provides much better

analytical bounds on schedulability than partitioning.

1.3.2 Early-release Fair Scheduling

One undesirable characteristic of Pfair scheduling is that jobs can be ineligible ac-

cording to the Pfairness rate constraint, despite being ready. Consequently, processors

may be idle while ready unscheduled jobs exist. In other words, Pfair scheduling algo-

rithms are not “work-conserving.” (An algorithm is work-conserving if it never leaves

a processor idle while an active job exists.) To address this problem, we propose a

11

work-conserving variant of Pfair scheduling called early-release fair (ERfair) schedul-

ing. The ERfair version of the PD2 algorithm incurs lower run-time overhead than the

Pfair version. Further, as we show, job response times are likely to be much better

under ERfair scheduling.

1.3.3 The Intra-sporadic Task Model

Though the periodic and sporadic task models are the most widely studied, they are

not applicable in all situations. Consider a multimedia application receiving packets

over a network. Since packet arrivals may be late or bursty, these arrivals may not have

a periodic or sporadic pattern. To enable applications to handle such scenarios more

seamlessly, we present a new task model called the intra-sporadic (IS) model, which

treats burstiness and late arrivals as first-class concepts. We also analytically prove

that PD2 is optimal for scheduling IS task systems. To the best of our knowledge, this

is the first work on optimal algorithms for scheduling such tasks on multiprocessors.

Further, since the IS model generalizes the notion of a sporadic model, it follows that

PD2 is optimal for scheduling sporadic tasks on multiprocessors as well.

1.3.4 Scheduling of Dynamic Task Systems

With the proliferation of multimedia, gaming, and virtual-reality applications, dy-

namic real-time task systems are becoming increasingly important. In such systems,

tasks may be initiated at arbitrary times and may execute for a finite duration. To

support such tasks, mechanisms are needed for handling task “joins” and “leaves”

without adversely affecting the timeliness of other tasks. Dynamic task systems have

been well-studied in work on uniprocessors [BGP+97, SRLR89, SAWJ+96, TBW92].

In particular, necessary and sufficient conditions for task joins and leaves have been

presented for fair-scheduled uniprocessor systems [BGP+97, SAWJ+96]. We extend

this work to multiprocessor Pfair-scheduled systems. We show that the multiprocessor

variants of the uniprocessor conditions are insufficient, in general, when any priority-

based Pfair scheduling algorithm is used. We also derive sufficient join/leave conditions

for PD2-scheduled systems, and demonstrate their tightness through counterexamples.

12

1.3.5 Scheduling of Soft Real-time Multiprocessor Systems

Since occasional deadline misses are allowed in soft real-time systems, PD2 can be

simplified without a large loss in system performance. We consider the scheduling of

real-time multiprocessor systems using the EPDF algorithm, which uses a more efficient

(but non-optimal) method to determine subtask priorities. In particular, we derive a

condition for scheduling using EPDF that ensures that deadlines are missed by at most

one quantum. This condition is very liberal and should often hold in practice. We also

generalize this by deriving conditions under which EPDF guarantees a given bound

on tardiness , i.e., the amount by which a deadline is missed. Additionally, we present

conditions under which EPDF can guarantee all deadlines, thus allowing us to identify

those hard real-time systems in which EPDF can be successfully used.

1.3.6 Scheduling of Aperiodic Tasks

Interrupt handling routines that are invoked infrequently may be modeled as aperi-

odic tasks. Unlike periodic and sporadic tasks, such tasks release only a single job, and

may or may not have deadlines. We present several approaches for scheduling aperi-

odic tasks along with hard real-time IS tasks. In these approaches, the spare processor

capacity (i.e., the difference between number of processors and the total weight of the

real-time IS tasks) is distributed among several aperiodic servers in a greedy manner.

Each server is scheduled as an IS task and it, in turn, schedules the aperiodic tasks

that are assigned to it. We derive bounds on response times of the aperiodic tasks;

these bounds can also be used to design admission control tests for aperiodic tasks

with deadlines.

1.4 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we describe prior

work on scheduling in multiprocessor real-time systems, and in particular, prior work on

Pfair scheduling. In Chapter 3, we describe the PD2 algorithm, the concept of ERfair

scheduling, and also prove the optimality of PD2 for both Pfair- and ERfair-scheduled

systems. In Chapter 4, we describe the IS task model, and present sufficient join/leave

conditions for dynamic IS task systems scheduled using PD2. Chapter 5 presents re-

sults concerning the EPDF algorithm, and Chapter 6 describes the aperiodic server

13

approaches discussed above. Finally, in Chapter 7, we summarize our contributions

and discuss directions for future research.

Chapter 2

Background and Related Work

In this chapter, we survey prior research on the scheduling of real-time tasks on

multiprocessors. We begin by stating an impossibility result pertaining to the on-line

scheduling of hard real-time aperiodic tasks on multiprocessors.

Theorem 2.1 (Dertouzos and Mok [DM89]). No scheduling algorithm is optimal

for scheduling hard real-time aperiodic tasks on two or more processors if all release

times, deadlines, and execution requirements are not known a priori.

This is in sharp contrast to on-line scheduling on a uniprocessor, for which the

earliest-deadline-first (EDF) algorithm has been shown to be optimal [Der74, LL73].

Though Theorem 2.1 does not apply to the scheduling of recurrent tasks, it does indicate

the difficulty of obtaining optimal on-line scheduling algorithms for multiprocessors.

As mentioned in Section 1.2, scheduling approaches on multiprocessors fall into one

of two categories: partitioning and global scheduling . We first briefly describe the basic

concepts behind each approach and then describe in more detail relevant results about

scheduling algorithms and their schedulability conditions.

Partitioning. In partitioning schemes, each processor schedules tasks independently

from a local ready queue. When a new task arrives, it is assigned to one of these

ready queues and executes only on the associated processor. The main advantage of

partitioning approaches is that they reduce a multiprocessor scheduling problem to a

set of uniprocessor ones. Unfortunately, partitioning has two negative consequences.

First, finding an optimal assignment of tasks to processors is a bin-packing problem,

which is NP-hard in the strong sense [GJ79]. Thus, tasks are usually partitioned using

non-optimal heuristics. Second, task systems exist that are schedulable (i.e., their

15

����������
���������� ������������������

������������������
������������������
������������������ ����������

����������

	�	�	
�

��������

�
�
���
Task

Task

LEGEND
Schedule on
processor 1

Schedule on
processor 2

Task T

U

V

1 20 3

Figure 2.1: A schedule that allows migration for a two-processor system with three
tasks each of weight 2/3. The schedule repeats after time 3. The schedule on each
processor is shown on separate lines. Note that the job of task U must be allowed to
migrate as shown to meet its deadline at time 3.

deadlines can be guaranteed) if and only if tasks are not partitioned. For instance,

consider a system of three tasks each with an execution requirement of 2 and a period

of 3 to be scheduled on two processors. There is no way to partition these three tasks

into two sets such that the total utilization of each set is at most one. On the other

hand, as Figure 2.1 illustrates, these tasks can be scheduled on two processors if tasks

are allowed to migrate.

Global scheduling. In contrast to partitioning, under global scheduling, all ready

tasks are stored in a single priority-ordered queue. Since a single system-wide priority

space is assumed, the highest-priority task is selected to execute whenever the scheduler

is invoked, regardless of which processor is being scheduled. Whereas partitioning

avoids migration, global scheduling may result in frequent migrations due to the use

of a shared queue. Dhall and Liu [DL78] showed that global scheduling with optimal

uniprocessor scheduling algorithms, such as EDF and RM, may result in arbitrarily low

processor utilization.

To see why, consider the following synchronous periodic task system to be scheduled

on M processors: M tasks with period p and execution requirement 2, and one task

with period p+1 and execution requirement p. At time 0, both EDF and RM favor the

M tasks with period p. The task with period p + 1 does not get scheduled until time

2, by when its deadline cannot be guaranteed. (Figure 2.2 illustrates this for M = 2

and p = 5.) Note that the total utilization of this task system is 2M
p

+ p
p+1

; as p tends

to ∞, this value tends to 1 from above. Thus, we have the following result.

Theorem 2.2 (Dhall and Liu [DL78]). EDF and RM cannot correctly schedule all

task systems τ with
∑

T∈τ wt(T) ≤ B on M processors, for any B > 1.

16

�������������������������
�������������������������
�������������������������
�������������������������

���������
���������
���������
���������

���������
���������
���������
���������

��������

	�	�	
�

Deadline missed

Task

Task

Task

V

U

T

LEGEND

Processor 2

Processor 1

1 20 3 4 5 6

Figure 2.2: Tasks T , U , and V have the following parameters: T.e = U.e = 2, T.p =
U.p = 5, V.e = 5, and V.p = 6. Jobs of each task are shown on a separate line. Under
both EDF and RM, jobs of tasks T and U are scheduled at time 0. This causes V ’s
job to miss its deadline.

Despite this negative result, recent research on Pfair scheduling algorithms has

shown considerable promise for the development of efficient and flexible global schedul-

ing algorithms.

In Section 2.1, we describe research on partitioning in more detail; later, in Sec-

tion 2.2, we introduce some of the basic concepts of Pfair scheduling.

2.1 Partitioning

Under partitioning, each task is assigned to a processor, on which it exclusively

executes. The primary advantage of partitioning is that, once tasks are assigned to

processors, each processor can be scheduled independently using uniprocessor schedul-

ing algorithms. Before considering partitioning approaches in detail, we give a brief

overview of relevant research on uniprocessors.

2.1.1 Schedulability Results for Uniprocessor Systems

We first present known schedulability tests for RM and then present similar results

for EDF.

Schedulability conditions for RM. Liu and Layland [LL73] proved that RM is

optimal among all static-priority algorithms for scheduling synchronous periodic task

systems on uniprocessors. In other words, if there exists some static-priority scheduling

17

algorithm that can correctly schedule a given task system, then RM can also correctly

schedule it. They also showed that RM can schedule any task system τ that satisfies

the following condition.
∑

T∈τ

wt(T) ≤ N(2
1
N − 1) (2.1)

The right-hand-side of (2.1) converges to 0.69 from above as N tends to ∞. Thus, a

periodic task system is schedulable by RM if its total weight (i.e., utilization) is at

most 0.69. However, this test is only sufficient and not necessary, i.e., there exist task

systems with larger utilizations that can be correctly scheduled by RM. Lehoczky, Sha,

and Ding [LSD89] presented the following necessary and sufficient schedulability test

for RM. Let H(T) denote the set of tasks that have periods at least T.p, i.e., H(T)

consists of the tasks that may be assigned higher priority than T . Then, RM can

correctly schedule a synchronous periodic task system τ if and only if the following

condition holds.

(∀T ∈ τ, ∃t ∈ {0, . . . , T.p − 1} : T.e +
∑

U∈H(T)

⌈

t
U.p

⌉

· U.e ≤ t) (2.2)

Note that though this test improves upon (2.1), its time complexity is higher. In par-

ticular, the condition in (2.1) can be verified in O(N) (i.e., polynomial) time, whereas

the condition in (2.2) takes O(N × maxT∈τT.p) time (which is pseudo-polynomial in

the size of the bit-representation of the input).

Schedulability conditions for EDF. Liu and Layland [LL73] proved that the fol-

lowing is a feasibility condition for periodic task systems on uniprocessors.

∑

T∈τ

wt(T) ≤ 1 (2.3)

They also proved that EDF is optimal among all algorithms for scheduling periodic

task systems on uniprocessors. In other words, EDF correctly schedules any τ that

satisfies (2.3).

2.1.2 Bin-packing Approaches

Several polynomial-time heuristics have been proposed for task partitioning based

on bin-packing approaches [DD86, DL78]. We describe three of them below. While

18

Next-Fit()
0: begin

1: k := 0;
2: i := 0;
3: while (i < N) and (k < M) do

4: if task[i] fits on processor k then

5: Assign task[i] to processor k;
6: i := i + 1
7: else

8: k := k + 1
9: fi

10: od;
11: if i < N then

12: return failure

13: end

Figure 2.3: The next-fit partitioning heuristic.

describing these heuristics, we assume that there are M processors numbered from 0 to

M − 1, and N tasks numbered from 0 to N − 1 that need to be scheduled. (The tasks

are not assumed to be arranged in any specific order. We can obtain different variants

of the these approaches by sorting the tasks in a specific order before applying the

heuristics.) The schedulability test associated with the chosen uniprocessor scheduling

algorithm can be used as an acceptance test to determine whether a task can “fit” on a

processor. For instance, under EDF scheduling, a task will fit on a processor as long as

the total utilization of all tasks assigned to that processor does not exceed unity (refer

to (2.3)).

Next Fit (NF): In this approach, all the processors are considered in order, and we

assign to each processor as many tasks as can fit on that processor. The procedure

shown in Figure 2.3 describes this approach.

First Fit (FF): FF improves upon NF by also considering earlier processors during

task assignment. Thus, each task is assigned to the first processor that can accept

it, as described in the procedure shown in Figure 2.4.

Best Fit (BF): In this approach, each task is assigned to a processor that (i) can

accept the task, and (ii) will have minimal remaining spare capacity after its

addition. The procedure shown in Figure 2.5 describes this approach, with EDF

as the uniprocessor scheduling algorithm and (2.3) as the acceptance test. (Here,

19

First-Fit()
0: begin

1: for i = 0 to N − 1 do

2: k := 0;
3: while (k < M) and (task[i] does not fit on processor k) do

4: k := k + 1
5: od;
6: if (k < M) then

7: Assign task[i] to processor k
8: else

9: return failure

10: fi

11: od

12: end

Figure 2.4: The first-fit partitioning heuristic.

Best-Fit()
0: begin

1: for i = 0 to N − 1 do

2: min := −1;
3: minSpare := 1;
4: for k = 0 to M − 1 do

5: currSpare := 1 − (W [k] + wt(task[i]));
6: if (currSpare ≥ 0) and (currSpare < minSpare) then

7: minSpare := currSpare;
8: min := k
9: fi

10: od;
11: if min ≥ 0 then

12: Assign task[i] to the processor numbered min;
13: W [min] := W [min] + wt(task[i])
14: else

15: return failure

16: fi

17: od

18: end

Figure 2.5: The best-fit partitioning heuristic.

W [k] denotes the sum of the weights of the tasks assigned to processor k.)

Note that the time complexity of NF is O(N) times the complexity of the uniprocessor

schedulability test, while the time complexity of both FF and BF is O(MN) times the

20

complexity of the uniprocessor schedulability test.

A complementary approach to BF is worst fit (WF), in which each task is assigned

to a processor that (i) can accept the task, and (ii) will have maximal remaining spare

capacity after its addition. Though this approach does not try to maximize utilization,

it results in a partitioning in which the workload is equally balanced among the different

processors.

We now state some known results involving partitioning schemes that use RM and

EDF for uniprocessor scheduling [BLOS95, DD86, DL78, LGDG00, OS95a, SVC98].

Utilization bounds under EDF. Surprisingly, the worst-case achievable utilization

on M processors for all of the above-mentioned heuristics (and also for an optimal parti-

tioning algorithm) is at most (M +1)/2, even when an optimal uniprocessor scheduling

algorithm such as EDF is used. In other words, there exist task systems with utilization

slightly greater than (M + 1)/2 that cannot be correctly scheduled by any partitioning

approach. To see why, note that M + 1 tasks, each with utilization (1 + ε)/2, cannot

be partitioned on M processors, regardless of the partitioning heuristic or the schedul-

ing algorithm. As ε tends to 0, the total utilization of such a task system tends to

(M + 1)/2. Thus, we have the following theorem.

Theorem 2.3. No partitioning-based scheduling algorithm can correctly schedule all

task systems τ with U(τ) ≤ B on M processors for any B > M+1
2

.

Lopez et al. [LGDG00] showed that any task system with utilization at most (M +

1)/2 can be correctly scheduled on M processors if EDF is used as the uniprocessor

scheduling algorithm with FF or BF as the partitioning heuristic.

Better utilization bounds can be obtained for EDF-scheduled systems if per-task

utilizations are bounded. Let α denote the maximum utilization of any task in the

system. Then any task can be assigned to a processor that has a spare capacity of at

least α. This implies that if a task system is not schedulable, then every processor must

have spare capacity of less than α. Hence, the total utilization of such a task system

is more than M(1 − α) + α. Equivalently, any task system with utilization at most

M − α(M − 1) is schedulable.1 Lopez et al. [LGDG00] improved upon this by proving

that EDF with FF (or BF) can correctly schedule any task system with utilization at

most (βM + 1)/(β + 1), where β = b1/αc.
1It is surprising to note that this schedulability test is identical to that for global EDF [GFB03].

21

Theorem 2.4 (Lopez et al . [LGDG00]). If U(τ) ≤ (βM + 1)/(β + 1), where

β = b1/αc and α satisfies α ≥ wt(T) for all T ∈ τ , then τ can be correctly scheduled

by EDF with partitioning on M processors.

We now prove that the bound (βM + 1)/(β + 1) is an improvement over the bound

M −α(M − 1). The following analysis shows that (βM +1) > (β +1)(M −α(M − 1)),

which implies that (βM + 1)/(β + 1) > (M − α(M − 1)).

(βM + 1) − (β + 1)(M − α(M − 1))

=
⌊

1
α

⌋

M + 1 − (
⌊

1
α

⌋

+ 1)(M − α(M − 1))

=
⌊

1
α

⌋

M + 1 −
(⌊

1
α

⌋

M + M −
⌊

1
α

⌋

α(M − 1) − α(M − 1)
)

= 1 − M + α
⌊

1
α

⌋

(M − 1) + α(M − 1)

= α(M − 1)(
⌊

1
α

⌋

+ 1 − 1
α)

> 0

(The last step follows the fact that bxc > x − 1.)

It is important to note that even though these utilization bounds are useful in

understanding the worst-case behavior of partitioning with EDF, they are not typically

used in practice. Better processor utilization can be usually obtained by directly using

the above-described NF, FF, and BF implementations, unless efficiency considerations

do not permit their use.

Utilization bounds under RM. The worst-case achievable utilization is much

smaller for RM-scheduled systems since RM is not an optimal uniprocessor scheduling

algorithm. Let URMFF denotes the worst-case achievable utilization under RM with FF

(RM-FF). Oh and Baker proved the following [OB98].

Theorem 2.5 (Oh and Baker [OB98]). (
√

2 − 1) × M ≤ URMFF ≤ (M + 1)/(1 +

2
1

M+1).

Thus, task systems whose utilization do not exceed (
√

2− 1)×M (≈ 0.41×M) are

schedulable using RM-FF.

Several researchers have proposed partitioning heuristics that improve upon FF

and BF. Oh and Son [OS95b] proposed an improved variant of the FF heuristic called

First Fit Decreasing Utilization (FFDU). They showed that for RM-scheduled systems,

22

the number of processors required by FFDU is at most 5/3 the optimal number of

processors. (Dhall and Liu [DL78] had shown earlier that the number of processors

required by FF and BF is at most twice the optimal number.)

Burchard et al. [BLOS95] presented new sufficient schedulability tests for RM-

scheduled uniprocessor systems that perform better when task periods satisfy certain

relationships. They also proposed new heuristics that try to assign tasks satisfying those

relationships to the same processor, thus leading to better overall utilization. Lauzac et

al. [LMM98] also proposed similar schedulability tests and heuristics, in which tasks

are initially sorted in order of increasing periods. One disadvantage of these heuristics

is the overhead of sorting, which may be unacceptable in an on-line setting.

2.1.3 Disadvantages of Partitioning

The use of partitioning is problematic in several classes of systems, as explained

below.

Dynamic task systems. Implementing dynamic task systems systems by partition-

ing is problematic. To determine whether a new task can be allowed to join the system,

the FF or BF heuristic needs to be executed, which takes at least O(M) time. Note that

if a new task must be admitted, then we may have to re-partition the entire system.

Thus, determining whether the new set of tasks is feasible can be costly. Of course,

the efficient schedulability test for EDF-FF given in Theorem 2.4 could be used, but

its pessimism will likely result in much lower processor utilization.

Resource and object sharing. In most systems, tasks need to communicate with

external devices and share resources. Thus, it may not be realistic to assume that

all tasks are independent. To support non-independent tasks, schedulability tests are

needed that take into account the use of shared resources. Such tests have been pro-

posed for various synchronization schemes on uniprocessors, including the priority-

inheritance protocol [SRL90], the priority-ceiling protocol [SRL90], the dynamic-priority-

ceiling protocol [CL90], and EDF with dynamic deadline modification [Jef92].

Under partitioning, if all tasks that access a common resource can be assigned to

the same processor, then the uniprocessor schemes cited above can be used directly.

However, resource sharing across processors is often inevitable. For example, if the

total utilization of all tasks that access a single resource is more than one, then, clearly,

it is impossible for all of them to be assigned to the same processor. Also, even if the

23

total utilization of such tasks is at most one, one of the tasks may access other shared

resources. It might not be possible to assign all tasks accessing those resources to the

same processor.

Adding resource constraints to partitioning heuristics is a non-trivial problem. Fur-

ther, such constraints also make the uniprocessor schedulability test less tight, and

hence, partitioning less effective. The multiprocessor priority-ceiling protocol (MPCP)

was proposed for RM-scheduled systems by Rajkumar et al. [RSL88] as a means for

synchronizing access to resources under partitioning. To the best of our knowledge,

no multiprocessor synchronization protocols have been developed for partitioned sys-

tems with EDF (though it is probably not difficult to extend the MPCP for use in

EDF-scheduled systems).

2.2 Proportionate Fair (Pfair) Scheduling

We now formally describe the fair scheduling concepts on which our work is based.

In this section, we limit our attention to synchronous periodic task systems. (Recall

that, in such systems, T.φ = 0 for all tasks.) In Pfair scheduling, processor time is

allocated in discrete time units, or quanta. We refer to the time interval [t, t + 1),

where t is a nonnegative integer, as slot t. (Hence, time t refers to the beginning of

slot t.) We further assume that all task parameters are expressed as integer multiples

of the quantum size.2

The sequence of scheduling decisions over time defines a schedule. Formally, we

represent a schedule S as a mapping S : τ × Z 7→ {0, 1}, where τ is a set of periodic

tasks and Z is the set of nonnegative integers. If S(T, t) = 1, then we say that task T

is scheduled in slot t. St denotes the set of tasks scheduled in slot t. The statements

T ∈ St and S(T, t) = 1 are equivalent.

A task’s weight defines the rate at which it is to be scheduled. In a perfectly

fair (ideal) schedule, every task T should receive a share of wt(T) · t time units over

the interval [0, t) (which implies that each job meets its deadline). In practice, this

degree of fairness is impractical, as it requires the ability to preempt and switch tasks

at arbitrarily small time scales. (Such idealized sharing is clearly not possible in a

quantum-based schedule.) Instead, Pfair scheduling algorithms strive to “closely track”

the allocation of processor time in the ideal schedule. This tracking is formalized in the

2This can always be ensured by either choosing a smaller quantum size or appropriately modifying
task parameters, albeit with some schedulability loss.

24

notion of per-task lag , which is the difference between a task’s allocation in the Pfair

schedule and the allocation it would receive in an ideal schedule. Formally, the lag of

task T at time t, denoted lag(T, t), is defined as follows.

lag(T, t) = wt(T) · t −
t−1
∑

u=0

S(T, u). (2.4)

(For brevity, we let the schedule be implicit and use lag(T, t) instead of lag(T, t, S).

The schedule S under consideration can be easily inferred from the context.) We can

restate (2.4) as follows.

lag(T, t + 1) =

{

lag(T, t) + wt(T), if T /∈ St

lag(T, t) + wt(T) − 1, if T ∈ St.
(2.5)

Task T is said to be over-allocated or ahead at time t, if lag(T, t) < 0, i.e., the actual

processor time received by T over [0, t) is more than its ideal share over [0, t). Anal-

ogously, task T is said to be under-allocated or behind at time t if lag(T, t) > 0. If

lag(T, t) = 0, then T is punctual , i.e., it is neither ahead nor behind.

A schedule is defined to be proportionate fair (Pfair) if and only if

(∀T, t :: −1 < lag(T, t) < 1). (2.6)

Informally, the allocation error for each task is always less than one quantum. From

this, we have the following theorem.

Theorem 2.6 (Baruah et al . [BCPV96]). In a Pfair schedule for a synchronous

periodic task system, each task T receives a share of either bwt(T) · tc or dwt(T) · te
time units over the interval [0, t).

Proof. By (2.4) and (2.6), we have wt(T)·t−∑t−1
u=0 S(T, u) < 1. Therefore,

∑t−1
u=0 S(T, u) >

wt(T) · t − 1. Since S(T, u) is an integer, it follows that
∑t−1

u=0 S(T, u) ≥ bwt(T) · tc.
Thus, T receives a share of at least bwt(T) · tc time units over the interval [0, t).

Again, by (2.4) and (2.6), we have wt(T) · t − ∑t−1
u=0 S(T, u) > −1. Therefore,

∑t−1
u=0 S(T, u) < wt(T) · t + 1. Hence,

∑t−1
u=0 S(T, u) ≤ dwt(T) · te. Thus, T receives a

share of at most dwt(T) · te time units over the interval [0, t).

Because dwt(T) · te − bwt(T) · tc is at most 1, it follows that T receives a share of

either bwt(T) · tc or dwt(T) · te time units over the interval [0, t).

25

It is straightforward to show that in any Pfair schedule, each job of a periodic task

meets its deadline. Note that, if t = k ·T.p, then bwt(T) · tc and dwt(T) · te both reduce

to k · T.e. Therefore, by Theorem 2.6, the share received by a task T over the interval

[0, k · T.p) is exactly k · T.e. Thus, T receives exactly T.e units of processor time over

[(k − 1) · T.p, k · T.p). This yields the following theorem.

Theorem 2.7 (Baruah et al . [BCPV96]). Each job of a periodic task in a syn-

chronous periodic task system meets its deadline in a Pfair schedule.

Subtasks and Pfair windows. We refer to each quantum of execution of a task as

a subtask ; thus, the execution of each task T corresponds to the execution of an infinite

sequence of subtasks. We denote the ith subtask of task T as Ti, where i ≥ 1. Thus,

the kth job (k ≥ 0) of task T consists of the subtasks Tke+1, . . . , T(k+1)e, where e = T.e.

Subtask Ti+1 is called the successor subtask of Ti and Ti is called the predecessor subtask

of Ti+1.

By Theorem 2.6, each task receives either bwt(T) ·tc or dwt(T) ·te units of processor

time in a Pfair schedule. To enforce this in any quantum-based schedule, each subtask

Ti has an associated pseudo-release, denoted r(Ti), and pseudo-deadline, denoted d(Ti).

r(Ti) is the first slot into which Ti potentially could be scheduled, and d(Ti) is the time

before which it must finish execution. We now derive simple formulae for r(Ti) and

d(Ti).

Note that if lag(T, t) ≤ −wt(T) and T is scheduled in slot t, then by (2.5), lag(T, t+

1) ≤ −wt(T)+wt(T)−1, i.e., lag(T, t+1) ≤ −1. This violates the lag bounds in (2.6).

Hence, T is eligible for execution at time t if and only if lag(T, t) > −wt(T). Thus,

r(Ti) corresponds to the smallest t such that lag(T, t) > −wt(T) after the first i − 1

subtasks of T have completed execution. This implies that r(Ti) is the smallest t such

that wt(T) · t − (i − 1) > −wt(T), i.e., t > i − 1
wt(T)

− 1. Thus, we have the following.

r(Ti) =

⌊

i − 1
wt(T)

⌋

(2.7)

Recall that slot t refers to the interval [t, t + 1). Thus, by the definition of d(Ti), if

Ti is not scheduled in slot d(Ti) − 1, then T will violate its lag bounds at time d(Ti).

Therefore, d(Ti) − 1 is the largest t such that wt(T) · t − (i − 1) < 1 (by (2.4)), i.e.,

t < i
wt(T)

. Therefore, d(Ti) is the largest u such that u < i
wt(T)

+ 1, which implies

26

2T
3T

1T 9T
10T

11T

13T
14T6T

8T

7T

5T

T4

15T
16T

T12

0 2 4 6 8 10 12 14 16 18 20 22

Windows of the

subtasks of T
first sixteen

Figure 2.6: The Pfair windows of the first two jobs (or sixteen subtasks) of a task T
with weight 8/11 in a Pfair-scheduled system. During each job of T , each of the eight
units of computation must be allocated processor time during its window, or else a
lag-bound violation will result.

that u ≤
⌈

i
wt(T)

⌉

. Thus, we have the following.

d(Ti) =

⌈

i
wt(T)

⌉

(2.8)

For brevity, we often refer to pseudo-releases and pseudo-deadlines as simply releases

and deadlines, respectively. The interval [r(Ti), d(Ti)) is called the window of subtask

Ti and is denoted by w(Ti). The length of window w(Ti), denoted |w(Ti)|, is defined as

d(Ti) − r(Ti). Thus, by (2.7) and (2.8), we have the following.

|w(Ti)| =

⌈

i
wt(T)

⌉

−
⌊

i − 1
wt(T)

⌋

(2.9)

We refer to a window of length n as an n-window . From (2.7)–(2.9), it is easy to see

that the sequence of windows of a task T and U are identical if wt(T) = wt(U) (even

if T.e 6= U.e). Thus, under Pfair scheduling, both tasks are treated in exactly the same

manner.

As an example, consider a task T with weight wt(T) = 8/11. Each job of this task

consists of eight subtasks, and hence each period is eight (overlapping) windows. Using

Equations (2.7) and (2.8), it is easy to show that the windows within each job of T are

as depicted in Figure 2.6. As mentioned above, a task with weight 16/22 has the same

sequence of windows.

27

2.2.1 Feasibility

Baruah et al. proved the following feasibility condition for the Pfair scheduling of

synchronous periodic tasks [BCPV96].

∑

T∈τ

T.e

T.p
≤ M (2.10)

This was shown by means of a network flow construction. Let L denote the least

common multiple of {T.p | T ∈ τ}. By restricting attention to subtasks that are

released within the first hyperperiod of τ (i.e., in the interval [0, L)), the sufficiency of

(2.10) can be established by constructing a flow graph with integral edge capacities and

by then applying the Ford-Fulkerson result [FF62] to prove the existence of an integer-

valued maximum flow for that graph. This integral flow defines a correct schedule over

[0, L). (Later, in Chapter 4, we use this same technique to obtain a feasibility condition

for task systems belonging to a more general task model. Therefore, we do not describe

this construction in greater detail here.)

Theorem 2.8 (Baruah et al . [BCPV96]). A synchronous, periodic task system τ

has a Pfair schedule on M processors if and only if
∑

T∈τ
T.e
T.p

≤ M .

2.2.2 The PF Pfair Algorithm

PF was the first Pfair scheduling algorithm that was shown to be optimal on mul-

tiprocessors [BCPV96]. PF prioritizes subtasks on an earliest-pseudo-deadline-first

(EPDF) basis and uses several tie-breaking rules when multiple subtasks have the

same deadline. The first tie-breaking rule involves a parameter called the successor bit ,

which is defined as follows.

b(Ti) =

⌈

i
wt(T)

⌉

−
⌊

i
wt(T)

⌋

(2.11)

Thus, b(Ti) is either 0 or 1. Informally, b(Ti) denotes the number of slots by which

Ti+1’s window overlaps Ti’s window (see (2.7) and (2.8)). For example, in Figure 2.6,

b(Ti) = 1 for 1 ≤ i ≤ 7 and b(T8) = 0.

If T.e divides i, then (i · T.p)/T.e is an integer, i.e.,

⌈

i
wt(T)

⌉

=

⌊

i
wt(T)

⌋

. Thus,

we have the following property.

(B) If Ti is the last subtask of a job, then b(Ti) is zero.

28

Under the PF algorithm, subtasks are prioritized as follows: at time t, if subtasks

Ti and Uj are both ready to execute, then Ti’s priority is at least that of Uj, denoted

Ti ¹ Uj, if one of the following rules is satisfied.

(i) d(Ti) < d(Uj).

(ii) d(Ti) = d(Uj) and b(Ti) > b(Uj).

(iii) d(Ti) = d(Uj), b(Ti) = b(Uj) = 1, and Ti+1 ¹ Uj+1.

If neither subtask has priority over the other, then the tie can be broken arbitrarily.

Given the PF priority definition, the description of the PF algorithm is simple: at the

start of each slot, the M highest priority subtasks (if that many eligible subtasks exist)

are selected to execute in that slot.

As shown in Rule (ii), when comparing two subtasks with equal deadlines, PF

favors a subtask Ti with b(Ti) = 1, i.e., if its window overlaps that of its successor.

The intuition behind this rule is that executing Ti early reduces its chances of getting

scheduled in its last slot. The latter possibility effectively leads to a shortening of

w(Ti+1), and imposes more constraints on the scheduling of Ti+1. If two subtasks have

equal deadlines and successor bits of 1, then according to Rule (iii), their successor

subtasks are recursively checked. This recursion will halt within min(T.e, U.e) steps,

because the last subtask of each job has a successor bit of 0 (by (B)).

We now briefly sketch the proof of Baruah et al. that PF is optimal.

Theorem 2.9 (Baruah et al . [BCPV96]). PF is optimal for scheduling synchronous

periodic tasks on multiprocessors.

Proof sketch. The optimality proof for PF proceeds by inducting over the interval (0, L],

where L is the least common multiple of {T.p | T ∈ τ}. The crux of the argument is

to show that, if there exists a Pfair schedule S such that all decisions in S before slot

t are in accordance with PF priorities, then there exists a Pfair schedule S ′ such that

all the scheduling decisions in S ′ before slot t + 1 are in accordance with PF priorities.

To prove the existence of S ′, the scheduling decisions in slot t of S are systematically

changed so that they respect the PF priority rules, while maintaining the correctness

of the schedule. We briefly summarize the swapping arguments used to transform S.

Let ≺ be an irreflexive total order that is consistent with the ¹ relation in the

PF priority definition, i.e., ≺ is obtained by arbitrarily breaking any ties left by ¹.

Suppose that Ti and Uj are both eligible to execute in slot t and Ti ≺ Uj. Furthermore,

29

in subtasks

schedule S

both

time

(a) (b)

Uj

T i

j

deadline of
T i and U

Uj+1

deadline
of T i

deadline
of U j

Uj

T i

no
U

i+1T

t ...t+1 t’+1 ...t ...t+1 t’+1t’ t’ t’’ t’’+1

Figure 2.7: Optimality proof for PF. A double arrow indicates two subtasks that are
to be swapped. In (a), “no U” means no subtask of U is scheduled in slot t′.

suppose that, contrary to the PF priority rules, Uj is scheduled in slot t in S, while Ti

is scheduled in a later slot t′ in S. Since Ti ¹ Uj, there are three possibilities.

• Ti ≺ Uj by Rule (i). Because Ti’s deadline is less than Uj’s deadline, and

because the windows of consecutive subtasks overlap by at most one slot, Uj+1 is

scheduled at a later slot than Ti. Therefore, Ti and Uj can be directly swapped

to get the desired schedule, as shown in Figure 2.7(a).

• Ti ≺ Uj by Rule (ii). By Rule (ii), b(Uj) = 0, which implies that Uj+1’s window

does not overlap that of Uj. Hence, Ti and Uj can be directly swapped without

affecting the scheduling of Uj+1, as shown in Figure 2.7(a).

• Ti ≺ Uj by Rule (iii). (This is the difficult case to consider. As we shall

see later in Section 3.4, a major portion of the optimality proof of PD2 deals

with this case.) In this case, it may not be possible to directly swap Ti and Uj

because Uj+1 may be scheduled in the same slot as Ti (i.e., swapping Ti and Uj

would result in Uj and Uj+1 being scheduled in the same slot). If Uj+1 is indeed

scheduled in slot t′, then it is necessary to first swap Ti+1 and Uj+1, as shown in

Figure 2.7(b), which may in turn necessitate the swapping of later subtasks. By

Rule (iii), Ti+1 ¹ Uj+1, and hence we can inductively repeat the above procedure

to swap Ti+1 and Uj+1.

This completes the proof of the theorem.

Though optimal, PF is inefficient due to the recursion in Rule (iii). In particu-

lar, given two subtasks Ti and Uj, determining which job has higher priority takes

30

O(log(min(T.p, U.p))) time. Baruah, Gehrke, and Plaxton [BGP95] presented a more

efficient algorithm called PD in which Rule (iii) is replaced by three additional rules,

each of which involves only an O(1)-time calculation. As mentioned earlier, our new

PD2 algorithm is the most efficient among all known optimal Pfair scheduling algo-

rithms. In particular, PD2 was obtained from the PD algorithm by replacing Rule (iii)

with only a single rule that takes O(1) time. Since the priority definitions of both

algorithms are very similar, we discuss PD after presenting PD2 (in the next chapter).

2.2.3 Related Work on Fair Scheduling

Much work has been devoted to uniprocessor fair scheduling algorithms based on

generalized processor sharing (GPS). The concept of GPS is similar to the concept of

an ideal scheduler used in the definition of Pfairness, except that, under GPS, excess

spare capacity is distributed fairly among all the tasks in proportion to their weights.

Thus, a task T would receive a share according to a weight of
wt(T)

∑

U∈A wt(U)
, where A

denotes the set of active tasks at any instant. As with the ideal scheduler considered

earlier, GPS is also impossible to achieve in practice. Several researchers have designed

practical algorithms that approximate GPS to various degrees. We review some of this

research in this section, and also discuss how it differs from Pfair scheduling.

Demers et al. [DKS89] presented the GPS-based weighted fair queueing (WFQ)

algorithm for scheduling packet transmissions in routers. They also presented the con-

cept of virtual time as a means to efficiently keep track of the shares of each flow as

new connections are established and old ones are disconnected. Under WFQ, a virtual

deadline is assigned to each packet based on its size and the share of its associated

connection. At any instant, the packet with earliest deadline is selected to be transmit-

ted. Parekh and Gallager [PG93, PG94] proved that the WFQ algorithm guarantees

constant lag bounds. In particular, no packet is serviced Pmax later than it would have

been serviced in the fluid-flow system, where Pmax is the time required to transmit a

packet of maximum size. This initial work of fair packet scheduling has been extended

in several ways. Several algorithms that improve the efficiency of WFQ at the expense

of higher lag bounds have been proposed [Gol94, GVC96]. Conversely, the worst-case

fair WFQ (WF2Q) algorithm provides better lag bounds with a small reduction in ef-

ficiency [BZ96]. Hierarchical schedulers have also been proposed, thus allowing two or

more connections to be combined and scheduled as a single entity [BZ97, SZN97].

Stoica et al. [SAWJ+96] extended this work to quantum-based scheduling in oper-

31

ating systems by developing the concept of proportional share scheduling. They also

presented the quantum-based earliest-eligible-virtual-deadline-first (EEVDF) algorithm

and proved lag bounds similar to (2.6), which in turn provide bounds on timeliness.

Fair schedulers are useful in general-purpose operating systems as they provide tempo-

ral isolation, i.e., a misbehaving task does not adversely affect the scheduling of other

tasks in the system. Jeffay et al. [JSMA98] showed that the problem of receive livelock3

can be ameliorated by the proportional-share scheduling of kernel activities.

Unfortunately, all of the above-described research on GPS-based algorithms is ap-

plicable only to uniprocessor systems. Though other researchers have recently explored

the use of fair scheduling algorithms on multiprocessors, most of these results have

been empirical. In particular, Chandra, Adler, and Shenoy investigated the use of

fair scheduling algorithms (based on the PD2 algorithm developed by us) in the Linux

operating system [CAS01]. The goal of their work was to determine the efficacy of

using fair scheduling to provide quality-of-service guarantees to multimedia applica-

tions. Consequently, no formal analysis of their approach was presented. Despite this,

their experimental results convincingly demonstrate the utility of fair scheduling in

multiprocessor systems.

Chandra et al. [CAGS00] extended the concept of GPS to multiprocessors to obtain

generalized multiprocessor scheduling (GMS). Note that the share calculation used in

GPS (described earlier) may not always work on a multiprocessor because it can result

in a share larger than one. GMS resolves this by capping the maximum share of

any task to one. Chandra et al. presented an algorithm (based on the uniprocessor

WFQ algorithm) to approximate GMS, and demonstrated its effectiveness through an

implementation on a Linux platform. However, they too present no formal analysis of

their scheduling algorithms.

2.3 Summary

Though Pfair scheduling algorithms hold much promise, prior to our work, research

on this topic was limited in several ways. First, only synchronous periodic task systems

were considered. Second, Pfair scheduling (as originally defined) is necessarily not work-

conserving when used to schedule periodic tasks. Third, results prior to our work do not

apply to scheduling of dynamic task systems on multiprocessors. Fourth, no approaches

3Receive livelock refers to a condition in which the processor spends all of its time processing
interrupts (that are generated due to packets arriving over a network) without doing any useful work.

32

for handling soft real-time tasks and aperiodic tasks were known. We address these

concerns in this dissertation. We start by describing the PD2 Pfair algorithm, and the

concept of ERfair scheduling in the next chapter. In addition, we prove that PD2 is an

optimal algorithm for scheduling periodic task systems on multiprocessors and present

results of experiments that compare PD2 and the EDF-FF partitioning algorithm.

Chapter 3

The PD2 Scheduling Algorithm∗

In this chapter, we present the PD2 algorithm, and also introduce the concept of

ERfair scheduling. We also prove that PD2 is optimal for scheduling periodic task

systems.

3.1 The PD2 Priority Definition

We first describe the PD2 priority definition and then discuss how it differs from the

PD priority definition [BGP95]. Both PD2 and PD classify tasks into two categories

depending on their weight: a task T is light if wt(T) < 1/2, and heavy otherwise.

In the PD2 priority definition, the recursive Rule (iii) of PF (refer to Section 2.2.2)

is replaced by a simple comparison of the “group deadlines” of competing subtasks.

Group deadlines are only important when heavy tasks of weight less than one exist,

i.e., when 1/2 ≤ wt(T) < 1 holds for some task T . (As shown later in Section 3.4.1, a

task T has windows of length two if and only if 1/2 ≤ wt(T) < 1.) If a task does not

satisfy this criterion, then its group deadline is defined to be 0.

∗The results presented in this chapter have been published in the following papers.

[AS04] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic tasks.
Journal of Computer Systems and Sciences, 2004. To appear. (Most of the results in this paper
were presented in preliminary form at the 12th and 13th Euromicro Conferences on Real-time
Systems [AS00a, AS01].)

[SHAB03] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah. The case for fair multiprocessor
scheduling. In Proceedings of the 11th International Workshop on Parallel and Distributed

Real-Time Systems, April 2003. (On CD-ROM.)

34

The group deadline. To motivate the definition of the group deadline, consider a

sequence Ti, . . . , Tj of subtasks such that b(Tk) = 1 ∧ |w(Tk+1)| = 2 for all i ≤ k < j.

Note that scheduling Ti in its last slot forces the other subtasks in this sequence to be

scheduled in their last slots. For example, in Figure 2.6, scheduling T3 in slot 4 forces T4

and T5 to be scheduled in slots 5 and 6, respectively. The group deadline of a subtask

Ti, denoted D(Ti), is the earliest time by which such a “cascade” must end. Formally,

it is the earliest time t, where t ≥ d(Ti), such that either (t = d(Tk) ∧ b(Tk) = 0)

or (t + 1 = d(Tk) ∧ |w(Tk)| = 3) for some subtask Tk. For example, in Figure 2.6,

D(T3) = d(T6) − 1 = 8 and D(T7) = d(T8) = 11. PD2 favors subtasks with later

group deadlines because not scheduling them can lead to longer cascades of scheduling

decisions, thus placing more constraints on the future schedule. We now derive a

formula for determining a subtask’s group deadline.

Consider a Pfair schedule S for a single task T in which each subtask of T is

scheduled in the first slot of its window. Then, the slots that remain empty in S

exactly correspond to the group deadlines of T (refer to Figure 3.1(a)). Thus, the

number of group deadlines in every period of T is T.p − T.e.

We now show that the group deadlines of T correspond to the subtask deadlines of a

task U such that U.e = T.p−T.e and U.p = T.p, which implies that wt(U) = 1−wt(T).

Consider a schedule S ′ for task U obtained from S as follows: U is scheduled in slot t

in S ′ if and only if T is not scheduled in slot t in S. Figure 3.1 illustrates S and S ′ for

a task T of weight 8/11. Consider T ’s lag in schedule S, and U ’s lag in schedule S ′.

(Hence, lag(T, t) refers to schedule S, and lag(U, t) refers to schedule S ′.) By (2.4), we

have lag(U, t) = wt(U) · t−∑u∈[0,t) S ′(U, u), which is equivalent to (1−wt(T)) · t− (t−
∑

u∈[0,t) S(T, u)). Simplifying this, we obtain lag(U, t) =
∑

u∈[0,t) S(T, u) − wt(T) · t.

Therefore, by (2.4), lag(U, t) = −lag(T, t). Thus, if T satisfies (2.6), then U also

satisfies (2.6), and hence, S ′ is a Pfair schedule.

Note that for any t such that t = D(Ti)− 1, T is not scheduled in slot t in S. Since

each subtask is scheduled in the first slot of its window (i.e., as early as possible), this

implies that T is not eligible for execution at time t. Therefore, lag(T, t) ≤ −wt(T),

which implies that lag(U, t) ≥ wt(T). If U is not scheduled in slot t, then, by (2.5),

lag(U, t + 1) ≥ wt(T) + (1 − wt(T)), i.e., lag(U, t + 1) ≥ 1. This implies that t + 1

(= D(Ti)) is a pseudo-deadline of U . Thus, we have the following theorem.

Theorem 3.1. The group deadlines of a task T correspond to the subtask deadlines of

a task U such that U.e = T.p − T.e and U.p = T.p, i.e., wt(U) = 1 − wt(T).

35

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
����� �����

����������
����� 	�	�	

	�	�	
�
�

�
�
 �����

����������
�����
�
�

�
�
�����
����� �����

����������
�����

�����
�����
�����
����� �����

����������
����� �����

����������
����� �����

����������
����� �����

����������
����� �����

����������
����� �����

����������
����� �����

����� � �
 � �

!�!�!
!�!�!
"�"�"
"�"�" #�#�#

#�#�#$�$�$
$�$�$

%�%�%
%�%�%
&�&�&
&�&�&

'�'�'
'�'�'
(�(�(
(�(�(

)�)�)
)�)�)
��*
��*

+�+�+
+�+�+
,�,�,
,�,�,

(a)

(b)

9T

10T

11T

T12

13T

1T

8T

7T

5T

T4

3T

2T

6T

5U

6U

U4

3U

2U

1U

16T

15T

14T

0 2 4 6 8 10 12 14 16 18 20 22

0 2 4 6 8 10 12 14 16 18 20 22

Figure 3.1: (a) A schedule S for task T of weight 8/11 such that each subtask is
scheduled in the first slot of its window. The group deadlines of T over (0, 22] are at
times 4, 8, 11, 15, 19, and 22, which exactly correspond to slots that remain empty in
S. (b) Schedule S ′ for task U of weight 3/11. U is scheduled in slot t if and only if T
is not scheduled in t in S. T ’s group deadlines correspond to the pseudo-deadlines of
U .

Thus, D(Ti) can be obtained by using (2.8) to calculate the subtask deadlines of

a task U with wt(U) = 1 − wt(T). For any subtask Ti, D(Ti) corresponds to d(Uk),

where k is the smallest j such that d(Uj) ≥ d(Ti). For example, in Figure 3.1, D(T3) =

d(U2) = 8. Thus, the scheduler can calculate the current group deadline of T by keeping

track of the subtask indices of U . Below, we derive another formula that provides us

with a more direct way to calculate group deadlines. In this derivation, we consider

the following two cases separately: d(Uk) = d(Ti) and d(Uk) > d(Ti).

If d(Uk) = d(Ti), then D(Ti) = d(Ti). By definition of a group deadline, this

implies that b(Ti) = 0. We now show that b(Uk) = 0. By (2.11), it follows that i
wt(T)

in an integer. By (2.4), at time t = i
wt(T)

(which equals d(Ti) by (2.8)), lag(T, t)

must be an integer. By (2.6), this implies that lag(T, t) = 0. Hence, lag(U, t) =

−lag(T, t) = 0. Thus, by (2.4), this implies that wt(U)·t must be an integer. Therefore,

t =
j

wt(U)
for some j. Because t = d(Ti) = d(Uk), it follows that d(Uk) =

j
wt(U)

. By

36

(2.8), and because
j

wt(U)
is an integer, we have k = j. Thus, by (2.11), b(Uk) = 0.

Therefore, by (2.11),

⌈

k
1 − wt(T)

⌉

= k
1 − wt(T)

. By (2.8), d(Ti) =

⌈

i
wt(T)

⌉

, and

d(Uk) =

⌈

k
1 − wt(T)

⌉

. Hence, k
1 − wt(T)

=

⌈

i
wt(T)

⌉

, i.e., k =

⌈

i
wt(T)

⌉

(1 − wt(T)).

Note that the right-hand-side of this equation must be an integer, and hence, we have

k =

⌈⌈

i
wt(T)

⌉

(1 − wt(T))

⌉

.

If d(Uk) > d(Ti), then by (2.8), we have

⌈

k
1 − wt(T)

⌉

>

⌈

i
wt(T)

⌉

. This implies

that k
1 − wt(T)

>

⌈

i
wt(T)

⌉

. Therefore, k >

⌈

i
wt(T)

⌉

(1 − wt(T)), implying that

k ≥
⌈⌈

i
wt(T)

⌉

(1 − wt(T))

⌉

. Since k is the smallest such index, it follows that k =
⌈⌈

i
wt(T)

⌉

(1 − wt(T))

⌉

.

Thus, under both cases, because D(Ti) = d(Uk), by (2.8), we obtain the following

formula.

D(Ti) =









⌈⌈

i
wt(T)

⌉

× (1 − wt(T))
⌉

1 − wt(T)









(3.1)

Priority Definition. We can now state the PD2 priority definition. (For the sake

of completeness, we repeat Rules (i) and (ii) from Section 2.2.2.) Under PD2, subtask

Ti’s priority is at least that of subtask Uj, denoted Ti ¹ Uj, if one of the following rules

is satisfied.

(i) d(Ti) < d(Uj).

(ii) d(Ti) = d(Uj) and b(Ti) > b(Uj).

(iii) d(Ti) = d(Uj), b(Ti) = b(Uj) = 1, and D(Ti) ≥ D(Uj).

Any ties not resolved by these three rules can be broken arbitrarily. Thus, according

to this definition, Ti has higher priority than Uj if it has an earlier pseudo-deadline. If

Ti and Uj have equal pseudo-deadlines, but b(Ti) = 1 and b(Uj) = 0, then the tie is

broken in favor of Ti. If Ti and Uj have equal pseudo-deadlines and successor bits of

one, then their group deadlines are inspected to break the tie. If one is heavy and the

other light, then the tie is broken in favor of the heavy task. If both are heavy and

their group deadlines differ, then the tie is broken in favor of the one with the larger

group deadline. If both are heavy and have equal group deadlines, then the tie can

37

be broken arbitrarily. (Recall that D(Ti) = 0 if T is light. Thus, in a light-only task

system, PD2 uses only the first two rules to determine subtask priorities.)

The PD algorithm. The priority definition used in the PD algorithm [BGP95] has

two tie-break parameters (and rules) in addition to those used by PD2. The first is a bit

that distinguishes between the two different types of group deadline. For example, in

Figure 3.1, D(T1) is a type-1 group deadline because it corresponds to the middle slot

of a 3-window, while D(T6) is a type-0 group deadline. (Effectively, the value of this

bit is the value of b(Uk), where Uk is the subtask of U that defines the group deadline

of T .) The second parameter T.x is defined as follows: for a light task T.x =

⌊

1
wt(T)

⌋

,

and for a heavy task T.x =

⌊

1
1 − wt(T)

⌋

. PD was proved optimal by Baruah et al.

[BGP95] by a simulation argument that shows that PD “closely tracks” the behavior

of the PF algorithm; the optimality of PF was then used to infer the optimality of

PD [BGP95]. The optimality of PD2 (as proved later) shows that the two additional

tie-breaking rules of PD are not needed.

Implementation. The PD2 algorithm is nearly identical to the algorithm given for

PD in [BGP95], except that a different priority definition is used. As shown in [BGP95],

PD2 can be implemented in O(min(N,M log N)) time, where M is the number of

processors and N is the total number of tasks.

An O(N) implementation can be obtained simply by using a comparison-based

selection algorithm that runs in O(N) time [BFP+73]. In particular, if the number of

tasks that are eligible is greater than M , then the subtask with the M th highest priority

according to PD2 can be obtained in O(N) time using the above-mentioned selection

algorithm. The rest of the tasks can be partitioned using this subtask’s priority and

thus, the remaining (M − 1) tasks can also be chosen in O(N) time.

Figure 3.2 describes a heap-based implementation that runs in O(M log N) time.

A priority-ordered ready queue is used to store eligible subtasks. In addition, there

are a number of priority-ordered release queues associated with future time slots. At

the beginning of each time slot, the M highest-priority subtasks in the ready queue (if

that many subtasks are eligible) are selected for execution. If Ti is one of the selected

subtasks, then Ti+1 is inserted into the release queue associated with time t′, where t′ is

the time at which Ti+1 becomes eligible (lines 8 and 21), i.e., t′ = max(r(Ti+1), t + 1).

At the beginning of each time slot, the release queue for that slot is merged with the

38

Algorithm PD2

0: begin

1: H := BuildHeap(τ);
2: t := 0;
3: when scheduling slot t do

4: repeat

5: T := ExtractMin(H);
6: “Schedule task T in slot t”;
7: t′ := “the earliest future time at which task T will be eligible again”;
8: Requeue(T , t′)
9: until “M tasks have been scheduled in slot t”;

10: if “Heap Ht+1 exists” then

11: H := Union(H, Ht+1)
12: fi;
13: t := t + 1
14: od

15: end

Requeue(T , t)
16: begin

17: if “Heap Ht does not exist” then

18: Ht := MakeHeap()
19: fi;
20: “Determine T ’s priority at time t”;
21: Insert(Ht, T)
22: end

Figure 3.2: An O(M log N) implementation of PD2

ready queue (line 11). An additional search structure based on red-black trees can be

used in order to efficiently access the release queues [BGP95].

The above-described procedure can be implemented in O(M log N) time using the

binomial-heap data structure [Vui78]; the primary reason for using binomial heaps is

that two such heaps can be merged in O(log n) time, where n is the total number of

items in both heaps.

3.2 Minimality of the PD2 Priority Definition

Before proving the optimality of PD2, we consider other scheduling algorithms that

determine subtask priorities using fewer or more-efficient tie-breaking rules.

39

According to the PD2 priority definition, each task T is effectively prioritized at

time t by the triple (d(Ti), b(Ti), D(Ti)), where Ti is the subtask of T eligible at time t.

In this section, we present a collection of counterexamples that show that this priority

definition cannot be substantially simplified.

In each proof in this section, an example task system is considered that fully utilizes

a system of M processors for some M . Each such task system consists of a set A of tasks

of one weight and a set B of tasks of another weight. We show that if this task system

is scheduled with the newly-proposed priority definition, then a time slot is reached at

which fewer than M tasks are scheduled. Since the task system fully utilizes the M

processors, this implies that a deadline is missed at some future time. In the proof of

Theorem 3.2, we explain the resulting schedule in detail. The subsequent proofs in this

section are sketched more briefly. We begin by considering the b-bit.

Theorem 3.2. If the PD2 priority definition is changed by eliminating b (i.e., Rule

(ii)), then there exists a feasible task system that is not correctly scheduled.

Proof. Consider a task system consisting of a set A of eight light tasks with weight

1/3 and a set B of three light tasks with weight 4/9. Because total utilization is four,

Expression (2.10) implies that the system is feasible on four processors. Consider the

schedule shown in Figure 3.3(a).

As seen in Figure 3.3(a), each job of a task with weight 1/3 consists of one three-

slot window. Each job of a task with weight 4/9 consists of four three-slot windows,

with consecutive windows overlapping by one slot. The first subtask of each task has

a pseudo-deadline at slot 2. Because b has been eliminated, this tie can be broken

arbitrarily. We break it in favor of the subtasks of the tasks in set A. Therefore the

eight tasks in set A are scheduled in slots 0 and 1. In slot 2, the three tasks from set

B are the only tasks with subtasks that are eligible for execution. Hence, only three

subtasks can be scheduled in slot 2, causing a deadline miss later at time 9.

The definition of D(Ti) ensures that if T is light and U is heavy and if d(Ti) =

d(Uj) ∧ b(Ti) = b(Uj) = 1, then Uj has higher priority. The following theorem shows

that it is necessary to tie-break such a situation in favor of the heavy task.

Theorem 3.3. Suppose the definition of D is changed as follows: if T is light, then

D(Ti) is a randomly-selected value. Then, there exists a feasible task system that is not

correctly scheduled.

40

0 1 2 3 4 5 6 7 8 9 10 110 1 2 3 4 5 6 7 8 9

2

2

2

21 4 1

3

B (3 x 4/9)
3

2

21

1

2

2

2

1 1

1 1

2

3

44

41A (8 x 1/3)

B (2 x 19/22)

32

2 3

2 2 1

1 4

2 2 1

A (5 x 5/11)

(b)(a)

Figure 3.3: Tasks of a given weight are shown together. Each column corresponds to
a time slot. For each subtask, there is an interval of time slots corresponding to its
Pfair window (denoted by bold dashes). An integer value n in slot t means that n
of the tasks in the corresponding set have a subtask scheduled at t. No integer value
means that no such subtask is scheduled in that slot. (We use the same notation in
Figures 3.4, 3.5, 3.6, and 3.7.) (a) Theorem 3.2. A deadline is missed at time 9 by
a task of weight 1/3. (We do not illustrate deadline misses in the subsequent figures,
and show the schedule only until a slot is reached in which fewer than M tasks are
scheduled.) (b) Theorem 3.3.

Proof. Consider a task system consisting of a set A of five light tasks with weight 5/11

and a set B of two heavy tasks with weight 19/22. Because total utilization is four, this

task system is feasible on four processors. Consider the schedule shown in Figure 3.3(b),

which is possible given the proposed priority definition. In particular, at times 1, 3,

and 7, the set-A tasks are favored over the set-B tasks. This causes only three subtasks

to be eligible for execution in slot 10.

The previous counterexamples give rise to the possibility that D(Ti) is actually only

needed to tie-break heavy tasks over light tasks. The next theorem shows that this is

41

0 1 2 3 4 5 6 7

3

2 1

3

A (3 x 5/7)

1 1

2

2

B (2 x 13/14)

Figure 3.4: Theorem 3.4 (and Theorem 3.7).

not the case.

Theorem 3.4. Suppose the definition of D is changed as follows: if T is heavy, then

D(Ti) is one. (If T is light, then D(Ti) is zero as before.) Then, there exists a feasible

task system that is not correctly scheduled.

Proof. Consider a task system, to be scheduled on four processors, consisting of a set

A of three heavy tasks with weight 5/7 and a set B of two heavy tasks with weight

13/14. The proposed priority definition allows the schedule shown in Figure 3.4. Note

that only three subtasks are eligible in slot 3.

Given the previous counterexample, one may wonder if the definition of D can be

weakened so that ties among heavy tasks are statically resolved. The following theorem

shows that this is unlikely.

Theorem 3.5. If D is changed so that ties among heavy tasks are statically broken by

weight, then there exists a feasible task system that is not correctly scheduled.

Proof. Consider a task system, to be scheduled on 12 processors, consisting of a set A

of three heavy tasks with weight 8/9 and a set B of ten heavy tasks with weight 14/15.

First, suppose that D is defined to statically tie-break the set-A tasks over the set-B

tasks. Then, the schedule shown in Figure 3.5(a) is possible. In this schedule, only

42

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

3

3

7

7

2 1

3

6 4

5 5

4 6

4 6

4 6

4 6

3 7

2 8

3

3

2 1

1 2

3

3

3

3

2 1

1 2

3

3

3
A (3 x 8/9)

9

8

7

6

5

4

1

2

3

4

5

6

3

3

3

3

3

3

A (3 x 8/9)

10

10

10

9 1

8 2

7 3

B (10 x 14/15)

B (10 x 14/15)

(b)(a)

Figure 3.5: Theorem 3.5.

11 subtasks are eligible at time slot 8. Second, suppose that D is defined to statically

tie-break the set-B tasks over the set-A tasks. In this case, the schedule shown in

Figure 3.5(b) is possible. In this schedule, only 11 subtasks are eligible at time slot 14.

From the previous theorem, it follows that D almost certainly must be defined to

dynamically tie-break heavy tasks. (Note, for example, that Theorem 3.5 leaves open

the possibility of statically defining D so that some set-A tasks are favored over set-B

tasks, but other set-A tasks are not favored over set-B tasks.) One obvious approach

to try that is less dynamic than ours is to define D(Ti) based on the deadline of the

current job of T . The next two theorems show that using job deadlines does not work;

in the first of these theorems, later job deadlines are given higher priority, and in the

43

0 1 2 3 4 5 6

9

9

9

5 4

A (9 x 7/9)

12

4 8

12

8 4

B (12 x 5/6)

Figure 3.6: Theorem 3.6.

second, nearer job deadlines are given higher priority.

Theorem 3.6. Suppose the definition of D is changed as follows: if T is heavy, then

D(Ti) is the deadline of the current job of T . Then, there exists a feasible task system

that is not correctly scheduled.

Proof. Consider a task system, to be scheduled on 17 processors, consisting of a set A

of nine heavy tasks with weight 7/9 and a set B of 12 heavy tasks with weight 5/6. The

proposed priority definition allows the schedule shown in Figure 3.6. (Note that the

newly-proposed definition of D favors set-A tasks over set-B tasks.) In this schedule,

only 16 subtasks are eligible at time slot 4.

Theorem 3.7. Suppose the definition of D is changed as follows: if T is heavy, then

D(Ti) is 1/t, where t is the deadline of the current job of T . Then, there exists a feasible

task system that is not correctly scheduled.

Proof. This can be proved by using the task system and schedule shown in Figure 3.4,

which was used previously in the proof of Theorem 3.4. (Note that the newly-proposed

definition of D favors set-A tasks.)

As we will show later in Chapter 5, neither b nor D is needed on two processors.

We now show that at least one tie-breaking rule is needed in any system with three or

more processors. (Note that Theorems 3.2, 3.3, 3.4 and 3.7 apply on systems with four

or more processors.)

44

Theorem 3.8. If our priority definition is changed by eliminating both b and D, then

there exists a task system that is feasible on three processors that is not correctly sched-

uled.

Proof. Consider a task system, to be scheduled on three processors, consisting of a set

A of three heavy tasks with weight 1/2 and a set B of two heavy tasks with weight

3/4. The proposed priority definition allows the schedule shown in Figure 3.7(a). In

this schedule, only two subtasks are eligible at time slot 1. (Note that either b or D

would correctly tie-break these tasks.)

One “obvious” potential priority definition that comes to mind is to use the rational

value i
wt(T)

as the deadline of subtask Ti, which is tantamount to omitting the ceiling

brackets in the deadline formula (2.8). As it turns out, this new definition works for

light-only task systems, but does not work if heavy tasks are present.

The optimality of this priority definition for light-only task systems follows from the

optimality of PD2. Recall that PD2 only uses Rules (i) and (ii) for light tasks, i.e., it

prioritizes light tasks using the pair (d(Ti), b(Ti)). If i
wt(T)

≤ j
wt(U)

, then

⌈

i
wt(T)

⌉

≤
⌈

j
wt(U)

⌉

, i.e., d(Ti) ≤ d(Uj). Further, if i
wt(U)

is an integer, then b(Ti) = 0; in this

case either
j

wt(U)
> i

wt(U)
, in which case d(Uj) > d(Ti) or

j
wt(U)

= i
wt(U)

, in which

case b(Uj) = 0. Thus, all the scheduling decisions are in accordance with PD2.

It might appear that the expression i
wt(T)

reduces a task’s priority to a single

number. However, to avoid rounding errors, this rational number must be stored as

two integers. PD2 actually improves upon this by using an integer for d(Ti) and a bit

for b(Ti).
1

We now show that this new priority definition can sometimes fail to correctly sched-

ule heavy tasks.

Theorem 3.9. If the priority definition is changed so that Ti’s priority is at least Uj’s

if i
wt(T)

≤ j
wt(U)

, and any ties are broken arbitrarily, then there exists a feasible task

system such that it is not correctly scheduled.

Proof. Consider a task system consisting of a set A of 15 tasks with weight 3/5 and a set

B of ten tasks with weight 9/10. Total utilization is 18, so we should be able to schedule

1In fact, the PD2 priority definition for light tasks can be reduced to a single integer d′(Ti) that
equals 2·d(Ti)−b(Ti). Under this new priority definition, Ti’s priority is at least Uj ’s if d′(Ti) ≤ d′(Uj).
It is straightforward to show that this algorithm makes the same scheduling decisions as PD2 because
the b-bit is either zero or one.

45

0 1 2 3 4 5 6 7 8 90 1 2 3 4

2

B (2 x 3/4)

A (3 x 1/2)

3

10

10

6

4 6

4

4
B (10 x 9/10)

8 7

1 14

8 7

A (15 x 3/5)

(b)(a)

Figure 3.7: (a) Theorem 3.8. (b) Theorem 3.9.

this task system on 18 processors. Consider the schedule shown in Figure 3.7(b), which

is possible given the proposed priority definition. In particular, at time 2, the priority

of any task in A is given by 2
3/5

= 10
3 , while the priority of a task in B is given by

3
9/10

= 10
3 . Hence, tasks in set A may be favored, as shown in Figure 3.7(b). This

causes only 17 subtasks to be eligible for execution in slot 4.

3.3 Early-release Fair Scheduling

We now describe the concept of early-release fair (ERfair) scheduling; in Section 3.4,

we prove that the ERfair version of PD2 is optimal for scheduling periodic tasks on

multiprocessors.

The notion of ERfair scheduling is obtained by simply dropping the −1 lag con-

straint from (2.6). Formally, a schedule is early-release fair (ERfair) if and only if

(∀T, t :: lag(T, t) < 1). (3.2)

In a mixed Pfair/ERfair-scheduled task system, each task’s lag is subject to either (2.6)

or (3.2); a task is called a non-early-release task in the former case, and an early-release

46

�������
�������
�������
�������

�������
�������
�������
��������������

�������
�������
��������������

�������
�������
������� 	�	�	

	�	�	

�
�

�
�
 �����

�����
�����
�����

�
�
�

�
�
�

�������
�������

�������
�������
�������
�������

5 8

5T
6T

T4

3T

2T

1T

7T
8T

Subtasks T − T are

their windows.
scheduled before

0 1 2 3 4 5 6 7 8 9 10 11

Figure 3.8: The Pfair windows of the first jobs of a task T with weight 8/11 are shown.
The schedule shown is ERfair, but not Pfair.

task in the latter. Note that any Pfair schedule is ERfair, but not necessarily vice versa.

Dropping the −1 lag constraint is equivalent to allowing subtasks to execute before

their Pfair windows. Thus, in contrast to Pfair scheduling, a job that has not completed

execution is always eligible for scheduling during its period under ERfair scheduling.

More specifically, in a Pfair-scheduled system, a subtask Ti is eligible at time t if

t ∈ w(Ti), and if Ti−1 has been scheduled prior to t but Ti has not. In an ERfair-

scheduled system, if Ti−1 and Ti are part of the same job, then Ti becomes eligible for

execution immediately after Ti−1 executes, which may be before Ti’s Pfair window. This

difference is illustrated in Figure 3.8. (Obviously, no subtask can become eligible before

the beginning of the job that contains it. Hence, the first subtask of a job cannot be

released early.) Note that ERfair scheduling is essentially a work-conserving extension

to Pfair scheduling; as long as at least M unfinished jobs exist, no processor is left idle

under ERfair scheduling.

Servicing aperiodic tasks. As we shall see later in Chapter 6, one important ap-

plication of mixed Pfair/ERfair scheduling is to permit the integrated scheduling of

real-time periodic tasks and aperiodic tasks. (Recall that an aperiodic task is not re-

current and consists only of a single job.) The response times of aperiodic tasks can

be improved by allowing server tasks to early-release their subtasks. This improves re-

sponsiveness without compromising the schedulability of the recurrent real-time tasks.

Feasibility. Because every Pfair schedule is also a valid ERfair schedule, (2.10) is a

feasibility condition for ERfair-scheduled systems as well. For similar reasons, it is also

a feasibility condition for mixed Pfair/ERfair-scheduled task systems.

47

Scheduling algorithms. PF, PD and PD2 can be easily adapted to work for ERfair

scheduling. The early-release versions are much simpler to implement, and are quite

similar to more conventional priority-driven scheduling algorithms such as LLF. If Ti

is selected for execution, and if its successor Ti+1 is part of the same job, then Ti+1 is

inserted immediately into the ready queue. If Ti and Ti+1 are part of different jobs,

then Ti+1 is inserted into an appropriate release queue, as described earlier for Pfair

scheduling implementations. The early-release version is more efficient because fewer

queue-merge operations need to be performed than in Pfair scheduling.

3.4 Optimality Proof of PD2

We now prove that PD2 correctly schedules any feasible asynchronous periodic task

system. In an asynchronous periodic task system, each task may release its first job

at any time. For Pfair- or ERfair-scheduled systems, this is equivalent to allowing the

first subtask of each task T , namely T1, to be released any time at or after time zero.

Our notion of an asynchronous task system generalizes this: we allow a task T to begin

execution with any of its subtasks, perhaps one other than T1, and this subtask may be

released any time at or after time zero. As we shall see, this added generality facilitates

our correctness proof for PD2. It is straightforward to modify the flow construction

used in the feasibility proof of (2.10) to apply to asynchronous task systems as defined

here.2 Thus, (2.10) is a feasibility condition for such systems. (In fact, the network flow

construction produces a Pfair schedule, i.e., each task is scheduled within its window.)

In addition, it is possible to define the release and deadline of each subtask using simple

formulae that are similar to those given in (2.7) and (2.8) for synchronous task systems.

In particular, suppose task T releases its first subtask at time r and let Tj (j ≥ 1) be

this subtask. Then, the release and deadline of any subtask Ti (i ≥ j) are given by the

following formulae, where ∆(T) = r −
⌊

j − 1
wt(T)

⌋

.

r(Ti) = ∆(T) +

⌊

i − 1
wt(T)

⌋

(3.3)

d(Ti) = ∆(T) +

⌈

i
wt(T)

⌉

(3.4)

2In fact, the feasibility proof for intra-sporadic task systems presented in Section 4.1 applies to
asynchronous task systems as well.

48

Thus, the windows of T are shifted by an offset given by ∆(T), which determines

the release time of its first subtask. Note that if T is an asynchronous periodic task

according to the usual definition, then the first subtask released by T is T1 and ∆(T)

reduces to r.

Before presenting the optimality proof of PD2, we prove several properties that are

used extensively in the proof. In the rest of this section, we assume that each task’s

weight is strictly less than one — a task with weight one would require a dedicated

processor, and thus is quite easily scheduled. In other words, in this section, a heavy

task T has a weight in the range [0.5, 1).

Note that by (3.3) and (3.4), the Pfair windows of two tasks T and U for which T.e
T.p =

U.e
U.p are identical. This implies that, under Pfair scheduling, they will be scheduled in

precisely the same way. Thus, for notational simplicity, it is reasonable to assume that

T.e and T.p are relatively prime for each task T , i.e., gcd(T.e, T.p) = 1, where gcd(a, b)

is the greatest common divisor (GCD) of a and b. We do make this assumption in our

proof. Unfortunately, this creates a slight problem, because under ERfair scheduling,

two tasks with equal weights but different periods may be scheduled differently. In

particular, they may differ with regard to which subtasks may be released early because

their job releases occur at different times. However, the above assumption is still valid

because our proof applies even if subtasks are early-released across jobs. (In fact, our

proof applies even if the scheduler dynamically decides whether to early release subtasks

or not, or bounds early releases by a threshold — e.g., a subtask may be allowed to

release early, but only up to two time slots before its Pfair window.)

3.4.1 Properties About Subtask Windows

The following properties pertain to just a single task. For brevity, we let T denote

this task, and abbreviate T.e and T.p as e and p, respectively. Thus, wt(T) = e
p , and

(2.9) can be restated as follows. (Note that this formula remains the same even when

equations (3.3) and (3.4) are used instead of (2.7) and (2.8), respectively.)

|w(Ti)| =

⌈

ip

e

⌉

−
⌊

(i − 1)p

e

⌋

. (3.5)

We now prove several properties about subtask windows and group deadlines.

Lemma 3.1. The following properties hold for any task T .

(a) r(Ti+1) is either d(Ti) or d(Ti) − 1, which implies that r(Ti+1) ≥ d(Ti) − 1.

49

(b) The sequence of windows within any two jobs are identical, i.e., |w(Tke+i)| =

|w(Ti)|, where 1 ≤ i ≤ e and k ≥ 0.

(c) The windows are symmetric within each job, i.e., |w(Tke+i)| = |w(Tke+e+1−i)|,
where 1 ≤ i ≤ e, and k ≥ 0.

(d) The length of each window is either
⌈

p
e

⌉

or
⌈

p
e

⌉

+ 1.

(e) |w(Ti)| =
⌈

p
e

⌉

if (i − 1) is a multiple of e.

Proof. Below, we prove each property separately.

Proof of (a): The required result follows because r(Ti+1) = ∆(T) +

⌊

i
wt(T)

⌋

(by

(3.3)) and d(Ti) = ∆(T) +

⌈

i
wt(T)

⌉

(by (3.4)).

Proof of (b): By (3.5), |w(Tke+i)| =

⌈

(ke + i)p
e

⌉

−
⌊

(ke + i − 1)p
e

⌋

. Therefore,

|w(Te+i)| = kp +
⌈

ip
e

⌉

− kp −
⌊

(i − 1)p
e

⌋

= |w(Ti)|.

Proof of (c): By part (b), we need to prove this only for the first job of T , i.e.,

for k = 0. By (3.5),

|w(Te+1−i)| =

⌈

(e + 1 − i)p

e

⌉

−
⌊

(e − i)p

e

⌋

=

(

p +

⌈

(1 − i)p

e

⌉)

−
(

p +

⌊−ip

e

⌋)

=

⌈

(1 − i)p

e

⌉

−
⌊−ip

e

⌋

=

⌈−(i − 1)p

e

⌉

+

⌈

ip

e

⌉

= −
⌊

(i − 1)p

e

⌋

+

⌈

ip

e

⌉

Thus, |w(Ti)| = |w(Te+1−i)|.

Proof of (d): By (3.5), we have

|w(Ti)| =

⌈

ip

e

⌉

−
⌊

(i − 1)p

e

⌋

=

⌈

ip

e

⌉

−
⌊

ip

e
− p

e

⌋

50

=

⌈

ip

e

⌉

+

⌈

p

e
− ip

e

⌉

.

It is easy to see that this last expression equals either
⌈

p
e

⌉

or
⌈

p
e

⌉

+1.

Proof of (e): By (3.5), |w(T1)| =
⌈

p
e

⌉

. By part (b), |w(Tke+1)| = |w(T1)|. Thus,

the required result follows.

The next property that we prove is used to prove property (P2) below, which is

used several times in our proof. It refers to a “minimal” window of a task. Note that

by part (d) of Lemma 3.1, the windows of any task are of at most two different lengths.

We refer to a window of task T with length
⌈

T.p
T.e

⌉

as a minimal window of T . The

following property follows by part (e) of Lemma 3.1.

(P0) The first window of each job of T is a minimal window of T .

By (B), the b-bit of the last subtask of a job is zero. Therefore, the following

property implies that the last window of each job of T is a minimal window of T .

(P1) If b(Ti) = 0, then |w(Ti)| = |w(Ti+1)|.

Proof. By (2.11), b(Ti) = 0 implies that
ip
e is an integer. Thus, because gcd(e, p) = 1, i

is a multiple of e. In other words, i = (k+1)e for some k ≥ 0, and |w(Ti)| = |w(Tke+e)|.
Therefore, by part (c) of Lemma 3.1, we have |w(Ti)| = |w(Tke+1)|. By part (b) of

Lemma 3.1, |w(Tke+1)| = |w(Tke+e+1)|. Therefore, |w(Ti)| = |w(Ti+1)|, as required.

(P2) If b(Ti) = 0, then w(Ti) is a minimal window of T .

Proof. As in the proof of (P1), we can show that i is a multiple of e. Therefore, by

(P0), w(Ti+1) is a minimal window. The required result then follows from (P1).

(P3) and (P4) below follow directly from part (d) of Lemma 3.1.

(P3) For all i and j, |w(Tj)| ≤ |w(Ti)| + 1.

(P4) For all i and j, |w(Tj)| ≥ |w(Ti)| − 1.

51

(P5) If T is light, then all of its windows are of length at least three.

Proof. If T is light, then e
p < 1

2. Therefore,
p
e > 2, and

⌈

p
e

⌉

≥ 3. The required result

follows because |w(Ti)| ≥
⌈

p
e

⌉

(by part (d) of Lemma 3.1).

(P6) T has a 2-window if and only if it is heavy.

Proof. By part (e) of Lemma 3.1, |w(T1)| =
⌈

p
e

⌉

. Note that
⌈

p
e

⌉

is 2 if and only if

1
2 ≤ e

p < 1, which implies that T is heavy.

(P7) below follows directly from (P6) and part (d) of Lemma 3.1.

(P7) If T is heavy, then all its windows are of length two or three.

The following property shows that the last subtask of each job of a heavy task has

a 2-window.

(P8) If T is heavy and b(Ti) = 0, then |w(Ti)| = 2.

Proof. By (P2), |w(Ti)| =
⌈

p
e

⌉

. Reasoning as in the proof of (P6), it follows that

|w(Ti)| = 2.

(P9) If t and t′ are successive group deadlines of a heavy task T , then t′ − t is either
⌈

1
1 − wt(T)

⌉

or

⌈

1
1 − wt(T)

⌉

− 1.

Proof. By Theorem 3.1, the group deadlines of T correspond to subtask deadlines of a

task U such that wt(U) = 1−wt(T). Therefore, by (3.4), t′− t =

⌈

j + 1
wt(U)

⌉

−
⌈

j
wt(U)

⌉

for some j. Thus, t′ − t =

⌈

j
wt(U)

+ 1
wt(U)

⌉

−
⌈

j
wt(U)

⌉

. From this, the required

result follows.

The following claim is used to property (P10) below. (Refer to Figure 3.9.)

Claim 3.1. Let T be a heavy task with more than one group deadline per job. Let t and

t′ be consecutive group deadlines of T , where t′ is the first group deadline within some

job of T (for the first job of T , take t to be 0). Similarly, let u and u′ be consecutive

group deadlines of T , where u′ is the last group deadline within some job of T . Then,

t′ − t = u′ − u + 1.

52

4 3

9T

10T

11T

T12

13T

1T

7T

5T

T4

3T

2T

6T

16T

15T

14T

8T

0 2 4 6 8 10 12 14 16 18 20 22

Figure 3.9: Windows of a task T of weight 8/11 are shown. Sample values of t′, t, u,
and u′ (from Claim 3.1) are 11, 15, 19, 22.

Proof. By Theorem 3.1, the group deadlines of T correspond to subtask deadlines of

a task U such that U.e = p − e and U.p = p. Note that since t′ is the first group

deadline within some job of T , t is the last group deadline within the previous job,

i.e., t corresponds to the deadline of a subtask Ui such that b(Ui) = 0. By (2.11),

b(Ui) = 0 implies that
ip

p − e is an integer. Note that because gcd(e, p) = 1, we have

gcd(p, p − e) = 1. Therefore, i is a multiple of p − e. In other words, i = j(p − e) for

some j ≥ 0. (This also takes care of the case when t = 0.) Therefore, d(Ui) = jp, i.e.,

t = jp.

Further, because T has more than one group deadline per job, the number of subtask

deadlines in each job of U is at least 2, i.e., U.e ≥ 2. Therefore, i + 1 (= j(p − e) + 1)

is not a multiple of p − e. Hence,

⌈

(j(p − e) + 1)p
p − e

⌉

= 1 +

⌊

(j(p − e) + 1)p
p − e

⌋

, which

implies the following.
⌈

p
p − e

⌉

= 1 +
⌊

p
p − e

⌋

(3.6)

Also, we have t′ − t =

⌈

(j(p − e) + 1)p
p − e

⌉

− jp =
⌈

p
p − e

⌉

.

Similarly, we can show that u′ = kp for some k and u =

⌈

(k(p − e) − 1)p
p − e

⌉

=

kp +
⌈ −p
p − e

⌉

. Therefore, u′ − u = −
⌈ −p
p − e

⌉

=
⌊

p
p − e

⌋

.

Thus, (t′ − t) − (u′ − u) =
⌈

p
p − e

⌉

−
⌊

p
p − e

⌋

, which is 1 (by (3.6)).

(P10) Let T be a heavy task. Let t and t′ be consecutive group deadlines of T , where

t is the last group deadline within some job of T (for the first job of T , take t to be 0).

53

Then t′ − t is at least the difference between any pair of consecutive group deadlines of

T .

Proof. If T has just one group deadline per job, then the difference between any two

consecutive group deadlines exactly equals the period of T . On the other hand, if T

has multiple group deadlines within a job, then by Claim 3.1, t′ − t = u′ − u + 1,

where u′ and u are two consecutive deadlines of T . The required result then follows by

(P9), because the difference between consecutive group deadlines can have at most two

distinct values.

3.4.2 Optimality Proof

We now show that PD2 produces a “valid” schedule for any feasible asynchronous

task system. A schedule is valid at time slot t if (i) for each subtask Ti scheduled in

slot t, t lies within the interval during which Ti is eligible (which implies that Ti meets

its deadline), (ii) no two subtasks of the same task are scheduled at t, and (iii) the

number of tasks scheduled at t is at most the number of processors. A schedule is valid

if it is valid at every time slot. We begin by assuming, to the contrary, that PD2 fails

to correctly schedule some task system. Then, there exists a time td as follows.

Definition 3.1. td is the earliest time at which some feasible asynchronous task system

misses a deadline under PD2.

In other words, PD2 does not miss any deadline before time td for any feasible

asynchronous task system. Let τ be a feasible asynchronous task system with the

following properties.

(T1) τ misses a deadline under PD2 at td.

(T2) Among all feasible task systems that miss a deadline under PD2 at td, no task

system releases a larger number of subtasks in [0, td) than τ .

In the remainder of this section, we assume that τ is as defined here. The existence

of such a τ follows from our assumption that PD2 is not optimal. We now show that PD2

produces a valid schedule for τ over [0, td], thus contradicting our starting assumption.

In the proofs that follow, we consider slots in which one or more processors are idle.

In a schedule S, if k processors are idle at time slot t, then we say that there are k

holes in slot t in S.

54

The following lemma gives an important property of the task set τ . (Note that the

proof of this lemma relies on (T2) and the fact that we have generalized the notion of

an asynchronous system to allow a task to begin execution with any of its subtasks.)

Lemma 3.2. If task T ∈ τ releases its first subtask at time t > 0, and if this first

subtask is Ti, i > 1, then either b(Ti−1) = 0 and |w(Ti−1)| > t or b(Ti−1) = 1 and

|w(Ti−1)| > t + 1.

Proof. We only consider the case when b(Ti−1) = 0 holds; in this case, we show that

|w(Ti−1)| > t holds. (The proof for the case when b(Ti−1) = 1 holds is similar.) Suppose,

to the contrary, that |w(Ti−1)| ≤ t. Consider the task system τ ′ obtained by adding

the subtask Ti−1 with a release at time t− |w(Ti−1)| ≥ 0. (We assume that the relative

priorities of two subtasks in τ do not change in τ ′.) Then, τ ′ satisfies the following

properties.

• It has one more subtask than τ .

• It misses a deadline at td.

To see the latter, note that upon adding Ti−1 to τ , if Ti−1 does not miss its deadline, then

it will either be scheduled in a slot where there is a hole, or it will cause a lower-priority

subtask to be scheduled at a later slot. Inductively, this lower-priority subtask either

misses a deadline or is scheduled correctly, in which case it may cause other subtasks

to get scheduled later. Thus, no subtask will “shift” to an earlier slot. Repeating this

argument, it is easy to see that adding Ti−1 cannot cause the missed deadline at td to

be met. Thus, τ ′ misses a deadline at td or earlier. This contradicts either (T2) or the

minimality of td (refer to Definition 3.1). Therefore, |w(Ti−1)| > t.

To avoid distracting boundary cases, we henceforth assume that the first subtask

for each task T is some Ti, where i > 1. This can be assumed without loss of generality,

because if T starts with T1, then we can instead require it to start with Tx+1, where

x = T.e; by part (b) of Lemma 3.1, the resulting release times and deadlines of the

subtasks of T will be identical, implying that the schedule produced by PD2 is identical

as well.

Our proof proceeds by showing the existence of certain schedules for task set τ . To

facilitate our description of these schedules, we find it convenient to totally order all

subtasks in τ . Let ≺ be an irreflexive total order that is consistent with the ¹ relation

in the PD2 priority definition, i.e., ≺ is obtained by arbitrarily breaking any ties left

by ¹.

55

Definition 3.2. A schedule S is defined to be k-compliant if and only if

(i) S is valid,

(ii) the first k subtasks according to ≺ are scheduled in accordance with

PD2, and

(iii) the remaining subtasks are scheduled within their Pfair windows (i.e.,

they are not early-released).

We now present two lemmas. The second of these, Lemma 3.4, allows us to induc-

tively prove that τ does not miss a deadline at td as originally assumed. Lemma 3.3

deals with a situation arising in one of the cases in Lemma 3.4. According to Lemma 3.3,

if subtasks Ti, Uj, and Uj+1 are scheduled as shown in Figure 3.10(a), then by swapping

some subtasks, it is possible to obtain a schedule in which Uj is not scheduled in slot t.

Lemma 3.3. Let S be a valid schedule for τ such that for light tasks T and U and

t < t′, Uj is scheduled in slot t, Ti is eligible at t, and Uj+1 and Ti are both scheduled in

slot t′. Further, r(Uj) = t, d(Uj) = t′ + 1, r(Uj+1) = t′, d(Ti) = t′ + 1, and w(Uj) is a

minimal window of U . If all subtasks scheduled at or after t in S are scheduled within

their Pfair windows, then there exists a valid schedule S ′ also satisfying this property

such that U /∈ S ′
t, Su = S ′

u for 0 ≤ u < t, and St − {U} ⊂ S ′
t.

Proof. Our goal is to construct S ′ by swapping Uj with a later subtask. Unfortunately,

Ti and Uj cannot be swapped directly because this would result in a schedule in which

two subtasks of U are scheduled in the same slot. Instead, we identify another subtask

Vk that can be used as an intermediate between Uj and Ti for swapping. Because T

and U are both light, by (P5), all windows of each span at least three slots. Because

r(Uj) = t and d(Uj) = t′ +1, this implies that t′ ≥ t+2 and T and U are not scheduled

in slot t′ − 1.

If there is a hole in slot t′ − 1, then the swapping shown in Figure 3.10(b) gives the

required schedule.

We henceforth assume that there is no hole in slot t′ − 1. In this case, because U is

scheduled at t′ but not at t′−1, there exists a task V that is scheduled at t′−1 but not

at t′. Let Vk be the subtask of V scheduled at t′ − 1. If d(Vk) > t′, then the swapping

shown in Figure 3.10(c) gives the desired schedule. In the rest of this proof, we assume

the following.

d(Vk) = t′ (3.7)

56

Uj Uj+1

T i

Uj Uj+1

T i

kV

Uj Uj+1

T i

no
V

kV

Uj Uj+1

T i

no
V k+1Vk−1VkV

Uj Uj+1

T i

no
V

no
V

t ...

window
minimal

t’t+1 t’+1 t ...

window
minimal

t+1 t’ t’+1t’−1

hole

(a) (b)

t ...t+1 t’ t’+1t’−1

window
minimal

(c)

t ...t+1 t’ t’+1t’−1 ...

minimal
window

(e)

t ...t+1 t’ t’+1t’−1

window
minimal

(d)

]i

]

]j

]k

]i

]j

]i

[j[j

[j

[k [k

[j

]k]k+1

]j+1]j

]i

]k

]
j

]i

[jj

Figure 3.10: We use the following notation in this and the subsequent figures in this
section. “[” and “]” indicate the release and deadline of a subtask; subscripts indicate
which subtask. Each task is shown on a separate line. An arrow from subtask Ti to
subtask Uj indicates that Ti is now scheduled in place of Uj. An arrow over “[” (or “]”)
indicates that the actual position of “[” (or “]”) can be anywhere in the direction of
the arrow. Time is divided into unit-time slots that are numbered. (Although all slots
are actually of the same length, due to formatting concerns, they do not necessarily
appear as such in our figures.) If Ti is released at slot t, then “[” is aligned with the
left side of slot t. If Ti has a deadline at time t + 1, then “]” is aligned with the right
side of slot t. In insets (c)–(e), no subtask of V is scheduled in slot t′. (a) Conditions
of Lemma 3.3. (b) There is a hole in slot t′ − 1. (c) d(Vk) > t′. (d) d(Vk) = t′ and
r(Vk) ≤ t. (e) d(Vk) = t′ and r(Vk) ≥ t.

If r(Vk) < t or if r(Vk) = t ∧ V /∈ St, then the swapping shown in Figure 3.10(d)

produces the desired schedule. The remaining possibility to consider is

(r(Vk) > t) ∨ (r(Vk) = t ∧ V ∈ St). (3.8)

In this case, we show that the swapping in Figure 3.10(e) is valid. (This inset actually

depicts the case r(Vk) = t ∧ V ∈ St.) From (3.7) and the statement of the lemma, we

have d(Vk) = d(Uj) − 1. Also, from (3.8), and the statement of the lemma, we have

r(Vk) ≥ r(Uj). Therefore,

|w(Vk)| < |w(Uj)|. (3.9)

Because w(Uj) is a minimal window of U , |w(Uj+1)| ≥ |w(Uj)|. By definition, |w(Uj+1)| =

57

d(Uj+1) − r(Uj+1), which implies that d(Uj+1) = |w(Uj+1)| + t′. Therefore,

d(Uj+1) ≥ t′ + |w(Uj)|. (3.10)

Now, by (3.7) and by part (a) of Lemma 3.1, r(Vk+1) is either t′−1 or t′. We now show

that in either case, d(Vk+1) ≤ t′+|w(Vk)|. If r(Vk+1) = t′ (in which case b(Vk) = 0), then

by (P1), |w(Vk+1)| = |w(Vk)|. By definition, |w(Vk+1)| = d(Vk+1) − r(Vk+1). Therefore,

d(Vk+1) = t′ + |w(Vk)|.
On the other hand, if r(Vk+1) = t′ − 1, then |w(Vk+1)| ≤ |w(Vk)| + 1 (by (P3)).

Because |w(Vk+1)| = d(Vk+1) − r(Vk+1), it follows that d(Vk+1) ≤ t′ + |w(Vk)|.
Thus, in both cases, we have d(Vk+1) ≤ t′+|w(Vk)|. By (3.9) and (3.10), this implies

that d(Uj+1) > d(Vk+1). Therefore, by part (a) of Lemma 3.1, r(Uj+2) ≥ d(Vk+1). This

implies that no subtask of U is scheduled in the interval [t′ + 1, d(Vk+1)). Thus, the

swapping shown in Figure 3.10(e) is valid, and produces the required schedule.

We now prove that a k-compliant schedule exists by induction on k. Note that a

0-compliant schedule is just a Pfair schedule (with no early releases), and the existence

of such a schedule is guaranteed for any feasible task system. Also, if n subtasks are

released in [0, td), then an n-compliant schedule is a valid schedule that is fully in

accordance with PD2 over [0, td]. The following lemma gives the inductive step of the

proof.

Lemma 3.4. If S is a valid k-compliant schedule for τ , then there exists a valid schedule

S ′ for τ that is (k + 1)-compliant.

Proof. Let Ti be the (k + 1)st subtask according to ≺. If Ti is scheduled in S in

accordance with PD2, then take S ′ to be S. Otherwise, there exists a time slot t such

that Ti is eligible at t but scheduled later, and either (i) there is a hole in t, or (ii)

some subtask ordered after Ti by ≺ is scheduled at t. In the former case, we can easily

rectify the situation by scheduling Ti at t. Hence, in the rest of the proof, we assume

that (ii) holds.

Let t be the earliest such time slot, and let Uj be the lowest-priority subtask sched-

uled at t. Thus, Ti ≺ Uj. Let t′ be the slot where Ti is scheduled, as depicted in

Figure 3.11(a). Note that t may or may not lie within Ti’s Pfair window; this depends

on whether Ti is an early-release subtask. However, because S is k-compliant, t lies

within Uj’s Pfair window and t′ lies within Ti’s Pfair window. In the rest of the proof,

we show that S ′ can be obtained from S by swapping Ti and Uj and perhaps some

58

(a) (b)

2]
j

i
]

Uj

T i

t t+1 ... t’ t’+1

Uj

T i i
]

]
j

Uj+1

same

t t+1 ... t’ t’+1

as PD
decisions

Figure 3.11: (a) Conditions of Lemma 3.4. (b) The “difficult” case to consider.

other subtasks. In all cases, the subtasks that are swapped include Ti and subtasks

ranked after Ti by ≺. Since S is k-compliant, all such subtasks are scheduled within

their Pfair windows.

Because S is a valid schedule and Ti ≺ Uj, by the PD2 priority definition, we have

t < t′ < d(Ti) ≤ d(Uj). (3.11)

We first show that Uj+1 cannot be scheduled before slot t′. Because Ti ≺ Uj, we have

Ti ≺ Uj+1, and hence Uj+1 is not early-released. Now, because d(Uj) > t′ (by (3.11)),

by part (a) of Lemma 3.1, r(Uj+1) ≥ t′. Thus, Uj+1 cannot be scheduled before t′.

Further, it can be scheduled at t′ if and only if r(Uj+1) = t′.

If no subtask of U is scheduled in the interval [t + 1, t′ + 1), then Ti and Uj can be

directly swapped to get the required schedule. (Refer to Figure 2.7(a) in Section 2.2.2.)

In the rest of the proof, we assume that Uj+1 is scheduled in slot t′ (i.e., in the interval

[t′, t′ + 1)). As shown above, in this case r(Uj+1) = t′. Therefore, by part (a) of

Lemma 3.1, d(Uj) is either t′ or t′ + 1. By (3.11), it follows that d(Uj) = t′ + 1 and

hence, d(Ti) = t′ + 1. Because d(Uj) = r(Uj+1) + 1, we have b(Uj) = 1. This implies

that b(Ti) = 1, since Ti ≺ Uj. Thus, we have the following.

Uj+1 ∈ St′ ∧ d(Ti) = d(Uj) = t′ + 1 ∧ r(Ti+1) = r(Uj+1) = t′ (3.12)

These conditions are depicted in Figure 3.11(b). We now consider four cases depending

on the weights of T and U .

Case 1: T is light and U is heavy. By the PD2 priority definition and the definition

of a group deadline, T cannot have higher priority than U at time t.

Case 2: T is heavy and U is light. In this case, we show that the swapping in

Figure 3.12 is valid. (The argument hinges on the fact that U ’s windows are at least as

59

no
T

no
T

no
U

no
U U

no

or or

]iiT

]
j

Uj+1jU j+2U

T i+1

j+1]

i+1] T i+2

Uj+3

]
i+2

]
j+2

i+p
]i+pT

j+p
]Uj+p]j+p−1

i+p−1]i+p−1T

u+1
u

t t’+4t’... t’+1 t’+2 t’+3 u+2

u+1

...u−1...

...

...

Figure 3.12: Case 2. T is heavy, U is light, and d(Ti) = d(Uj).

long as T ’s — see Figure 3.12.) By (P7), all windows of T are of length either two or

three. Further, by (P8), |w(Tk)| = 2 if b(Tk) = 0, and by (B) (refer to Section 2.2.2),

b(Tk) = 0 if Tk is the last subtask of a job. Because b(Ti) = 1, it follows that there

exists an r ≥ 1 such that

|w(Ti+r)| = 2 ∧ (∀k : 0 < k < r :: |w(Ti+k)| = 3 ∧ b(Ti+k) = 1).

(Note that r could be one, i.e., w(Ti+1) could be a 2-window.) Because U is light,

by (P5), |w(Uk)| ≥ 3 for all k. This implies that d(Ti+r) < d(Uj+r). Let q denote

the smallest value of k that satisfies d(Ti+k) < d(Uj+k). (Note that q ≤ r.) Then,

d(Ti+q) < d(Uj+q), and for all k ∈ [1, q − 1],

d(Ti+k) = d(Uj+k) ∧ |w(Ti+k)| = |w(Uj+k)| = 3 ∧ b(Ti+k) = 1.

Because d(Ti+q) < d(Uj+q), by part (a) of Lemma 3.1, we have d(Ti+q) ≤ r(Uj+q+1).

Thus, Ti+q is scheduled before Uj+q+1. Let p be the smallest value for k such that Ti+k

is scheduled prior to Uj+k+1. (Again, note that p ≤ q). To summarize:

• (∀k : 0 < k < p :: d(Ti+k) = d(Uj+k) ∧ |w(Ti+k)| = 3 ∧ |w(Uj+k)| = 3 ∧ b(Ti+k) =

1) ∧ d(Ti+p) ≤ d(Uj+p),

• Ti+p is scheduled before Uj+p+1, and

• for each k in the range 0 < k < p, Ti+k is not scheduled before Uj+k+1.

It is straightforward to see that the relevant subtasks are scheduled as shown in Fig-

ure 3.12 and the depicted swapping is valid.

Case 3: Both T and U are light. (This case and Case 4 are somewhat lengthy.)

Again, the situation under consideration is as depicted in Figure 3.11(b). Because U

60

hole

jU
U
no

j]

iT

j+1U

i+1T

jU
U
no

j]

iT

j+1U

(b)

t’...t’+1t t’+2t’+1

j+2[

i]

(a)

t’...t’+1t t’+2t’+1

j+2[

i]

Figure 3.13: Case 3. (a) Some processor is idle in slot t′ + 1. (b) Ti+1 is scheduled in
slot t′ + 1.

is light, by (P5), |w(Uj+1)| ≥ 3. Because r(Uj+1) = t′ (by (3.12)), this implies that

d(Uj+1) > t′ +2. Therefore, by part (a) of Lemma 3.1, r(Uj+2) ≥ t′ +2 and hence, U is

not scheduled in slot t′ + 1. If there is a hole in slot t′ + 1, then the swapping shown in

Figure 3.13(a) gives the required schedule. Otherwise, if Ti+1 is scheduled in slot t′ +1,

then the swapping shown in Figure 3.13(b) gives the required schedule. In the rest of

Case 3, we assume that there is no hole in slot t′ + 1 and Ti+1 is not scheduled there.

We now show that one of the swappings shown in Figures 3.14 and 3.15 is valid.

Because U is scheduled in slot t′ but not in slot t′ + 1, and because there are no

holes in slot t′ + 1, there exists a task V that is scheduled in slot t′ + 1 but not in slot

t′. Let Vk be the subtask of V scheduled in slot t′ + 1. Because S is a valid schedule,

d(Vk) ≥ t′ + 2. Therefore, by (3.12), d(Vk) > d(Ti), which implies that Ti ≺ Vk. It

follows that Vk is not early-released and hence, r(Vk) ≤ t′ + 1. If r(Vk) < t′ + 1, then

the swapping shown in Figure 3.14(a) produces the desired schedule. In the rest of the

proof for Case 3, we assume

r(Vk) = t′ + 1, (3.13)

in which case this swapping is not valid. By (3.12) and (3.13) we have the following.

r(Vk) = r(Ti+1) + 1 (3.14)

We first dispense with the case Vk−1 /∈ τ . In this case, by Lemma 3.2, either

(b(Vk−1) = 0 ∧ |w(Vk−1)| > t′ + 1) or (b(Vk−1) = 1 ∧ |w(Vk−1)| > t′ + 2). In

the former case, by (P1), |w(Vk)| = |w(Vk−1)|; in the latter case, by (P4), |w(Vk)| ≥
|w(Vk−1)| − 1. Thus, in either case, |w(Vk)| > t′ + 1. Further, since Ti ∈ τ and

d(Ti) = t′ + 1 (by 3.12), |w(Ti)| ≤ t′ + 1 (recall that slots are numbered from 0).

Therefore, |w(Vk)| > |w(Ti)|, i.e., |w(Vk)| ≥ |w(Ti)|+1. By (P4), |w(Ti)|+1 ≥ |w(Ti+1)|.
Thus, |w(Vk)| ≥ |w(Ti+1)|. Because r(Vk) = r(Ti+1) + 1 (by (3.14)), this implies that

r(Vk) + |w(Vk)| ≥ r(Ti+1) + |w(Ti+1)| + 1. Therefore, d(Vk) > d(Ti+1), and hence no

61

[k kV Vkk[

i
]iT

Vk−1

j
]j+1UjU Uj j+1U

j
]

iT
i

]

[
k

Uj

]
i+1

T i+1

k
]

i
[

k−1V[
k−1

Uj+1]
j

iT]
i

t t+1 t’+2t’+1t’...

(a)

...... t’(>t+1)t v+1vt+1 t’+1 t’+2

(b)

...v t ...v+1 t+1 t’+1t’ ...t’+2

 equal
not

(c)

Vk

V V

VV
nono

no no

Figure 3.14: Case 3 (continued). (a) r(Vk) ≤ t′. (b) r(Vk) = t′+1 and Vk−1 is scheduled
at v, t < v < t′. (c) r(Vk) = t′ + 1 and d(Vk) > d(Ti+1).

subtask of V is scheduled in [t′ + 2, d(Ti+1)). Thus, the swapping in Figure 3.14(c) is

valid. (This figure actually depicts Vk−1 ∈ τ , but the swapping depicted is applicable

nonetheless.) In the rest of the proof for Case 3, we assume that Vk−1 ∈ τ .

Note that because r(Vk) = t′ + 1 (by (3.13)), either d(Vk−1) = t′ + 2 or d(Vk−1) =

t′ + 1 ∧ b(Vk−1) = 0. By (3.12), d(Ti) = d(Uj) = t′ + 1 and b(Ti) = b(Uj) = 1.

Therefore, by the PD2 priority definition, we have the following.

Ti ≺ Vk−1 and Uj ≺ Vk−1 (3.15)

If Vk−1 is scheduled in the interval [t + 1, t′), then the swapping shown in Fig-

ure 3.14(b) is valid. If Vk−1 is not scheduled in [t + 1, t′), then it is scheduled at or

before t. Because Uj ≺ Vk−1 (by (3.15)), Vk−1 is not scheduled in slot t, as this would

contradict our choice of Uj as the lowest-priority subtask scheduled at t.

In the rest of Case 3, we assume that Vk−1 is scheduled at a time v < t. Now, it must

be the case that Ti was not eligible to be scheduled at time v. To see this, note that if

Ti were eligible at time v, then it should have been scheduled there because Ti ≺ Vk−1

(by (3.15)). This contradicts our starting assumption that Ti should be scheduled at

t. Thus, either r(Ti) > v or r(Ti) = v ∧ Ti−1 ∈ Sv. (Note that one of these assertions

62

holds even if Ti is an early-release subtask.) Because Ti ≺ Vk−1 (by (3.15)), Vk−1 is not

early-released. Therefore, r(Vk−1) ≤ v, which implies that either (r(Ti) > r(Vk−1)) or

(r(Ti) = v ∧ r(Vk−1) = v ∧ Ti−1 ∈ Sv). We consider these two subcases next.

Subcase 3.A: r(Ti) > r(Vk−1). We show that d(Vk) > d(Ti+1), which implies that

the swapping shown in Figure 3.14(c) is valid. There are two possibilities to consider,

depending on the value of b(Vk−1).

1. b(Vk−1) = 0. By (2.11), we have d(Vk−1) = r(Vk) = t′ + 1 (by (3.13)). By (3.12),

this implies that d(Vk−1) = d(Ti). Since b(Vk−1) = 0, by (P1), |w(Vk)| = |w(Vk−1)|.
Because r(Vk−1) < r(Ti) (our assumption for Subcase 3.A) and d(Vk−1) = d(Ti),

we have |w(Vk−1)| ≥ |w(Ti)| + 1. Therefore, |w(Vk)| ≥ |w(Ti)| + 1. By (P4),

|w(Ti)| + 1 ≥ |w(Ti+1)|, which implies that |w(Vk)| ≥ |w(Ti+1)|. Because r(Vk) =

r(Ti+1)+1 (by (3.14)), this implies that r(Vk)+ |w(Vk)| ≥ r(Ti+1)+1+ |w(Ti+1)|.
Therefore, d(Vk) > d(Ti+1).

2. b(Vk−1) = 1. By the definition of b(Vk−1), we have d(Vk−1) = r(Vk) + 1. Hence,

by (3.13), d(Vk) = t′ + 2. By (3.12), this implies that d(Vk−1) = d(Ti) + 1. Along

with r(Vk−1) < r(Ti) (our assumption for Subcase 3.A), this implies that

|w(Vk−1)| ≥ |w(Ti)| + 2. (3.16)

By (P4), we have |w(Vk)| ≥ |w(Vk−1)| − 1 and |w(Ti)| ≥ |w(Ti+1)| − 1. Hence,

by (3.16), |w(Vk)| + 1 ≥ |w(Ti+1)| − 1 + 2, i.e., |w(Vk)| ≥ |w(Ti+1)|. Because

r(Vk) = r(Ti+1) + 1 (by (3.14)), this implies that d(Vk) > d(Ti+1).

Subcase 3.B: r(Ti) = v ∧ r(Vk−1) = v ∧ Ti−1 ∈ Sv. Reasoning as in Subcase 3.A,

it follows that d(Vk) ≥ d(Ti+1). By part (a) of Lemma 3.1, we have the following.

r(Vk+1) + 1 ≥ d(Vk) ≥ d(Ti+1) (3.17)

We now show that a valid swapping exists in all cases. First, note that if Ti+1 is

scheduled before Vk+1, then the swapping shown in Figure 3.14(c) is still valid. This

will be the case if r(Vk+1) ≥ d(Ti+1). In the rest of the proof for Subcase 3.B, we assume

that Ti+1 is not scheduled before Vk+1. By (3.17), this can happen only if there exists

63

a v′ that satisfies the following (see Figure 3.15).

r(Vk+1) = v′ ∧ d(Vk) = v′ + 1 ∧ d(Ti+1) = v′ + 1 ∧ Vk+1 ∈ Sv′ ∧ Ti+1 ∈ Sv′ (3.18)

The following property is used several times in the reasoning that follows.

Claim 3.2. w(Vk) is a minimal window of V .

Proof. By part (a) of Lemma 3.1, (3.13) implies that d(Vk−1) is either t′ +1

or t′ + 2. If d(Vk−1) = t′ + 1, then b(Vk−1) = 0 and by (P2), w(Vk) is a

minimal window. On the other hand, if d(Vk−1) = t′ + 2, then we have the

following:

• Ti and Vk−1 are both released at slot v (our assumption for Subcase

3.B),

• d(Ti) = t′ + 1 (by (3.12)) and d(Vk−1) = t′ + 2,

• r(Ti+1) = t′ (by 3.12) and r(Vk) = t′ + 1 (by (3.13)), and

• Ti+1 and Vk have equal deadlines (by (3.18)).

Therefore, |w(Ti)| = |w(Vk−1)| − 1 and |w(Ti+1)| = |w(Vk)| + 1. By (P3),

|w(Ti+1)| ≤ |w(Ti)| + 1. Therefore, |w(Vk)| + 1 ≤ |w(Vk−1)|, i.e., |w(Vk)| ≤
|w(Vk−1)| − 1. By (P4), this implies that |w(Vk)| = |w(Vk−1)| − 1. By part

(d) of Lemma 3.1, this implies that w(Vk) is a minimal window of V .

To continue, if there is a hole in slot v′ − 1, then we can left-shift Ti+1 from v′ to v′ − 1

and apply the swapping shown in Figure 3.14(c). In the rest of Subcase 3.B, we assume

that there is no hole in slot v′ − 1.

We now prove that V must be a light task. Because r(Vk) = t′ + 1 (by (3.13)),

d(Vk−1) is either t′ + 1 or t′ + 2, and if d(Vk−1) = t′ + 1, then b(Vk−1) = 0. Thus,

because r(Ti) = r(Vk−1) = v (our assumption for Subcase 3.B) and d(Ti) = t′ + 1 (by

(3.12)), either d(Vk−1) = d(Ti) + 1 or d(Vk−1) = d(Ti) ∧ b(Vk−1) = 0. Therefore, either

|w(Vk−1)| = |w(Ti)| + 1 or |w(Vk−1)| = |w(Ti)| ∧ b(Vk−1) = 0. Because T is light, by

(P5), |w(Ti)| ≥ 3. Therefore, either |w(Vk−1)| ≥ 4 or |w(Vk−1)| ≥ 3 ∧ b(Vk−1) = 0.

In either case, V cannot be a heavy task: if it were heavy, then by (P7), all windows

64

Wh]h

i+1]i+1TiT i]

Uj+1 j]

[k Vk]k

Uj

k+1V

t ... t’t+1 t’+1 t’+2 ... v’−1 v’ v’+1

(a)

no

no
V

W

iT

Uj Uj+1

[k kV

[h

]j

]i

]h

i+1T]i+1

]k

]h+1h+1WhW

Vk+1

]h+1

k+2V k+1]]k

hW h]

i+1T i+1]

Vk[k

[h Wh−1

Uj Uj+1]j

]iiT

Vk+1

h+1W

t t’+1t’... w...v’+1v’v’−1...t’+2 w+1t+1

window
minimal

Lemma 3 applies

no

no
V

W

(d)

Wh]h

...t ... t’+1t’ v’v’−1t’+2 v’+1

iT i] i+1]i+1T

Uj j]Uj+1

[k Vk]kk+1V

[h

t ... t’ t’+1 t’+2 ... v’−1 v’ v’+1 ...t+1

]k+1
no

no

no
V

W

V

(c)

(b)

W

no
V

no
W
no

Figure 3.15: Subcase 3.B of Case 3. (a) r(Vk) = t′ + 1, d(Vk) = d(Ti+1) = v′ + 1, and
d(Wh) ≥ v′ + 1. (b) r(Vk) = t′ + 1, d(Vk) = d(Ti+1) = v′ + 1, d(Wh) = v′, r(Wh) ≤ t′,
and W is not scheduled at t′. (c) r(Vk) = t′ + 1, d(Vk) = d(Ti+1) = v′ + 1, d(Wh) = v′,
and r(Wh) > t′ (d) r(Vk) = t′ + 1, d(Vk) = d(Ti+1) = v′ + 1, d(Wh) = v′, r(Wh) = t′,
and W is scheduled at t′.

of V would be of length two or three, and by (P8), b(Vk−1) = 0 would imply that

|w(Vk−1)| = 2. Thus, V is a light task.

By (P5), |w(Vk)| ≥ 3. By (3.13) and (3.18), w(Vk) = [t′+1, v′+1); hence, v′ ≥ t′+3.

Because Vk ∈ St′+1 and Vk+1 ∈ Sv′ , this implies that V /∈ Sv′−1. Thus, because there

are no holes in slot v′ − 1, there exists a task W that is scheduled in slot v′ − 1 but not

in slot v′. Let Wh be the subtask of W scheduled in slot v′ − 1. We now show that at

least one of the swappings in Figure 3.15 is valid.

If d(Wh) ≥ v′+1, then the swapping in Figure 3.15(a) is clearly valid. We henceforth

assume

d(Wh) = v′. (3.19)

65

If (r(Wh) < t′) ∨ (r(Wh) = t′ ∧ W /∈ St′), then the swapping shown in Figure 3.15(b)

is valid. This leaves the following two possibilities.

1. r(Wh) > t′. In this case, we show that d(Wh+1) < d(Vk+1), which implies that

the swapping in Figure 3.15(c) is valid. Because r(Wh) > t′, by (3.13), r(Wh) ≥
r(Vk). By (3.18) and (3.19), d(Wh) < d(Vk). Therefore, |w(Wh)| < |w(Vk)|
(see Figure 3.15(c)). Because w(Vk) is a minimal window of V (by Claim 3.2),

|w(Vk)| ≤ |w(Vk+1)|. Thus,

|w(Wh)| < |w(Vk+1)|. (3.20)

Now, consider b(Wh).

If b(Wh) = 0, then by (3.19), r(Wh+1) = v′. Thus, by (3.18), r(Wh+1) =

r(Vk+1). In addition, by (P1), |w(Wh+1)| = |w(Wh)|. Hence, by (3.20), we have

|w(Wh+1)| < |w(Vk+1)|. Therefore, d(Wh+1) < d(Vk+1).

If b(Wh) = 1, then by (3.19), r(Wh+1) = v′ − 1, which by (3.18) implies that

r(Wh+1) < r(Vk+1). In addition, by (P3), |w(Wh+1)| ≤ |w(Wh)| + 1. Hence, by

(3.20), we have |w(Wh+1)| ≤ |w(Vk+1)|. Therefore, d(Wh+1) < d(Vk+1).

2. r(Wh) = t′ ∧ W ∈ St′ . In this case, analysis similar to that above shows

that d(Wh+1) ≤ d(Vk+1). Let d(Wh+1) = w + 1. If d(Wh+1) < d(Vk+1) or if

d(Wh+1) = d(Vk+1) ∧ Vk+2 /∈ Sw, then the swapping shown in Figure 3.15(c)

is valid. (The figure actually shows Wh being released after time t′, but the

swapping is still valid.) On the other hand, if d(Wh+1) = d(Vk+1) and Vk+2 ∈ Sw,

then we have the following (see Figure 3.15(d)).

(a) r(Wh) = t′ and r(Vk) = t′ + 1 (by (3.13)),

(b) d(Wh) = v′ (by (3.19)) and d(Vk) = v′ + 1 (by (3.18)),

(c) r(Vk+1) = v′ (by (3.18)) and r(Wh+1) is either v′ or v′ − 1 (by part (a) of

Lemma 3.1 because d(Wh) = v′), and

(d) d(Vk+1) = d(Wh+1) = w + 1.

By (a) and (b) above, we have

|w(Wh)| = |w(Vk)|. (3.21)

66

We now show that |w(Vk+1)| ≤ |w(Vk)|. If r(Wh+1) = v′ − 1, then |w(Vk+1)| =

|w(Wh+1)| − 1. By (P3), |w(Wh+1)| − 1 ≤ |w(Wh)|. Therefore, by (3.21),

|w(Vk+1)| ≤ |w(Vk)|. On the other hand, if r(Wh+1) = v′, then |w(Vk+1)| =

|w(Wh+1)| and b(Wh) = 0 (because d(Wh) = v′, by (3.19)). Therefore, by (P1),

|w(Wh+1)| = |w(Wh)|. Thus, |w(Vk+1)| = |w(Wh)|, and by (3.21), |w(Vk+1)| =

|w(Vk)|.
Because w(Vk) is a minimal window of V (by Claim 3.2), this implies that w(Vk+1)

is a minimal window as well. Thus, by Lemma 3.3, there exists a schedule in

which Vk+1 is not scheduled at time v′. The swapping shown in Figure 3.15(d) is

therefore valid.

This completes Case 3.

Case 4: Both T and U are heavy. In the proof for this case, we refer to successive

group deadlines of a task. The following notation will be used. If g is a group deadline

of task X, then pred(X, g) (respectively, succ(X, g)) denotes the group deadline of task

X that occurs immediately before (respectively, after) g. For example, in Figure 2.6,

pred(T, 8) = 4 and succ(T, 8) = 11.

As before, we are dealing with the situation depicted in Figure 3.11(b). Because Ti

has higher priority than Uj at time t according to PD2, D(Uj) ≤ D(Ti). Recall that

Ti ∈ St′ and d(Ti) = t′+1 (refer to (3.12) and Figure 3.11(b)), i.e., Ti is scheduled in the

last slot of its window. By the definition of a group deadline, all subsequent subtasks

with deadlines at or before D(Ti) have windows of length two that overlap with the

window of their predecessor subtask. Therefore, each such subtask is scheduled in the

last slot of its window.

Let u be the earliest time after t′ such that U /∈ Su. Because Uj+1 is scheduled in

the first slot of its window, there exists a time before the group deadline of Uj such

that U is not scheduled at that time. Thus, u < D(Uj). Because D(Uj) ≤ D(Ti), this

implies that u < D(Ti). If u < D(Ti) − 1 or u + 1 = D(Ti) ∧ T ∈ Su holds then we

have the following (refer to Figure 3.16).

• No subtask of U is scheduled in slot u (i.e., in [u, u + 1)).

• In all slots in [t′, u + 1), a subtask of T is scheduled in the last slot of its window.

• In all slots in [t′, u), a subtask of U is scheduled in the first slot of its window.

67

= t+1
or t+2()

T i T i+1 i+j’Ti+j’−1T

Uj Uj+1 Uj+2
no
Uj+j’U

]
i+j’

j+j’
]

t t’ t’+1

]
i

]
i+1

... t’+2 t’+j’+2t’+j’+1t’+j’
(= u)

t’+j’−1...

i+j’−1
]...

]
j

]
j+1

]
j+j’−1

...

Figure 3.16: Case 4. We use the following notation in this figure and Figures 3.17–3.22.
A group deadline at time t is denoted by an up-arrow that is aligned with time t. A
left- or right-pointing arrow over an up-arrow indicates a group deadline that may be
anywhere in the direction of the arrow. D(Ti) > D(Uj) or u + 1 = D(Ti) ∧ T ∈ Su.

This implies that the swapping in Figure 3.16 is valid.

The remaining possibility is u + 1 = D(Ti) ∧ T /∈ Su. In this case, because

u + 1 ≤ D(Uj) ≤ D(Ti), we have

D(Ti) = D(Uj) ∧ D(Uj) = u + 1 ∧ T /∈ Su. (3.22)

Let Uj+j′ be the subtask of U scheduled at u − 1. Then, u = t′ + j′, as shown in Fig-

ure 3.17(a). By the definition of a group deadline, each of the subtasks Ti+1, . . . , Ti+j′−1

and Uj+1, . . . , Uj+j′−1 has a window of length two. (If not, Ti’s and Uj’s group dead-

lines will be earlier.) Therefore, d(Ti+j′−1) = u. By part (a) of Lemma 3.1, this implies

that r(Ti+j′) is either u or u − 1. If r(Ti+j′) = u, then b(Ti+j′−1) = 0, which implies

that D(Ti) = u. This contradicts (3.22). Therefore, r(Ti+j′) = u − 1. Since Ti+j′−1 is

scheduled in slot u − 1 and T /∈ Su (by (3.22)), it follows that d(Ti+j′) must be u + 2.

(By (P7), it cannot be later.) Thus, as shown in Figure 3.17(a), w(Ti+j′) is a 3-window

starting at slot u − 1, and Ti+j′ is scheduled in slot u + 1, i.e., slot t′ + j′ + 1.

If there is a hole in slot u, then shifting subtask Uj+j′ to slot u produces a situation

in which a swapping similar to that in Figure 3.16 can be applied. We henceforth

assume there is no hole in slot u.

Our strategy now is to identify another task to use as an intermediate for swapping.

Because T and U are scheduled at u−1 but not at u, and because there are no holes in

u, there exists a task V that is scheduled at u but not at u− 1. Let Vk be the subtask

of V scheduled at u. If r(Vk) < u, then the swapping in Figure 3.17(a) is valid, and if

r(Vk) = u ∧ V /∈ Su+1, then the swapping in Figure 3.17(b) is valid. In the rest of the

68

jU

T i

Uj+1 Uj+2

T i+1 T i+j’no
T

no
UUj+j’

i+j’−1T

VkV
no

jU

T i

Uj+1 Uj+2

T i+1 T i+j’

no
UUj+j’

i+j’−1T

V
no Vk

no
T

or t+2
= t+1)(

or t+2
= t+1)(

t ... t’ t’+1 t’+2 t’+j’+2t’+j’+1t’+j’
(= u)

t’+j’−1...

]
i

]
j

]
i+1

]
j+1

i+j’
]

j+j’−1
]

]
i+j’−1

[
k

...

...

(a)

t ... t’ t’+1 t’+2 t’+j’+2t’+j’+1t’+j’
(= u)

t’+j’−1...

]
i

]
j

]
i+1

]
j+1

]

j+j’−1
]

]
i+j’−1

...

...

[
k

i+j’

k
]

(b)

Figure 3.17: Case 4 (continued). (a) D(Ti) = D(Uj) and r(Vk) < t′ + j′. (b) D(Ti) =
D(Uj), r(Vk) = t′ + j′, and V /∈ S ′

t′+j′+1.

proof, we assume

r(Vk) = u ∧ V ∈ Su+1.

We now show that V is a heavy task. Note that V ∈ Su+1 implies that r(Vk+1) ≤ u+1.

Therefore, by part (a) of Lemma 3.1, d(Vk) ≤ u + 2. Because r(Vk) = u, by (P5) and

(P7), d(Vk) ≥ u + 2. Therefore, we have d(Vk) = u + 2, which implies that |w(Vk)| = 2.

Therefore, by (P6), V is heavy.

Consider D(Vk), i.e., the group deadline of Vk. Let v be the earliest slot after u

such that V /∈ Sv. Since Vk+1 is scheduled in the first slot of its window, we have

v + 1 ≤ D(Vk). (3.23)

(See Figure 3.18.) Let Vk+i′ be the subtask of V that is scheduled in slot v−1. If either

D(Ti+j′) > v +1 or D(Ti+j′) = v +1 ∧ b(Ti+j′+i′) = 0, then Ti+j′+i′ is scheduled in slot

v. To see why, note that Ti+j′ is scheduled in the last slot of its window and this forces

all subtasks of T until its group deadline to be scheduled in the last of their windows.

Thus, the swapping shown in Figure 3.18 is valid. In the rest of the proof, we assume

that neither of these conditions holds, i.e., we assume the following.

69

no

Ti Ti+1

Vk Vk+2

Ti+j’+i’

Vk+i’Vk+1

t t’ t’+1 t’+2 ... t’+j’−1 t’+j’ t’+j’+1
or t+2(= t+1

...

]]]...

]]]...

k[

i+1i i+j’−1

v...

] i+j’+i’−1

v+1

i+j’+i’]

] k+i’−1

...

...

i+j’+1

k+1]

]

] k

t’+j’+2

no T

no U

)

j+1j j+j’−1

(= u)

V
no
V

j j+1 j+2 j+j’U U U U

i+j’Ti+j’−1 T Ti+j’ i+j’+1] T

v−1

i+j’+i’−1

Figure 3.18: Case 4 (continued). D(Ti) = D(Uj), r(Vk) = t′ + j′, D(Ti+j′) = v + 1 and
Ti+j′+i′ is scheduled in slot v.

(D(Ti+j′) < v + 1) ∨ (D(Ti+j′) = v + 1 ∧ b(Ti+j′+i′) = 1) (3.24)

We claim that u is a group deadline of V . As seen in Figure 3.18, Vk−1 is not scheduled

in slot u − 1. (Note that Vk−1 ∈ τ because its window fits in the interval [0, u + 1).)

Because r(Vk) = u, by part (a) of Lemma 3.1, d(Vk−1) is either u or u+1. If d(Vk−1) = u,

then b(Vk−1) = 0 and hence, u is a group deadline. If d(Vk−1) = u + 1, then we reason

as follows. Because V is a heavy task, by (P7), |w(Vk−1)| ≤ 3, which implies that

r(Vk−1) ≥ u − 2. Because Vk−1 is not scheduled in slots u − 1 or u, the following must

hold.

r(Vk−1) = u − 2 (3.25)

This implies that w(Vk−1) = [u − 2, u + 1). Therefore, u is a group deadline of V .

Having shown that u is a group deadline of V , we now show that pred(V, u) ≤
pred(T, u+1). T has consecutive group deadlines at u+1 and succ(T, u+1) = D(Ti+j′).

Therefore, by (P9), the difference between u+1 and pred(T, u+1) is at most one more

than D(Ti+j′) − (u + 1), i.e., u + 1 − pred(T, u + 1) ≤ D(Ti+j′) − u. Therefore,

pred(T, u + 1) ≥ 2u − D(Ti+j′) + 1. (3.26)

V has consecutive group deadlines at u and succ(V, u) = D(Vk). Hence, by (P9),

the difference between u and pred(V, u) is at least one less than D(Vk) − (u), i.e.,

u − pred(V, u) ≥ D(Vk) − u − 1. Thus,

pred(V, u) ≤ 2u − D(Vk) + 1. (3.27)

By (3.23) and (3.24), D(Ti+j′) ≤ D(Vk). Therefore, by (3.26) and (3.27), pred(V, u) ≤
2u−D(Vk)+1 ≤ 2u−D(Ti+j′)+1 ≤ pred(T, u+1). Thus, pred(V, u) ≤ pred(T, u+1).

70

Uj

Ti+1

Uj+2

i+j’+i’T

Uj+1

Ti

Vk’−1 k’V k+i’V] no V
k+i’−1

Uj+j’

Ti+j’i+j’−1T

k+1VkVk−1V

t t+1 t’ t’+2 v+1vv−1...

...

...

Tno

]

]]
i+j’+i’i+j’+i’−1

Ti+j’+i’−1]i+1

t’+1
(= t+2)

] i

] j j+1

...k’+1V]]
k’−1 k’

...

...

t’+j’
(= u)

t’+j’+1

]

]]

t’+j’+2

no T

no U
j+j’−1

i+j’−1 i+j’

no
V

]
k

t’+j’−1

i+j’+1

]
k−2

]Ti+j’−2

t’+j’−2...

[
k−1

[
k

Figure 3.19: Subcase 4.A. t′ = t + 2.

This sequence of inequalities further implies that pred(V, u) = pred(T, u+1) if and only

if 2u − D(Vk) + 1 = 2u − D(Ti+j′) + 1, i.e., D(Ti+j′) = D(Vk). By (3.23) and (3.24),

this can be true only if D(Ti+j′) = D(Vk) = v + 1.

In addition, as seen in Figure 3.18, T cannot have a group deadline in the interval

(t′, u]. Therefore, we have the following.

pred(V, u) ≤ pred(T, u + 1) ≤ t′ (3.28)

(pred(V, u) = pred(T, u + 1)) ⇒ (D(Ti+j′) = v + 1 ∧ D(Vk) = v + 1) (3.29)

Because U is a heavy task, by (P7), |w(Uj)| ≤ 3. Because Uj is scheduled in slot t

and Ti ≺ Uj, Uj is not early-released, i.e., r(Uj) ≤ t. Further, because d(Uj) = t′ + 1

(by (3.12)), it follows that t + 1 < t′ + 1 ≤ t + 3. Hence, t′ is either t + 2 or t + 1. We

consider these two subcases next.

Subcase 4.A: t′ = t + 2. In this case, we show that the swapping in Figure 3.19

is valid. To begin, note that t′ = t + 2 implies that T /∈ St+1 and U /∈ St+1. Let

k′ = k − j ′ + 1. Then, we have the following as depicted in Figure 3.19.

• r(Vk−1) = u − 2 (by (3.25)) and Vk−1 is scheduled in slot u − 2.

• For each l in the range k′ ≤ l < k − 1, w(Vl) is a 2-window (since pred(V, u) ≤ t′

by (3.28)).

• Each of Vk′ ,. . . ,Vk−1 is scheduled in the first slot of its window (which follows by

inducting from right to left, starting with Vk−1). In particular, Vk′ is scheduled

at t′ = r(Vk′).

Before continuing, we note that all of the subtasks Vk′−1, . . . , Vk−1 belong to τ . To

see why, note that their windows fit in the interval [0, t′ + j′) (see Figure 3.19) and

therefore, by Lemma 3.2, they are in τ .

71

Because Vk′ is released at t′ = t + 2, by part (a) of Lemma 3.1, d(Vk′−1) is either

t + 2 or t + 3. We now prove that d(Vk′−1) 6= t + 2.

Claim 3.3. d(Vk′−1) 6= t + 2.

Proof. Assume, to the contrary, that d(Vk′−1) = t+2. Because r(Vk′) = t+2

(refer to Figure 3.19 and the properties stated above), this implies that

b(Vk′−1) = 0. Thus, by the definition of a group deadline,

pred(V, u) = t + 2. (3.30)

Because pred(V, u) corresponds to d(Vk′−1), and b(Vk′−1) is 0, it follows that

pred(V, u) is the last group deadline within some job of V . Therefore, by

(P10), the difference between u and pred(V, u) is at least the difference

between any pair of consecutive group deadlines of V . In particular, we

have succ(V, u)−u ≤ u− pred(V, u). In either case, by (3.30), succ(V, u) ≤
2u − t − 2. Because succ(V, u) = D(Vk), we have

D(Vk) ≤ 2u − t − 2. (3.31)

By (3.28), pred(T, u + 1) ≤ t′, i.e., pred(T, u + 1) ≤ t + 2. By (3.26),

D(Ti+j′) ≥ 2u−pred(T, u+1)+1, which implies that D(Ti+j′) ≥ 2u− t−1.

By (3.24), v + 1 ≥ D(Ti+j′), and hence v + 1 ≥ 2u − t − 1. By (3.23), we

have D(Vk) ≥ v + 1. Thus, D(Vk) ≥ 2u − t − 1, which contradicts (3.31).

Therefore, we conclude that d(Vk′−1) cannot be t + 2.

Thus, we have the following.

d(Vk′−1) = t + 3

By (3.12), d(Ti) = t′+1 = t+3. Further, D(Vk′−1) = u < D(Ti) (by (3.22)). Therefore,

Ti ≺ Vk′−1.

We now conclude the proof for this subcase by showing that Vk′−1 is scheduled in

slot t + 1, which implies that the swapping in Figure 3.19 is valid. We have established

that V is heavy and d(Vk′−1) = t+3. Therefore, by (P7), all windows of V are of length

at most three, which implies that r(Vk′−1) ≥ t. If Vk′−1 is not scheduled in slot t + 1,

then it must be scheduled at or before slot t. (Note that Vk′ is scheduled in slot t + 2.)

72

Further, it is not early-released because Ti ≺ Vk′−1 (proved in the preceding paragraph).

Therefore, it must be scheduled in slot t and r(Vk′−1) = t. (In other words, w(Vk′−1)

must be a 3-window.) As seen in Figure 3.19, d(Vk′−1) = d(Uj), b(Vk′−1) = b(Uj) = 1,

and D(Vk′−1) < D(Ti) = D(Uj). Thus, Uj ≺ Vk′−1 contradicting our choice of Uj as the

lowest-priority subtask scheduled at t. Thus, Vk′−1 cannot be scheduled in slot t, and

must be scheduled in slot t + 1.

Subcase 4.B: t′ = t + 1. In this case, we show that one of the swappings in Fig-

ures 3.20–3.22 is valid. We use the following result.

Claim 3.4. pred(V, u) = t + 1.

Proof. As in Subcase 4.A, we can show the following.

• Vk−1 has a window of length two or three and is scheduled in the first

slot of its window.

• Each of Vk′ , . . . , Vk−2 has a window of length two and is scheduled in

the first slot of its window. (The existence of subtasks Vk′ , . . . , Vk−1

in τ follows from the same reasoning given earlier in Subcase 4.A.)

This is depicted in Figure 3.20(a). The above facts, along with t′ = t + 1,

imply that r(Vk′) = t + 1. By part (a) of Lemma 3.1, this implies that

d(Vk′−1) is either t + 1 or t + 2. If d(Vk′−1) = t + 1, then b(Vk′−1) = 0, and

hence, pred(V, u − 1) = t + 1.

If d(Vk′−1) = t + 2, then we reason as follows. Because V is heavy, by

(P7), w(Vk′−1) is of length two or three. If |w(Vk′−1)| = 3, then w(Vk′−1) =

[t − 1, t + 2) and hence, pred(V, u) = t + 1. Thus, it suffices to show that

|w(Vk′−1)| 6= 2.

Suppose, to the contrary, that |w(Vk′−1)| = 2. (Note that, in this case,

Vk′−1 ∈ τ because its window fits in the interval [0, t + 2).) Because

d(Vk′−1) = t + 2, this implies that r(Vk′−1) = t. Note that Vk′−1 cannot

have been early-released because Ti ≺ Vk′−1 (this follows from Rule (iii) of

the PD2 priority definition because D(Vk′−1) < D(Ti) — see Figure 3.20(a)).

Because Vk′ is scheduled in slot t+1, Vk′−1 must be scheduled in slot t. Ob-

serve that d(Vk′−1) = t + 2, d(Uj) = t′ + 1 = t + 2, b(Vk′−1) = 1, b(Uj) = 1,

73

Vk k+1V Vk+i’[k’ k’V [k

Ti+j’ i+j’+i’TTi i+1T

Uj+j’Uj Uj+1 j+2U

Ti+j’+i’−1

k+2V

i+j’−1T

Vk’+1

k+1V[k

Wh

Vk

Ti+j’ i+j’+i’TTi i+1T

Uj+j’Uj Uj+1 j+2U

Ti+j’+1

k+2V Vk+i’

Ti+j’+i’−1i+j’−1T

......

(a)

......no

no

...
T

V

t’+j’−1 t’+j’ t’+j’+2t’+j’+1 v+1v......t t’ t’+1 t’+2

no T]

]]

]

]

]

]

]

]]i+1

j+1

k’

j

i

] k+i’−1

no V

i+j’+i’]i+j’+i’−1

v−1

i+j’+1]i+j’+1

t’+j’+3

k+1]

i+j’ T
no T

i+j’−1

no U
j+j’−1

(= u)(= t+1)

k

...

...

(b)

no

no

no

T

V

W

t’+j’−1 t’+j’ t’+j’+2t’+j’+1 v+1v...t t’ t’+1 t’+2

no T

]

]

]

]]

]

]

]]

]

j+1

i+1

no U

no T

j+j’−1

k

i+j’

] h

k+i’−1

no V

i+j’+i’]i+j’+i’−1] i+j’+1 ...

...

...t’+j’+3

k+1]

v−1
(= u)(= t+1)

i

j

i+j’−1

Figure 3.20: Subcase 4.B. In each inset of this figure and Figures 3.21 and 3.22, t′ = t+1,
D(Ti) = D(Uj), and D(Vk) = D(Ti+j′). (a) pred(V, u) = pred(T, u + 1). (b) d(Wh) ≥
u + 2.

and D(Vk′−1) < D(Uj) (again, refer to Figure 3.20(a)). Thus, Vk′−1 has

lower priority than Uj at t, which contradicts our choice of Uj as the lowest-

priority subtask scheduled at t. This completes the proof of Claim 3.4.

Because t′ = t + 1, by (3.28) and Claim 3.4, we have

pred(T, u + 1) = pred(V, u).

By (3.29), this implies that D(Ti+j′) = D(Vk) = v + 1 (see Figure 3.20(a)).

Because T /∈ Su and T ∈ Su+1, and because there are no holes in u, there exists a

task W that is scheduled at u but not at u + 1. Let Wh be the subtask of W scheduled

at u. If d(Wh) > u + 1, then the swapping shown in Figure 3.20(b) is valid. In the rest

of the proof, we assume that

d(Wh) = u + 1.

In this case, we show that one of the swappings in Figures 3.21 and 3.22 are valid. If

W /∈ Su−1, then the swapping shown in Figure 3.21(a) is valid. In the rest of the proof,

74

Wh[h

Ti+j’+1Ti+j’

[k Vk

Uj+j’

Ti+j’+i’Ti+j’+i’−1

k+i’V

i+j’−1T

Vk+1 k+2V

Uj

Ti

Uj+1 Uj+2

Ti+1
no
T

]]

]

j+1

i+1i]

j

t t’ t’+1 t’+2
(=t+1)

...

...

...

Ti+j’

Vk+1Vk

Ti+j’+i’Ti+j’+i’−1

Vk+2 Vk+i’

Ti+j’+1

h−1W Wh

...

...

...

...

Ti Ti+1

h−h’W

i+j’−1T

...

...

(a)

no

no
V

W

no V

no T
i+j’]

]

]

]

]] i+j’+i’

k+i’−1

i+j’+i’−1
no T

no U
j+j’−1

i+j’−1]

] k

] i+j’+1

k+1]

h
no
W

... v v+1 v+2t’+j’−1 t’+j’
(=u)

v−1t’+j’+2t’+j’+1 t’+j’+3

no
V

no V

no T

][k

]

]]]]

]

i+j’+i’

k+i’−1

i+j’+i’−1

k

i+j’
...

...

] i+j’+1

] k+1

no T

no U
j+j’−1

i+j’−1

Uj+j’

(b)

]] no
Whh−1

OR

 v v+1 v+2t’+j’−1 t’+j’ t’+j’+1 t’+j’+2 v−1...t’+j’+3

no
T

]]

Ti+2]]

] j+2

i+2

j+1

i+1i]

jU Uj+1 Uj+2 Uj+3j

no
W

] h−h’

t t’ t’+1 t’+2 t’+3
(=t+1) (=u)

Figure 3.21: Subcase 4.B (continued). (a) d(Wh) = u+1 and W /∈ Su−1. (b) d(Wh) =
u + 1, W ∈ Su−1, and W /∈ Sw for some w in [t′, u).

we assume

W ∈ Su−1.

In this case, we have d(Wh−1) ≥ u. Because d(Wh) = u+1, this implies that d(Wh−1) =

u and r(Wh) = u − 1. Thus, |w(Wh)| = 2. Thus, by (P6), W is heavy.

We now show that W has a group deadline at time u + 1 or u + 2 (refer to Fig-

ure 3.21(b)). Because d(Wh) = u + 1, by by part (a) of Lemma 3.1, r(Wh+1) is either

u or u + 1. If it is u + 1, then b(Wh) = 0, i.e., W has a group deadline at u + 1.

If r(Wh+1) is u, then d(Wh+1) is either u + 2 or u + 3 (follows by (P7) because W is

heavy). Because no subtask of W is scheduled in slot u + 1, Wh+1 has to be scheduled

in slot u+2 and d(Wh+1) = u+3. This implies that w(Wh+1) is a 3-window and hence

W has a group deadline at u + 2.

We now look at earlier subtasks of W . If there exists a w such that t′ ≤ w ≤ u − 1

and W /∈ Sw, then a swapping similar to that shown in Figure 3.21(b) is valid and

produces the desired schedule. In the rest of the proof, we assume that for each w in

the range t′ ≤ w ≤ u, W ∈ Sw. This implies that, at each slot in the interval [t′, u+1),

a subtask of W is scheduled in the last slot of its window (recall that W is heavy). This

is illustrated in Figure 3.22. As seen in the figure, each of the subtasks Wh−j′+1, . . . ,Wh

75

k+2VVk k+i’VVk+1

Uj+j’

[k

Wh+1 Wh+i’Wh Wh+i’−1h−1W

Uj Uj+2

Ti+j’+1 Ti+j’+i’−1 Ti+j’+i’Ti+j’i+j’−1TTi+1

h−j’+1W

Uj+1

Ti

h−j’W

no
V

j+j’−1

k] k+i’−1
... no V

] k+1]

]

...]] h+i’−1
...] h+i’h+1]h

no
W

OR

] h−1

] j+1

] h−j’+1

...

...
i+j’−1 i+j’] i+j’+i’−1

... no
] i+j’+i’]] i+j’+1]

no

no U

no
T i+1]

T T

] h−j’

]

] i

... t’+j’−1 t’+j’ t’+j’+1 ... v+2v+1t’+j’+3t’+j’+2
(=u)

t t’+2t’+1

j

t’
(=t+1)

v−1 v

Figure 3.22: Subcase 4.B (continued). d(Wh) = u + 1, W ∈ Su−1, and W ’s most recent
group deadline before the one at u + 1 or u + 2 is at or before t + 1.

must have a window of length two. This implies that the most recent group deadline

of W before the one at u + 1 or u + 2 occurs at or before time t + 1, i.e.,

(u + 1 is a group deadline of W ⇒ pred(W,u + 1) ≤ t + 1) and

(u + 2 is a group deadline of W ⇒ pred(W,u + 2) ≤ t + 1). (3.32)

We now show that W ’s next group deadline after the one at u + 1 or u + 2 occurs at

or after time v + 2, which implies that the swapping shown in Figure 3.22 is valid.

By (3.23) and (3.27), we have pred(V, u) ≤ 2u − v. Therefore, by Claim 3.4, we

have the following.

v ≤ 2u − t − 1. (3.33)

There are now two possibilities to consider, depending on whether W has a group

deadline at u + 1 or u + 2.

1. u+1 is a group deadline of W . In this case, b(Wh) = 0. Thus, u+1 is the last group

deadline within some job of W . Therefore, by (P10), the difference between u+1

and succ(W,u+1) is at least the difference between any pair of consecutive group

deadlines of W . In particular, succ(W,u + 1)− (u + 1) ≥ u + 1− pred(W,u + 1).

Thus, we have succ(W,u + 1) ≥ 2u + 2 − pred(W,u + 1).

By (3.32), pred(W,u + 1) ≤ t + 1. Therefore, succ(W,u + 1) ≥ 2u − t + 1. By

(3.33), this implies that succ(W,u + 1) ≥ v + 2.

2. u + 2 is a group deadline of W . In this case, by (P9), the difference between

succ(W,u + 2) and u + 2 is at least one less than the difference between u + 2

and pred(W,u + 2), i.e., succ(W,u + 2)− (u + 2) ≥ (u + 2)− pred(W,u + 2)− 1.

Therefore, succ(W,u + 2) ≥ 2u − pred(W,u + 2) + 3.

76

By (3.32), pred(W,u + 2) ≤ t + 1. Therefore, succ(W,u + 2) ≥ 2u − t + 2. By

(3.33), this implies that succ(W,u + 2) ≥ v + 3.

This exhausts all the possibilities if T and U are both heavy, and concludes the proof

of Lemma 3.4.

By applying Lemma 3.4 inductively as discussed above, there exists a valid schedule

for τ over [0, td) consistent with PD2, contrary to our original assumption. Thus, we

have the following theorem.

Theorem 3.10. PD2 generates a valid schedule for any feasible asynchronous task

system in which each task’s lag is bounded by either (2.6) or (3.2).

3.5 Experimental Comparison with Partitioning

In this section, we compare the PD2 Pfair algorithm to the EDF-FF partitioning

scheme, which uses “first fit” (FF) as a partitioning heuristic and EDF for per-processor

scheduling. We begin by showing how to account for various system overheads in the

schedulability tests for both approaches. We then present experimental results that

show that PD2 is a viable alternative to EDF-FF.

The feasibility tests described in Sections 2.1 and 2.2 were derived under the as-

sumption that various overheads such as context-switching costs are zero. In practice,

such overheads are usually not negligible; they can be accounted for by inflating task

execution costs. In this section, we show how to do so for both PD2 and EDF-FF. The

specific overheads we consider are described next.

Scheduling overhead accounts for the time spent in moving a newly-arrived or pre-

empted task to the ready queue and choosing the next task to be scheduled. Overheads

associated with preemptions can be placed in two categories. Context-switching over-

head accounts for the time the operating system spends on saving the context of a

preempted task and loading the context of the task that preempts it. The cache-related

preemption delay of a task refers to the time required to service cache misses that a

task suffers when it resumes after a preemption. Note that scheduling and context-

switching overheads are independent of the tasks involved in the preemption, whereas

the cache-related preemption delay introduced by a preemption depends on (i) whether

the preempted task resumes on a different processor, and (ii) which tasks execute in

the meantime.

77

In a tightly-coupled, shared-memory multiprocessor, the cost of a migration is al-

most identical to that of a preemption. However, there might be some additional

cache-related costs associated with a migration. If a task resumes execution on the

same processor after a preemption (i.e., without migrating), then some of the data that

it accesses might still be in that processor’s cache. This is highly unlikely if it resumes

execution on a different processor. Nevertheless, because our analysis of cache-related

preemption delays (described and justified later) assumes a cold cache after every pre-

emption, there is no need to distinguish between preemptions and migrations.

All of the above overheads cause execution delays that must be considered when

determining schedulability. In the rest of this section, we provide analytical worst-case

bounds and empirical estimates of these various overheads for both EDF-FF and PD2.

We assume that PD2 is invoked at the beginning of every quantum. When invoked, it

executes on a single processor and then conveys its scheduling decisions to the other

processors. Further, we assume that PD2 schedules in a Pfair manner instead of ERfair;

however, our results apply to the ERfair version of PD2 as well.

Context-switching overhead. Under EDF, the number of preemptions is at most

the number of jobs. Consequently, the total number of context switches is at most

twice the number of jobs. Thus, context-switching overhead can be accounted for by

simply inflating the execution cost of each task by 2c, where c is the cost of a single

context switch. (This is a well-known accounting method.)

Under PD2, a job may suffer a preemption at the end of every quantum in which it

is scheduled. Hence, if a job spans E quanta, then the number of preemptions suffered

by it is bounded by E − 1. Thus, context-switching overhead can be accounted for

by inflating the job’s execution cost by E · c. (The extra c term bounds the context-

switching cost incurred by the first subtask of the job.)

A better bound on the number of preemptions can be obtained by observing that

when a task is scheduled in two consecutive quanta, it can be allowed to continue

executing on the same processor. For example, consider a task T with a period that

spans 6 quanta and an execution time that spans 5 quanta. Then, in every period of

T there is only one quantum in which it is not scheduled. This implies that each job

of T can suffer at most one preemption. In general, a job of a task with period of

P quanta and an execution cost of E quanta can suffer at most P − E preemptions.

Combining this with our earlier analysis, the number of context switches is at most

1 + min(E − 1, P − E).

78

Scheduling overhead. Another concern regarding PD2 is the overhead incurred

during each invocation of the scheduler. In every scheduling step, the M highest-

priority tasks are selected (if that many tasks have eligible subtasks), and the values

of the release, deadline, b-bit, and group deadline for each scheduled task are updated.

Also, an event timer is set for the release of the task’s next subtask. When a subtask

is released, it is inserted into the ready queue. In the case of EDF-FF, the scheduler

on each processor selects the highest-priority job from its local queue; if this job is not

the currently-executing job, then the executing job is preempted. If the executing job

has completed, then it is removed from the ready queue. Further, when a new job is

released, it is inserted into the ready queue and the scheduler is invoked.

The partitioning approach has a significant advantage on multiprocessors, since

scheduling overhead does not increase with the number of processors. This is because

each processor has its own scheduler, and hence the scheduling decisions on the various

processors are made independently and in parallel. On the other hand, under PD2,

the decisions are made sequentially by a single scheduler. Hence, as the number of

processors increase, scheduling overhead also increases.

To measure the scheduling overhead incurred, we conducted a series of experiments

involving randomly-generated task sets. Figure 3.23 compares the average3 execution

time of one invocation of PD2 with that of EDF on a single processor. We used binary

heaps to implement the priority queues of both schedulers. The number of tasks, N ,

ranged over the set {15, 30, 50, 75, 100, 250, 500, 750, 1000}; for each N , 1,000 task sets

were generated randomly, each with total utilization at most one. Then, each generated

task set was scheduled using both PD2 and EDF until time 106 to determine the average

execution cost per invocation for each scheduler.

As the graph shows, the scheduling overhead of each algorithm increases as the

number of tasks increases. Though the increase for PD2 is higher, the overhead is still

less than 8 µs. When the number of tasks is at most 100, the overhead of PD2 is less

than 3 µs, which is comparable to that of EDF.

Figure 3.24 shows the average scheduling overhead of PD2 for 2, 4, 8, and 16 proces-

sors. Again, the overhead increases as more tasks or processors are added. However,

the scheduling cost for at most 200 tasks is still less than 20 µs, even for 16 processors.

The cost of a context switch in modern processors is between 1 and 10 µs [Raj02].

3The experiments were performed on a 933-MHz Linux platform in which the minimum accuracy
of the clock is 10ms. Since the various scheduling overheads are much less than this value, averages
are presented instead of maximum values.

79

0

2

4

6

8

10

0 100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d
pe

r
ex

ec
ut

io
n

of
 s

ch
ed

ul
in

g
al

go
rit

hm
 (

us
)

Total number of tasks

Scheduling overhead of EDF and PD2 on one processor

"pd2"
"edf"

Figure 3.23: Scheduling overhead of EDF and PD2 on one processor. 99% confidence
intervals were computed for each graph but are not shown (in this and Figure 3.24)
because the relative error associated with each point is very small — less than 1.2% of
the reported value.

Thus, in most cases, scheduling costs are comparable to context-switching overheads

under PD2.

Scheduling overhead can be incorporated into a task’s execution cost in much the

same way as context-switching overhead. However, under PD2, a job with an execution

cost of E quanta incurs a scheduling cost at the beginning of every quantum in which

it is scheduled. Hence, this cost is incurred exactly E times.

Cache-related preemption delay. For simplicity, we assume that all cached data

accessed by a task is displaced upon a preemption or migration. Though this is clearly

very conservative, it is difficult to obtain a more accurate estimate of cache-related

preemption delay. This problem has been well-studied in work on timing analysis

tools for RM-scheduled uniprocessors and several approaches have been proposed for

obtaining better estimates [LHS+98, LLH+01]. Unfortunately, no such techniques are

available for either EDF or PD2.

The cache-related preemption delay under EDF can be calculated as follows. Let

80

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

S
ch

ed
ul

in
g

ov
er

he
ad

 p
er

 s
lo

t (
us

)

Total number of tasks

Scheduling overhead of PD2 for 2, 4, 8, and 16 processors

"16_proc"
"8_proc"
"4_proc"
"2_proc"

Figure 3.24: Scheduling overhead of PD2 on 2, 4, 8, and 16 processors.

C(T) denote the maximum cache-related preemption delay suffered by task T . Let PT

denote the set of tasks that are assigned to the same processor as T and that have

periods larger than T ’s period. Note that T can only preempt tasks in PT . To see

why, consider a job J of T . Any job J ′ of T ′ that is executing prior to the release

of J can be preempted by J only if J ′ has a later deadline. In that case, T ′ has a

larger period than T ’s, i.e., T ′ ∈ PT . Also, job J can preempt at most one task in PT :

once J starts executing, no task in PT will be scheduled by EDF until it completes.

Thus, the overhead incurred due to the preemption of any task by J is bounded by

maxU∈PT
{C(U)}, and can be accounted for by inflating T ’s execution cost by this

amount.

Under PD2, the cache-related preemption delay of a task T is the product of C(T)

and the worst-case number of preemptions that a job of T can suffer (as derived earlier).

Simulation experiments. We now give formulae that show how to inflate task exe-

cution costs to include all of the above-mentioned overheads. Let SA be the scheduling

overhead per invocation of scheduling algorithm A. Let c denote the cost of a single

context switch. Let PT and C(T) be as defined above. Let e and p be the execution

time and period of task T . Let q denote the quantum size. (Then, the number of

81

quanta spanned by t time units is dt/qe.) The inflated execution cost e′ of task T can

be computed as follows. (We assume that p is a multiple of q.)

e′ =







e + 2(SEDF + c) + maxU∈PT
{C(U)} , under EDF

e +
⌈

e′

q

⌉

· SPD
2 + c + min(

⌈

e′

q

⌉

− 1, p
q
−
⌈

e′

q

⌉

) · (c + C(T)) , under PD2

(3.34)

Note that in the formula for PD2, e′ occurs on the right-hand side as well because the

number of preemptions suffered by a task may vary with its execution cost. e′ can be

easily computed by initially letting e′ = e and by repeatedly applying this formula until

the value converges. Simulation experiments conducted by us on randomly-generated

task sets suggest that convergence usually occurs within five iterations.

Using the above execution times, the schedulability tests are simple. For PD2, we

can use (2.10). For EDF-FF, we invoke the first-fit heuristic to partition the tasks:

since the new execution cost of a task depends on tasks on the same processor with

larger periods, we consider tasks in the order of decreasing periods.

To measure the schedulability loss caused by both system overheads and partition-

ing, we conducted a series of simulation experiments. In these experiments, the value

of c is fixed at 5 µs. (As mentioned earlier, c is likely to be between 1 and 10 µs

in modern processors.) SEDF and SPD2 were chosen based on the values obtained by

us in the scheduling-overhead experiments described earlier (refer to Figures 3.23 and

3.24). C(T) was chosen randomly between 0 µs and 100 µs; the mean of this dis-

tribution was chosen to be 33.3µs. We chose the mean of 33.3 µs by extrapolating

results from [LHS+98, LLH+01]. (Based on cache-cost figures reported by the authors

of these papers, we estimated that the maximum cache-related preemption delay would

be approximately 30 µs in their experiments, assuming a bus speed of 66MHz.) The

quantum size of the PD2 scheduler was then assumed to be 1 ms.

The number of tasks, N , was chosen from the set {50, 100, 250, 500, 1000}. For

each N , we generated random task sets with total utilizations ranging from N/30

to min(N/3, 64), i.e., the mean utilization of the tasks was varied from 1/30 to

min(1/3, 64/N). In each step, we generated 1,000 task sets with the selected total

utilization. For each task set, we applied (3.34) to account for system overheads and

then computed the minimum number of processors required by PD2 and EDF-FF to

render the task set schedulable.

Figure 3.25 shows the averages of these numbers for N = 50. Note that when the

total utilization is at most 3.75, both EDF and PD2 give almost identical performance.

82

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 P

ro
ce

ss
or

s

Cumulative Task Set Utilization (Without Considering Overhead)

Number of Processors Required to Ensure Schedulability of 50 Tasks

Pfair
EDF/FF

Figure 3.25: Effect of introducing overheads in the schedulability tests. Figure shows
the minimum number of processors required by PD2 and EDF for a given total utiliza-
tion of a system of 50 tasks. As before, 99% confidence intervals were computed for
each graph but are not shown because the relative error associated with each point is
very small (less than 1% of the reported value).

EDF consistently gives better performance than PD2 in the range [4, 14), after which

PD2 gives slightly better performance. This is intuitive because when the utilization

of each task is small, the overheads of PD2 and EDF-FF are both negligible. As the

utilizations increase, the influence of these overheads is magnified. Though the system

overhead of EDF remains low throughout, the schedulability loss due to partitioning

grows quickly, as can be seen in Figure 3.26. After a certain point, this schedulability

loss overtakes the other overheads. Note that, although EDF does perform better, PD2

is always competitive.

The jagged nature of the lines in the graphs can be explained as follows. Recall that

for each randomly-generated task set, we calculate the minimum number of processors

required by each scheduling algorithm. For most of the task sets generated with a given

total utilization, the number of processors required is identical. Hence, the average is

close to an integer. As the total utilization increases, this average increases in spurts

of one, resulting in jagged lines.

83

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

F
ra

ct
io

n
of

 S
ch

ed
ul

ab
ili

ty
 L

os
t

Mean Task Utilization (Without Considering Overhead)

Schedulability Loss for 50 Tasks

Pfair
EDF

FF

Figure 3.26: Fraction of schedulability loss due to partitioning and due to system
overheads under PD2 and EDF-FF for systems of 50 tasks. 99% confidence intervals
were computed for each graph but, once again, are not shown. For each EDF and PD2

point sample, relative error is very small (less than 4% and 2%, respectively). The
relative error associated with the FF point samples is higher but drops off quickly as
utilization increases; the error for these samples is initially approximately 17%, and
is below 5% for all mean utilization above 0.22. The variation of adjacent FF sample
values appears to be a fairly consistent indicator of the confidence interval’s size at each
point.

The above trend is seen for other values of N as well. Figures 3.27 and 3.28 show

similar graphs for N = 100, 250, and 500. Note that, for a given total utilization, mean

utilization decreases as the number of tasks increases. As a result, the improvement in

the performance of EDF-FF is more than that of PD2. Therefore, the point at which

PD2 performs better than EDF-FF occurs at a higher total utilization.

3.6 Summary

In this chapter, we proved that the PD2 algorithm is optimal for scheduling asyn-

chronous periodic tasks on multiprocessors. We also performed experiments that show

that PD2 is a viable option to partitioning. In spite of the frequent context-switching

84

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

N
um

be
r

of
 P

ro
ce

ss
or

s

Cumulative Task Set Utilization (Without Considering Overhead)

Number of Processors Required to Ensure Schedulability of 100 Tasks

Pfair
EDF/FF

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

F
ra

ct
io

n
of

 S
ch

ed
ul

ab
ili

ty
 L

os
t

Mean Task Utilization (Without Considering Overhead)

Schedulability Loss for 100 Tasks

Pfair
EDF

FF

(b)

Figure 3.27: (a) The minimum number of processors required by PD2 and EDF for a
given total utilization of a system of 100 tasks. (b) Fraction of schedulability loss due
to partitioning and due to system overheads under PD2 and EDF-FF for systems of
100 tasks.

85

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

N
um

be
r

of
 P

ro
ce

ss
or

s

Cumulative Task Set Utilization (Without Considering Overhead)

Number of Processors Required to Ensure Schedulability of 250 Tasks

Pfair
EDF/FF

(a)

20

30

40

50

60

70

15 20 25 30 35 40 45 50 55 60 65

N
um

be
r

of
 P

ro
ce

ss
or

s

Cumulative Task Set Utilization (Without Considering Overhead)

Number of Processors Required to Ensure Schedulability of 500 Tasks

Pfair
EDF/FF

(b)

Figure 3.28: The minimum number of processors required by PD2 and EDF for a given
total utilization of a system of (a) 250 tasks, and (b) 500 tasks.

86

and cache-related overheads, PD2 performs competitively because the schedulability

loss due to these overheads is offset by the fact that PD2 provides much better analyti-

cal bounds on schedulability than partitioning. Moreover, the results of our experiments

are biased against Pfair scheduling in that only static systems with independent tasks

of low weight were considered. As we discuss below, it may be more advantageous to

use PD2 in several categories of systems.

Systems with heavy tasks. Bin-packing heuristics, including those used to assign

tasks to processors, usually perform better with smaller items. As the mean task

utilization increases, the performance of these heuristics tends to degrade, resulting

in more schedulability loss. Although heavy tasks are rare, some techniques, such as

hierarchical scheduling [MR99, HA01], can introduce heavy “server” tasks. Hence, it is

unrealistic to assume that only light tasks will occur in practice. As our experiments

indicate, PD2 performs better than EDF-FF when the mean task utilization is high.

Dynamic systems. As described in Section 2.1.3, partitioning approaches are not

suitable for dynamic task systems. In addition to the problems mentioned in Sec-

tion 2.1.3, the dependency of a task’s execution requirement on that of other tasks

(refer to Equation (3.34)) complicates bin-packing in dynamic task systems. In partic-

ular, the execution requirement of a task is affected by tasks with larger periods. Thus,

when a new task arrives, checking feasibility also entails re-calculation of the execution

requirements of potentially all the tasks with larger periods in the system (and hence,

potentially, all the tasks in the system). The associated overhead may be unacceptable

in many systems. On the other hand, PD2 does not suffer from this problem because

the execution requirements are calculated independently of the other tasks in the sys-

tem (refer to (3.34)). Further, as we show in the next chapter, dynamic task systems

are easier to handle under PD2.

Resource and object sharing. As discussed in Section 2.1.3, partitioning is prob-

lematic if tasks share resources. Though we do not address the problem of shared

resources under Pfair scheduling in this dissertation, Holman and Anderson [HA02b,

HA02a] have recently presented efficient synchronization protocols for use with PD2.

The tight synchrony in Pfair scheduling can be exploited to simplify task synchro-

nization. Specifically, each subtask’s execution is effectively non-preemptive within its

time slot. As a result, problems stemming from the use of locks can be altogether

87

avoided by ensuring that all locks are released before each quantum boundary. The

latter is easily accomplished by delaying the start of critical sections that are not guar-

anteed to complete by the quantum boundary. When critical-section durations are

short compared to the quantum length, which is expected to be the common case,

this approach can be used to provide synchronization with very little overhead[HA02a].

(In experiments conducted by Ramamurthy [Ram97] on a 66 MHz processor, critical-

section durations for a variety of common objects (e.g., queues, linked lists, etc.) were

found to be in the range of tens of microseconds. On modern processors, these op-

erations will likely require no more than a few microseconds. Note that, in a Pfair-

scheduled system, if such a critical section were preempted, then its length could easily

be increased by several orders of magnitude.)

The tight synchrony in Pfair scheduling also facilitates the use of lock-free shared

objects. Operations on lock-free objects are usually implemented using “retry loops.”

Lock-free objects are of interest because they do not give rise to priority inversions

and can be implemented with minimal operating system support. Implementation of

such objects in multiprocessor systems has been viewed as being impractical because

deducing bounds on retries due to interferences across processors is difficult. However,

Holman and Anderson have shown that the tight synchrony in Pfair-scheduled systems

can be exploited to obtain reasonably tight bounds on multiprocessors [HA02b].

Chapter 4

Rate-based Scheduling∗

In many systems, task invocations may not match the periodic or sporadic pattern

of invocations. For example, consider a teleconferencing application that is receiving

video frames over a network. Even if the frames are sent periodically, their arrival

times may not be periodic or even sporadic. In fact, the arrivals can be bursty or late

due to network congestion and other factors. Jeffay et al. [JB95, JG99] presented the

uniprocessor rate-based execution (RBE) model as a way to handle this scenario. In

the RBE model, each task has four parameters: x, y, d, and e. Such a task releases

on an average x jobs every y time units; each job requires e units of processor time

and must be completed within d time units of its release. However, the instantaneous

rate of job releases is allowed to be more; scheduling of early jobs is handled by an

appropriate postponement of their deadlines.

In order to handle similar scenarios in multiprocessor systems, we introduce the

intra-sporadic (IS) task model as an extension of the sporadic model. We formally

define it in the next section. In Sections 4.2 and 4.3, we consider task systems in which

tasks are allowed to join and leave the system. We also derive sufficient conditions under

∗The results presented in this chapter have been published in the following papers.

[AS00b] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. In Proceed-

ings of the 7th International Conference on Real-Time Computing Systems and Applications,
pages 297–306, December 2000.

[SA02] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. In Pro-

ceedings of the 34th Annual ACM Symposium on Theory of Computing, pages 189–198, May
2002.

[SA04b] A. Srinivasan and J. Anderson. Fair scheduling of dynamic task systems on multiprocessors.
Journal of Systems and Software, 2004. Under submission. (A preliminary version of this
paper was presented at the 11th International Workshop on Parallel and Distributed Real-time
Systems.)

89

Subtasks is

3T

2T

1T

5T
6T

7T
8T

T4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5T

released three

units late.

IS delay

Figure 4.1: The PF-windows of the first eight subtasks of an IS task T with weight
8/11. Subtask T5 is released three units late causing all later subtask releases to be
delayed by three time units.

which joins and leaves can occur in PD2-scheduled systems without causing any missed

deadlines; we present counterexamples demonstrating the tightness of these conditions.

As a corollary of this main result, it follows that PD2 is optimal for scheduling IS task

systems (and hence, sporadic task systems as well).

4.1 The Intra-sporadic Task Model

Recall that the sporadic model generalizes the periodic model by allowing jobs to be

released late. The IS model generalizes this notion further by allowing subtasks to be

released late, as illustrated in Figure 4.1. More specifically, the separation between sub-

task releases r(Ti) and r(Ti+1) is allowed to be more than bi/wt(T)c−b(i− 1)/wt(T)c,
which would be the separation if T were periodic (refer to Equation 2.7). Thus, an

IS task is obtained by allowing a task’s windows to be right-shifted from where they

would appear if the task were periodic. Figure 4.1 illustrates this. Each subtask of an

IS task has an offset that gives the amount by which its window has been right-shifted.

The offset of subtask Ti is denoted θ(Ti). By (2.7) and (2.8), we have the following.

r(Ti) = θ(Ti) +

⌊

i − 1
wt(T)

⌋

(4.1)

d(Ti) = θ(Ti) +

⌈

i
wt(T)

⌉

(4.2)

These offsets are constrained so that the separation between any pair of subtask releases

is at least the separation between those releases if the task were periodic. Formally,

90

the offsets satisfy the following property.

k ≥ i ⇒ θ(Tk) ≥ θ(Ti) (4.3)

Because

⌊

i
wt(T)

⌋

≥
⌈

i
wt(T)

⌉

− 1, by (4.1), r(Ti+1) ≥ θ(Ti+1) +

⌈

i
wt(T)

⌉

− 1. Hence,

by (4.2) and (4.3), it follows that

r(Ti+1) ≥ d(Ti) − 1. (4.4)

Each subtask Ti has an additional parameter e(Ti) that specifies the first time slot at

which it is eligible to be scheduled. It is assumed that e(Ti) ≤ r(Ti) and e(Ti) ≤ e(Ti+1)

for all i ≥ 1. Allowing e(Ti) to be less than r(Ti) is equivalent to allowing “early”

subtask releases as in ERfair scheduling. We refer to the interval [r(Ti), d(Ti)) as the

PF-window of Ti and the interval [e(Ti), d(Ti)) as its IS-window . The inequality (4.4)

implies that PF-windows of consecutive subtasks of a task overlap by at most one slot.

The validity of a schedule for an IS task system is given by the definition below.

Definition 4.1. A valid schedule for an IS task system is one that satisfies the following

properties: (i) each subtask is scheduled in its IS-window, (ii) two subtasks of the same

task are not scheduled in the same slot, and (iii) the number of subtasks scheduled in

any slot is at most the number of processors.

Since e(Ti) ≤ r(Ti), a subtask’s PF-window is contained in its IS-window. Later,

when obtaining the feasibility condition for IS task systems, we use this fact to obtain

a valid schedule for a feasible IS task system.

Note that the notion of a job is secondary to the notion of a subtask in IS task

systems. For systems in which subtasks are grouped into jobs that are released in

sequence, the definition of e would preclude a subtask from becoming eligible before

the beginning of its job. Using the definitions above, it is easy to show that sporadic

and periodic tasks are special cases of IS tasks. In particular, a sporadic task T is an IS

task in which only the first subtask of each job may be released late, i.e., if Ti and Ti+1

are part of the same job, then θ(Ti) = θ(Ti+1). A periodic task T is an IS task such

that only the very first subtask of each task may be released late, i.e., θ(Ti) = θ(T1) for

all i ≥ 1. (For a synchronous periodic task, θ(T1) = 0 holds.) Note that, by defining

the function e appropriately, we can obtain eligibility intervals (i.e., IS-windows) like

those in either a Pfair or ERfair system. In fact, we can define eligibility intervals

91

requested

processor time

Two units of

requested

processor time

Two units of

requested

processor time

Three units of

1 2 30 87654 9 10 12 1311 14 15 16 17 19 2018

Figure 4.2: The up arrows corresponds to subtask eligibility times and down arrows
correspond to subtask deadlines. The dotted lines are used to illustrate eligibility
windows and the bold lines are used to illustrate the PF-windows. A server with
weight 2/5 is shown. It receives requests of two units of processor time at times 0 and
10, and a request of three units of processor time at time 7.

(i.e., IS-windows) that are longer than in a Pfair system but shorter than in an ERfair

system.

Usefulness of the IS task model. Figure 4.2 illustrates an example server that

reserves a processor share of 2/5 (given by its weight) and receives requests requiring 2

or 3 units of processor time. Thus, the IS model allows us to decouple the request size

from the service rate.

The IS model also allows the instantaneous rate of subtask releases to differ greatly

from the average rate (given by a task’s weight). Hence, it is more suitable than the pe-

riodic model for several applications in networking. Examples include web servers that

provide quality-of-service guarantees, packet scheduling in networks, and the schedul-

ing of packet-processing activities in routers [SHA+03]. Due to network congestion and

other factors, packets may arrive late or in bursts. The IS model treats these possi-

bilities as first-class concepts and handles them more seamlessly. In particular, a late

packet arrival corresponds to an IS delay. On the other hand, if a packet arrives early

(as part of a bursty sequence), then its eligibility time will be less than its Pfair release

time. Note that its Pfair release time determines its deadline. Thus, in effect, an early

packet arrival is handled by postponing its deadline to where it would have been had

the packet arrived on time.

92

Feasibility. We now prove that the following expression is a feasibility condition for

an IS task system τ on M processors.

∑

T∈τ

wt(T) ≤ M (4.5)

Let tl be an arbitrary time slot. We show that τ has a valid schedule over the time in-

terval [0, tl) by considering flows in a certain graph G(τ, tl). By examining the windows

of all the subtasks that have deadlines in the interval (0, tl], we construct a flow graph

G(τ, tl) such that a maximal flow f in G(τ, tl) corresponds to a valid schedule for these

subtasks. As mentioned earlier, we construct a valid schedule in which each subtask is

scheduled in its PF-window (which implies that it is scheduled in its IS-window).

Definition of G(τ, tl). Let ns(T, tl) denote the number of subtasks of T that have

deadlines in the interval (0, tl], and let et(T, tl) denote the union of the PF-windows of

the first ns(T, tl) subtasks of T .

The vertex set V of G(τ, tl) is the union of six disjoint sets of vertices V0, . . . , V5

and the edge set E is the union of five disjoint sets of weighted edges E0, . . . , E4,

where Ei is a subset of Vi × Vi+1 × N+, 0 ≤ i ≤ 4. Thus, G is a six-layered graph,

with all the edges connecting vertices in adjacent layers. The vertex sets V0, . . . , V5

are defined as follows.

V0 = {source}.
V1 = {〈1, T 〉 | T ∈ τ}, corresponding to tasks.

V2 = {〈2, T, i〉 | T ∈ τ, 1 ≤ i ≤ ns(T, tl)}, corresponding to subtasks.

V3 = {〈3, T, t〉 | T ∈ τ, t ∈ et(T, tl)}, corresponding to subtask windows.

V4 = {〈4, t〉 | 0 ≤ t ≤ tl}, corresponding to time.

V5 = {sink}

The edge sets E0, . . . , E4 are defined as follows.

E0 = {(source, 〈1, T 〉, ns(T, tl)) | T ∈ τ}
E1 = {(〈1, T 〉, 〈2, T, i〉, 1) | T ∈ τ, 1 ≤ i ≤ ns(T, tl)}
E2 = {(〈2, T, i〉, 〈3, T, t〉, 1) | T ∈ τ, 1 ≤ i ≤ ns(T, tl), t ∈ w(Ti)}
E3 = {(〈3, T, t〉, 〈4, t〉, 1) | T ∈ τ, t ∈ et(T, tl)}
E4 = {(〈4, t〉, sink,M) | 0 ≤ t ≤ tl}

93

The weight of an edge in E0 corresponds to the total processing time required by a

task in the interval [0, tl). The edges in E1 are used to add the restriction that tasks

are allocated in terms of subtasks (i.e., quanta). The edges in E2, E3, and E4 are used

to ensure the validity of the resulting schedule (refer to Definition 4.1

A flow is called integral if and only if flow across each edge is integral. We use the

following theorem about integral flows in graphs with integral edge capacities.

Theorem 4.1 (Ford and Fulkerson [FF62]). A graph in which all edge capacities

are integral has a integral maximal flow.

Figure 4.3 shows an example graph for a set of tasks T , U , V , and W , where

wt(T) = 3/7, wt(U) = 1/6, wt(V) = 4/7, and wt(W) = 5/6. Note that these tasks

fully utilize two processors. The time interval is [0, 8). In this interval, all subtasks are

released as in a periodic task system, except that the second subtask of T is released

one time unit late. The flow shown in Figure 4.3 corresponds to the following schedule:

W1 and V1 are scheduled in slot 0, W2 and T1 in slot 1, W3 and V2 in slot 2, and W4

and V3 in slot 3.

Feasibility proof. The existence of a schedule for an IS task system τ that satisfies

Expression (4.5) follows from Lemmas 4.1 and 4.2 below.

Lemma 4.1. If there exists an integral flow of size
∑

T∈τ ns(T, tl) in G(τ, tl), then

there exists a valid schedule for τ over the interval [0, tl).

Proof. An integral flow of size
∑

T∈τ ns(T, tl) implies that the flow out of the source is
∑

T∈τ ns(T, tl). By definition of E0, the sum of the capacities of all the outgoing edges

from the source is
∑

T∈τ ns(T, tl). Therefore, all the edges in E0 carry a flow equal to

their capacity. Hence, an edge from the source to 〈1, T 〉 ∈ V1 carries a flow equal to

ns(T, tl). Because there are ns(T, tl) outgoing edges from 〈1, T 〉, and each edge of E1

has a capacity of 1, each such edge carries a flow of 1. Therefore, the flow into each

vertex in V2 is 1.

We obtain a schedule for τ by scheduling Ti in slot t if and only if there is a flow of

1 from vertex 〈2, T, i〉 to 〈3, T, t〉. From the following discussion and by Definition 4.1,

it follows that this schedule is valid.

(i) Since each outgoing edge from V2 has a capacity of 1, and because the flow is integral,

this implies that at most one edge, starting from any vertex in V2, has a non-zero flow.

Thus, for each subtask Ti, only one of 〈3, T, t〉 has an incoming flow of 1. In other

94

<3,T,1>

<3,T,3>

<3,T,4>

<3,T,5>

<3,T,6>

<3,T,7>

<3,T,2>

<3,U,5>
<3,U,4>
<3,U,3>

<3,U,2>
<3,U,1>
<3,U,0>

<3,V,6>

<3,V,5>

<3,V,4>

<3,V,3>

<3,V,2>

<3,V,1>

<3,V,0>

<3,W,7>

<3,W,6>

<3,W,5>

<3,W,4>

<3,W,3>

<3,W,2>

<3,W,1>

<3,W,0>

sink
source

<1,U>

<1,V>

<1,W>

<1,T>

<2,T,1>

<2,T,2>

<2,T,3>

<2,U,1>

<2,V,1>

<2,W,1>

<2,W,2>

<2,W,3>

<2,W,4>

<2,W,5>

<2,V,2>

<2,V,4>

<2,V,3>

<2,W,6>

<4,1>

<4,5>

<4,6>

<4,2>

<4,7>

<4,0>

<4,4>

<4,3>

<3,T,0>

Figure 4.3: Example flow graph for a task set consisting of four tasks T , U , V , and
W , where wt(T) = 3/7, wt(U) = 1/6, wt(V) = 4/7 and wt(W) = 5/6. Subtask T2 is
released one slot late. The bold lines in the figure correspond to a flow f . The value of
f is 8, which indicates that eight subtasks have been scheduled.

words, a subtask is scheduled at most once. Because there is an edge from 〈2, T, i〉 to

〈3, T, t〉 only if t lies in Ti’s PF-window, Ti is scheduled in its PF-window.

(ii) Note that, because successive PF-windows of the same task may overlap by one

slot, vertex 〈3, T, t〉 can have more than one incoming edge. However, because the edge

from 〈3, T, t〉 to 〈4, t〉 has a capacity of 1, at most one such incoming edge can have a

flow of 1. This ensures that multiple subtasks of the same task are not scheduled in

the same slot.

(iii) Because each edge in E4 has a capacity of M , there can be at most M edges in

E3 with a flow of 1 that are incident on the same vertex in V4. In other words, at most

M subtasks are scheduled in a single slot.

95

Note that the maximum flow of G(τ, tl) is at most
∑

T∈τ ns(T, tl), because this is

the sum of the capacities of all edges coming from the source. We now show that a

real-valued flow of such a size exists.

Lemma 4.2. G(τ, tl) has a real-valued flow of size
∑

T∈τ ns(T, tl).

Proof. We use the following flow assignments. These assignments are similar to those

given by Baruah et al. [BCPV96] to establish that Expression (2.10) is a feasibility

condition for synchronous, periodic tasks.

• Each edge (source, 〈1, T 〉, ns(T, tl)) ∈ E0 carries a flow of size ns(T, tl).

• Each edge (〈1, T 〉, 〈2, T, i〉, 1) ∈ E1 carries a flow of 1. Because there are ns(T, tl)

outgoing edges from each 〈1, T 〉, flow is conserved at all vertices in V1.

• The flow through the edges in E2 is defined as follows. Let f(Ti, t) define the flow

from 〈2, T, i〉 to 〈3, T, t〉. Then,

f(Ti, u) =



























(⌊

i−1
wt(T)

⌋

+ 1
)

× wt(T) − (i − 1), u = r(Ti)

i −
(⌈

i
wt(T)

⌉

− 1
)

× wt(T), u = d(Ti) − 1

wt(T), r(Ti) + 1 ≤ u ≤ d(Ti) − 2

0, otherwise.

(4.6)

We now show that these assignments ensure that the flow is conserved at every

vertex in V2, i.e., the flow out of each vertex 〈2, T, i〉 ∈ V2 is 1. By (4.6), the total

flow out of 〈2, T, i〉 is (d(Ti)−r(Ti)−2)×wt(T) +

(⌊

i − 1
wt(T)

⌋

+ 1

)

×wt(T)−(i−1)

+ i−
(⌈

i
wt(T)

⌉

− 1

)

×wt(T), which simplifies to 1 + wt(T)× (d(Ti)− r(Ti)) +

wt(T)×
(⌊

i − 1
wt(T)

⌋

−
⌈

i
wt(T)

⌉)

. By (4.1) and (4.2), d(Ti)−r(Ti) =

⌈

i
wt(T)

⌉

−
⌊

i − 1
wt(T)

⌋

. Thus, the total flow is 1.

• Each edge (〈3, T, t〉, 〈4, t〉, 1) ∈ E3 carries a flow equal to the sum of all incoming

flows at 〈3, T, t〉. We now show that this flow is at most wt(T) (which is at

most 1). We first show that f(Ti, t) ≤ wt(T). This follows directly from (4.6) if

t /∈ {r(Ti), d(Ti − 1)}. If t = r(Ti), then f(Ti) is

(⌊

i − 1
wt(T)

⌋

+ 1

)

× wt(T) − (i − 1) , by (4.6)

96

≤
(

i − 1

wt(T)
+ 1

)

× wt(T) − (i − 1) , bxc ≤ x

= wt(T) , by simplification

If t = d(Ti) − 1, then f(Ti) is

i −
(⌈

i
wt(T)

⌉

− 1

)

× wt(T) , by (4.6)

≤ i −
(

i

wt(T)
− 1

)

× wt(T) , dxe ≥ x ⇒ −dxe ≤ −x

= wt(T) , by simplification

We now only need to consider the time slot in which two consecutive PF-windows

overlap. That will be the case when d(Ti) − 1 = r(Ti+1) for some i. In this

case, the total flow will be f(Ti, d(Ti) − 1) + f(Ti+1, r(Ti+1)). Thus, the flow is

i−
(⌈

i
wt(T)

⌉

− 1

)

×wt(T) +

(⌊

i
wt(T)

⌋

+ 1

)

×wt(T)− i, which simplifies to
(⌊

i
wt(T)

⌋

−
⌈

i
wt(T)

⌉

+ 2

)

× wt(T). Since, d(Ti) − 1 = r(Ti+1), it follows that

θ(Ti) = θ(Ti+1) and

⌈

i
wt(T)

⌉

−1 =

⌊

i
wt(T)

⌋

. Therefore,

⌊

i
wt(T)

⌋

−
⌈

i
wt(T)

⌉

=

−1. Thus, the total flow is wt(T). Thus, in all cases, the sum of all incoming

flows at 〈3, T, t〉 is at most wt(T).

• Each edge (〈4, t〉, sink,M) ∈ E4 carries a flow equal to the sum of all incom-

ing flows at 〈4, t〉. Thus, the incoming flow into 〈4, t〉 from 〈3, T, t〉 can be at

most
∑

T∈τ wt(T). Because
∑

T∈τ wt(T) ≤ M , the incoming flow and hence the

outgoing flow at 〈4, t〉 is at most M .

This proves that the flow along each edge is at most its capacity and that the flow is

conserved at all vertices. Hence, the flow defined above is a valid flow.

We are now in a position to state the following lemma and theorem.

Lemma 4.3. An IS task system τ has a valid schedule on M processors in which each

subtask is scheduled in its PF-window if and only if
∑

T∈τ wt(T) ≤ M .

Proof. The necessity of the condition follows from the necessity of condition for periodic

task systems (refer to Theorem 2.8) since any periodic task system is also an IS task

system. To prove sufficiency, we construct a valid schedule for τ in [0, t) for any given t.

97

Because t is arbitrary, it follows that τ has a valid schedule. By Lemma 4.2, it follows

that G(τ, t) has a real-valued flow of size
∑

T∈τ ns(T, t). This is a maximal flow, since

the sum of the capacities of all the outgoing edges from the source is the same. Because

all edge capacities in G(τ, t) are integers, by Theorem 4.1, it follows that G(τ, t) also has

a integral flow of size
∑

T∈τ ns(T, t). Therefore, by Lemma 4.1, τ has a valid schedule

over [0, t). By the definition of G(τ, t), it follows that in this schedule each subtask will

be scheduled in its PF-window.

Theorem 4.2. An IS task system τ has a valid schedule on M processors if and only

if
∑

T∈τ wt(T) ≤ M .

Proof. Follows directly from Lemma 4.3, since every subtask’s PF-window is contained

in its IS-window.

The PD2 priority definition for IS tasks. The b-bit and group deadline for a

subtask are defined as before assuming that future subtask releases are as early as

possible. Thus, b(Ti) is given by (2.11), and D(Ti) is given by the following formula

(refer to (3.1).

D(Ti) = θ(Ti) +









⌈⌈

i
wt(T)

⌉

× (1 − wt(T))
⌉

1 − wt(T)









(4.7)

Necessity of new proof techniques for IS task systems. Because periodic job

releases represent a “worst-case” scenario for an IS task, one may think that the op-

timality of PD2 for IS tasks follows as a simple corollary from previous work. How-

ever, the swapping technique used in the optimality proof for PD2 (presented earlier

in Section 3.4) relies crucially on the fact that at any moment of time, future window

alignments can be predicted. However, such predictions cannot be made for IS task

systems. In particular, consider r(Ti+1) in that proof. We proved that b(Ti) and used

this to show that r(Ti+1) = t′ (refer to (3.12)). However, this inference cannot be made

if T were an IS task because Ti+1 may have been released late. Thus, the whole proof

falls apart. Nevertheless, the swapping proof reveals several of the underlying concepts

why PD2 works, and also provides invaluable insight into Pfair scheduling in general.

(This is the primary reason for presenting the proof even though the optimality of PD2

for IS task systems implies its optimality for asynchronous periodic task systems.)

Another approach that has been often used with uniprocessor scheduling algorithms

is to reduce sporadic systems to asynchronous, periodic systems in the following way.

98

iT iT

jU j+1U kV

’s window, moves right

move left.

As a result of right−shifting

and , and ,
j+1U

iT

jU

kV

A deadline miss

Task

Task

td

U

T

windows

of windows
new position

after shifting

right shifting of windows

(a)

�����
�����
�����
���
���
���

�����
�����
�����
���
���
���

�����
�����
���
���

�����
�����
���
��� 	�	�	
	�	�	
	�	�	

�

�

�

�����
�����
�����
���
���
���

�
�

�
�

�
�

������
���

���������������
������
���

(b)

td

A deadline miss

t

Figure 4.4: (a) Starting with a sporadic task set that misses a deadline at td, we can
right-shift all windows towards td. Intuitively, we should get an asynchronous, periodic
task system that misses a deadline at td. (b) Unfortunately, right-shifting a window
need not increase future demand. Here, shifting Ti to the right by two slots decreases
its priority and hence subtask Uj, which was scheduled later at time t in the original
schedule, may now have higher priority. Note that at time t, a processor might be idle,
in which case Uj+1 can now be scheduled in that slot. This can cause a cascade of
future left-shifts. Thus, right-shifting a window can in fact decrease future demand.

Consider a scheduling algorithm A that has been shown to be correct for asynchronous,

periodic tasks. Suppose that there exists a feasible sporadic task system τ that misses a

deadline at some time td when scheduled using A. Let S be the corresponding schedule.

We may assume that all jobs in S after td are released in a periodic fashion, because

such jobs have no impact on the deadline miss at time td. Now, if we inductively “right-

shift” all jobs released before time td in S until there are no sporadic separations among

jobs before td, then we get a schedule S ′ that is in accordance with the asynchronous,

periodic task model (see Figure 4.4(a)). Moreover, “right-shifting” such jobs in S can

only increase demand near time td. Thus, a deadline must be missed at time td, a

contradiction.

To see why this argument cannot be applied in Pfair-scheduled multiprocessor sys-

tems, consider the situation shown in Figure 4.4(b). Here, subtask Ti is right-shifted

into slot t. Before the shift, subtask Uj was scheduled at t and some processor was

idle at t. After the shift, Uj has higher priority than Ti, so the two are swapped in

the schedule as a result of shifting Ti. Note that Uj being scheduled at t makes Uj+1

ineligible at t. However, after Ti and Uj are swapped, Uj+1 is eligible at t and thus it

may left-shift into slot t. This may cause a cascade of other left-shifts, which in turn

99

can cause a presumed (future) missed deadline to be met. The root of the problem

here is that right-shifting certain subtasks may in fact reduce demand in the future.

In Section 4.3, we present a lag-based proof to show the optimality of PD2 for IS

task systems. Our proof considers scheduling of dynamic task systems (defined in the

following section); the optimality of PD2 for IS task systems follows as a corollary of

the main result.

4.2 Scheduling of Dynamic Task Systems

In many real-time systems, the set of runnable tasks may change dynamically. One

example of such a system is a real-time virtual-reality application in which the user

moves within a virtual environment. As the user moves and the virtual scene changes,

the time required to render the scene may vary substantially. If a single task is respon-

sible for rendering, then its weight may change frequently. Task reweighting can be

modeled as a leave-and-join problem, in which a task with the old weight leaves and

a task with the new weight joins. Other examples of dynamic systems include embed-

ded systems that support different modes of operation (a mode change may require

adding new tasks and deleting existing tasks) and desktop systems that support real-

time applications such as multimedia and collaborative-support systems (which may

be initiated at arbitrary times).

In dynamic real-time task systems, a key issue is that of devising conditions under

which tasks may join and leave the system. A condition for joining is an immediate

consequence of the feasibility test in (4.5), i.e., admit a task if the total utilization is

at most M after its admission. The important question left is: when should a task

be allowed to leave the system? Here, we are referring to the time when the task’s

utilization can be reclaimed. The task may actually be allowed to leave the system

earlier. As the following example illustrates, leaves cannot be unrestricted or deadlines

may be missed.

Consider a task system consisting of one task of weight 1
2

and k ≥ 2 tasks of weight
1
2k

to be EPDF-scheduled on one processor. At time 0, the task of weight 1
2

is scheduled.

Suppose that it leaves after completing its job and re-joins immediately. Again, at time

1, it will be assigned higher priority and hence, will be scheduled again. Repeating this

2k− 2 times gives us the schedule shown in Figure 4.5. The task of weight 1
2

effectively

executes at a rate of 2k−1
2k

over the interval [0, 2k), and k − 1 of the tasks of weight 1
2k

miss their deadlines at time 2k. This implies that at least one subtask completes k − 1

100

0 1 2 3 4 2k−2 2k−1 2k

...

...
weight 1/2k
k tasks of

X

X

X

Tasks of
weight 1/2 ... X

X

leaves and rejoins
immediately

Figure 4.5: A deadline-based schedule for a dynamic task set. k tasks of weight 1
2k

and
one task of weight 1

2
join at time 0. The PF-windows of all the subtasks are shown.

The task of weight 1
2

is scheduled in [0, 1). (The time slot in which it is scheduled
is denoted by an ‘X’.) It leaves at time 1 and re-joins immediately. At time 1, it is
scheduled again. This pattern repeats until time 2k − 2 and leads to deadline misses
for k − 1 of the tasks with weight 1

2k
.

time units after its deadline. Thus, tardiness cannot be bounded by any constant value

if leaves are unrestricted. (Note that this example applies to any deadline-based Pfair

algorithm such as PF, PD, or PD2.)

The results of Stoica et al. [SAWJ+96] and Baruah et al. [BGP+97] imply that the

following conditions are sufficient on uniprocessor systems to ensure that no task misses

its deadline.

(J0) Join condition: A task T can join at time t if and only if the total utilization

after joining is at most one, i.e., one.

(L0) Leave condition: A task T can leave at time t if and only if lag(T, t) ≥ 0.

In (J0) and the subsequent join conditions, we assume the following. If a task T joins

at time t, then θ(T1) is set to t. A task that re-joins after having left is viewed as a

new task.

An IS task requests execution in terms of subtasks. Therefore, if Ti is the last

subtask of T that was scheduled, then lag(T, t) < 0 holds until time d(Ti). To see why,

note that task T receives i units of processor time in the ideal schedule only by time

d(Ti). Thus, t ≥ d(Ti) is equivalent to lag(T, t) ≥ 0. Hence, we can re-state the above

conditions as follows.

(J1) Join condition: A task T can join at time t if and only if the total utilization

after joining is at most the number of processors.

101

(L1) Leave condition: A task T can leave at time t if and only if t ≥ d(Ti), where Ti

is the last-scheduled subtask of T .

Intuitively, if a task is over-allocated, then some other task is under-allocated.

Hence, if we allow an over-allocated task to leave, then it can re-join immediately and

execute at a higher rate causing an under-allocated task to miss its deadline. Further,

in the feasibility proof for IS task systems, graph G(τ, tl) has a real-valued flow equal

to the number of subtasks if and only if every subtask’s PF-window lies in [0, tl). This

is true because no task leaves before the end of the PF-window of its last-scheduled

subtask (refer to (L1)). Therefore, a task system that satisfies (J1) and (L1) is feasible

on multiprocessors. However, as we show below, (J1) and (L1) are not sufficient on

multiprocessors, when any priority-based algorithm such as PF, PD, or PD2 is used.

The theorem below applies to any “weight-consistent” Pfair scheduling algorithm.

An algorithm is weight-consistent if, given two tasks T and U of equal weight with

eligible subtasks Ti and Uj, respectively, where i = j and r(Ti) = r(Uj) (and hence,

d(Ti) = d(Uj)), Ti has priority over a third subtask Vk if and only if Uj does. All known

Pfair scheduling algorithms are weight-consistent.

Theorem 4.3. No weight-consistent Pfair scheduler can guarantee all deadlines on

multiprocessors under (J1) and (L1).

Proof. Consider a class of task systems consisting of two sets X and Y of tasks of

weights w1 = 2/5 and w2 = 3/8, respectively. Whenever subtasks of tasks in X and

Y are released simultaneously, a weight-consistent scheduler will favor all subtasks of

tasks in X over those in Y or vice versa. We say that w1 is favored (analogously for

w2) if subtasks of tasks in X are favored. We construct a task system depending on

the task weight favored by the scheduler.

Case 1: w1 is favored. Consider a dynamic task system consisting of the following

types of tasks to be scheduled on 15 processors. (In each of our counterexamples, no

subtask is eligible before its PF-window.)

Type A: 8 tasks of weight w2 that join at time 0.

Type B: 30 tasks of weight w1 that join at time 0 and leave at time 3; each

releases one subtask.

Type C: 30 tasks of weight w1 that join at time 3.

102

0 1 2 3 4 5 6 7 8 9 10 30 31 32 33 34 350 1 2 3 4 5 6 7 8

8 8

5

B (16 x 3/8)

1515

8

A (5 x 2/5)

C (16 x 3/8)

B (30 x 2/5)

C (30 x 2/5)

A (8 x 3/8)

(b)(a)

Figure 4.6: Counterexamples demonstrating insufficiency of (L1) for any weight-
consistent scheduling algorithm. The notation used in this figure is similar to the
one used in Figures 3.3–3.7. The vertical lines depict intervals with excess demand.
(a) Theorem 4.3. Case 1: Tasks of weight 2/5 are favored at times 0 and 1. (b) The-
orem 4.3. Case 2: Tasks of weight 3/8 are favored at times 0 and 1.

Because 30w1 + 8w2 = 15, (J1) is satisfied for the type-C tasks. Because d(T1) =
⌈

5
2

⌉

= 3 for every type-B task T , (L1) is also satisfied.

Since w1 is favored, type-B tasks are favored over type-A tasks at times 0 and 1.

Hence, the schedule for [0, 3) will be as shown in Figure 4.6(a). Consider the interval

[3, 8). Each type-A task has two subtasks remaining for execution, which implies that

the type-A tasks need 16 quanta. Similarly, each type-C task also has two subtasks,

which implies that the type-C tasks need 60 quanta. However, the total number of

quanta in [3, 8) is 15 · (8−3) = 75. Thus, one subtask will miss its deadline at or before

time 8.

Case 2: w2 is favored. Consider a dynamic task system consisting of the following

types of tasks to be scheduled on 8 processors.

Type A: 5 tasks of weight w1 that join at time 0.

Type B: 16 tasks of weight w2 that join at time 0 and leave at time 3; each

releases one subtask.

Type C: 16 tasks of weight w2 that join at time 3.

Because 5w1 + 16w2 = 8, (J1) is satisfied for the type-C tasks. Because d(T1) =
⌈

8
3

⌉

= 3 for every type-B task T , (L1) is also satisfied.

Since w2 is favored, type-B tasks are favored over type-A tasks at times 0 and 1.

Hence, the schedule for [0, 3) will be as shown in Figure 4.6(b). Consider the interval

[3, 35). The number of subtasks of each type-A task that need to be scheduled in [3, 35)

is 1 + (35 − 5) · 2/5 = 13. Similarly, the number of subtasks of each type-C task is

103

(35− 3) · 3/8 = 12. The total is 5 · 13 + 16 · 12 = 257, whereas the number of quanta in

[3, 35) is (35 − 3) · 8 = 256. Thus, one subtask will miss its deadline at or before time

35.

The situations described in Theorem 4.3 can be “circumvented” if it can be known

at the time a subtask is released whether it is the final subtask of its task. For example,

in Figure 4.6(a), if we knew that the first subtask T1 of each type-B task is its last, then

we could have given T1 an effective b-bit of zero. Hence, PD2 would have scheduled it

with a lower priority than any type-A task. However, in general, such knowledge may

not be available to the scheduler.

The examples in Figure 4.6 show that allowing a light task T to leave at d(Ti) when

b(Ti) = 1 can lead to deadline misses. We now derive a similar, but stronger, condition

for heavy tasks.

Theorem 4.4. If a heavy task T is allowed to leave before D(Ti), where Ti is the last-

scheduled subtask of T , then there exist task systems that miss a deadline under PF,

PD, and PD2.

Proof. Consider the following dynamic task system to be scheduled on 35 processors,

where 2 ≤ t ≤ 4.

Type A: 9 tasks of weight 7/9 that join at time 0.

Type B: 35 tasks of weight 4/5 that join at time 0 and leave at time t;

each releases one subtask.

Type C: 35 tasks of weight 4/5 that join at time t.

All type-A and type-B tasks have the same PD2 priority at time 0, because each has

a deadline at time 2, a b-bit of 1, and a group deadline at time 5. Hence, the type-B

tasks may be assigned higher priority. Assuming this, Figure 4.7 depicts the schedule

for the case of t = 3. This counterexample applies to PF and PD as well, because both

favor the type-B tasks at time 0.

Consider the interval [t, t+5). Each type-A and type-C task has four subtasks with

deadlines in [t, t + 5) (see Figure 4.7). Thus, 9 · 4 + 35 · 4 = 35 · 5 + 1 subtasks must

be executed in [t, t + 5). Since 35 · 5 quanta are available in [t, t + 5), one subtask will

miss its deadline.

Theorems 4.3 and 4.4 provide us with the following new conditions, which are

sufficient when used with PD2 (proved in Section 4.3). Theorems 4.3 and 4.4 also

demonstrate the minimality of these conditions.

104

0 1 2 3 4 5 6 7 8 9

B (35 x 4/5) 35

9

9A (9 x 7/9)

C (35 x 4/5)

Figure 4.7: Counterexample demonstrating insufficiency of (L1) and tightness of (L2).
Theorem 4.4. Each task of weight 4/5 releases exactly one subtask. All such tasks are
allowed to leave at time 3 and re-join immediately. Demand over [3, 8) is more than
the available processor time.

(J2) Join condition: Same as (J1).

(L2) Leave condition: Let Ti denote the last-scheduled subtask of T . If T is light,

then T can leave at time t if and only if either t = d(Ti) ∧ b(Ti) = 0 or t > d(Ti)

holds. If T is heavy, then T can leave at time t if and only if t ≥ D(Ti).

(L2) reduces to (L1) if the leaving task is actually periodic or sporadic and its final

job executes for its worst-case execution requirement. In other words, such a task can

leave at the deadline of its last job. To see why, note that if Ti is the last subtask of the

final job, then, because consecutive task periods do not overlap, b(Ti) = 0 (and hence

D(Ti) = d(Ti), if T is heavy). Thus, by (L2), T can leave at time d(Ti), as in (L1).

Any feasible static IS task system satisfies (J2) and (L2) by default because no task

leaves such a system and (J2) is identical to the feasibility condition. In the next section,

we prove that PD2 correctly schedules any dynamic IS task system satisfying (J2) and

(L2). As a corollary, it follows that PD2 correctly schedules any feasible static IS task

system, i.e., it is optimal for scheduling static IS task systems on multiprocessors.

105

4.3 Sufficiency of (J2) and (L2)

In our proof, we consider task systems obtained by removing subtasks from an

IS task system. Note that such a task system may no longer be an IS task system

(see Figure 4.8). To circumvent this problem, we define a more general model called

the generalized IS (GIS) task model, and show that PD2 can optimally schedule task

systems that belong to this model. In a GIS task system, a task T , after releasing

subtask Ti, may release subtask Tk, where k > i+1, instead of Ti+1, with the following

restriction: r(Tk) − r(Ti) is at least

⌊

k − 1
wt(T)

⌋

−
⌊

i − 1
wt(T)

⌋

. In other words, r(Tk) (and

hence, d(Tk)) is not smaller than what it would have been if Ti+1, Ti+2, . . . , Tk−1 were

present and released as early as possible. For the special case where Tk is the first

subtask released by T , r(Tk) must be at least

⌊

k − 1
wt(T)

⌋

.

Thus, the GIS model generalizes the IS model by allowing subtasks to be absent.

It follows that for every GIS task system τ , there exists an IS task system τ ′ such

that τ can be obtained by simply removing certain subtasks in τ ′. Hence, if there

exists a schedule for τ ′ in which no deadline is missed, then that schedule can be easily

modified (by removing subtasks) to obtain a schedule for τ . Therefore, Expression (4.5)

is a feasibility condition for GIS task systems as well.

Note that subtask indices for a GIS task are assigned to reflect the missing subtasks.

For example, task T in Figure 4.8 releases subtask T4 after releasing T2; T3 is missing

and θ(T4) = 0. Hence, the formulae for subtask release times and deadlines of a GIS

task are as in (4.1) and (4.2). Further, the formulae for the b-bit and group deadlines

are also as defined in (2.11) and (4.7). This implies that the PD2 priority definition of

a subtask of a GIS task is the same as for the corresponding IS task.

Terminology. An instance of a task system is obtained by specifying a unique as-

signment of release times and eligibility times for each subtask, subject to (4.3). Note

that the deadline of a subtask is automatically determined once its release time is fixed

(refer to (4.1) and (4.2)). If a task T , after executing subtask Ti, releases subtask Tk,

then Tk is called the successor of Ti and Ti is called the predecessor of Tk (e.g., T4 is

T2’s successor in Figure 4.8). The following property is used in our proofs.

Claim 4.1. If subtask Tk is the successor of subtask Ti, then r(Tk) ≥ d(Ti) − 1.

Proof. Note that

⌈

i
wt(T)

⌉

≤
⌊

i
wt(T)

⌋

+ 1. Because k ≥ i + 1,

⌊

k − 1
wt(T)

⌋

≥
⌊

i
wt(T)

⌋

.

106

2T

1T

5T
6T

7T
8T

T4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

IS delay

Figure 4.8: The PF-windows of the first eight subtasks of a GIS task T with weight
8/11. Subtask T3 is missing and T5 is released three units late. (Because T3 is missing,
this is not an IS task.)

Therefore,

⌊

k − 1
wt(T)

⌋

≥
⌈

i
wt(T)

⌉

− 1. By (4.3), θ(Tk) ≥ θ(Ti). Therefore, θ(Tk) +
⌊

k − 1
wt(T)

⌋

≥ θ(Ti)+

⌈

i
wt(T)

⌉

−1. By (4.1) and (4.2), this implies that r(Tk) ≥ d(Ti)−1.

4.3.1 Displacements

By definition, the removal of a subtask from one instance of a GIS task system results

in another valid instance. Let X (i) denote a subtask of any task in a GIS task system τ .

Let S denote a schedule of τ obtained by any scheduling algorithm that schedules on

an earliest-pseudo-deadline-first (EPDF) basis (including PF, PD and PD2). Assume

that removing X (1) scheduled at slot t1 in S causes X(2) to shift from slot t2 to t1,

where t1 6= t2, which in turn may cause other shifts. We call this shift a displacement

and represent it by a four-tuple 〈X (1), t1, X
(2), t2〉. A displacement 〈X (1), t1, X

(2), t2〉 is

valid if and only if e(X (2)) ≤ t1. Because there can be a cascade of shifts, we may have

a chain of displacements, as illustrated in Figure 4.9.

Removing a subtask may also lead to slots in which some processors are idle. As in

Section 3.4, if k processors are idle in slot t, then we say that there are k holes in slot

t. Note that holes may exist because of late subtask releases, even if total utilization

is M .

The lemmas below concern displacements and holes. Lemma 4.4 states that a

subtask removal can only cause left-shifts, as in Figure 4.9(b). Lemma 4.5 indicates

when a left-shift into a slot with a hole can occur. Lemma 4.6 shows that shifts across

a hole cannot occur. Here, τ is an instance of a GIS task system and S denotes a

107

0 2 3 4 5 6 71 0 2 3 4 5 6 71

T1

T2

T3 T3
T2

U1

U2

U3

V1

V2

V3
V2

U1

U3

T1

V1

U2

(b)(a)

a hole

W1

2 holes

leads to the following

chain of displacements.

Task T

Task U

Task V

Task W

Removing subtask

, 0, , 11VT1

, 1, 1 , 22UV

, 2, 2 , 31WU

W1

Figure 4.9: A schedule for three tasks of weight 3/7 and one task of weight 1/7 on two
processors. The solid lines depict PF-windows; the dashed lines depict IS-windows.
Here, only subtasks T2 and U2 are eligible before their PF-windows. Inset (b) illustrates
the displacements caused by the removal of subtask T1 from the schedule shown in inset
(a).

schedule for τ obtained by a greedy EPDF-based scheduling algorithm. Throughout

this section, we assume that ties among subtasks are resolved consistently, i.e., if τ ′ is

obtained from τ by a subtask removal, then the relative priorities of two subtasks in τ ′

are the same as in τ .

Lemma 4.4. Let X(1) be a subtask that is removed from τ , and let the resulting chain

of displacements in S be C = ∆1, ∆2, . . . , ∆k, where ∆i =〈X(i), ti, X(i+1), ti+1〉. Then

ti+1 > ti for all i ∈ {1, . . . , k}.

Proof. Let τ ′ be the task system instance obtained by removing X (1) from τ , and let

S ′ be its PD2 schedule. Note that the last displacement creates a hole at tk+1 in S ′.

Suppose ti+1 > ti is not true for some i ∈ {1, . . . , k}. Let

tj = min{ti | ti+1 < ti ∧ 1 ≤ i ≤ k}.

(Informally, the leftmost right-shift occurs when X (j+1) scheduled at tj+1 shifts to tj.)

We consider two cases depending on whether j is equal to k. If j = k, then the last

displacement will be as shown in Figure 4.10(a). Note that X (k+1) is eligible to be

scheduled in slot tk+1 in S ′, because it is scheduled there in S and no subtask (in

particular, its predecessor) scheduled before tk+1 is shifted to tk+1 (by choice of j).

Because there will be a hole in slot tk+1 in S ′ and tk+1 < tk, this contradicts the greedy

behavior of the scheduling algorithm.

108

t4 t5 t3t1 t2

(b)

t5 t3 t4t1 t2

(a)

X
(5)

X
(4)

X
(3)

X
(2)

X
(2)

X
(5)

X
(4)

X
(3)

Figure 4.10: Lemma 4.4. A chain of k = 4 displacements is shown. (a) The leftmost
right shift occurs when X (5) shifts from t5 to t4, i.e., j = k. (b) The leftmost right shift
occurs when X(4) shifts from t4 to t3, i.e., j < k (here, tj = t3, tj+1 = t4, and tj+2 = t5).

If j < k, then by our choice of j, tj+1 < tj and the displacements are as in Fig-

ure 4.10(b). By the minimality of tj, tj+2 > tj+1. Thus, at tj+1, X(j+1) was chosen over

X(j+2) in S. After the displacements, X (j+1) is scheduled at tj and X(j+2) at tj+1(< tj).

This contradicts our assumption that ties are broken consistently in S and S ′. Hence,

ti+1 > ti for all i ∈ {1, . . . , k}.

Lemma 4.5. Let ∆ = 〈X (1), t1, X
(2), t2〉 be a valid displacement in S. If t1 < t2 and

there is a hole in slot t1 in S, then X(2) is successor of X (1).

Proof. Because ∆ is valid, e(X (2)) ≤ t1. Since there is a hole in slot t1 and X(2) is not

scheduled there in S, X (2) must be the successor of X (1).

Lemma 4.6. Let ∆ = 〈X (1), t1, X
(2), t2〉 be a valid displacement in S. If t1 < t2 and

there is a hole in slot t′ such that t1 ≤ t′ < t2 in that schedule, then t′ = t1 and X(2) is

the successor of X (1).

Proof. Because ∆ is valid, e(X (2)) ≤ t1. If t1 < t′, then e(X (2)) < t′, implying that X (2)

is not scheduled in slot t2 > t′, as assumed, since there is a hole in t′. Thus, t1 = t′; by

Lemma 4.5, X(2) is the successor of X (1).

109

4.3.2 Flows and Lags in GIS Task Systems

The lag of T at time t is defined in the same way as it is defined for periodic tasks.

Let ideal(T, t) denote the share that T receives in a fluid schedule in [0, t). Then,

lag(T, t) = ideal(T, t) −
t−1
∑

u=0

S(T, u). (4.8)

Before defining ideal(T, t), we define flow(T, u), which is the share assigned to task

T in slot u. flow(T, u) is defined in terms of a function f(Ti, u) (defined in (4.6)

that indicates the share assigned to each subtask in each slot. Figure 4.11 shows the

values of f for different subtasks of a task of weight 5/16. flow(T, u) is simply defined

as flow(T, u) =
∑

i f(Ti, u). Observe that the value of f(r(Ti), k) is the same for a

subtask irrespective of whether the task is a periodic task or an IS task. Also, note

that flow(T, u) usually equals wt(T), but in certain slots, it may be less than wt(T),

so that each subtask of T has a unit share.

The following properties about flows are used in our proof. (We only prove (F1)

here to give a flavor of the proof technique used. The other properties are proved in

Appendix A.)

(F1) For all time slots t, flow(T, t) ≤ wt(T).

Proof. (This was proved earlier as part of the proof of Lemma 4.2. However,

for the sake of completeness, we repeat the proof here.) We first show that

f(Ti, t) ≤ wt(T). This follows directly from (4.6) if t /∈ {r(Ti), d(Ti) − 1)}. If

t = r(Ti), then

f(Ti) =

(⌊

i − 1
wt(T)

⌋

+ 1

)

× wt(T) − (i − 1) , by (4.6)

≤
(

i − 1

wt(T)
+ 1

)

× wt(T) − (i − 1) , bxc ≤ x

= wt(T) , by simplification

If t = d(Ti) − 1, then

f(Ti) = i −
(⌈

i
wt(T)

⌉

− 1

)

× wt(T) , by (4.6)

≤ i −
(

i

wt(T)
− 1

)

× wt(T) , dxe ≥ x

110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

16

5

16

5

16

5 16

5

16

5

16

4

16

1

16

5

16

5

16

3

16

3

16

2

16

5

16

2

16

5

16

4

16

5

16

5

16

5

16

1

16

5

16

5

16

5

16

1

16

2

16

5

16

5

16

4

16

5

16

5

16

4

16

2

16

5

16

3

16

3

16

5

16

5

16

5

16

5

16

1

(a) (b)

Figure 4.11: Fluid schedule for the first five subtasks (T1, . . . , T5) of a task T of weight
5/16. The share of each subtask in each slot of its PF-window is shown. In (a), no
subtask is released late; in (b), T2 and T5 are released late. Note that share(T, 3) is
either 5/16 or 1/16 depending on when subtask T2 is released.

= wt(T) , by simplification

We now only need to consider the time slot in which two consecutive PF-windows

overlap. That will be the case when d(Ti) − 1 = r(Ti+1) for some i. In this case,

the total flow will be f(Ti, d(Ti)− 1) + f(Ti+1, r(Ti+1)). Thus, flow(T, d(Ti)− 1)

is i −
(⌈

i
wt(T)

⌉

− 1

)

× wt(T) +

(⌊

i
wt(T)

⌋

+ 1

)

× wt(T) − i, which simplifies

to

(⌊

i
wt(T)

⌋

−
⌈

i
wt(T)

⌉

+ 2

)

× wt(T). Since d(Ti) − 1 = r(Ti+1), by (4.1) and

(4.2), it follows that θ(Ti) = θ(Ti+1) and

⌈

i
wt(T)

⌉

− 1 =

⌊

i
wt(T)

⌋

. Therefore,
⌊

i
wt(T)

⌋

−
⌈

i
wt(T)

⌉

= −1. Hence, flow(T, d(Ti) − 1) = wt(T). Thus, in all

cases, we have flow(T, t) ≤ wt(T).

(F2) Let Ti be a subtask of a GIS task and let Tk be its successor. If b(Ti) = 1 and

r(Tk) ≥ d(Ti), then flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T). (For exam-

ple, in Figure 4.11(b), flow(T, 3) + flow(T, 4) = 1/16 < 5/16 and flow(T, 14) +

flow(T, 15) = 5/16.)

(F3) Let Ti be a subtask of a heavy GIS task T such that b(Ti) = 1 and let Tk be the

successor of Ti. If u ∈ {d(Ti), . . . , D(Ti)−1} and u ≤ r(Tk), then flow(T, d(Ti))+

flow(T, u) ≤ wt(T). (This is an extension of (F2) to heavy tasks.)

Since flow(T, u) gives the share of task T in slot u, the total share of T over

any interval [0, t) ideal(T, t) is defined simply as
∑t−1

u=0 flow(T, u). Hence, from (4.8),

lag(T, t + 1) =
∑t

u=0(flow(T, u)− S(T, u)) = lag(T, t) + flow(T, t)− S(T, t). Similarly,

111

the total lag for a schedule S and task system τ at time t+1, denoted by LAG(τ, t+1),

is

LAG(τ , t + 1) = LAG(τ , t) +
∑

T∈τ

(flow(T, t) − S(T, t)). (4.9)

(LAG(τ, 0) is defined to be 0.) The lemma below is used in our proof.

Lemma 4.7. If LAG(τ , t) < LAG(τ , t + 1), then there is a hole in slot t.

Proof. Let k be the number of subtasks scheduled in slot t. Then, by (4.9), LAG(τ , t + 1) =

LAG(τ , t)+
∑

T∈τ flow(T, t)−k. If LAG(τ , t) < LAG(τ , t + 1), then k <
∑

T∈τ flow(T, t).

Because flow(T, t) ≤ wt(T) (by (P1)), we have
∑

T∈τ flow(T, t) ≤ ∑T∈τ wt(T), which

by (4.5) implies that
∑

T∈τ flow(T, t) ≤ M . Therefore, k < M , i.e., there is a hole in

slot t.

4.3.3 Proof

We now prove that PD2 correctly schedules any dynamic GIS task system that

satisfies (J2) and (L2). We use proof by contradiction, i.e., we show that an assumption

contrary to the above leads to a contradiction. Thus, we start by making the following

assumption: PD2 misses a deadline for some task system that satisfies (J2) and (L2).

Then there exists a time td and an instance of a task system τ as given in Definitions 4.2

and 4.3 below.

Definition 4.2. td is the earliest time at which any task system instance misses a

deadline under PD2.

Definition 4.3. τ is an instance of a task system with the following properties.

(T1) τ misses a deadline under PD2 at td.

(T2) No instance of any task system that satisfies (T1) releases fewer subtasks in [0, td)

than τ .

(T3) No instance task system that satisfies both (T1) and (T2) has a larger rank than

τ , where the rank of an instance is the sum of the eligibility times of all subtasks

with deadlines at most td.

Existence of τ follows from the fact that (T1)–(T3) are applied in sequence; e.g., τ

is not claimed to be of maximal rank — rather, its rank is maximal among those task

system instances satisfying (T1) and (T2).

112

By (T1), (T2), and Definition 4.2, exactly one subtask in τ misses its deadline: if

several subtasks miss their deadlines, all but one can be removed and the remaining

subtask will still miss its deadline, contradicting (T2).

In the rest of this proof, we use S to denote the PD2 schedule of τ . We now prove

several properties about τ and S.

Lemma 4.8. The following properties hold for τ and S.

(a) For all subtasks Ti in τ , e(Ti) ≥ min(r(Ti), t), where t is the time at which Ti is

scheduled in S.

(b) Let t be the time at which Ti is scheduled and let Tk be Ti’s successor. If either

d(Ti) > t + 1 or d(Ti) = t + 1 ∧ b(Ti) = 0, then Tk is not eligible before t + 1.

(c) For all Ti, d(Ti) ≤ td.

(d) There are no holes in slot td − 1.

(e) LAG(τ , td) = 1.

(f) LAG(τ , td − 1) ≥ 1.

Proof. Below, we prove each property separately.

Proof of (a): Suppose that e(Ti) < min(r(Ti), t). Consider the task system

instance τ ′ obtained from τ by changing e(Ti) to min(r(Ti), t). Note that e(Ti) is still

at most r(Ti) and τ ′’s rank is larger than τ ’s. τ ′ is feasible because the feasibility

proof produces a schedule in which each subtask is scheduled in its PF-window (refer

to Section 4.1).

Since PD2 priorities do not depend on the eligibility times, it is easy to see that the

relative priorities of the subtasks do not change for any slot u ∈ {0, . . . , td − 1}. Hence,

τ ′ and τ have identical PD2 schedules. Thus, τ ′ misses a deadline at td, contradicting

(T3).

Proof of (b): By (4.1) – (4.3), r(Tk) ≥ d(Ti) − 1. Therefore, if d(Ti) > t + 1 or

r(Tk) ≥ d(Ti+1), then r(Tk) ≥ t + 1. Further, since Ti is scheduled in [t, t + 1), Tk is

scheduled at or after time t + 1. Therefore, by part (a), e(Tk) ≥ t + 1

We now consider the case when d(Ti) = t + 1. Since b(Ti) = 0, by (2.11), it follows

that

⌊

k − 1
wt(T)

⌋

=

⌈

i
wt(T)

⌉

. Therefore, by (4.1) – (4.3), r(Ti+1) ≥ d(Ti). Therefore,

113

r(Tj) ≥ t + 1, for all j > i. In particular, r(Tk) ≥ t + 1, where Tk is Ti’s successor. As

before, by part (a), it follows that e(Tk) ≥ t + 1.

Proof of (c): Suppose τ contains a subtask Uj with a deadline greater than

td. Since S is obtained using an EPDF-based scheduling algorithm, Uj can be re-

moved without affecting the scheduling of higher-priority subtasks with earlier dead-

lines. Thus, a deadline will still be missed at td after Uj’s removal. This contradicts

(T2).

Proof of (d): Let Uj be the subtask that misses its deadline at td in S. (Recall

that there is only one such subtask.) Because d(Uj) = td), d(Uk) ≤ td − 1, where Uk is

Uj’s predecessor. By the minimality of td, Uk meets its deadline and hence is scheduled

before td−1. Thus, if there were a hole in slot td−1, then Uj would have been scheduled

there, in which case it would meet its deadline. Contradiction.

Proof of (e): By (4.9), we have

LAG(τ , td) =

td−1
∑

t=0

∑

T∈τ

flow(T, t) −
td−1
∑

t=0

∑

T∈τ

S(T, t).

The first term on the right-hand side of the above equation is the total share in [0, td),

which equals the total number of subtasks in τ . The second term equals the number of

subtasks scheduled in S over the interval [0, td). Since exactly one subtask misses its

deadline in S, the difference between these two terms is 1, i.e., LAG(τ , td) = 1.

Proof of (f): By (d), there are no holes in slot td − 1. Hence, by Lemma 4.7,

LAG(τ , td − 1) ≥ LAG(τ , td). Therefore, by (e), LAG(τ , td − 1) ≥ 1.

Because LAG(τ , 0) = 0, by part (f) of Lemma 4.8, there exists a time t such that

0 ≤ t < td − 1 ∧ LAG(τ , t) < 1 ∧ LAG(τ , t + 1) ≥ 1. (4.10)

Without loss of generality, let t be the latest such time, i.e., for all u such that t < u ≤
td − 1, LAG(τ, u) ≥ 1. We now show that such a t cannot exist, thus contradicting our

starting assumption that td and τ exist.

By (4.10), LAG(τ , t) < LAG(τ , t + 1). Hence, by Lemma 4.7, there is at least one

hole in slot t. Let A denote the set of tasks scheduled in slot t.

Let B denote the set of tasks not in A that are “active” at t. A task U is active at

114

t t+1

h

k

j

hole

B

I

A
U

W

V

Figure 4.12: Sets A, B, and I. The PF-windows of a sample task of each set are shown.
The PF-windows are denoted by line segments. An arrow over a release (respectively,
deadline) indicates that the release (respectively, deadline) could be anywhere in the
direction of the arrow.

time t if it has a subtask Uj such that e(Uj) ≤ t < d(Uj). (A task may be inactive either

because it has already left the system or because of a late subtask release.) Consider

any task U ∈ B and let Uj be such that e(Uj) ≤ t < d(Uj). Because there is a hole in

slot t and no subtask of U is scheduled at time t, and because e(Uj) ≤ t < d(Uj), Uj

must be scheduled before time t. Thus, we have the following result.

Claim 4.2. For any subtask Uj of task U ∈ B, if e(Uj) ≤ t < d(Uj), then Uj is

scheduled before t.

Let I denote the set of the remaining tasks that are not active at time t. Figure 4.12

shows how the tasks in A, B, and I are scheduled.

Of these three sets, set B is the most interesting. As we show below, every task in

B must have an IS separation in slot t. We use this to prove that LAG reduces below

one before time td. We now prove several properties of set B. We first show that in

order for LAG to increase during slot t, B must be non-empty.

Lemma 4.9. B is non-empty.

Proof. Let the number of the holes in slot t be h. Then,
∑

T∈τ S(T, t) = M−h. By (4.9),

LAG(τ , t + 1) = LAG(τ , t) +
∑

T∈τ (flow(T, t) − S(T, t)). Thus, because LAG(τ , t) <

LAG(τ , t + 1), we have
∑

T∈τ flow(T, t) > M − h.

For every V ∈ I, since either d(Vk) < t or r(Vk) > t holds, by (4.6), flow(V, t) = 0. It

follows that
∑

T∈A∪B flow(T, t) > M −h. Therefore, by (F1),
∑

T∈A∪B wt(T) > M −h.

Because the number of tasks scheduled in slot t is M − h, |A| = M − h. Because

wt(T) ≤ 1 for any task T ,
∑

T∈A wt(T) ≤ M − h. Thus,
∑

T∈B wt(T) > 0. Hence, B

is not empty.

115

In the proof of Lemmas 4.10, 4.11, and 4.13, we use the following technique to

prove the required result: if the required condition is not satisfied, then a subtask can

be removed without causing the missed deadline at td to be met, thus contradicting

(T2).

Lemma 4.10. Let U be any task in B. Let Uj be the subtask with the largest index

such that e(Uj) ≤ t < d(Uj). Then, d(Uj) = t + 1 ∧ b(Uj) = 1.

Proof. By Claim 4.2, Uj must be scheduled before t. By (4.10), t < td. Hence, Uj does

not miss its deadline. From the lemma statement, we have d(Uj) ≥ t+1. Suppose that

the following holds.

d(Uj) > t + 1 or d(Uj) = t + 1 ∧ b(Uj) = 0 (4.11)

Under these assumptions, we show that Uj can be removed and a deadline will still be

missed at td, contradicting (T2). Let the chain of displacements caused by removing

Uj be ∆1, ∆2, . . . , ∆k, where ∆i = 〈X(i), ti, X(i+1), ti+1〉 and X(1) = Uj. By Lemma 4.4,

ti+1 > ti for 1 ≤ i ≤ k.

Note that at slot ti, the priority of subtask X (i) is at least that of X (i+1), because

X(i) was chosen over X (i+1) in S. Thus, because X (1) = Uj, by (4.11), for each subtask

X(i), 1 ≤ i ≤ k + 1, either d(X (i)) > t + 1 or d(X (i)) = t + 1 ∧ b(X (i)) = 0. Therefore,

by part (b) of Lemma 4.8, the following property holds.

(E) The eligibility time of the successor of X (i) (if it exists in τ) is at least t + 1 for

all i ∈ {1, . . . , k + 1}.

We now show that the displacements do not extend beyond slot t. Assume, to the

contrary, that tk+1 > t. Consider h ∈ {2, . . . , k + 1} such that th > t and th−1 ≤ t, as

depicted in Figure 4.13(a). Such an h exists because t1 < t < tk+1. Because there is

a hole in slot t and th−1 ≤ t < th, by Lemma 4.6, th−1 = t and X(h) must be X(h−1)’s

successor. Therefore, by (E), e(X (h)) ≥ t + 1. This implies that ∆h−1 is not valid.

Thus, the displacements do not extend beyond slot t, implying that no subtask

scheduled after t is left-shifted. Hence, a deadline is still missed at time td, contradicting

(T2). Hence, d(Uj) = t + 1 ∧ b(Uj) = 1.

We now consider two separate cases depending on whether B contains a light task.

116

t(=)h−1
. . . ht1t ht1t

t(=)h−2 t(=)h−1
tht1 t1 th

X (h)

hole

X

X

. . .

X

(2)

(h−1)

(h)

t t+1 . . .+1 +1 . . .

. . .

X

X

X

(h−2)

(h−1)

(2)

holehole

t t+1 . . .t+2+1 +1

(a) (b)

Figure 4.13: IS-windows are denoted by line segments. (a) Lemma 4.10. X (h) must
be the successor of X (h−1) because there is a hole in slot t. (b) Lemma 4.11. If there
is a hole in both slots t and t + 1, then X (h−2) and X(h−1) must be scheduled at t and
t+1 in S, respectively. Also, in τ , X (h) must be the successor of X (h−1), which in turn,
must be the successor of X (h−2).

At Least One Task in B is Light

The following property (proved in Appendix A) is used in the proof of Lemma 4.11.

(L) For a light task T , if Tk is the successor of Ti, then d(Tk) ≥ d(Ti) + 2.

Lemma 4.11. If B has at least one light task, then there is no hole in slot t + 1.

Proof. By (4.10), t < td − 1, and therefore, t + 1 ≤ td − 1. Suppose that there is a hole

in slot t + 1. By part (d) of Lemma 4.8, t + 1 < td − 1, i.e.,

t + 2 ≤ td − 1. (4.12)

Let U be a light task in B and let Uj be the subtask of U with the largest index

such that e(Uj) ≤ t < d(Uj). Our approach is the same as in the proof of Lemma 4.10.

Let the chain of displacements caused by removing Uj be ∆1, ∆2, . . . , ∆k, where ∆i =

〈X(i), ti, X(i+1), ti+1〉 and X(1) = Uj. By Lemma 4.4, we have ti+1 > ti for all i ∈ [1, k].

Also, the priority of X (i) is at least that of X (i+1) at ti, because X(i) was chosen over

X(i+1) in S. Because U is light and d(Uj) = t + 1 ∧ b(Uj) = 1 (by Lemma 4.10), this

implies the following.

(P) For all i ∈ {1, . . . , k +1}, either (i) d(X (i)) > t+1 or (ii) d(X (i)) = t+1 and X (i)

is the subtask of a light task.

117

Suppose the chain of displacements extends beyond t+1, i.e., tk+1 > t+1. Consider

h ∈ {1, . . . , k +1} such that that th > t+1 and th−1 ≤ t+1. Because there is a hole in

slot t+1 and th−1 ≤ t+1 < th, by Lemma 4.6, th−1 = t+1 and X(h) is the successor of

X(h−1). Similarly, because there is a hole in slot t, th−2 = t and X(h−1) is the successor

of X(h−2). This is illustrated in Figure 4.13(b).

By (P), either d(X (h−2)) > t + 1 or d(X (h−2)) = t + 1 and X (h−2) is the subtask of a

light task. In either case, d(X (h−1)) > t + 2. To see why, note that if d(X (h−2)) > t + 1,

then because X(h−1) is the successor of X (h−2), by (4.2), d(X (h−1)) > t + 2. On the

other hand, if d(X (h−2)) = t + 1 and X (h−2) is the subtask of a light task, then, by (L),

d(X(h−1)) > t + 2.

Now, because X (h−1) is scheduled at t+1, by part (b) of Lemma 4.8, the successor of

X(h−1) is not eligible before t+2, i.e., e(X (h)) ≥ t+2. This implies that the displacement

∆h−1 is not valid. Thus, the chain of displacements cannot extend beyond time t + 2.

Hence, because t + 2 ≤ td − 1 (by (4.12)), removing Uj cannot cause a missed deadline

at td to be met. This contradicts (T2). Hence, there is no hole in slot t + 1.

Lemma 4.12. If B has at least one light task, then LAG(τ , t + 2) < 1.

Proof. Let the number of holes in slot t be h. We now derive some properties about

the flow values in slots t and t + 1.

By the definition of I, only tasks in A∪B are active at time t. Thus,
∑

T∈τ flow(T, t) =
∑

T∈A∪B flow(T, t). Since wt(T) ≤ 1 for any T , we have
∑

T∈A wt(T) ≤ |A|. Thus, by

(F1),
∑

T∈A flow(T, t) ≤ |A|. Now, because there are h holes in slot t, M − h tasks are

scheduled at t, i.e., |A| = M − h. Thus,
∑

T∈A flow(T, t) ≤ M − h and

∑

T∈τ

flow(T, t) ≤ M − h +
∑

T∈B

flow(T, t). (4.13)

Consider U ∈ B. Let Uj be the subtask of U with the largest index such that

e(Uj) ≤ t < d(Uj). Let C denote the set of such subtasks for all tasks in B. Then, by

Lemma 4.10,

for all Uj ∈ C, d(Uj) = t + 1 ∧ b(Uj) = 1. (4.14)

If U is heavy, then this would imply that D(Uj) > t + 1. (By the definition of a group

deadline, for any subtask Ti of a heavy task T , D(Ti) = d(Ti) holds if and only if

b(Ti) = 0.) Thus, the leave condition (L2) is not satisfied at time t + 1, and hence no

task in B leaves at time t + 1.

118

Let A′ denote the tasks in A that are active at time t + 1. Similarly, let I ′ denote

the tasks in A′ that are active at time t + 1. Then, the set of active tasks at time t + 1

is A′ ∪ I ′ ∪ B. Thus, by the join condition (J2),

∑

T∈A′∪I′∪B

wt(T) ≤ M. (4.15)

Also,
∑

T∈τ flow(T, t + 1) =
∑

T∈A′∪I′∪B flow(T, t + 1). By (F1), this implies that
∑

T∈τ flow(T, t + 1) ≤∑T∈A′∪I′ wt(T) +
∑

T∈B flow(T, t + 1). Thus, by (4.13),

∑

T∈τ

(flow(T, t)+flow(T, t+1)) ≤ M−h+
∑

T∈A′∪I′

wt(T)+
∑

T∈B

(flow(T, t)+flow(T, t+1))

(4.16)

Consider Uj ∈ C (hence, U ∈ B). Let Uk denote the successor of Uj. Since Uj

is the subtask with the largest index such that e(Uj) ≤ t < d(Uj), we have e(Uk) ≥
t + 1. Hence, r(Uk) ≥ t + 1. By (4.14), we have d(Uj) = t + 1. Therefore, by (F2),

flow(U, t) + flow(U, t + 1) ≤ wt(U) for each U ∈ B. By (4.16), this implies that
∑

T∈τ (flow(T, t) + flow(T, t + 1)) ≤ M − h +
∑

T∈A′∪I′∪B wt(T). Thus, from (4.15), it

follows that
∑

T∈τ

(flow(T, t) + flow(T, t + 1)) ≤ M − h + M. (4.17)

By the statement of the lemma, B contains at least one light task. Therefore, by

Lemma 4.11, there is no hole in slot t + 1. Since there are h holes in slot t, we have
∑

T∈τ (S(T, t) + S(T, t + 1)) = M − h + M .

Hence, by (4.17),
∑

T∈τ (flow(T, t) + flow(T, t + 1)) ≤∑T∈τ (S(T, t) + S(T, t + 1)).

Using this relation in the identity (obtained from (4.9)), LAG(τ , t + 2) = LAG(τ , t) +
∑

T∈τ (flow(T, t) + flow(T, t + 1)) − ∑

T∈τ (S(T, t) + S(T, t + 1)), and the fact that

LAG(τ , t) < 1, we obtain LAG(τ , t + 2) < 1.

All Tasks in B are Heavy.

We now extend Lemmas 4.11 and 4.12 to the case in which B consists solely of

heavy tasks. The following lemma is the counterpart of Lemma 4.11.

Lemma 4.13. Let U be a heavy task in B and let Uj be the subtask of U with the

largest index such that e(Uj) ≤ t < d(Uj). Then, there exists a slot with no holes in

[d(Uj),min(D(Uj), td)).

119

Proof. By Lemma 4.10, d(Uj) = t + 1 ∧ b(Uj) = 1. By (4.10), t < td − 1. Therefore

d(Uj) ≤ td − 1. If min(D(Uj), td) = td, then by part (f) of Lemma 4.8, slot td − 1

satisfies the stated requirement. In the rest of the proof, assume that D(Uj) < td. Let

v = D(Uj). Since b(Uj) = 1, by the definition of D, D(Uj) > d(Uj), i.e.,

t + 1 < v. (4.18)

Suppose that the following property holds.

(H) There is a hole in slot u for all u ∈ {t, . . . , v − 1}.

Given (H), we show that removing Uj does not cause the missed deadline to be met,

contradicting (T2). Let ∆1, ∆2, . . . , ∆k be the chain of displacements caused by remov-

ing Uj, where ∆i = 〈X(i), ti, X
(i+1), ti+1〉, X(1) = Uj, and t1 is the slot in which Uj is

scheduled. By Lemma 4.4, ti+1 > ti for all i ∈ {1, . . . , k − 1}. Also, the priority of X (i)

is at least that of X (i+1) at ti, because X(i) was chosen over X (i+1) at ti in S. Thus, by

Lemma 4.10, for all i ∈ {2, . . . , k + 1}, one of the following holds:

(a) d(X(i)) > t + 1,

(b) d(X(i)) = t + 1 ∧ b(X (i)) = 0, or

(c) d(X(i)) = t + 1 ∧ b(X (i)) = 1 ∧ D(X (i)) ≤ v.

We now show that the displacements do not extend beyond slot v−1 (which implies

that Uj can be removed without causing the missed deadline to be met). Suppose, to

the contrary, they do extend beyond slot v − 1, i.e., tk+1 > v − 1.

Let tg be the largest ti such that ti < t and let th be the smallest ti such that

ti > v − 1. (Note that such a tg exists because t1 < t.) Then, by (H), there are holes

in all slots in [tg+1, th−1]. Thus, by Lemma 4.6,

∀i∈ [g+1, h−1], X (i+1) is the successor of X (i). (4.19)

Also, ti+1 = ti + 1 for all i ∈ {g + 1, . . . , h − 2}.

tg+1 = t ∧ th−1 = v − 1 (4.20)

∀i ∈ {g + 1, . . . , h − 1}, ti = t + i − (g + 1) (4.21)

Earlier, we showed that one of (a) – (c) holds for all i ∈ [2, k + 1]. If either

d(X(g+1)) > t + 1 or d(X (g+1)) = t + 1 ∧ b(X (g+1)) = 0, then since X (g+1) is scheduled

120

+1t it i . . .

holes

t i +1t i

X
(2)

X
(g+1)

X
(2)

X
(g+2)

X
(g+1)

X
(g+2)

X
(i)

X
(i+1)

X
(w)

X
(h−1)

X
(i+1)

X
(i)

. . .

hole

. . .

.

t’ t t+1 t+2 vv−1

(a)

holeshole holehole hole

.

.

. . .t’ t t+1 v’v’−1 vv−1. . .

hole hole holes hole hole holes hole

Group deadline of X(g+1)
(b)

. . .

. . .

Figure 4.14: Lemma 4.13. (a) There are holes in all slots in [t, v). X (i) scheduled at
ti displaces X(i−1) scheduled at ti−1. By (4.21), the ti’s are consecutive and satisfy
ti = t + i − (g + 1). Further, X (h−1) is the subtask scheduled in slot v − 1. (b)
Case 2. D(X(g+1)) = v′. Hence, either d(X (w)) = v′ ∧ b(X(w)) = 0 (as depicted) or
d(X(w)) > v′.

at t, by Lemma 4.8, part (b), e(X (g+2)) ≥ t + 1 (recall that, by (4.19), X (g+2) is the

successor of X(g+1)). In other words, the displacement ∆g is not valid. Therefore,

d(X(g+1)) = t + 1 ∧ b(X (g+1)) = 1 ∧ D(X (g+1)) ≤ v. (4.22)

We now consider two cases. In each, we show that the displacements do not extend

beyond v − 1, as desired.

Case 1: X(g+1) is the subtask of a light task. By (4.18), t + 1 ≤ v − 1 and

hence, by (H), there is a hole in both t and t + 1. Also, by (4.20) and (4.21), we have

v − 1 = t + (h − 1) − (g + 1) = t + h − g − 2. Because t < v − 1 (by (4.18)), we have

h > g + 2, i.e.,

h ≥ g + 3.

121

Because X(g+1) is the subtask of a light task, the reasoning used in the proof of

Lemma 4.11 applies. Thus, the displacement ∆g+2 is not valid. Hence, the displace-

ments do not extend beyond slot t + 1 (and hence, slot v − 1).

Case 2: X(g+1) is the subtask of a heavy task. Let v′ = D(X(g+1)). By (4.22),

v′ ≤ v. We now show that the displacements cannot extend beyond slot v ′ − 1 (and

hence, slot v − 1). By (4.21), X (i) is scheduled in slot t + i − (g + 1) in S for all

i ∈ {g + 1, . . . , h− 1}. By (4.19), all X (i) where g + 1 ≤ i ≤ h are subtasks of the same

heavy task. We now show that the displacement ∆v′−1−t+(g+1)(= ∆v′−t+g) is not valid.

Let w = v′ − t + g.

By (4.21), tw = v′ − 1. Because X(i) is scheduled at ti, the subtask scheduled at

v′ − 1 is X(w). Since X(i+1) is the successor of X (i), by (4.2), d(X (i)) > d(X(i−1)) for all

i ∈ [g + 2, w]. Because d(X (g+1)) = t + 1 (by (4.22)),

∀i ∈ {g + 1, . . . , w}, d(X (i)) ≥ t + i − g. (4.23)

In particular, d(X (w)) ≥ v′.

We now show that if d(X (w)) = v′, then b(X(w)) = 0. In this case, because

d(X(w−1)) < d(X(w)), we have d(X (w−1)) < v′. By (4.23), d(X (w−1)) ≥ v′ − 1.

Therefore, d(X (w−1)) = v′ − 1. Similarly, by induction, d(X (i)) = u + i − g) for all

i ∈ {g + 1, . . . , w}. (Refer to Figure 4.14(b).) Because D(X (g+1)) = v′, by the defini-

tion of D, b(X (v′−u+g+1)) = 0. (In this case, the group deadline corresponds to the last

slot of a window of length two.)

Thus, either d(X (w)) > v′ or d(X(w)) = v′ ∧ b(X(w)) = 0. Since X (w) is scheduled at

v′ − 1, by Lemma 4.8, part (b), the eligibility time of the successor of X (w) is at least

v′. Hence, ∆w is not valid. Thus, the displacements do not extend beyond slot v ′ − 1.

Lemma 4.14 below extends Lemma 4.12 by allowing B to consist solely of heavy

tasks. The following results are used in its proof.

Claim 4.3. If Uj is scheduled in slot u, where 0 ≤ u < td and u ≤ d(Uj), and if there

is a hole in slot u, then d(Uj) = u + 1.

Proof. Because u < td, by Definition 4.2, no deadline is missed in [0, u+1). Because Uj

is scheduled in slot u, i.e., [u, u+1), we have d(Uj) ≥ u+1. Suppose that d(Uj) > u+1.

Then, by part (b) of Lemma 4.8, the successor of Uj (if it exists) is not eligible before

122

u + 1. Hence, by Lemma 4.5, we can remove Uj and no displacements will result, i.e.,

a deadline is still missed at td, contradicting (T2). Therefore, d(Uj) = u + 1.

Claim 4.4. Suppose there is a hole in slot u ∈ {0, . . . , td − 1}. Let Uj be a subtask

scheduled at t′ ≤ u. If the eligibility time of the successor of Uj is at least u + 1, then

d(Uj) ≤ u + 1.

Proof. If t′ = u, then by Claim 4.3, d(Uj) = u + 1. On the other hand, if t′ < u and

d(Uj) ≥ u, then by Lemma 4.10, d(Uj) = u + 1.

Lemma 4.14. There exists v ∈ {t + 2, . . . , td} such that LAG(τ , v) < 1.

Proof. Because LAG(τ , t) < 1 and LAG(τ , t + 1) ≥ 1 (by (4.10)),

LAG(τ , t) < LAG(τ , t + 1). (4.24)

Thus, by Lemma 4.7, we have the following property.

(H) There is at least one hole in slot t.

Let A,B, and I be as defined in the proof of Lemma 4.12. If any task in B is light,

then by Lemma 4.12, LAG(τ , t + 2) ≤ 0, which establishes our proof obligation. We

henceforth assume all tasks in B are heavy.

Let U be any task in B. Let Uj be the subtask with the largest index such that

e(Uj) ≤ t < d(Uj). Let C denote the set of such subtasks of all tasks in B. Then, by

Lemma 4.10,

∀ Uj ∈ C, d(Uj) = t + 1 ∧ b(Uj) = 1. (4.25)

Let Li be the lowest-priority subtask in C. Then,

∀Uj ∈ C, d(Uj)= t + 1 ∧ b(Uj) = 1 ∧ D(Uj)≥D(Li). (4.26)

By Lemma 4.13, there is a slot in [t,min(D(Li), td)) with no hole. Let u be as follows.

(U) u is the earliest slot in [t,min(D(Li), td)) with no hole.

Figure 4.15 depicts this situation. By (U) and (H),

u ≥ t + 1, (4.27)

and there are holes in all slots in {t, . . . , u−1}. We now establish the following property

about tasks in B.

123

j

holes

. . .
no

holes
UU k

Group deadline of U
is at or after this slot

t ut+1 u+1

Figure 4.15: Lemma 4.14. Uj ∈ C and Uk is the successor of Uj. There is a hole in each
slot in [t, u) and there is no hole in slot u. The earliest time at which Uk’s PF-window
starts is u, i.e., r(Uk) ≥ u.

Claim 4.5. All tasks in B are inactive over the interval [t + 1, u).

Proof. If the interval [t + 1, u) is empty, then the claim is vacuously true, so

assume it is nonempty. Let V be any task in B. We first show that no subtask

of V is scheduled in [t, u).

Note that because V ∈ B, no subtask of V is scheduled in slot t. Let Vi be the

earliest subtask of V scheduled in [t + 1, u) and let v be the slot in which it is

scheduled. Because there is hole in slot v, by Claim 4.3, d(Vi) = v + 1. By (4.1)

and (4.2), this implies that r(Vi) ≤ v. If r(Vi) < v, then e(Vi) < v. Thus, because

there are holes in all slots in {t, . . . , v− 1}, it should have been scheduled earlier.

Therefore, r(Vi) = v, which implies that wt(V) = 1. However, this contradicts

the fact that some subtask of V has a b-bit of 1 (by (4.25)). Hence, no subtask

of any task in B is scheduled in [t, u) (see Figure 4.15). Moreover, because there

are holes in all slots in [t, u), the earliest slot after t at which a subtask of a task

in B is eligible to be scheduled is u. By (4.25), this implies that all the tasks in

B are inactive in [t + 1, u − 1].

For any Uj ∈ C, by (4.26) and (U), D(Uj) > u. Therefore, by the leave condition

(L2), task U cannot leave before time u + 1. Thus, no task in B can leave before time

u + 1.

Let Uj be any subtask in C, and let Uk be the successor of Uj. By Claim 4.5,

r(Uk) ≥ u. Furthermore, by (4.25) – (4.27) and (U), d(Uj) = t + 1 ≤ u < D(Uj).

Hence, by (F3), flow(U, t) + flow(U, u) ≤ wt(U). Because this argument applies to all

tasks in B, we have

∀U ∈ B, flow(U, t) + flow(U, u) ≤ wt(U). (4.28)

124

We now show that LAG is non-increasing over [t + 1, u).

Claim 4.6. LAG(τ , v + 1) ≤ LAG(τ , v) for all v ∈ {t + 1, . . . u − 1},

Proof. If {t + 1, . . . , u} is empty, then the claim is vacuously true, so assume it is

nonempty. Suppose for some v ∈ {t + 1, . . . , u− 1}, LAG(τ , v + 1) > LAG(τ , v).

Then, by Lemma 4.9, there exists a task that is active at v but not scheduled at

v. Let V be one such task and let Vk be the subtask with the largest index such

that

e(Vk) ≤ v < d(Vk). (4.29)

Because no subtask of V is scheduled at v and because there is a hole at v,

Vk is scheduled before v. By (U), there is a hole at v − 1; moreover, because

t + 1 ≤ v ≤ u − 1, we have v − 1 ∈ {t, . . . , u − 2} ⊆ {0, . . . , td − 1}. Hence, by

Claim 4.4, we have d(Vk) ≤ v, which contradicts (4.29). Therefore, LAG(τ , v + 1)

≤ LAG(τ , v) for all v ∈ {t + 1, . . . , u − 1}.

We now show that LAG(τ , u + 1) ≤ 0, which establishes our proof obligation.

For each v ∈ {t, . . . , u}, let Hv denote the number of holes in slot v. Then, M −Hv

tasks are scheduled in slot v. Also, let Iv (Av) denote the tasks in I (A) that are active

at v.

By (4.9) and Claim 4.6,
∑

T∈τ flow(T, v) ≤∑T∈τ S(T, v). Therefore,

∀ v ∈ {t + 1, . . . , u − 1},
∑

T∈τ

flow(T, v) ≤ M − Hv. (4.30)

By the join condition (J2) and by (4.5), we have
∑

T∈B∪Iu∪Au
wt(T) ≤ M . Hence, by

(4.28) and (F1), we get
∑

T∈B(flow(T, t) + flow(T, u)) +
∑

T∈Iu∪Au
flow(T, u) ≤ M .

Thus,
∑

T∈B

flow(T, t) +
∑

T∈B∪Iu∪Au

flow(T, u) ≤ M. (4.31)

Because the tasks in A(= At) are the ones scheduled in slot t, the number of tasks in

set At is M − Ht. Hence, by (F1) and because the weight of each task is at most one,

∑

T∈At

flow(T, t) ≤
∑

T∈At

wt(T) ≤ M − Ht. (4.32)

125

We are now ready to show that LAG(τ , u + 1) ≤ 0. Because S(T, v) = M−Hv, by (4.9),

LAG(τ , u + 1)−LAG(τ , t) = R, where R =
∑u

v=t

(
∑

T∈τ flow(T, v)
)

−∑u
v=t(M −Hv).

By (U), there are no holes in slot u, Hu = 0. Therefore,

R =
u
∑

v=t

(

∑

T∈τ

flow(T, v)

)

−
u−1
∑

v=t

(M − Hv) − M. (4.33)

The right-hand side of (4.33) can be rewritten as follows.

∑

T∈τ

(flow(T, t) + flow(T, u)) − (M − Ht) − M +
u−1
∑

v=t+1

(

∑

T∈τ

flow(T, v) − (M − Hv)

)

Rearranging terms, and using
∑

T∈I flow(T, t) = 0 (which follows by the definition of

I), we get

∑

T∈B

flow(T, t) +
∑

T∈B∪Iu∪Au

flow(T, u) − M +
∑

T∈At

flow(T, t) − (M − Ht)

+
u−1
∑

v=t+1

(

∑

T∈τ

flow(T, v) − (M − Hv)

)

.

By (4.30) – (4.32), the above value is non-positive. Hence, by (4.33), LAG(τ , u + 1) −
LAG(τ , t) ≤ 0. Because LAG(τ , t) < 1, this implies that LAG(τ , u + 1) < 1.

By (U) and (4.27), t + 1 ≤ u ≤ min(D(Uj), td) − 1. Hence, t + 2 ≤ u + 1 ≤ td.

Thus, there exists a v ∈ {t + 2, . . . , td} such that LAG(τ , v) < 1.

Recall our assumption that t is the latest time such that LAG(τ, t) < 1 and

LAG(τ, t+ 1) ≥ 1. Because t ≤ td − 2 (by (4.10)), we have t+ 2 ≤ td. By Lemma 4.14,

LAG(τ , v) ≤ 0 for some v ∈ {t + 2, . . . , td}. By Lemma 4.8, parts (e) and (f), v

cannot be td or td − 1. Thus, v ≤ td − 2. Because LAG(τ , td) ≥ 1, this contradicts

the maximality of t. Therefore, td and τ as defined cannot exist. Thus, we have the

following.

Theorem 4.5. PD2 correctly schedules any dynamic GIS task system satisfying (J2)

and (L2).

Since any feasible static IS task system satisfies (J2) and (L2), we have the following

result.

126

Corollary 4.5.1. PD2 is optimal for scheduling static IS task systems on multiproces-

sors.

Further, since any sporadic task is also an IS task, we have the following corollary.

Corollary 4.5.2. PD2 is optimal for scheduling static sporadic task systems on multi-

processors.

4.4 Summary

In this chapter, we introduced a new task model called the intra-sporadic (IS) task

model. The IS task model has a very flexible notion of a rate, and it generalizes the well-

studied sporadic task model [Mok83]. We stated and proved the feasibility condition

for scheduling IS tasks on multiprocessors. In addition, we also considered dynamic

IS task systems, and provided sufficient conditions that ensure that no deadlines are

missed under PD2. As a corollary, we obtained that PD2 is optimal for scheduling

static IS task systems on multiprocessors.

Chapter 5

The Earliest-pseudo-deadline-First

Algorithm∗

In this chapter, we consider the problem of scheduling real-time applications on

multiprocessors using the earliest-pseudo-deadline-first (EPDF) Pfair scheduling algo-

rithm. As the name suggests, the EPDF algorithm prioritizes subtasks with earlier

deadlines, and any ties between subtasks with equal deadlines is broken arbitrarily.

(Thus, EPDF is essentially PD2 without any of its tie-breaking rules.)

Recall from Chapter 1 that, in a hard real-time system, all task deadlines must be

guaranteed, whereas occasional deadline misses or deadline misses by a small amount

can be tolerated in a soft real-time system. Soft real-time systems have become very

common with the proliferation of multimedia and gaming systems. While deadline

misses are tolerated, they are obviously undesirable, and system quality and perfor-

mance may be negatively impacted if tasks miss their deadlines either too often or by

too much. One criterion used to measure system quality in the study of soft real-time

systems is tardiness . If a job with a deadline at time d completes at time t, then its

tardiness is max(0, t − d). That is, if a job misses its deadline, then its tardiness indi-

cates by how much. In this chapter, when considering soft real-time systems, we focus

∗Most of the results presented in this chapter have been published in the following papers.

[SA04a] A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications on multipro-
cessors. Journal of Embedded Computing, June 2004. Under submission. (A preliminary version
of this paper was presented at the 15th Euromicro Conference on Real-time Systems [SA03].)

[SA04b] A. Srinivasan and J. Anderson. Fair scheduling of dynamic task systems on multiprocessors.
Journal of Systems and Software, 2004. Under submission. (A preliminary version of this
paper was presented at the 11th International Workshop on Parallel and Distributed Real-time
Systems.)

128

on the problem of minimizing tardiness.

Pfair scheduling algorithms such as PD2 or PF, which are optimal for hard real-time

systems, can be simplified (and hence, made more efficient) if deadline misses can be

tolerated. Such simplified algorithms may be useful in a number of soft real-time appli-

cations implemented on multiprocessors. For example, consider a web server that ser-

vices a large number of connections concurrently, some of which involve audio or video

streaming that requires quality-of-service (QoS) guarantees. Such guarantees can be

ensured by using fair scheduling disciplines. To handle a large number of connections,

a multiprocessor platform may be necessary. Ensim Corp. has deployed fair multipro-

cessor scheduling algorithms in its product line for this very reason [CAGS00, CAS01].

The necessity of fair scheduling on multiple resources may also arise in the area

of networking. Next-generation multimedia applications such as immersive reality sys-

tems will result in high bandwidth usage. One way to increase network bandwidth is

to install multiple parallel links between pairs of connected routers. The problem of

scheduling packets on outgoing links at a router then becomes a multiprocessor schedul-

ing problem [ABJ99]. Fairness is desirable in this setting, just as it is in single-link

scheduling [BZ96, DKS89, Gol94, PG93, Zha91]. Similar scheduling issues also arise in

optical networks where wavelength-division-multiplexing (WDM) techniques are used

to transmit multiple “light packets” at different wavelengths simultaneously [BR02].

As a final example, consider multiprocessor router platforms that process multiple

packets simultaneously. The need for multiprocessor platforms in this context is neces-

sitated by the growing disparity between link capacities and processor speeds [AHKB00,

CO01]. Routers built using programmable network processors are destined to imple-

ment fairly complex packet-processing functions in software, making processing capac-

ity (as opposed to link capacity) a critical resource to be managed [SHA+03]. In this

setting, fair scheduling is needed to ensure that QoS guarantees can be provided to

different flows.

Note that in each of the above applications, an extreme degree of fairness that

requires all deadlines to be met is not warranted. That is, these applications fall

within the class of multiprocessor soft real-time systems. Further, note that all these

systems are highly dynamic; the set of tasks or flows may change frequently. Hence,

in this chapter, we assume that the task system under consideration is dynamic as

well. We further assume that, instead of (J2) and (L2), the more liberal join and leave

conditions (J1) and (L1) are used (refer to Section 4.2).

In Section 5.1, we consider the scheduling of hard real-time multiprocessor systems

129

using EPDF. As a corollary of the main result, it follows that EPDF is optimal for two-

processor systems, and three-processor systems consisting solely of light tasks. Later,

in Section 5.2, we consider soft real-time systems.

5.1 Hard Real-time Systems

In this section, we show that task systems that are subject to the following condition

can be correctly scheduled using EPDF on M processors.

(M0) At any time, the sum of the weights of the M − 1 heaviest tasks is at most one.

Further, tasks are allowed to join and leave the system under the conditions (J1)

and (L1).

The proof technique used here is very similar to the one used in Section 4.3.

We begin by making the assumption that there exists an task system τ that satisfies

(M0) and yet misses a deadline under EPDF; we then show that this assumption leads

to a contradiction. Let S denote the EPDF schedule of τ in which a deadline is missed.

Further, let Ti be the subtask with the earliest deadline among all subtasks that miss

a deadline, and let td = d(Ti). Thus, all subtasks with deadlines less than td meet their

deadlines.

Note that any subtask with deadline after td is scheduled in a slot prior to td only

if no subtask with a deadline at most td is eligible in that slot. Thus, the scheduling

of Ti is not affected by subtasks with deadlines greater than td. Hence, a deadline is

missed even if such subtasks are absent from the system. Therefore, we assume that

no task in τ releases any subtask that has a deadline greater than td. In other words,

for every subtask Uj ∈ τ, d(Uj) ≤ td. (5.1)

Using this, we obtain the following lower bound on LAG(τ, td).

Lemma 5.1. LAG(τ, td) ≥ 1.

Proof. By (4.9), we have

LAG(τ , td) =

td−1
∑

t=0

∑

T∈τ

share(T, t) −
td−1
∑

t=0

∑

T∈τ

S(T, t).

The first term on the right-hand side of the above equation is the total share in the

ideal schedule over the interval [0, td), which equals the total number of subtasks in

130

τ (since the deadlines of all subtasks in τ are at most td by (5.1).) The second term

corresponds to the number of subtasks scheduled in [0, td) in S. Since Ti misses its

deadline at td, the difference between these two terms is at least one.

We now show that the same lower bound applies to LAG(τ, td − 1) as well. The

following lemma is used to obtain that result.

Lemma 5.2. There is no hole in slot td − 1.

Proof. Let Uj be any subtask that misses its deadline at td in S. Because d(Uj) = td),

d(Uk) ≤ td − 1, where Uk is Uj’s predecessor. By the minimality of td, Uk meets its

deadline and hence is scheduled before td − 1. Thus, if there were a hole in slot td − 1,

then Uj would have been scheduled there, in which case it would meet its deadline.

Contradiction.

Lemma 5.3. LAG(τ, td − 1) ≥ 1.

Proof. By Lemma 5.2, there are no holes in slot td − 1. Hence, by Lemma 4.7,

LAG(τ , td − 1) ≥ LAG(τ , td). Therefore, by Lemma 5.1, LAG(τ , td − 1) ≥ 1.

Because LAG(τ, 0) = 0, it follows by Lemma 5.3 that there exists a time t as follows.

(t < td − 1) and (LAG(τ, t) < 1) and (LAG(τ, t + 1) ≥ 1) (5.2)

We now prove some properties about task lags at time t+1; using these properties and

(M0), we later derive a contradiction by showing that (LAG(τ, t + 1) < 1).

By Lemma 4.7, there is at least one hole in slot t (i.e., a processor is idle over

[t, t + 1)). In other words, the number of tasks scheduled in slot t is at most M − 1.

Let A denote the set of tasks scheduled in slot t. Then, we have

|A| ≤ M − 1. (5.3)

As in the proof for PD2 in Section 4.3.3, we separate the rest of the tasks into two

sets: B and I. B denotes the set of tasks not in A that are active at time t. (Recall

that a task U is active at time t if it has a subtask Uj such that e(Uj) ≤ t < d(Uj).)

We have the following result about tasks in set B.

Claim 5.1. For any subtask Uj of task U ∈ B, if e(Uj) ≤ t, then Uj is scheduled before

t.

131

t t+1

j

hole

h

k

A
U

B

I
W

V

Figure 5.1: Sets A, B, and I. The PF-windows of a sample task of each set are shown.

Proof. If d(Uj) ≤ t, then d(Uj) < td (by (5.2)). By the minimality of td, Uj meets its

deadline. Hence, it is scheduled before t.

We now consider the case in which d(Uj) ≥ t + 1. Suppose subtask Uj is scheduled

at or after t + 1. Because U ∈ B, no subtask of U is scheduled in slot t. Therefore,

there exists a subtask Uk that satisfies (i) e(Uk) ≤ t < d(Uk), (ii) Uk is scheduled at

or after t + 1, and (iii) Uk−1 (if it exists) is scheduled before t. This contradicts the

greedy nature of the EPDF algorithm, which would have scheduled Uk in slot t.

Let I denote the set of the remaining tasks that are not active at time t. Figure 5.1

shows how the tasks in A, B, and I are scheduled. We now provide upper bounds for

the lag values at time t + 1 for the tasks in each of A, B, and I.

Lemma 5.4. For W ∈ I, lag(W, t + 1) = 0.

Proof. Because t < td (by (5.2)), every subtask of task W with a deadline at most t

meets its deadline in S. Therefore, if task W leaves the system at or before time t,

then by (L1), it does so with zero lag. In the rest of this proof, we assume that the

task W does not leave the system before time t + 1. Consider any subtask Wh of task

W . We divide our analysis into two cases depending on the value of e(Wh).

Case 1: e(Wh) ≥ t + 1. In this case, we have r(Wh) ≥ t + 1. Therefore, by (4.6),

f(Wh, u) = 0 for all slots u ≤ t < r(Wh). Hence, the share of Wh over the interval

[0, t + 1) in the ideal schedule is zero. Also, since e(Wh) ≥ t + 1, Wh is scheduled

at or after t + 1 in schedule S. Therefore, the share of Wh over [0, t + 1) is zero

in S as well.

Case 2: e(Wh) ≤ t. In this case, by the definition of I, d(Wh) ≤ t < td. Since such

a subtask meets its deadline in S, Wh is scheduled in [0, t). Therefore, its share

132

over [0, t+1) is one in S. Further, since its PF-window lies completely in [0, t+1),

its share is one in the ideal schedule as well.

Thus, under both cases, each subtask of W receives equal shares in S and the ideal

schedule over [0, t + 1). Therefore, lag(W, t + 1) = 0.

Lemma 5.5. For V ∈ B, lag(V, t + 1) ≤ 0.

Proof. Consider any subtask Vk of task V . As in the proof of Lemma 5.4, we consider

two cases.

Case 1: r(Vk) ≥ t + 1. By (4.6), the share of Vk in [0, t + 1) in the ideal schedule is

zero.

Case 2: r(Vk) ≤ t. Since e(Vk) ≤ r(Vk), we have e(Vk) ≤ t. Therefore, by Claim 5.1,

Vk is scheduled before t. Thus, the share of Vk in [0, t + 1) is one in S, and at

most one in the ideal schedule. (d(Vk) may be greater than t + 1, in which case

a portion of Vk’s share in the ideal schedule is allocated after t + 1.)

Thus, for any subtask of V , its share in [0, t + 1) in S is at least its share in [0, t + 1)

in the ideal schedule. Hence, lag(V, t + 1) ≤ 0.

Lemma 5.6. For U ∈ A, lag(U, t + 1) < wt(U).

Proof. Let Uj be the subtask of U scheduled at time t. Since t + 1 < td (by (5.2), Uj

meets its deadline. Therefore, d(Uj) ≥ t + 1. If d(Uj) > t + 1, then by (4.1) – (4.3),

r(Uj+1) ≥ t + 1. Reasoning exactly as in the proof of Lemma 5.5, we can show that

lag(U, t + 1) ≤ 0.

In the rest of the proof, we assume that d(Uj) = t + 1. If Uj+1 exists, then by (4.4),

we have r(Uj+1) ≥ d(Uj) − 1, i.e., r(Uj+1) ≥ t. We now divide the analysis into two

cases.

Case 1: Uj+1 does not exist or r(Uj+1) ≥ t + 1. In this case, by (4.6), the share

in the ideal schedule over [0, t + 1) for any subtask after Uj is zero. Because

d(Uj) = t+1, all subtasks before Uj have deadlines in [0, t+1). Further, all these

subtasks meet their deadlines in S. Hence, each subtask of U receives equal shares

over [0, t + 1) in S and the ideal schedule. This implies that lag(U, t + 1) = 0.

133

Case 2: r(Uj+1) = t. In this case, because d(Uj) = t+1, we have r(Uj+1) = d(Uj)−1.

Therefore, by (4.1) and (4.2), θ(Uj+1)+

⌊

j
wt(U)

⌋

= θ(Uj)+

⌈

j
wt(U)

⌉

−1. Because

θ(Uj+1) ≥ θ(Uj) (by (4.3), and bxc ≥ dxe−1, we have θ(Uj+1) = θ(Uj). Therefore,
⌊

j
wt(U)

⌋

=

⌈

j
wt(U)

⌉

− 1, which implies that

⌊

j
wt(U)

⌋

< j/wt(U).

Because Uj is scheduled in [0, t+1) in S, the excess share of U in the ideal schedule

over [0, t + 1) is due to f(Uj+1, t). Therefore, we have lag(U, t + 1) ≤ f(Uj+1, t),

i.e., lag(U, t + 1) ≤ f(Uj+1, r(Uj+1)).

By (4.6), f(Uj+1, r(Uj+1)) = (

⌊

j
wt(U)

⌋

+ 1) · wt(U) − j. Hence, lag(U, t + 1) ≤

(

⌊

j
wt(U)

⌋

+1)·wt(U)−j < (j/wt(U)+1)·wt(U)−j. Thus, lag(U, t+1) < wt(U).

Thus, in all cases we have lag(U, t + 1) < wt(U).

Because LAG(τ, t + 1) =
∑

U∈A∪B∪I lag(U, t + 1), by Lemmas 5.4 – 5.6, LAG(τ, t +

1) <
∑

U∈A wt(U). By (5.3), |A| ≤ M − 1. Therefore, by (M0), LAG(τ, t + 1) < 1,

contradicting our assumption about t. Thus, we have the following theorem.

Theorem 5.1. EPDF correctly schedules on M processors every task system that sat-

isfies (M0).

Since any feasible static task system satisfies (J1) and (L1), we obtain the following

result.

Corollary 5.1.1. EPDF correctly schedules any feasible static IS task system on M

processors, if the sum of the weights of the M − 1 heaviest tasks is at most one.

Note that (M0) is trivially satisfied for M = 1 or M = 2, because the weight of any

single task is at most one. Thus, we have the following result.

Corollary 5.1.2. EPDF is optimal for scheduling IS tasks if number of processors is

one or two.

(This generalizes the result of Baruah [Bar95] that EPDF is optimal for scheduling

periodic tasks on one processor.)

Ensuring (M0) involves identifying the M − 1 heaviest tasks and adding up their

weights. A more efficient (and more restrictive) way to enforce (M0) is to require each

individual task weight to be at most 1/(M − 1).

134

Corollary 5.1.3. EPDF correctly schedules any dynamic IS task system satisfying (J1)

and (L1) on M (> 1) processors if the weight of each task is at most 1/(M − 1).

As before, this implies the following result.

Corollary 5.1.4. EPDF correctly schedules any feasible static IS task system in which

the weight of each task is at most 1/(M − 1).

Substituting M = 3, we obtain the following.

Corollary 5.1.5. EPDF correctly schedules any feasible IS task system on three pro-

cessors if the weight of each task is at most 1/2.

5.1.1 Improving (M0)

Though the discussion above indicates that (M0) is reasonably tight, it can be

slightly improved by more accurately bounding lag(U, t + 1) for U ∈ A, as shown

below. We use the following result in our proof.

Theorem 5.2 (Hardy et al. [HW79]). The smallest positive integer value of ax+ by

is gcd(a, b) for any integers a, b, x, y.

Let U.f =
U.e − gcd(U.e, U.p)

U.p , where U.e and U.p are U ’s execution requirement

and period, respectively. Then, we have the following.

Lemma 5.7. If b(Uj) = 1, then f(Uj+1, r(Uj+1)) ≤ U.f .

Proof. By (2.11), b(Uj) = 1 implies that

⌈

j
wt(U)

⌉

=

⌊

j
wt(U)

⌋

+ 1, which implies that
⌊

j
wt(U)

⌋

<
j

wt(U)
. Let k =

⌊

j
wt(U)

⌋

. Then,
j · U.p
U.e − k > 0, i.e., j ·U.p− k ·U.e > 0.

Therefore, by Theorem 5.2,

j · U.p − k · U.e ≥ gcd(U.e, U.p). (5.4)

Then, we have the following.

f(Uj+1, r(Uj+1)) =

(⌊

j
wt(U)

⌋

+ 1

)

× wt(U) − j , by (4.6)

=

(⌊

j
wt(U)

⌋

+ 1

)

× U.e

U.p
− j , because wt(U) = U.e

U.p

135

= (k + 1) × U.e

U.p
− j , substituting k =

⌊

j
wt(U)

⌋

=
U.e

U.p
− j · U.p − k · U.e

U.p
, by simplification

≤ U.e

U.p
− gcd(U.e, U.p)

U.p
, by (5.4)

= U.f

Thus, f(Uj+1, r(Uj+1)) ≤ U.f .

Using Lemma 5.7, we can improve the result in Lemma 5.6 to show that lag(U, t +

1) ≤ U.f for all U ∈ A. Performing the same analysis as before, we obtain a contradic-

tion if
∑

U∈A U.f < 1. Thus, we have the following theorem.

Theorem 5.3. EPDF correctly schedules a dynamic IS task system τ that satisfies (J1)

and (L1) if, at all times,
∑

U∈H U.f < 1 for all sets H ⊆ τ of at most M − 1 tasks.

5.1.2 Tightness

We now prove that the sufficiency condition presented in Theorem 5.3 is tight; in

particular, we show the following.

Theorem 5.4. There exists a feasible static periodic task system τ that misses a dead-

line on M (> 2) processors under EPDF if
∑

T∈H T.f is allowed to be at least 1 for

some set H ⊆ τ of at most M − 1 tasks.

Proof. Let τ be the following system of (M −1)2 tasks: set A consisting of M −1 tasks

of weight 1
M − 1 + 1

(M − 1)2

(

= M
(M − 1)2

)

and set B consisting of M(M − 2) tasks

of weight 1
M − 1. (Figure 5.2 illustrates the case for M = 5.) Note that τ fully utilizes

the M processors because (M −1)× M
(M − 1)2 +

M(M − 2)
M − 1 =

M + M(M − 2)
M − 1 , which

simplifies to M2 − M
M − 1 = M . Further note that for each task T ∈ A, T.f = M − 1

(M − 1)2

because gcd(M, (M − 1)2) = 1. Thus,
∑

T∈A T.f = (M − 1) ×
(

1
M − 1

)

= 1.

We first show that for all tasks T ∈ τ , d(T1) = M − 1. If T ∈ B, by (2.8), we

have d(T1) = dM − 1e = M − 1. If T ∈ A, by (2.8), d(T1) =

⌈

(M − 1)2

M

⌉

. Note that

(M − 1)2

M = M2 − 2M + 1
M = M−2+ 1

M . Therefore, d(T1) =
⌈

M − 2 + 1
M

⌉

= M−1.

136

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5
B (15 x 1/4)

4

5 5

A hole

A (4 x 5/16)

Figure 5.2: Tightness of Theorem 5.3. A partial EPDF schedule is depicted for four
tasks of weight 5/16 and 15 tasks of weight 1/4 on 5 processors. There is a hole in slot
4; since the total utilization is 5, this implies a deadline miss in the future.

Thus, EPDF may assign higher priority to all the tasks in set B at time 0, thereby

scheduling them for the first M − 2 slots. The tasks in set A will be scheduled in slot

M − 2 (i.e., the interval [M − 2,M − 1)). Because r(T2) = bM − 1c = M − 1 for all

T ∈ B, no other tasks are eligible to be scheduled in slot M−2. Since A has only M−1

tasks, a processor will be idle in slot M − 2. Because τ fully utilizes M processors, this

implies that a deadline is missed in the future.

5.1.3 Other Schedulability Results

In Theorems 5.1 and 5.3, we presented restrictions on individual task weights that

ensure that EPDF does not miss any deadlines. We now present different schedulability

tests that do not place restrictions on individual task weights; however, the pseudo-

deadlines used in the EPDF algorithm are slightly different. We base our results on

the following theorem.

Theorem 5.5. EPDF correctly schedules any feasible IS task system if the weight of

each task is a reciprocal of some integer.

Proof. Let τ be a feasible IS task system τ in which the weight of each task is a

reciprocal of some integer, i.e., for each task T ∈ τ , wt(T) = 1
k

for some integer k. We

show that, for such a task system, the b-bit and the group deadline can be eliminated

from the PD2 priority definition without any change in its scheduling decisions. If

wt(T) = 1
k
, then by (4.2), we have d(Ti) = θ(Ti) + ik for all i.

Also, by (2.11), b(Ti) = dike − bikc = 0 for all i. Thus, the b-bit is zero for all

137

subtasks of each task in τ . Further, by (4.7), D(Ti) = θ(Ti) +
⌈

dik×(k−1)/ke
(k−1)/k

⌉

. This

simplifies to θ(Ti) +

⌈

i(k − 1)
(k − 1)/k

⌉

= θ(Ti) + dike. Hence, D(Ti) = θ(Ti) + ik = d(Ti).

Thus, if d(Ti) = d(Uj), then b(Ti) = b(Uj) and D(Ti) = D(Uj). This implies

that PD2 breaks ties between equal subtask deadlines in an arbitrary manner, and

hence behaves identically to EPDF. It follows by Corollary 4.5.1 that EPDF correctly

schedules τ .

Now, given any task system τ , we can transform it into a new task system τ ′ that

satisfies the conditions of Theorem 5.5. We modify the parameters of every task in τ

to obtain τ ′ as follows. For every task T ∈ τ , we construct a task T ′ ∈ τ ′ with weight
1

b1/wt(T)c . The parameters of each subtask T ′
i of T ′ is obtained from those of subtask

Ti as follows.

(a) e(T ′
i) = e(Ti),

(b) r(T ′
i) = r(Ti),

(c) θ(T ′
i) = r(T ′

i)−
⌊

i − 1
wt(T ′)

⌋

= r(T ′
i)−

⌊

(i − 1) ·
⌊

1
wt(T)

⌋⌋

= r(T ′
i)− (i−1) ·

⌊

1
wt(T)

⌋

,

and

(d) d(T ′
i) = θ(T ′

i) +

⌈

i
wt(T ′)

⌉

= θ(T ′
i) +

⌈

i ·
⌊

1
wt(T)

⌋⌉

= θ(T ′
i) + i ·

⌊

1
wt(T)

⌋

.

Thus, the window of T ′
i is set to start at the same time as Ti’s window. Figure 5.3

illustrates this for a task of weight 3/10. The scheduler schedules τ by effectively

scheduling τ ′ using EPDF and selecting Ti for execution whenever EPDF selects T ′
i .

By (c) and (d), d(T ′
i) = r(T ′

i) +

⌊

1
wt(T)

⌋

, and by (4.1) and (4.2), d(Ti) = r(Ti) +
⌈

i
wt(T)

⌉

−
⌊

i − 1
wt(T)

⌋

. Thus, by (b), we have the following.

d(Ti) − d(T ′
i) =

⌈

i
wt(T)

⌉

−
⌊

i − 1
wt(T)

⌋

−
⌊

1
wt(T)

⌋

≥
⌈

i
wt(T)

⌉

−
⌊

i
wt(T)

⌋

, bxc + byc ≤ bx + yc

≥ 0 , dxe ≥ dxe

Thus, d(T ′
i) ≤ d(Ti). Therefore, if T ′

i meets its deadline, then Ti also meets its deadline.

By Theorem 5.5, EPDF correctly schedules τ ′ on M processors if
∑

T ′∈τ ′ wt(T ′) ≤ M .

Thus, we have the following theorem.

138

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 5.3: Example illustrating transformation of a task T of weight 3/10 into a task

T ′ of weight 1
b10/3c = 1/3. The subtask windows of T ′ are placed so that the release

times of its subtasks coincide with those of T ’s subtasks.

Theorem 5.6. EPDF (with deadlines determined by (d)) correctly schedules τ on M

processors if
∑

T∈τ
1

b1/wt(T)c ≤ M .

The following results follow as simple corollaries to Theorem 5.6.

Corollary 5.6.1. EPDF (with deadlines determined by (d)) correctly schedules τ on

M processors if
∑

T∈τ

wt(T)
1 − wt(T)

≤ M .

Proof. Note that

⌊

1
wt(T)

⌋

> 1
wt(T)

− 1 , i.e.,

⌊

1
wt(T)

⌋

>
1 − wt(T)

wt(T)
. Therefore,

1
b1/wt(T)c <

wt(T)
1 − wt(T)

. The required result follows by Theorem 5.6.

Corollary 5.6.2. EPDF (with deadlines determined by (d)) correctly schedules τ on

M processors if
∑

T∈τ wt(T) ≤ M/2.

Proof. We show that 2·wt(T)·
⌊

1
wt(T)

⌋

> 1, which implies that 1
b1/wt(T)c < 2·wt(T).

The required result then follows by Theorem 5.6. Let k ≥ 1 be such that 1
k + 1

<

wt(T) ≤ 1
k
. Then, 1

wt(T)
≥ k. Since k is an integer, this implies that

⌊

1
wt(T)

⌋

≥ k.

Because wt(T) > 1
k + 1

, we obtain 2 ·wt(T) ·
⌊

1
wt(T)

⌋

> 2k
k + 1

. Note that 2k ≥ k + 1

because k ≥ 1. Thus, 2 · wt(T) ·
⌊

1
wt(T)

⌋

> 1.

139

The above-described schedulability tests are useful in hard real-time systems in

which some tasks have weights more than 1
(M − 1)

, and the task system as a whole

does not fully utilize all processors.

5.2 Soft Real-time Systems

In this section, we consider soft real-time multiprocessor systems, in which mini-

mizing tardiness is the primary concern. The notion of tardiness for jobs was defined

earlier in the beginning of this chapter. Tardiness of a subtask is defined similarly: if

t is the time at which subtask Ti completes, then max(0, t − d(Ti)) is its tardiness.

The tardiness of a task system is defined as the maximum tardiness among all of its

subtasks in any schedule. We now present a condition on the weights of tasks in a

system that is sufficient for ensuring that EPDF maintains a tardiness of at most one

quantum. Later, in Section 5.2.2, we generalize this condition for tardiness thresholds

that exceed one.

5.2.1 Sufficient Condition for Tardiness of at most One

We prove that any feasible dynamic IS task system that satisfies the following

condition has a tardiness of at most one.

(M1) At all times, the sum of the M − 1 largest task weights is at most M + 1
2 .

Further, tasks are allowed to join and leave the system under the conditions (J1)

and (L1).

As in Section 5.1, we begin with the following assumption: there exists a feasible task

system τ satisfying (M1) with tardiness greater than one. Let S denote the EPDF

schedule of τ in which some subtask has a tardiness greater than one. Further, let

Ti be the subtask with the earliest deadline among all subtasks that have tardiness

greater than one, and let td = d(Ti). Thus, all subtasks with deadlines less than td have

tardiness at most one.

Under EPDF, since the scheduling of Ti is not affected by subtasks with deadlines

greater than td, we assume that no task in τ releases any subtask with a deadline greater

than td. In other words,

for every subtask Uj ∈ τ, d(Uj) ≤ td. (5.5)

140

We first show that for Ti to have a tardiness of at least two, at least M +1 subtasks

miss their deadlines at td. This, in turn, implies that the LAG of τ at time td is at

least M + 1.

Lemma 5.8. At least M + 1 subtasks in τ miss their deadlines at td.

Proof. Consider any subtask Uj such that Uj misses its deadline at td. Because d(Uj) =

td, by (4.2) and (4.3), the deadline of Uj−1 is at or before td − 1. Therefore, by the

definition of Ti and td, Uj−1 has tardiness at most one and is scheduled in [0, td).

Hence, Uj is eligible to be scheduled at time td. If there are at most M subtasks like Uj

(including Ti), then each of these subtasks will be scheduled in [td, td + 1). Therefore,

subtask Ti cannot have tardiness greater than one. Contradiction.

Lemma 5.9. LAG(τ, td) ≥ M + 1.

Proof. By (4.9), we have

LAG(τ , td) =

td−1
∑

t=0

∑

T∈τ

share(T, t) −
td−1
∑

t=0

∑

T∈τ

S(T, t).

The first term on the right-hand side of the above equation is the total share in the

ideal schedule in [0, td), which equals the total number of subtasks in τ . (This follows

from (5.5), and because τ is feasible.) The second term corresponds to the number of

subtasks scheduled over [0, td) in S. Since at least M + 1 subtasks miss their deadlines

at td (by Lemma 5.8), the difference between these two terms is at least M+1.

Similar to the results in Lemmas 5.2 and 5.3, we can use Lemma 5.9 to show that

LAG(τ, td − 1) ≥ M + 1. Because LAG(τ, 0) = 0, it follows that there exists a time

t < td as follows.

t < td − 1 and LAG(τ, t) < M + 1 and LAG(τ, t + 1) ≥ M + 1. (5.6)

We now prove some properties about task lags at time t+1; using these properties and

(M1), we later derive a contradiction concerning the existence of t.

We define the sets A, B, and I as in Section 5.1. Thus, set A satisfies (5.3).

Figure 5.4(a) shows how the tasks in A, B, and I are scheduled. We now provide upper

bounds for the lag values at time t + 1 for the tasks in each of A, B, and I.

Lemma 5.10. For W ∈ I, lag(W, t + 1) = 0.

141

j

j

j+1

hole

t−1 t+1t

(b)

j
k

hole

t−1 t+1t

h

(a)

U

f(U , t−1) > 0

f(U , t−1) + wt(U)

U

Excess share in the ideal schedule is

V

A

I
W

B

Figure 5.4: In this figure, PF-windows are denoted by line segments. An arrow over a
release (respectively, deadline) indicates that the release (respectively, deadline) could
be anywhere in the direction of the arrow. There is a hole in slot t. (a) Sets A, B, and
I. The PF-windows of a sample task of each set are shown. (b) Case 4 of Lemma 5.12.
The excess share received by U in [0, t + 1) in the ideal schedule is equal to the shares
received by subtasks after Uj in [0, t + 1). (Note that if Uj+1 has a deadline at time
t+1, then the PF-window of Uj+2 may begin at time t, in which case part of the wt(U)
share in slot t is due to Uj+2.)

Proof. If task W leaves the system at or before time t, then by (L1) (refer to Section 4.2)

it leaves with zero lag. (If W releases a subtask Wh and leaves before Wh gets scheduled,

then it is equivalent to W not releasing Wh at all.) Therefore, we assume that W does

not leave the system before time t + 1. Consider any subtask Wh of task W . We

consider two cases depending on the value of e(Wh).

Case 1: e(Wh) ≥ t + 1. In this case, we have r(Wh) ≥ t + 1. Therefore, by (4.6),

f(Wh, u) = 0 for all slots u ≤ t < r(Wh). Hence, the share of Wh in the ideal

schedule in [0, t + 1) is zero. Also, since e(Wh) ≥ t + 1, Wh is scheduled at or

after t + 1 in S. Therefore, the share of Wh over [0, t + 1) in S is zero as well.

Case 2: e(Wh) ≤ t. In this case, by the definition of I, d(Wh) ≤ t < td. Because the

tardiness of such a subtask is at most one, Wh is scheduled in [0, t + 1). Hence,

the share received by Wh in [0, t+1) is one in both the ideal and EPDF schedules.

Thus, under both cases, each subtask of W receives equal shares in S and the ideal

schedule over [0, t + 1). Therefore, lag(W, t + 1) = 0.

Lemma 5.11. For V ∈ B, lag(V, t + 1) ≤ 0.

142

Proof. Consider any subtask Vk of task V . Again, as in the proof of Lemma 5.10, we

consider two cases.

Case 1: r(Vk) ≥ t + 1. In this case, by (4.6), the share of Vk in [0, t+1) in the ideal

schedule is zero.

Case 2: r(Vk) ≤ t. By Claim 5.1 (proved in Section 5.1), Vk is scheduled before t.

Thus, the share of Vk in [0, t + 1) is one in S (even if it has missed its deadline),

and at most one in the ideal schedule. (If d(Vk) is greater than t + 1, a portion

of Vk’s share in the ideal schedule is allocated after t + 1.)

Thus, for any subtask of V , its share in [0, t + 1) in S is at least its share in [0, t + 1)

in the ideal schedule. Hence, lag(V, t + 1) ≤ 0.

Lemma 5.12. For U ∈ A, lag(U, t + 1) < 2 × wt(U).

Proof. Let Uj be the subtask of U scheduled at time t. We consider several cases

depending on the value of d(Uj).

We first show that d(Uj) ≥ t. If d(Uj) ≤ t, then because t < td, we have d(Uj) < td.

By the choice of Ti and td, it follows that the tardiness of Uj is at most one. Since Uj

is scheduled in slot t, this implies that d(Uj) ≥ t. Hence, in this case, d(Uj) = t. Thus,

we have d(Uj) ≥ t. We now consider four cases.

Case 1: d(Uj) > t + 1. In this case, by (4.4), r(Uj+1) ≥ t + 1. Reasoning exactly as

in the proof of Lemma 5.11, we can show that lag(U, t + 1) ≤ 0.

Case 2: d(Uj) = t + 1 ∧ b(Uj) = 0. By (2.11), b(Uj) = 0 implies that
⌈

j
wt(U)

⌉

=
⌊

j
wt(U)

⌋

, and by (4.3), θ(Uj+1) ≥ θ(Uj). Therefore, by (4.1) and (4.2), r(Uj+1) ≥
t + 1. It follows that the share received by any subtask Uk (k > j) in the ideal

schedule in [0, t+1) is zero. Thus, the share received by task U in [0, t+1) is the

same in both the ideal and EDPF schedules. Therefore, lag(U, t + 1) = 0.

Case 3: d(Uj) = t + 1 ∧ b(Uj) = 1. (The proof of this case is similar to Case 2 in

the proof of Lemma 5.6.) By (4.4), we have

r(Uj+1) ≥ d(Uj) − 1. (5.7)

Therefore, r(Uj+1) ≥ t. By (4.1) – (4.3), we obtain r(Uj+2) ≥ t + 1. Therefore,

the share of any subtask Uk (k > j + 1) is zero in [0, t + 1) in the ideal schedule.

143

Now, the total share that U receives in [0, t + 1) in S schedule is j. However, in

the ideal schedule, the share received by U in [0, t + 1) may be more because of

the share that Uj+1 (if it exists) receives in [0, t + 1). This share will be non-zero

only if r(Uj+1) ≤ t, i.e., r(Uj+1) ≤ d(Uj) − 1. In this case, by (5.7), we have

r(Uj+1) = d(Uj) − 1. This implies that θ(Uj+1) = θ(Uj). It also implies that

the excess share in the ideal schedule in [0, t + 1) is at most f(Uj+1, t). Because

r(Uj+1) = t, by (4.6), we have f(Uj+1, t) = (

⌊

j
wt(U)

⌋

+ 1) · wt(U) − j.

Because θ(Uj+1) = θ(Uj), by (4.1) and (4.2),

⌊

j
wt(U)

⌋

=

⌈

j
wt(U)

⌉

− 1. Hence,
⌊

j
wt(U)

⌋

< j/wt(U). Therefore, f(Uj+1, t) < (j/wt(U) + 1) · wt(U) − j, i.e.,

f(Uj+1, t) < wt(U). Thus, lag(U, t + 1) < wt(U).

Case 4: d(Uj) = t. (In this case, Uj misses its deadline.) By (4.4), we have r(Uj+1) ≥
t − 1. Hence, by (4.1) – (4.3), r(Uj+2) ≥ t. Since Uj is scheduled in slot t, all

subtasks of U up to and including Uj receive a share of one over [0, t + 1) in both

S and the ideal schedule (see Figure 5.4(a)).

By (4.6), f(Uk, t) > 0 only if t ≥ r(Uk). Therefore, the only subtask after Uj that

may contribute to U ’s share in the ideal schedule in [0, t) is Uj+1. Further, by

(F1), the share of U in slot t (i.e., in [t, t + 1)) is at most wt(U). Thus, it follows

that the excess share that U can receive in [0, t+1) in the ideal schedule is at most

f(Uj+1, t− 1)+wt(U) (refer to Figure 5.4(b)). The first term, f(Uj+1, t− 1), will

be non-zero only if r(Uj+1) = t−1, i.e., r(Uj+1) = d(Uj)−1. Reasoning exactly as

in Case 3, it follows that f(Uj+1, t−1) < wt(U). Hence, lag(U, t+1) < 2×wt(U).

Thus, in all cases, we have lag(U, t + 1) < 2 × wt(U).

Because LAG(τ, t+1) =
∑

U∈A∪B∪I lag(U, t+1), by Lemmas 5.10 – 5.12, LAG(τ, t+

1) < 2 ×∑U∈A wt(U). By (5.3), |A| ≤ M − 1. Therefore, by (M1), LAG(τ, t + 1) <

M + 1, contradicting our assumption about t. Thus, we have the following theorem.

Theorem 5.7. Every feasible IS task system satisfying (M1) has a tardiness of at most

one under EPDF.

One way to ensure (M1) is to restrict the weight of every task to at most M + 1
2M − 2.

Corollary 5.7.1. EPDF guarantees a tardiness of at most one on M processors for

any dynamic IS task system satisfying (J1) and (L1) if the weight of each task is at

most M + 1
2M − 2 .

144

Note that M + 1
2M − 2 = M − 1 + 2

2(M − 1)
> 1

2. Thus, we have the following result.

Corollary 5.7.2. EPDF guarantees a tardiness of at most one on M processors for

any dynamic IS task system satisfying (J1) and (L1) if the weight of each task is at

most 1/2.

In other words, EPDF guarantees a tardiness of at most one for a task system

consisting solely of light tasks.

Discussion. It is possible to improve (M1) by more accurately bounding the lag

values for tasks in set A. In particular, as we show in Lemma 5.14 below, there must

be at least one task U ∈ A such that d(Uj) ≥ t + 1, where Uj is the subtask scheduled

in slot t. Using this, we prove that the following holds.

Lemma 5.13. Let τ be a task system that satisfies (J1) and (L1) and let w1, w2, . . . ,

wM−1 denote the weights (in non-increasing order) of the M − 1 heaviest tasks in τ . If

wM−1 + 2 ×∑M−2
i=1 wi ≤ M + 1, then EPDF guarantees a tardiness of at most one for

τ .

This allows us to improve the individual weight restriction to M + 1
2M − 3. If every task

has weight at most M + 1
2M − 3, then

wM−1 + 2 ×
M−2
∑

i=1

wi ≤ M + 1
2M − 3 +

2(M − 2)(M + 1)
2M − 3

= (M + 1) ×
(

1 + 2M − 4
2M − 3

)

= M + 1

Thus, we have the following result.

Corollary 5.7.3. EPDF guarantees a tardiness of at most one on M processors for

any dynamic IS task system satisfying (J1) and (L1) if the weight of each task is at

most M + 1
2M − 3 .

Note that, for M ≤ 4, we have 2M − 3 ≤ M + 1, i.e., M + 1
2M − 3 ≥ 1. Because the

weight of any task is at most one, the individual weight restriction is always satisfied if

M ≤ 4. That is, for M ≤ 4, EPDF guarantees a tardiness of at most one without any

weight restriction.

145

We now prove that Lemma 5.13 applies to dynamic GIS task systems as well. This

generalization allows us to use Lemmas 4.4 – 4.6 in our proof. As in the proof of

Theorem 4.5, we consider a time td and a task system instance τ defined as follows.

Definition 5.1. td is the earliest time that corresponds to the deadline of a subtask

with tardiness two when any task system is scheduled using EPDF.

Definition 5.2. τ is an instance of a task system with the following properties.

(T1) τ has a subtask Ti such that d(Ti) = td, and Ti has a tardiness of two when τ is

scheduled using EPDF.

(T2) No instance of any task system that satisfies (T1) releases fewer subtasks in [0, td)

than τ .

Let S denote the EPDF schedule of τ in which subtask Ti has a tardiness of two.

Define sets A, B, and I as in Section 5.1. Note that Lemma 4.9 applies here as well.

Lemma 5.14. There exists a task U ∈ A such that d(Uj) ≥ t + 1, where Uj is the

subtask of U scheduled in slot t.

Proof. Because t+1 < td (by (5.6), for any subtask Uj scheduled in slot t, its tardiness

is at most one. Therefore, its deadline is at or after t. We now show that the following

assumption leads to a contradiction.

(A) For all tasks U ∈ A, if Uj is the subtask scheduled in slot t, then d(Uj) = t.

Consider any task V ∈ B. (Such a V exists because B is non-empty (by Lemma 4.9).)

By the definition of set B, there exists a subtask Vk such that e(Vk) ≥ t < d(Vk). We

now show below that under assumption (A), Vk can be removed without affecting the

scheduling of subtasks after slot t.

Claim 5.2. Under assumption (A), Vk can be removed without affecting the

schedule after slot t.

Proof. By Claim 5.1, Vk must be scheduled before t. Let the chain of dis-

placements caused by removing Vk be ∆1, ∆2, . . . , ∆j, where ∆i = 〈X(i), ti,

X(i+1), ti+1〉 and X(1) = Uj. By Lemma 4.4, ti+1 > ti for 1 ≤ i ≤ k.

146

Note that at slot ti, the priority of subtask X (i) is at least that of X (i+1),

because X(i) was chosen over X (i+1) in S. Thus, because X (1) = Vk and

d(Vk) ≥ t + 1, we have the following.

For all i ∈ {1, . . . , k + 1}, d(X (i)) ≥ t + 1. (5.8)

We now show that the displacements do not extend beyond slot t. Assume,

to the contrary, that tk+1 > t. Consider h ∈ {2, . . . , k + 1} such that th > t

and th−1 ≤ t. Such an h exists because t1 < t < tk+1. Because there is a hole

in slot t and th−1 ≤ t < th, by Lemma 4.6, th−1 = t. Therefore, X (h−1) is

scheduled in slot t. In other words, X (h−1) ∈ A. By (5.8), d(X (h−1)) ≥ t+1.

This contradicts assumption (A).

Hence, under assumption (A), Vk’s removal does not affect the tardiness of of Ti and

τ . Let τ ′ be the task system instance obtained by removal of subtask Vk. Then, τ ′

satisfies (T1) and has one fewer subtask than τ . This contradicts (T2), implying that

assumption (A) is false.

Let U be the task in A such that d(Uj) ≥ t + 1, where Uj is the subtask of U

scheduled in slot t. Therefore, one of the first three cases in the proof of Lemma 5.12

applies to task U , and hence, lag(U, t + 1) < wt(U). If A′ is the set A − {U}, then

LAG(τ, t+1) < wt(U)+2×∑V ∈A′ wt(V). Therefore, if the condition in the statement

of Lemma 5.13 is satisfied, then LAG(τ, t+1) < M +1, which is a contradiction. Thus,

τ as defined above cannot exist, implying Lemma 5.13.

Tightness. At present, we do not know whether any of the above conditions are

tight. Though we have not been able to find an M -processor schedule in which more

than M subtasks miss their deadlines simultaneously, we do have examples in which

up to M − 2 simultaneous misses occur.

Consider the following set of periodic tasks: three tasks of weight 1
2 and M−1 tasks

of weight 2M − 3
2M − 2. Figure 5.5 illustrates the case M = 5. In these examples, the number

of simultaneous deadline misses increases up to some multiple of the least common

multiple of the task periods, and then remains steady after that. Note that, in these

examples, the percentage of jobs that miss their deadlines is quite high (approaches

25% for large M). However, as our simulation experiments (described in Section 5.2.3)

indicate, such cases are very rare indeed.

147

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

one
hole

one
hole

one
hole

3

2

3

2 2
4

4
3 1

3 1

2 2

3

1

1

2

2

4
4

3
3

2 2
2 2

1 3

1

1

1

2

2

1
1

2

4
4

3
3

2 2
2 2

1 3

1

1

1

2

2

1
1

2
2 1weight 1/2

Three tasks of

Four tasks of
weight 7/8

2
...

Figure 5.5: The Pfair window of each subtask is shown on a separate line. An integer
value n in slot t means that n of the corresponding subtasks are scheduled in slot t.
No integer value means that no such subtask is scheduled in slot t. Each subtask’s
IS-window is same as its PF-window. Subtasks that miss their deadlines are shown
scheduled after their windows. In the schedule shown, EPDF breaks ties in favor of
the tasks of weight 1/2. Note that the schedule over [16, 24] repeats after time 24.
Thus, a maximum of three subtasks miss their deadlines simultaneously, and hence,
the tardiness of each subtask is at most one.

5.2.2 Sufficient Condition for Tardiness of at most k

The above approach can be easily extended to obtain conditions similar to (M1) for

guaranteeing a tardiness of at most k. In particular, the following condition ensures

that tardiness is never more than k.

(Mk) At all times, the sum of the M − 1 largest task weights is at most kM + 1
k + 1

.

The proof is very similar to the sufficiency proof for (M1). td, Ti, and τ are defined in

the same manner, except that the tardiness of Ti is k + 1. Similar to Lemma 5.8, we

can show that for a subtask to have tardiness k + 1, kM + 1 subtasks simultaneously

miss their deadline at time td. Hence, LAG(τ, td) ≥ kM + 1, implying the existence of

time t as follows: t < td and LAG(τ, t) < kM + 1 and LAG(τ, t + 1) ≥ kM + 1.

The rest of the proof is the same except for Lemma 5.12, which is modified as

follows.

Lemma 5.15. For U ∈ A, lag(U, t + 1) < (k + 1) × wt(U).

Proof. Let Uj be the subtask of U scheduled in slot t. Since t < td, Uj has a tardiness of

at most k. Since Uj completes at time t+1, we have d(Uj) ≥ t+1−k. Hence, by (4.4),

148

r(Uj+1) ≥ t−k. Since Uj is scheduled in slot t in S, it follows that the excess share in the

ideal schedule over [0, t+1) is at most f(Uj+1, t−k) plus the share over [t−k+1, t+1).

By (F1), the second term is at most k × wt(U). Further, as in Lemma 5.12, we can

show that f(Uj+1, t − k) < wt(T). Therefore, LAG(U, t + 1) < (k + 1) × wt(U).

In other words, the lag of a task U in A may be up to (k + 1) times the weight of

U . By Lemmas 5.10, 5.11, and 5.15, LAG(τ, t + 1) <
∑

U∈A(k + 1)×wt(U). By (Mk),

the right-hand-side of this inequality is at most M + 1. Thus, LAG(τ, t + 1) < M + 1;

a contradiction. Thus, we have the following result.

Theorem 5.8. Every feasible IS task system satisfying (Mk) has a tardiness of at most

k under EPDF on M processors.

Condition (Mk) provides us an individual weight restriction of kM + 1
(k + 1)(M − 1)

.

Corollary 5.8.1. EPDF guarantees a tardiness of at most k on M processors for any

dynamic IS task system satisfying (J1) and (L1) if the weight of each task is at most
kM + 1

(k + 1)(M − 1)
.

As done in Lemma 5.13, we can improve (Mk) as follows. (The proof is similar

because Lemma 5.14 holds.)

Lemma 5.16. Let τ be a task system that satisfies (J1) and (L1) and let w1, w2, . . . ,

wM−1 denote the weights (in non-increasing order) of the M − 1 heaviest tasks in τ . If

wM−1 + (k + 1) ×∑M−2
i=1 wi ≤ kM + 1, then EPDF guarantees a tardiness of at most

one for τ .

This allows us to improve the individual weight restriction to kM + 1
(k + 1)(M − 2) + 1

;

if every task has weight at most kM + 1
(k + 1)(M − 2) + 1

, then wM−1 + (k + 1) ×∑M−2
i=1 wi

≤ kM + 1
(k + 1)(M − 2) + 1

+
(k + 1)(M − 2)(kM + 1)

(k + 1)(M − 2) + 1

= (kM + 1) ×
(

1 + (k + 1)(M − 2)
(k + 1)(M − 2) + 1

)

= kM + 1

Thus, we have the following result.

Corollary 5.8.2. EPDF guarantees a tardiness of at most one on M processors for

any dynamic IS task system satisfying (J1) and (L1) if the weight of each task is at

most kM + 1
(k + 1)(M − 2) + 1

.

149

5.2.3 Experimental Evaluation

To determine how frequently deadlines are missed under EPDF, and by how much,

we computed EPDF schedules for a number of randomly generated task sets. Only

periodic (not IS) task sets were considered in these experiments. Intuitively, introducing

IS delays should only reduce demand and hence lessen the likelihood of missed deadlines.

In addition, each task set was defined to fully utilize all available processors to further

increase the possibility of deadline misses.

The following procedure was followed in every run of the simulation. First, the

number of processors was chosen as a random number between 1 and 32. Then, task

weights were generated randomly in the interval (0, 1]. (No weight restrictions were

applied, i.e., weights were allowed to be as large as one.) The weight of the last

task was chosen so that the total weight equaled the number of processors. For each

generated task set, we constructed an EPDF schedule over the time interval [0, 10L),

where L is the least common multiple of all task periods. We repeated this procedure

approximately 195,000 times. Thus, the number of data points obtained per processor

in each graph is approximately 6,000.

In all the runs, no subtask ever missed its deadline by more than one quantum. In

other words, the tardiness for each generated task set was at most one. Though this

is not a proof, it does strongly indicate that any task set for which tardiness is greater

than one (if such a task set exists) is probably pathological and rare.

The graph in Figure 5.6 plots the percentage of task sets with tardiness greater

than zero versus the number of processors. (Recall that a task set has tardiness greater

than zero even if just a single job misses its deadline.) For example, EPDF misses at

least one deadline for approximately 19% of the generated task sets on five processors.

(No task set misses a deadline for systems of one or two processors because of the

optimality of EPDF for such systems (refer to Corollary 5.1.2.) The percentage of task

sets with non-zero tardiness initially increases as the number of processors increases

and then steadies. The maximum is around 25%. Though this value may seem high,

as the remaining graphs show, the fraction of deadlines that were missed tended to be

extremely low.

In Figure 5.7, the average percentage of deadlines missed is shown versus the number

of processors. Inset (a) shows the average over all generated task sets, while inset

(b) shows the average over task sets that have at least one deadline miss. Both the

percentage of job deadlines missed and the percentage of subtask deadlines missed are

150

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

of
 T

as
k

S
et

s

Number of Processors

Percentage of Task Sets with Non-zero Tardiness

Percentage

Figure 5.6: Percentage of task sets with non-zero tardiness versus the number of pro-
cessors.

plotted. As can be seen from these graphs, deadline misses are quite rare.

Note that the percentage of job deadlines missed is more than the percentage of

subtask deadlines missed. There are two reasons for this. First, the total number

of subtask deadlines is much more than the total number of job deadlines. Second,

subtask deadline misses within a job have a tendency to cascade, causing the later

subtasks within a job (and hence the job itself) to have a higher likelihood of missing

their deadlines.

Surprisingly, the largest average of job deadlines missed in Figure 5.7 is obtained

for three processors: 0.04% in inset (a) and 0.55% in inset (b). It is also surprising that

the percentage of misses decreases as the number of processors increases. Recall from

Section 5.1.2 that EPDF is optimal on M processors if the weight of each task is at

most 1
M − 1. (Also recall that this condition is fairly tight.) As M increases, 1

M − 1
decreases and hence, intuitively, the chance of a deadline miss should also increase.

However, as M increases, more tasks need to be generated to fully utilize the system.

Because our samples are generated randomly, the probability of having low-weight tasks

in the system also increases. This in turn drives the number of tasks (and hence, the

total number of deadlines) up. Thus, though the number of missed deadlines may

151

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

Number of Processors

Percentage of Missed Deadlines (Averaged Over All Task Sets)

Job deadlines
Subtask deadlines

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

of
 M

is
se

d
D

ea
dl

in
es

Number of Processors

Percentage of Missed Deadlines (Averaged over Task Sets with Non-zero Tardiness)

Job deadlines
Subtask deadlines

(b)

Figure 5.7: Solid (dotted) lines denote the percentage of job (subtask) deadlines missed.
(a) Percentage of deadlines missed averaged over all task sets. (b) Percentage of
deadlines missed averaged over task sets with non-zero tardiness. (99% confidence
intervals were computed for each graph but are not shown because the relative error
associated with each point is very small — less than 0.2% of the reported value.)

152

increase, the percentage of deadline misses decreases. Analogously, for fewer processors,

deadline misses are more common when most tasks have a large weight. In this case,

the number of tasks is small and therefore, the percentage of deadlines missed tends to

be higher.

5.3 Summary

In this section, we studied the scheduling of hard and soft real-time task systems

under the EPDF scheduling algorithm. Though EPDF is not an optimal scheduling

algorithm, it is simpler and more efficient than PD2. Hence, EPDF is preferable for

use in soft real-time systems; under most cases, EPDF guarantees that no subtask

(and hence no job) misses its deadline by more than one time unit. Further, even

for hard real-time systems, EPDF is preferable under certain circumstances (refer to

Theorems 5.1 and 5.6).

Chapter 6

Scheduling of Aperiodic Tasks∗

Until now, we have only considered the scheduling of recurrent real-time tasks. In

addition to such tasks, a system may consist of non-recurring (and maybe non-real-

time) tasks. Examples include service routines that are invoked infrequently, including

those used for handling and processing interrupts. Such tasks can be modeled using

the aperiodic task model.

An aperiodic task consists of a single job that arrives at an arbitrary time. An

aperiodic task may be either hard or soft ; a hard aperiodic task has a deadline, while a

soft aperiodic task does not. Whether an arriving hard aperiodic task’s deadline can be

guaranteed is a function of the current system workload; thus, such tasks must be sub-

ject to an admission-control test. Usually, the goal is to admit as many hard aperiodic

tasks as possible and to minimize the response times of soft aperiodic tasks, without

causing recurrent tasks to miss their deadlines. Several researchers have addressed this

problem for uniprocessor systems [CC89, DLS97, GB95, LRT92, LSS87, SSL89, SB96].

In this chapter, we present several schemes for multiplexing aperiodic tasks and

real-time GIS tasks. (Recall that in the GIS task model, the notion of an IS task is

generalized by allowing a task to skip subtasks.) Our approaches are server-based,

i.e., a recurrent task is used as a server to schedule aperiodic tasks whenever it is

scheduled. This is the one of the most common approaches for scheduling aperiodic

tasks on uniprocessors.

An aperiodic task is characterized by two integer parameters: its release time (or

∗The results presented in this chapter have been published in the following paper.

[SHA02] A. Srinivasan, P. Holman, and J. Anderson. Integrating aperiodic and recurrent tasks on
fair-scheduled multiprocessors. In Proceedings of the 14th Euromicro Conference on Real-Time

Systems, pages 19–28, June 2002.

154

arrival time) and its worst-case execution time. A task’s release time is usually not

known before its actual arrival. Hard aperiodic tasks have an additional relative dead-

line parameter; for such tasks, the execution time and deadline must be known upon

arrival. For simplicity, we assume that all aperiodic tasks in a system are either hard

or soft, i.e., both kinds are not simultaneously present.

On a uniprocessor, aperiodic tasks can be serviced by a single server task. On

a multiprocessor, if the available processor capacity exceeds one, then it cannot be

completely utilized by a single server unless it is scheduled in parallel with itself. (Even

if the spare capacity is at most one, the available parallelism might be more fully

exploited by using multiple servers.)

In this chapter, we start by discussing the single server case in Section 6.1, and then

consider multiple servers in Section 6.2. Later, in Section 6.3, we describe the results of

experiments that we conducted to compare our approaches to background scheduling.

6.1 The Single Server Case

In this section, we assume that the total utilization of the system including the

aperiodic server is M , the number of processors. In other words, we assume that the

weight of the aperiodic server is M −∑T∈τ wt(T) and that this weight is at most one.

Note that, with a single server, it is sufficient to have a single global queue for the

aperiodic tasks.

Whenever the aperiodic server is scheduled, it selects an aperiodic task for execution

if the queue is not empty. Since the earliest-deadline-first (EDF) algorithm is optimal

on a single processor, we assume that the hard aperiodic tasks are scheduled using EDF.

On the other hand, we do not assume anything about algorithm used for scheduling soft

aperiodic tasks. The approaches that we present in this chapter can be used with any

scheduling policy such as first-come first-serve (FCFS) and shortest job first. (However,

in our experiments, we use FCFS for scheduling; under FCFS, it is not necessary to

know the task execution requirements for scheduling.)

We assume that the real-time GIS tasks in the system are scheduled in a Pfair man-

ner, i.e., they are not early-released. In other words, for each subtask Ti, e(Ti) = r(Ti).

It is not necessary that the real-time tasks be scheduled in a Pfair manner; however,

early-releasing them would probably increase aperiodic response times, because allow-

ing subtasks of the real-time tasks to execute early can delay the execution of the

aperiodic server.

155

In the following subsection, we describe a generic admission-control test for hard

aperiodic tasks. In later subsections, we describe the two kinds of servers considered

in this chapter: Pfair servers and ERfair servers. We also discuss how to evaluate

worst-case response times for aperiodic tasks scheduled using these servers.

6.1.1 Admission-control Test for Hard Aperiodic Tasks

We assume a generic response-time function R : N 7→ N , i.e., R(e) gives the worst-

case response time for e units of execution (by any number of aperiodic tasks).1 In

other words, starting at time t, the server is guaranteed to execute for e time units

by time t + R(e). The actual evaluation of the response-time function depends on the

server implementation and will be considered later.

Suppose that, at time t, k aperiodic tasks are released. Let A denote the set of

these tasks and let d′
i, 1 ≤ i ≤ k, be their deadlines. Assume that d′

i ≤ d′
i+1 for

1 ≤ i < k. Merge this list of deadlines with the list of deadlines of aperiodic tasks

admitted previously. Let this merged list be d1, d2, . . . , dn, where n is the total number

of aperiodic tasks including the newly-released ones, and di ≤ di+1 for 1 ≤ i < n. Let

T (i) be the task with deadline di. Let ei be the remaining execution time for T (i).

Figure 6.1 shows a simple admission-control algorithm that can be implemented

in O(k log k + (n + k)f) time (explained later), where f is the time complexity of the

response-time function. The idea behind the algorithm is as follows. First, note that all

tasks admitted prior to the current time have been guaranteed to meet their deadlines.

Thus, in line 1, the set C is initialized to include all previously-accepted tasks with

a deadline at most d′
1. In lines 5–22, the remaining aperiodic tasks are considered in

deadline order.

At each step, we do the following. Let the current task being considered be T (i).

Tentatively admit this task and then check whether its deadline can be guaranteed

(lines 6–9). If not, then there are two cases to consider. If T (i) ∈ A (refer to line 9),

then T is rejected. Otherwise, we reject some other task in A that has already been

added to C.2 (Such a task exists because T (i) /∈ A is guaranteed to meet its deadline if

no new tasks are admitted.) We repeat this rejection process until the deadline of T (i)

can be guaranteed.

1It is not necessary for e to be an integer. However, this assumption simplifies the analysis; our
approach can be easily adapted to non-integral execution times.

2Note that, in line 15, the tasks are rejected in order of non-increasing execution times. However,
this is not necessary, and any other parameter indicating the “importance” of the newly-admitted
tasks may be used.

156

1: C := {T (i) | di ≤ d′1 and T (i) /∈ A};
2: E :=

∑

T (i)∈C ei;
3: WCR := R(E);

4: Let T (j) be the task with the largest index in C;
5: for i = j + 1 to n do

6: C := C ∪ {T (i)};
7: E := E + ei;
8: WCR := R(E);

9: if (t + WCR > di) ∧ (T (i) ∈ A) then

10: reject task T (i);

11: C := C − {T (i)};
12: E := E − ei

13: else

14: while (t + WCR > di) do

15: Let er = max{el | T (l) ∈ C ∩ A};
16: reject task T (r);

17: C := C − {T (r)};
18: E := E − er;
19: WCR := R(E)
20: od

21: fi

22: od

Figure 6.1: A generic admission-control procedure. The aperiodic tasks are considered
in order of non-decreasing deadlines. The set C represents the aperiodic tasks that have
been tentatively accepted; some of the tasks in C ∩ A might be rejected at some later
point in the execution of this algorithm. E represents the total remaining execution
time of the tasks in C. WCR represents the worst-case response time of the tasks in
C. Task T (r) represents the task chosen for rejection and er is its execution time.

Correctness. At the end of the procedure, the set C represents all the admitted

aperiodic tasks in the system. Note that, for each task in C, the worst-case completion

time (t+WCR) is at most its deadline; otherwise, some task in C ∩A is removed until

this holds (refer to lines 9, 11, 14, and 17). Thus, every task in C is guaranteed to meet

its deadline. Note also that a task that has been previously admitted is never rejected.

Time complexity. We can sort the newly-released k tasks in order of non-decreasing

deadlines in O(k log k) time. Merging this list with the list of already-admitted tasks

takes O(n) time. We now show that the response time function is invoked at most

O(n+ k) times. Note that each task is added at most once to C (O(n) time), and each

newly-released task is removed at once from C (O(k) time). This implies that the set

157

C changes at most O(n + k) times. Since the response time function is invoked only

if there is a change in C, it is invoked at most O(n + k) times. The max calculation

on line 15 can be done in O(1) time by maintaining an additional ordered list of the

newly-released tasks in C. Thus, the procedure runs in O(k log k + (n + k)f) time.

6.1.2 Pfair Servers

In this approach, the aperiodic server is scheduled in a Pfair manner, i.e., each

subtask of the server is scheduled in its PF-window. Whenever the server is scheduled,

it schedules some unfinished aperiodic task. If no such task exists, then the server has

three options, which are described below. Let t be such a time, let S denote the server

task, and let Si denote its eligible subtask at time t. Figure 6.2 illustrates the difference

between the three variants using the following task set scheduled on two processors: a

set Y consisting of four tasks of weight 1/4, and a set Z consisting of 22 tasks of weight

1/32. The server task S has weight 2− 4× 1/4− 22× 1/32 = 5/16. An aperiodic task

A is released at time 2 with an execution requirement of 2. Thus, the server has no

task to schedule until time 2. The three options are as follows.

• Idle the processor. This is the simplest and most efficient scheme, but processor

time is wasted.

This variant is illustrated in Figure 6.2(a). At time 0, subtask S1 has the highest

priority according to PD2. Since the queue is empty at time 0, S just idles the

processor.

• Drop Si (i.e., consider it absent) and schedule some other eligible subtask. This

server is implemented as a GIS task. This variant does not waste processor time.

Consider the example in Figure 6.2(b). Note that there are two tasks scheduled

in slot 0 as opposed to one in the idling variant case. However, A’s completion

time is the same as for the idling server.

• Stall the release of Si until the next slot and declare it ineligible at t. This server

is implemented as an IS task. More precisely, if the stalling server is scheduled

when the aperiodic task queue is empty, it withdraws its current subtask Si (i.e.,

Si is viewed as having not yet been released) and changes the release time of Si to

be the next slot. By delaying Si’s release, its deadline is also delayed and hence

its priority relative to other subtasks drops. This method defers the release of

158

0 1 2 3 4 5 6 7 8

��������������
������������������������

����������

0 1 2 3 4 5 6 7 8

����������
���������� ����������

����������

0 1 2 3 4 5 6 7 8

	�	�		�	�	

�
�

�
�
����������

���������� Aperiodic
task A [2]

Y (4 x 1/4)

Z (22 x 1/32)

S (1 x 5/16)

X

1

1

2

2 2

1 1 2

2

2

Y (4 x 1/4)

Z (22 x 1/32)

S (1 x 5/16)

2

2

1 1 2

1

1

Aperiodic
task A [2]

2

2

1 1

Aperiodic
task A [2]

Y (4 x 1/4)

Z (22 x 1/32)

S (1 x 5/16)

X

1

1

1 2 1

2 2

1 1 1 2

(b)

(c)

(a)

Figure 6.2: A partial schedule for a task set is shown under the different Pfair server
variants. An ‘X’ in slot t refers to the situation where the Pfair server S is scheduled
but the aperiodic task queue is empty. The aperiodic task is shown on a different
line. The value in brackets indicates its execution time. The up-arrow and down-arrow
denote its release time and finish time, respectively. (a) The idling variant. (b) The
dropping variant. (c) The stalling variant.

Si to the last moment possible (but, as our example shows, Si may be released

before the next aperiodic task arrives). Intuitively, this scheme should perform

better than the previous two schemes and our experiments confirm this.

Figure 6.2(c) depicts an example execution of a stalling server. At time 0, S

postpones the release of its next subtask until the next time slot, i.e., slot 1.

However, at time 1, there are two subtasks with priority higher than S’s subtask;

hence, S’s subtask is not chosen by PD2 and its release is not further postponed.

In the next time slot, S is scheduled and it schedules A in that slot. Note that

the response time is much better in this variant.

159

Note that none of these schemes requires that execution times be known: until a task

completes execution, it will remain in the queue and the server will continue to execute

it. (Obviously, for hard aperiodic tasks, execution times are needed for admission

control.) For similar reasons, non-integral execution times pose no problems. When

the server finishes executing a task, it selects the next task for execution. It does not

really matter whether this switch happens at the end of a quantum or in the middle of

a quantum.

Calculation of the response-time function. We now present a constant-time

procedure for evaluating R(e), i.e., the worst-case response time for e time units of

execution when using a single Pfair server.

Recall that a subtask Ti is active at time t if t ≤ d(Ti), Ti has not been scheduled

yet, and Ti−1 (if it exists) has already been scheduled. Note that since Ti−1 has been

scheduled, the following is true.

i > 1 ⇒ r(Ti−1) < t (6.1)

Suppose the response-time function R is invoked at time t. Let S denote the server

task, and let Si be the active subtask of S at time t. For example, in Figure 6.2, t is 2

and i is 2, 2, and 1, respectively, for the idling, dropping, and stalling variants. (Recall

that “time 2” is the beginning of slot 2; thus, A potentially could be scheduled in

slot 2.) Now, by the optimality of the PD2 algorithm, task S is guaranteed to receive

e units of execution by the deadline of subtask Si+e−1, i.e., d(Si+e−1). Therefore,

R(e) ≤ d(Si+e−1) − t. Thus, we have the following.

Claim 6.1. R(e) ≤ d(Si+e−1) − t, where t at which the function R is invoked, and Si

is the subtask of S active at time t.

The expression d(Si+e−1)−t can be evaluated in O(1) time by maintaining θ(Si) and

using Equation (4.2). Intuitively, the response time varies inversely with the weight

of the server; the larger the weight, the smaller will be the value of d(Si+e−1). The

following claim confirms this intuition by giving a bound that is independent of the

current subtask and time.

Claim 6.2. R(e) ≤
⌈

e + 1
wt(S)

⌉

.

160

Proof. Let t be the time at which R is invoked and Si be the subtask of S active at

time t. We now show that d(Si+e−1)−t ≤
⌈

e + 1
wt(S)

⌉

−1; the required result then follows

from Claim 6.1.

Note that θ(Si+e−1) = θ(Si), because at least e units of execution are requested at

time t. Therefore, by (4.2), we have the following.

d(Si+e−1) = θ(Si) +

⌈

i + e − 1
wt(S)

⌉

. (6.2)

If i = 1, then θ(S1) ≤ t. (Note that it can be less than t for the stalling server.)

Therefore, by (6.2), d(Si+e−1) ≤ t +

⌈

e
wt(S)

⌉

, which implies that d(Si+e−1) − t ≤
⌈

e
wt(S)

⌉

≤
⌈

e + 1
wt(S)

⌉

.

In the rest of the proof, we assume that i > 1. In this case, by (6.1), t > r(Si−1).

Now there are potentially two possibilities: either t ≥ r(Si) or r(Si−1) < t < r(Si).

Note that the response time in the second case will clearly be greater than that in

the first; therefore, we only need to consider the second possibility. In this case, Si

will be released as early as possible and hence, θ(Si−1) = θ(Si). Hence, by (4.1),

r(Si−1) = θ(Si) +

⌊

i − 2
wt(S)

⌋

. This implies that t > θ(Si) +

⌊

i − 2
wt(S)

⌋

, and hence, by

(6.2), d(Si+e−1)−t <

⌈

i + e − 1
wt(S)

⌉

−
⌊

i − 2
wt(S)

⌋

. Therefore, d(Si+e−1)−t ≤
⌈

i + e − 1
wt(S)

⌉

−
⌊

i − 2
wt(S)

⌋

− 1. Now,

⌈

i + e − 1
wt(S)

⌉

−
⌊

i − 2
wt(S)

⌋

− 1

=

⌈

e + 1 + i − 2
wt(S)

⌉

−
⌊

i − 2
wt(S)

⌋

− 1

≤
⌈

e + 1
wt(S)

⌉

+

⌈

i − 2
wt(S)

⌉

−
⌊

i − 2
wt(S)

⌋

− 1 , dx + ye ≤ dxe + dye

≤
⌈

e + 1
wt(S)

⌉

, dxe ≤ bxc + 1

Thus, d(Si+e−1) − t ≤
⌈

e + 1
wt(S)

⌉

.

161

6.1.3 ERfair Servers

In this approach, the aperiodic server is scheduled in an ERfair manner. Since the

server subtasks are allowed to execute before their windows, the (short-term) rate at

which an ERfair server services the aperiodic tasks can be higher than that of a Pfair

server. Hence, aperiodic response times will likely be better when using an ERfair

server as compared to a Pfair server. (On the other hand, ERfairness introduces more

jitter into the server execution. Therefore, Pfair servers are better for systems in which

jitter is a concern.) As before, we can have three different implementations of this

server. Intuitively, the stalling scheme for ERfair servers is expected to outperform all

the other servers and our experiments confirm this.

Figure 6.3 illustrates the three ERfair variants for the example task set considered

in Figure 6.2. Inset (a) illustrates the idling variant: when the server is scheduled in slot

0, it simply idles the processor. Note that because of the ERfair nature of the server,

the server is able to schedule task A in slot 2. The behavior of the dropping variant

(inset (b)) is similar. In the stalling variant (inset (c)), because the second subtask is

early-released, A finishes by time 4 as opposed to time 5 in the stalling variant of the

Pfair server (refer to Figure 6.2(c)).

One interesting point about the stalling scheme for the ERfair server is the manner

in which stalling and ERfairness complement each other. Note that, when the server

is backlogged (i.e., the queue is non-empty), stalling is not used and the ERfair nature

of the server gives good response times. On the other hand, when not backlogged,

as noted earlier, the stalling scheme provides the best response time among the three

schemes.

Calculation of the response-time function. The response-time estimate given

for Pfair servers (refer to Claim 6.1) can be used to calculate the worst-case completion

times for ERfair servers as well; however, this estimate can differ considerably from

the actual response time. The following procedure gives us a more accurate value for

ERfair servers. As before, let S denote the server and let t be the time when the

response-time function is invoked. Also, let Si be the subtask of S active at t and let

d = d(Si+e). (Thus, e+1 subtasks of S are guaranteed to execute in the interval [t, d).)

The response time R(e+1) is calculated in a recursive manner using the value for R(e).

Because R(e) represents the worst-case response time for e time units, subtask Si+e−1

is guaranteed to complete by time t + R(e). Thus, Si+e is eligible for execution at or

after t + R(e).

162

0 1 2 3 4 5 6 7 8

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

0 1 2 3 4 5 6 7 8

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

0 1 2 3 4 5 6 7 8

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����

Y (4 x 1/4)

Z (22 x 1/32)

S (1 x 5/16)

X

1 2 1

2 2

1 2

1

1

Aperiodic
task A [2]

2

Y (4 x 1/4)

Z (22 x 1/32)

S (1 x 5/16)

X

2

2 2

1 2

2

1

1

Aperiodic
task A [2]

1 2

Y (4 x 1/4)

Z (22 x 1/32)

S (1 x 5/16)

2

2

1 2

1

Aperiodic
task A [2]

2

1

1

2

2

(a) (b)

(c)

Figure 6.3: A partial schedule for a task set is shown under the different ERfair server
variants. (a) The idling variant. (b) The dropping variant. (c) The stalling variant.

Let H denote the set of all subtasks (including those of real-time tasks) that may

contend with Si+e in the interval [t + R(e), d) and that have higher priority. These are

the only subtasks that can delay the execution of Si+e after time t+R(e). Let h = |H|.
We now give a bound for R(e + 1) in terms of R(e) and h.

Claim 6.3. R(e + 1) ≤ R(e) +
⌊

h
M

⌋

+ 1.

Proof. Since the number of subtasks in H is h, these subtasks can run for at most
⌊

h
M

⌋

time without leaving a processor idle. (In order to keep all processors busy for

an interval of length
⌊

h
M

⌋

+1, the number of subtasks needed is (
⌊

h
M

⌋

+1)×M > h.)

Because Si+e is eligible to execute at or after t+R(e), this implies that Si+e is guaranteed

to execute in the interval [t + R(e), t + R(e) +
⌊

h
M

⌋

+ 1).

The following claim can be used to bound the value of h. Let θ(U) denote the offset

of U at time t, where U is any task in τ . Let I(U) denote the index of the last subtask

of U scheduled before t. Further, let τ ′ = τ − {S}.

163

Claim 6.4. h ≤∑U∈τ ′b(d−θ(U))·wt(U)c−max(I(U), bwt(U)·(t+R(e)−θ(U))c+1).

Proof. The maximum number of subtasks of U that can be scheduled in [t+R(e), d) is

k −max(I(U), j), where Uk is the latest subtask of U that has a deadline at or before

d, and Uj is the earliest subtask of U such that d(Uj) > t + R(e).

Then, by (4.2), we have θ(U) +

⌈

k
wt(U)

⌉

≤ d. Hence,

⌈

k
wt(U)

⌉

≤ d − θ(U). This

implies that k
wt(U)

≤ d − θ(U). Therefore, k ≤ (d − θ(U)) · wt(U).

Similarly, by (4.2), we have θ(U)+

⌈

j
wt(U)

⌉

> t+R(e). Because t+R(e)− θ(U) is

an integer, it follows that
j

wt(U)
> t + R(e)− θ(U). This implies that j > (t + R(e)−

θ(U)) · wt(U), and hence, j ≥ bwt(U) · (t + R(e) − θ(U))c + 1.

Thus, k − max(I(U), j) ≤ b(d − θ(U)) · wt(U)c − max(I(U), bwt(U) · (t + R(e) −
θ(U))c+1). Thus, the required result follows by incorporating the subtasks of all tasks.

Given the value of R(e), the expression in Claim 6.4 can be calculated in constant

time, and hence, h can be calculated in O(N) time, where N is the number of real-time

tasks in the system. To obtain the actual value of R(e), we take the minimum of the

values obtained from Claims 6.3 and 6.1. In general, the value obtained by the above

procedure is expected to be smaller. As an example, consider the task set in Figure 6.3.

For all variants, when the aperiodic task is released at time 2 and response times

calculated using Claim 6.3 are as follows. During the calculation of R(1), t = 2 and

h = 1 because of the first subtask of one task in Y . Therefore, R(1) =
⌊

1
2

⌋

+ 1 = 1.

During the calculation of R(2), t + R(1) = 3 and h = 5 because of the first subtask of

one task in Y and the second subtask of each task in Y . Thus, R(2) = 1+
⌊

5
2

⌋

+1 = 4.

Thus, the aperiodic task is guaranteed to complete before time t + 4, i.e., time 6. In

fact, it actually completes by time 4, as seen in the figure. The response time estimated

using Claim 6.1 is 8 (d(S3) − 2 = 10 − 2), 8 (d(S3) − 2), and 6 (d(S2) − 2 = 8 − 2)

for the idling, dropping, and stalling variants, respectively. Thus, Claim 6.3 provides a

better estimate.

Although Claim 6.3 provides a more accurate bound for the response time, its time

complexity is O(Ne) (where N is the total number of tasks in the system), whereas

the bound in Claim 6.1 can be calculated in O(1) time. Thus, there is a trade-off

between efficiency and accuracy. A simplistic implementation of the ERfair admission-

control test with this new procedure requires O((n+k)Ne+k log k) time, where n and

164

k are as defined in Section 6.1.1, and e is the sum of the remaining execution times

of all aperiodic tasks. It follows directly from the analysis in Section 6.1.1 because

f = O(Ne). Note, however, that when calculating R(e), we also calculate R(i), where

1 ≤ i < e. These values can be stored to avoid recomputing later; thus every invocation

of R in the admission-control test takes O(1) time. Thus, the admission-control test

completes in O(Ne + n + k + k log k) = O(Ne + n + k log k) time.

Relation to uniprocessor server approaches. The stalling Pfair server is similar

to the constant utilization server (CUS) proposed by Deng et al. [DLS97] for scheduling

aperiodic tasks on uniprocessors. The CUS server is designed using a sporadic task,

which is scheduled together with the real-time tasks using EDF. Like Pfair scheduling,

this approach is non-work-conserving: the server is not scheduled if it has used up

the execution time for its current period even if a processor is idle and an unfinished

aperiodic task exists. The total bandwidth server (TBS) of Spuri and Buttazzo [SB96]

eliminates unused processor capacity by allowing the “early-releasing” of jobs. The

server releases a new job if the current job completes and unfinished aperiodic tasks

exist; the new job’s deadline is the same as what it would have been had it not been

early-released. Thus, this is very similar to early-releasing of subtasks under ERfair

scheduling.

6.2 The Multiple Server Case

If spare processor capacity exceeds one, then multiple aperiodic servers may be

needed to use all the spare capacity. (Note that the weight of any single server or task

is at most one.) In this section, we consider several issues pertinent to systems with

multiple servers.

Before continuing, recall Theorem 2.6, which states that in any Pfair schedule, a

periodic task T receives at least bwt(T) · tc units of processor time in the interval [0, t).

In the paragraphs that follow, we discuss some heuristics for determining the number

of servers and their weights. We then discuss the relative merits of global versus per-

server queues and describe a simple admission-control test (which is an extension of

the test given in Section 6.1.1 for a single server). Finally, we present a way to better

utilize the available parallelism.

165

Number of servers and weight distribution. Suppose the spare processor capac-

ity is distributed by creating s servers. Let wi, 1 ≤ i ≤ s, be the weights of these servers,

where 0 < wi ≤ 1. Also, let l + x =
∑s

i=1 wi, where l is an integer and 0 ≤ x < 1.

Thus, l + x is the total spare processor capacity that the servers can consume. For any

t,
∑s

i=1 wi · t = l · t + x · t. Now,

s
∑

i=1

bwi · tc ≤
⌊

s
∑

i=1

wi · t
⌋

= bl · t + x · tc = l · t + bx · tc.

Hence, the service guaranteed to s servers by time t is at most that guaranteed to l +1

servers of weights x, 1, 1, . . . , 1. Thus, better worst-case response times result using l+1

servers with l servers of unit weight. We call this the greedy policy.

It is important to note that the analysis given here is only a guideline: actual

response times may sometimes be better in the s-server case because of the extra

parallelism available. However, as our experiments illustrate, average response times

are better under the greedy policy.

Global versus per-server queues. The strategy here varies depending on whether

the aperiodic tasks are hard or soft. In the case of soft aperiodic tasks, where we are

more interested in improving average response times, it is better to have a global queue

rather than to partition. This is because, with partitioning, a server might be scheduled

when its own queue is empty and ready aperiodic tasks are waiting in other queues.

On the other hand, in the case of hard aperiodic tasks, if EDF is used for scheduling,

then partitioning might be a better option. This is because global scheduling using

EDF can result in poor schedulability [DL78]. One way to alleviate this problem is

for the servers to use Pfair scheduling techniques (rather than EDF) when scheduling

hard aperiodic tasks. However, in general, the servers themselves may execute at

different rates. Thus, the problem is equivalent to a multiprocessor problem in which

the processor speeds are not identical. No optimal scheduling algorithm is known for

this problem; in fact, Baruah et al. [Bar00, Bar01] has shown that the corresponding

feasibility problem is intractable.

Assuming that partitioning is used for scheduling hard aperiodic tasks, we can

use a bin-packing algorithm such as first-fit (refer to Section 2.1.2), and one of the

admission-control tests proposed for the single-server case for task assignment. The

overall time complexity will depend on the time complexity of the admission-control

test. Suppose there are k servers numbered from 1 to k, and suppose that the worst-

166

case response-times are calculated using Claim 6.1. Then, the admission-control test

for server takes O(ni) time for every newly-released aperiodic task, where ni is the

number of tasks assigned to server i. Hence, the bin-packing assignment can be done in

O(
∑k

i=1 ni) = O(n) time per aperiodic task, where n is the total number of aperiodic

tasks (assigned to all servers).

Background servers. Recall that the real-time tasks are assumed to be GIS tasks,

and hence their subtasks may be released late. If such late releases are frequent, then

processors may be idle often. Idle slots may also result if a job of a real-time task

finishes earlier than its estimated worst-case execution time. Note that if an ERfair

aperiodic server has tasks to schedule during a potentially idle time slot, it will do so.

However, if a processor is idle, and the number of unfinished aperiodic tasks exceeds

the number of eligible servers, then processor time will still be unnecessarily wasted.

This is illustrated by the following example.

Consider a two-processor system on which two sets of IS tasks are scheduled: a set

A of four tasks of weight 1/4, and a set B of seven tasks of weight 1/16. In addition,

there is one aperiodic server with weight 2 − 4(1/4) − 7(1/16) = 9/16. Suppose that

four aperiodic tasks with execution times 3, 2, 2, and 1 are released at times 0, 1, 10,

and 10, respectively. Figure 6.4 shows the resulting schedule using PD2. From the

figure, we can see that the aperiodic tasks finish at times 4, 7, 12, and 13, respectively.

Note that the fourth aperiodic task is serviced only after the completion of the third

aperiodic task at time 12. Also note that a processor is idle in the interval [10, 11).

Thus, the fourth aperiodic task could actually have run in parallel with the third in

slot 10.

One way to utilize this extra processor time is to have a set of background servers,

one on each processor. Such a server is scheduled if its processor becomes idle while

unfinished aperiodic tasks exist. Using background servers results in better utilization

of the available parallelism than is otherwise possible. Note that the extra processor

time utilized in this way does not need to be charged to the Pfair/ERfair servers.

6.3 Performance Studies

We conducted simulations to compare our proposed servers with background schedul-

ing under various conditions. Performance was measured by computing the average

aperiodic response time as a function of the utilization of the periodic tasks (i.e., the

167

��������������
�������������� �����

�����
���������� ��������������

����������
��������������
�������������� 	�	�	�		�	�	�	

�
�

�
�

��������������
����������
�
�
�

�
�
�

����������
��������������
��������������

0 1 2 3 4 5 6 7 8 9 11 12 13 14 1510 16 17

Aperiodic
task [2]

Aperiodic
task [2]

Aperiodic
task [1]

Aperiodic
task [3]

B (7 x 1/16)

A (4 x 1/4)

2

21

2

1

1 1

1 2 22

S (1 x 9/16)

1

1

1

1

1

1

1

1

Figure 6.4: A mixed Pfair/ERfair schedule on two processors is depicted. A and B are
two sets of real-time GIS tasks scheduled in a Pfair manner and S represents the GIS
task used as a stalling ERfair server. Four aperiodic tasks with execution times 3, 2,
2, and 1 are released at times 0, 1, 10, and 10, respectively. A processor is idle over
[10, 12), and two unfinished aperiodic tasks exist, but only one of them is scheduled.

spare capacity). Each aperiodic task’s response time has been normalized with respect

to its execution cost, e.g., a value of 3 indicates a response time that is three times a

task’s execution cost. Before explaining the results that were obtained, we explain the

experimental setup.

There are a number of factors that affect the scheduling of aperiodic tasks on multi-

processors, among them, the number of processors, the total utilization of the periodic

tasks, and the distribution of the aperiodic task arrivals. We varied these three param-

eters to determine their effect on response times. In each experiment, the number of

servers and weights was determined using the greedy policy described in Section 6.2.

Also, a single global queue was maintained for the aperiodic tasks.

Fifty different periodic task sets having the same total utilization were generated,

along with fifty different aperiodic task sets, and simulations were conducted for each

168

combination of these task sets. Thus, each point in each graph is the result of 2,500 sim-

ulations. Each line in each graph was obtained by 50 such points uniformly distributed

in the interval [M/2,M − 0.25], where M is the number of processors. In other words,

the spare capacity was varied from 0.25 to M/2 and the effect on the response times was

then determined. We conducted these experiments for 2, 4, 8, 16, and 32 processors.

We also studied how changing the distribution of the aperiodic arrivals from uniform

to bursty affects the performance of the servers.

Results. The graphs in Figures 6.5–6.14 illustrate the performance of the six servers

described in this chapter.3 Inset (a) in each figure compares the performance of these

servers to background scheduling, and inset (b) demonstrates the performance of these

servers relative to an idling Pfair server (which is the most simplistic server, and thus

an obvious choice for a baseline measurement).

Figures 6.5 and 6.6 illustrate the performance of the servers on two processors. There

is one server here, whose weight is varied from 0.25 to 1. In Figure 6.5, the aperiodic

task releases are uniformly spaced. As can be easily seen, all the server schemes give

better performance than background scheduling; as the periodic task load increases,

the improvement (see inset (a)) approaches 10%. As expected, the stalling variant of

the ERfair server provides the best performance; as seen in inset (b), its performance is

up to 5% better than the idling Pfair server. In Figure 6.6, the aperiodic task releases

are bursty and grouped together near time zero. Similar results are seen here, although

the improvement over background scheduling is a bit better (approaching about 14%).

Note that, in this case, the server is continuously backlogged and hence the differences

between the three ERfair variants (see inset (b)) are less pronounced. (Recall that the

three variants considered earlier come into play when the servers are idle.) From insets

(a) in the both figures, note that as the periodic load increases, the response times also

increase (which agrees with intuition, since the utilization of the server decreases).

Figures 6.7, 6.9, 6.11, and 6.13 illustrate the performance of the servers on 4, 8,

16, and 32 processors with uniform aperiodic task arrivals. As seen in insets (a) of

these figures, the servers perform even better here compared to background scheduling,

approaching 27% in Figure 6.7 and 124% in Figure 6.11. This illustrates the scalability

of our approach as the number of processors increases. In fact, for a 32-processor

3As we did in the experiments described in earlier chapters, 99% confidence intervals were computed
for each graph but are not shown because the relative error associated with each point is very small
(less than 1% of the reported value).

169

0

5

10

15

20

25

30

35

40

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on Two Processors (Uniform Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on Two Processors (Uniform Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.5: Simulation results on two processors with uniform distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

170

5

10

15

20

25

30

35

40

45

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on Two Processors (Bursty Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on Two Processors (Bursty Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.6: Simulation results on two processors with bursty distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

171

0

5

10

15

20

25

30

35

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on Four Processors (Uniform Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.98

1

1.02

1.04

1.06

1.08

1.1

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on Four Processors (Uniform Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.7: Simulation results on four processors with uniform distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

172

0

5

10

15

20

25

30

35

40

45

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on Four Processors (Bursty Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on Four Processors (Bursty Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.8: Simulation results on four processors with bursty distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

173

0

5

10

15

20

25

30

35

40

4 4.5 5 5.5 6 6.5 7 7.5 8

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on Eight Processors (Uniform Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

4 4.5 5 5.5 6 6.5 7 7.5 8

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on Eight Processors (Uniform Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.9: Simulation results on eight processors with uniform distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

174

0

5

10

15

20

25

30

35

40

45

4 4.5 5 5.5 6 6.5 7 7.5 8

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on Eight Processors (Bursty Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

4 4.5 5 5.5 6 6.5 7 7.5 8

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on Eight Processors (Bursty Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.10: Simulation results on eight processors with bursty distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

175

0

10

20

30

40

50

60

70

80

8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on 16 Processors (Uniform Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

8 9 10 11 12 13 14 15 16

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on 16 Processors (Uniform Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.11: Simulation results on 16 processors with uniform distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

176

0

10

20

30

40

50

60

70

80

8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on 16 Processors (Bursty Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

8 9 10 11 12 13 14 15 16

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on 16 Processors (Bursty Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.12: Simulation results on 16 processors with bursty distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

177

0

5

10

15

20

25

30

35

40

45

50

14 16 18 20 22 24 26 28 30 32

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on 32 Processors (Uniform Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

14 16 18 20 22 24 26 28 30 32

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on 32 Processors (Uniform Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.13: Simulation results on 32 processors with uniform distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

178

0

10

20

30

40

50

60

14 16 18 20 22 24 26 28 30 32

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Aperiodic Servers on 32 Processors (Bursty Distribution)

Background
Pfair/Idle

Pfair/Drop
Pfair/Stall

ERfair/Idle
ERfair/Drop
ERfair/Stall

(a)

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

14 16 18 20 22 24 26 28 30 32

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Aperiodic Servers on 32 Processors (Bursty Distribution)

ERfair/Stall
ERfair/Drop
ERfair/Idle
Pfair/Stall
Pfair/Drop

(b)

Figure 6.14: Simulation results on 32 processors with bursty distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of each scheme.
(b) Performance relative to an idling Pfair sever.

179

system (refer to inset (a) of Figures 6.13 and 6.14) the improvement over background

scheduling approaches 250% in the bursty case, and 310% in the uniform case.

Note that the graphs in insets (b) of Figures 6.7–6.14 are quite different from their

counterparts in Figure 6.5. This is because the number of servers here is sometimes

more than one, and under the greedy policy, many of these servers will have a weight

of one. Such a server is scheduled in every slot, and hence neither early-releasing nor

stalling can improve its performance. When the periodic task load is integral, the

greedy policy in fact results in all servers having a weight of one. This is why the

various curves coincide at integral load levels. Intuitively, the difference between the

implementations will be more pronounced when there are fewer unit-weight servers

and when the non-unit-weight server’s weight is around 0.5. When a server’s weight

is too small (much less than 0.5), its low utilization tends to keep the queue full, in

which case the three variants perform similarly. Note that for 4 processors or more,

ERfair/stall is up to 11% or 12% better than Pfair/drop, which is quite a bit more

than for 2 processors. This suggests that the differences among the various schemes we

have proposed are more pronounced on larger systems.

Exception. Note that, in inset (b) of Figures 6.9 and 6.11, ERfair/drop occasionally

performs worse than Pfair/idle. This is because, when subtasks can become eligible

earlier, there is a greater potential that a subtask is dropped (there are more slots where

this could happen). Hence, response times suffer. Such a scenario is unlikely in the

case of bursty releases since the aperiodic task queue is more likely to be backlogged.

Comparison of greedy policy with equal-weight policy. As mentioned in Sec-

tion 6.2, one can devise several ways for choosing the number of servers and the weight

distribution. We now describe results comparing the greedy policy with the follow-

ing equal-weight policy: any spare capacity is distributed uniformly among M servers ,

where M is the number of processors. Figures 6.15 and 6.16 illustrate the difference in

performance of the two approaches.

For clarity, only the results for ERfair/stall are shown. Figure 6.15 shows the results

under uniform aperiodic task releases, while Figure 6.16 shows the results under bursty

aperiodic task releases. As can be seen from both figures, the performance of the

servers under the greedy policy is better than under the equal-weight policy. As seen

in Figure 6.16(b), the difference is more pronounced if the aperiodic task releases are

bursty. The main reason is that in the case of bursty releases, the servers are

180

0

10

20

30

40

50

60

70

80

8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Equal-Weight Servers on 16 Processors (Uniform Distribution)

Background
(equal-weight) ERfair/Stall

(greedy) ERfair/Stall

(a)

1

1.5

2

2.5

3

3.5

4

8 9 10 11 12 13 14 15 16

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Equal-Weight Servers on 16 Processors (Uniform Distribution)

(greedy) ERfair/Stall
(equal-weight) ERfair/Stall

(b)

Figure 6.15: Simulation results on 16 processors with uniform distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of the stalling
ERfair servers under both greedy and equal-weight policy. (b) Performance of the two
stalling ERfair servers relative to an idling Pfair sever.

181

0

10

20

30

40

50

60

70

80

8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 (
R

es
po

ns
e

T
im

e/
E

xe
cu

tio
n

C
os

t)

Periodic Task Load

Performance of Equal-Weight Servers on 16 Processors (Bursty Distribution)

Background
(equal-weight) ERfair/Stall

(greedy) ERfair/Stall

(a)

1

1.2

1.4

1.6

1.8

2

2.2

8 9 10 11 12 13 14 15 16

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 P
fa

ir/
Id

le
 S

er
ve

r

Periodic Task Load

Relative Performance of Equal-Weight Servers on 16 Processors (Bursty Distribution)

(greedy) ERfair/Stall
(equal-weight) ERfair/Stall

(b)

Figure 6.16: Simulation results on 16 processors with bursty distribution of aperiodic
task releases. (a) Actual performance (i.e., normalized response times) of the stalling
ERfair servers under both greedy and equal-weight policy. (b) Performance of the two
stalling ERfair servers relative to an idling Pfair sever.

182

backlogged most of the time and hence effectively act as a periodic task. As discussed

in Section 6.2, the service received under the greedy policy is greater, which leads to

better response times.

6.4 Summary

In this chapter, we have presented two server implementations for multiplexing ape-

riodic and recurrent real-time tasks in fair-scheduled multiprocessor systems. This is the

first work to consider the problem of integrating support for aperiodic tasks within fair

multiprocessor scheduling algorithms. We have also provided admission-control tests

for the scheduling of hard aperiodic tasks, and have pointed out some additional com-

plexities arising in server-based implementations on multiprocessors along with some

ways to handle them. Most of these complexities arise because of the parallelism that

exists in such systems. We have also provided experimental results that demonstrate

the effectiveness of our implementations.

Chapter 7

Conclusions and Future Work

The Pfair scheduling approach introduced by Baruah et al. [BCPV96] is currently

the only known way to optimally schedule recurrent real-time tasks on multiprocessors.

Baruah et al. presented two Pfair algorithms PF [BCPV96] and PD [BGP95] that

are optimal for scheduling periodic task systems on multiprocessors. Both algorithms

prioritize subtasks by their deadlines; they differ in the way they break ties between

equal subtask deadlines. Selecting appropriate tie-breaking rules is the most important

concern in designing optimal Pfair algorithms.

In this dissertation, we have extended this initial work of Baruah et al. in several

directions. In this chapter, we summarize our results and then briefly discuss directions

for future research.

7.1 Summary

In Chapter 3, we presented the PD2 algorithm, obtained by eliminating two of

the tie-breaking rules of PD. (The PD2 algorithm is the most efficient optimal Pfair

algorithm known to date.) We also introduced the concept of ERfair scheduling, which

is a work-conserving variant of Pfair scheduling. Using a swapping technique, we proved

that the PD2 algorithm is optimal for mixed Pfair/ERfair scheduling of asynchronous

periodic task systems. This proof reveals several of the key insights involved in Pfair

scheduling. Further, we showed that it is unlikely that more efficient optimal algorithms

exist. In particular, we demonstrated through a collection of counterexamples that if

any tie-breaking rule in PD2 is eliminated or replaced by a more efficient rule, then

periodic task systems exist that miss a deadline. Additionally, we presented results

of experiments (involving randomly-generated task systems) that compare PD2 and

184

EDF-FF, which is one of the commonly studied partitioning approaches. These results

strongly indicate the viability of using PD2 (and using Pfair scheduling algorithms,

in general); PD2 is more suitable for systems that support dynamic tasks or non-

independent tasks, or that have heavy tasks.

In Chapter 4, we presented a new task model called the intra-sporadic (IS) model.

The notion of an IS task generalizes the notion of a sporadic task by allowing subtasks

to be released late. This generality is useful in several applications, especially, ones that

process packets arriving over a network: even if packets are dispatched by the sender in

a periodic manner, due to network congestion, packets can arrive late or in bursts. By

allowing subtasks to be released late, and also allowing them to become eligible early,

the IS model simplifies the handling of such occurrences. We presented a feasibility

test for scheduling IS task systems on multiprocessors and also proved that the PD2

algorithm is optimal for scheduling such tasks. The latter result was actually obtained

as a corollary to a more general result involving dynamic task systems. In dynamic task

systems, tasks are allowed to leave and join the system; such systems have become very

common with the proliferation of gaming and virtual-reality applications. We derived

sufficient join/leave conditions for scheduling dynamic task systems using PD2, and

also demonstrate the tightness of the conditions through counterexamples.

In Chapter 5, we presented results involving the earliest-pseudo-deadline-first (EPDF)

algorithm, which is simpler and more efficient than PD2. We obtained sufficient con-

ditions under which EPDF is optimal and hence, preferable to PD2. In particular, we

proved that if the weight of each task is at most 1
M − 1, then EPDF can guarantee all

deadlines. We also presented schedulability conditions for a variant of EPDF (with a

different definition of deadline) that allow task weights to be larger than 1
M − 1. In ad-

dition, we considered scheduling of soft real-time systems using EPDF. Since occasional

deadline misses are allowed in soft real-time systems, it is not necessary to use PD2 in

such systems. We proved that EPDF guarantees a tardiness of at most one quantum

for task systems in which each task has a weight of at most M + 1
2M − 3. We also obtained

similar restrictions on individual task utilizations for larger tardiness thresholds.

In Chapter 6, we presented several approaches for integrating the scheduling of

aperiodic tasks with real-time recurrent tasks on fair-scheduled multiprocessors. In

these approaches, the spare processor capacity (i.e., the difference between number of

processors and the total weight of the real-time IS tasks) is distributed among several

aperiodic servers in a greedy manner. Each server is scheduled as a recurrent IS task

and it, in turn, schedules the aperiodic tasks that are assigned to it. We derived bounds

185

on the response times of the aperiodic tasks; these bounds can also be used to design

an admission control test for aperiodic tasks with deadlines. We also presented results

of simulations that compared our approaches with background scheduling (which is the

only other approach known for scheduling aperiodic tasks on fair-scheduled multipro-

cessors.)

7.2 Future Work

In this section, we discuss some of the remaining challenges in fair scheduling on

multiprocessors.

7.2.1 Quantum Size

One of the limitations of current work on Pfair scheduling (including the work in

this dissertation) is that all tasks are scheduled using the same quantum size. Such

a restriction may be undesirable, and in fact, impractical for certain systems. For

example, if Pfair scheduling algorithms are used for scheduling packets on multi-link

routers, then variable-sized quanta may be necessary. In general, allowing variable-

sized quanta will cause Pfair scheduling algorithm to be non-optimal. Further research

is needed to determine bounds on tardiness under such conditions (assuming a given

maximum size for any quantum).

Even within fixed-length quantum scheduling, a problem of practical importance

would be to determine an optimal quantum size. Note that with a smaller quantum,

it is more likely that all execution requirements and periods will be a multiple of

the quantum size. However, a smaller quantum also leads to larger scheduling and

preemption overheads (refer to Section 3.5), which in turn causes a loss in schedulability.

These trade-offs need to be analyzed to determine the quantum size that leads to

maximum schedulability.

A related challenge is the design of good global scheduling algorithms that are not

quantum-based. Recall from Chapter 2 that the worst-case achievable utilization using

global EDF is just one for any number of processors [DL78]. In recent work [SB02],

we developed a deadline-based algorithm called EDF-US (m
2m − 1), which significantly

improves upon EDF. EDF-US (m
2m − 1) differs from EDF in a simple way: it statically

assigns highest priority to tasks with utilization more than m
2m − 1 and schedules the

remaining tasks using EDF. We have shown that EDF-US (m
2m − 1) correctly schedules

186

on m processors any task system that has a total utilization of at most m2

2m − 1. Further

research is needed to determine whether a non-quantum-based algorithm with a higher

worst-case achievable utilization exists.

7.2.2 Fair Distribution of Spare Capacity

In Section 2.2.3, we described work on uniprocessor GPS scheduling. Unlike the

ideal scheduler underlying the concept of Pfairness, under GPS, any spare proces-

sor capacity is distributed fairly among all tasks. Chandra et al. [CAGS00] recently

extended the concept of GPS to multiprocessors by introducing generalized multipro-

cessor scheduling (GMS). Under GMS, spare capacity is distributed according to the

weights, but, with the additional constraint that the share of each task is at most one.

Chandra et al. also presented an algorithm that approximates GPS and demonstrated

its effectiveness through experiments. However, they did not formally analyze their

approach.

Note that one way to utilize spare capacity is by task reweighting so that the total

weight of the system always equals the number of processors. Since reweighting can

be accomplished using leaves and joins, our results pertaining to dynamic task systems

provide a first step towards obtaining formal proofs for GPS-based systems. However,

there is clearly more scope for further research. In particular, it would be interesting

to know what kind of bounds on tardiness can be derived when (J1) and (L1) (refer to

Section 4.2) are used in conjunction with PD2. On the same note, further research is

needed to determine tighter tardiness bounds for EPDF or to show that bounds given

in Chapter 5 are tight.

In recent work [ABS03], we presented a new notion of multiprocessor fairness called

quick-release fair (QRfair) scheduling, under which idle processor time is distributed

fairly using heuristics. Under QRfair scheduling, each task is allowed to have both a

minimum and a maximum weight. We presented a quick-release variant of PD2 called

PDQ, which schedules each task at a rate that is (i) at least that implied by its minimum

weight and (ii) at most that implied by its maximum weight. We also presented results

from extensive simulation experiments that show that PDQ allocates spare. Further

research is needed to formally prove this property about PDQ.

187

7.2.3 Tasks with Relative Deadlines less than Periods

Another issue that warrants further research is the consideration of periodic task

systems in which relative deadlines are allowed to be different from periods. This

generality allows us to model precedence constraints between tasks. Relative deadlines

greater than periods can be handled by artificially reducing it to be equal to the period.

We now briefly discuss feasibility issues regarding systems in which relative deadlines are

allowed to be less than periods. (We restrict this discussion to synchronous periodic task

systems; the feasibility problem for asynchronous periodic task systems with relative

deadlines less than periods is known to be intractable even on a single processor [BHR93,

LM80].)

Exponential-time feasibility tests. (We consider this issue in slightly more detail

as some preliminary results have been obtained.) For uniprocessors, Baruah et al.

[BHR93] presented the following exponential-time feasibility test: a task system τ is

feasible on a uniprocessor if and only if

for all t ∈ [0, L),
∑

T∈τ

T.e ·
(⌊

t − T.d
T.p

⌋

+ 1
)

≤ t, (7.1)

where L is the LCM of the task periods. Such a test is called a demand-based test

because T.e ·
(⌊

t − T.d
T.p

⌋

+ 1
)

represents the processor time demanded by T over the

interval [0, t).

The above test effectively simulates the behavior of the EDF algorithm and is based

on the fact that EDF (a polynomial-time algorithm) is optimal for scheduling periodic

tasks on multiprocessors, even if relative deadlines differ from periods. However, no such

algorithm is known for multiprocessors. Still, an exponential-time feasibility test for

multiprocessors can be obtained by a simple extension of the network flow technique

presented in Chapter 4. To check the feasibility of a task system, we can build a

corresponding network graph and verify whether a flow of the required size exists.

However, this feasibility test has some limitations in the sense that it is not easy

to obtain more efficient conditions for special cases. For instance, for uniprocessors,

Baruah et al. [BHR93] presented a more efficient (pseudo-polynomial-time) test based

on (7.1) that applies if the total utilization of the task system is strictly less than one.

Unfortunately, obtaining demand-based tests for multiprocessors is very difficult. As

we now show, the following simple and intuitive extension of the uniprocessor demand-

based feasibility test does not work on multiprocessors: a task system τ is feasible on

188

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	

�
�

�
�

�������
�������
�����
�����

�
�
�

�
�
�

�����
�����

�������
�������
�����
�����

�������
�������
�����
�����

0 1 2 3 4 5 6

Task T

Task V

Task V

Task W

Task X

Figure 7.1: A two-processor schedule for a task system with five tasks T , U , V , W , and
X is shown. The up arrows corresponds to job releases and down arrows correspond to
job deadlines. Each task is shown on a separate line.

M processors if and only if for all t ∈ [0, L),
∑

T∈τ T.e ·
(⌊

t − T.d
T.p

⌋

+ 1
)

≤ M · t.
Consider a two-processor system with five tasks: T , U , V , W , and X. Tasks T

through W each have a period of 3, an execution requirement of 1, and a relative

deadline of 2. Task X has a period of 6, an execution requirement of 2, and a relative

deadline of 5. Now, the demand over [0, t) for any t ∈ [0, 6] is as follows. (Refer to

Figure 7.1.)

t = 1. Demand is 0, which is at most 1 × 2.

t = 2. Demand is 4, which is at most 2 × 2.

t = 3. Demand is 4, which is at most 3 × 2.

t = 4. Demand is 4, which is at most 4 × 2.

t = 5. Demand is 10, which is at most 5 × 2.

t = 6. Demand is 10, which is at most 6 × 2.

Thus, the test is satisfied, but the task system is not feasible (refer to Figure 7.1). To

see why, note that over [0, 2), the four jobs of T–W must execute. This implies that

over [2, 3) only task X can execute, and a processor is idle. Further, it can receive at

most one unit of processor time. Thus, over the interval [3, 5) each of the five tasks

requires one unit and there are only four units available. Thus, one task will miss its

deadline. The primary reason the demand-based test does not work on more than one

processor is that it cannot identify slots in which a processor is idle.

189

A simple polynomial-time schedulability test for PD2. An O(N) (where N

is the total number of tasks) schedulability test can be easily obtained for PD2 from

the result in Corollary 4.5.2. Before presenting this test, we define a new term. The

density of a task is the ratio of its execution requirement to its relative deadline; thus,

the density of task T is T.e
T.d

. (Note that if T.d = T.p, then T ′ density and weight are

equal.) The density of a task system is the sum of the densities of all the tasks in that

system.

Given any task system τ in which relative deadlines differ from periods, we can

obtain an instance of sporadic task system τ ′ that has the same pattern of releases and

deadlines. In particular, for each T ∈ τ , there is a task T ′ ∈ τ ′ such that T ′.φ = T.φ,

T ′.e = T.e, T ′.p = T.d, T ′.d = T ′.p. If the density of τ is at most M , then the weight

of τ ′ is at most M . By Corollary 4.5.2, τ ′ can be correctly scheduled using PD2. Thus,

τ can be correctly scheduled if its density is at most M .

However, this schedulability condition is very loose. In fact, there exist task systems

with density greater than any given n that are feasible of a single processor. For

example, consider the following task system consisting of k tasks numbered from 1 to

k. Each task has a period of k, an execution requirement of 1 and a phase of 0; the ith

task has a relative deadline of i. It is easy to see that in any period of [(j − 1)k, jk),

a valid schedule can be obtained by executing tasks in the order 1 to k. Note that the

density of this task system is
∑k

i=1
1
i . Since

∑∞
i=1

1
i is unbounded, there exists a task

system that is feasible and has a density greater than n for any given n.

The above discussion clearly indicates that more research is needed to obtain tighter

efficient schedulability conditions.

190

Appendix A

Properties about Flows for IS Tasks

We now prove several properties that are used in the proofs in Section 4.3. With the

exception of (B3) (see below), all of the properties below apply to GIS task systems.

(L) For a light task T , if Tk is the successor of Ti, then d(Tk) ≥ d(Ti) + 2.

Proof. Because Tk is Ti’s successor, k ≥ i + 1. Hence, d(Tk) ≥ θ(Tk) +

⌈

i + 1
wt(T)

⌉

. By

(4.3), d(Tk) ≥ θ(Ti) +

⌈

i + 1
wt(T)

⌉

. Therefore, by (4.2), d(Tk) − d(Ti) ≥
⌈

i + 1
wt(T)

⌉

−
⌈

i
wt(T)

⌉

. Thus,

d(Tk) − d(Ti) ≥ i + 1
wt(T)

−
⌈

i
wt(T)

⌉

, dxe ≥ x

> i + 1
wt(T)

− i
wt(T)

− 1 , dxe < x + 1

= i
wt(T)

− 1 , by simplification

= 1
wt(T)

− 1 , i ≥ 1

> 2 − 1 , wt(T) < 1/2 ⇒ 1
wt(T)

> 2

Therefore, d(Tk) > d(Ti) + 1, i.e., d(Tk) ≥ d(Ti) + 2.

(B1) Let Ti be a subtask with b(Ti) = 1. If Ti+1 exists, then f(Ti, d(Ti) − 1) +

f(Ti+1, r(Ti+1)) = wt(T).

Proof. By (4.6), f(Ti, d(Ti)−1) = i−
(⌈

i
wt(T)

⌉

− 1

)

×wt(T), and f(Ti+1, r(Ti+1)) =
(⌊

i
wt(T)

⌋

+ 1

)

× wt(T) − i. Since b(Ti) = 1, by (2.11),

⌈

i
wt(T)

⌉

=

⌊

i
wt(T)

⌋

+ 1.

Hence, f(Ti+1, r(Ti+1)) =

⌈

i
wt(T)

⌉

×wt(T)−i. Therefore, f(Ti, d(Ti))+f(Ti+1, r(Ti+1)) =

wt(T). (See Figure 4.11.)

191

(B2) Let Ti be a subtask such that b(Ti) = 1. If Ti+1 exists and is released late, i.e.,

r(Ti+1) ≥ d(Ti), then flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T).

Proof. Because Ti+1 is released late, by (4.4), we have r(Ti+1) ≥ d(Ti). By (4.1) and

(4.2), it follows that r(Tk) > d(Ti) for all k > i + 1. Similarly, d(Tj) < d(Ti) for

all j < i. This implies that the slot d(Ti) − 1 lies within the PF-window of only

one subtask, namely, Ti, and the slot d(Ti) can lie within the PF-window of only

one subtask, namely, Ti+1. Thus, the contribution to the flow in slot d(Ti) − 1 is

f(Ti, d(Ti) − 1) and the contribution to slot d(Ti) is at most f(Ti+1, r(Ti+1)). Hence,

by (B1), flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T).

(B3) If Ti and Tk are subtasks of an IS heavy task T such that k > i and r(Tk) < D(Ti),

then f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) ≤ wt(T).

Proof. If b(Ti) = 0, then D(Ti) = d(Ti). In this case, r(Tk) ≥ D(Ti) holds, since (4.1)

implies r(Tk) ≥ d(Ti) (thus, no task Tk exists such that k > i and r(Tk) < D(Ti)). In

the rest of the proof, we assume that b(Ti) = 1. Note that, by the definition of D (the

group deadline), because r(Tk) < D(Ti), for all j ∈ {i + 1, . . . , k − 1}, |w(Tj)| = 2 and

b(Tj) = 1. Because |w(Tj)| = 2, we have d(Tj) = r(Tj) + 2. Because the total flow for

a subtask is one, this implies that

∀j ∈ {i + 1, . . . , k − 1}, f(Tj, r(Tj)) + f(Tj, d(Tj) − 1) = 1. (A.1)

For all j ∈ {i, . . . , k−1}, b(Tj) = 1. Therefore, by (B1), f(Tj, d(Tj)−1)+f(Tj+1, r(Tj+1)) =

wt(T). Therefore,
∑k−1

j=i f(Tj, d(Tj) − 1) + f(Tj+1, r(Tj+1)) = (k − i) × wt(T). Rewrit-

ing, we get f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) +
∑k−1

j=i+1(f(Tj, r(Tj)) + f(Tj, d(Tj) − 1)) =

(k − i) × wt(T). By (A.1), this implies that

f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) + k − i − 1 = (k − i) × wt(T).

Therefore, f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) = wt(T) + (k − i − 1)(wt(T) − 1). Because

k ≥ i + 1 and wt(T) ≤ 1 for all T , we have f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) ≤ wt(T).

(B4) Let Ti be a subtask of a heavy GIS task T and let Tk (k > i) be a subtask such

that r(Tk) < D(Ti). Then, f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) ≤ wt(T).

Proof. Because T is a GIS task, there is an IS task U such that wt(U) = wt(T), all

subtasks between Ui and Uk are present, and r(Uk) = r(Tk). Hence, r(Uk) < D(Ui).

192

By (B3), f(Ui, d(Ui)− 1) + f(Uk, r(Uk)) ≤ wt(U). Corresponding subtasks in T and U

have identical flows. Thus, f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) ≤ wt(T).

(F2) Let Ti be a subtask of a GIS task and let Tk be its successor. If b(Ti) = 1 and

r(Tk) ≥ d(Ti), then flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T).

Proof. If k = i + 1, then by (B2), flow(T, d(Ti) − 1) + flow(T, d(Ti)) ≤ wt(T). Also,

if r(Tk) > d(Ti), then flow(T, d(Ti)) = 0. Hence, by (F1), flow(T, d(Ti) − 1) +

flow(T, d(Ti)) ≤ wt(T).

In the rest of the proof, we assume that k > i + 1 and r(Tk) = d(Ti). We first show

that T must be heavy. If T is light, then by (L), we have d(Ti+1) > d(Ti) + 1. By

(4.4), we also have r(Tk) ≥ d(Ti+1) − 1 and therefore, r(Tk) > d(Ti), which contradicts

r(Tk) = d(Ti).

Thus, T is heavy. Because b(Ti) = 1, by the definition of D, D(Ti) > d(Ti).

Hence, because r(Tk) = d(Ti), we have r(Tk) < D(Ti). Thus, by (B4), flow(T, d(Ti) −
1) + flow(T, r(Tk)) ≤ wt(T). Because r(Tk) = d(Ti), we have flow(T, d(Ti) − 1) +

flow(T, d(Ti)) ≤ wt(T).

(F3) Let Ti be a subtask of a heavy GIS task T such that b(Ti) = 1 and let Tk be

the successor of Ti. If u ∈ {d(Ti), . . . , D(Ti) − 1} and u ≤ r(Tk), then flow(T, d(Ti)) +

flow(T, u) ≤ wt(T).

Proof. Since b(Ti) = 1, by the definition of D, D(Ti) > d(Ti). Since u ≥ d(Ti) and Tk

is Ti’s successor, if r(Tk) > u, then flow(T, u) = 0. Thus, by (F1), flow(T, d(Ti)− 1) +

flow(T, u) ≤ wt(T). The other possibility is r(Tk) = u, which implies r(Tk) < D(Ti).

In this case, by (B4), f(Ti, d(Ti) − 1) + f(Tk, r(Tk)) ≤ wt(T). Thus, flow(T, d(Ti) −
1) + flow(T, u) ≤ wt(T).

193

Bibliography

[ABJ99] J. Anderson, S. Baruah, and K. Jeffay. Parallel switching in connection-

oriented networks. In Proceedings of the 20th IEEE Real-time Systems Sympo-

sium, pages 200–209, December 1999.

[ABS03] J. Anderson, A. Block, and A. Srinivasan. Quick-release fair scheduling. In

Proceedings of the 24th IEEE Real-time Systems Symposium, December 2003. To

appear.

[AHKB00] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus

IPC: The end of the road for conventional microarchitectures. In Proceedings

of the 27th International Symposium on Computer Architecture, pages 248–259,

June 2000.

[AS00a] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proceedings

of the 12th Euromicro Conference on Real-time Systems, pages 35–43, June 2000.

[AS00b] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task sys-

tems. In Proceedings of the 7th International Conference on Real-time Computing

Systems and Applications, pages 297–306, December 2000.

[AS01] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous

periodic tasks. In Proceedings of the 13th Euromicro Conference on Real-time

Systems, pages 76–85, June 2001.

[AS04] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous

periodic tasks. Journal of Computer Systems and Sciences, 2004. To appear.

(Most of the results in this paper were presented in preliminary form at the 12th

and 13th Euromicro Conferences on Real-time Systems.).

[Bar95] S. Baruah. Fairness in periodic real-time scheduling. In Proceedings of the 16th

IEEE Real-time Systems Symposium, pages 200–209, December 1995.

[Bar00] S. Baruah. Scheduling periodic tasks on uniform multiprocessors. In Proceed-

ings of the 12th Euromicro Conference on Real-time Systems, pages 7–14, June

2000.

194

[Bar01] S. Baruah. Scheduling periodic tasks on uniform multiprocessors. Information

Processing Letters, 80(2):97–104, 2001.

[BCPV96] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate progress:

A notion of fairness in resource allocation. Algorithmica, 15:600–625, 1996.

[BFP+73] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds for

selection. Journal of Computer System and Sciences, 7:448–461, 1973.

[BGP95] S. Baruah, J. Gehrke, and C. Plaxton. Fast scheduling of periodic tasks on

multiple resources. In Proceedings of the 9th International Parallel Processing

Symposium, pages 280–288, April 1995.

[BGP+97] S. Baruah, J. Gehrke, C. Plaxton, I. Stoica, H. Abdel-Wahab, and K. Jeffay.

Fair on-line scheduling of a dynamic set of tasks on a single resource. Information

processing Letters, 64(1):43–51, October 1997.

[BHR93] S. Baruah, R. Howell, and L. Rosier. Feasibility problems for recurring tasks

on one processor. Theoretical Computer Science, 118(1):3–20, 1993.

[BLOS95] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. Assigning real-time

tasks to homogeneous multiprocessor systems. IEEE Transactions on Computers,

44(12):1429–1442, 1995.

[BR02] E. Bampis and G. N. Rouskas. The scheduling and wavelength assignment

problem in optical wdm networks. IEEE/OSA Journal of Lightwave Technology,

20(5):782–789, 2002.

[BZ96] J. Bennett and H. Zhang. WF2Q: Worst-case fair queueing. In Proceedings of

IEEE INFOCOM, pages 120–128, March 1996.

[BZ97] J. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms.

IEEE/ACM Transactions on Networking, 5(5):675–689, October 1997.

[CAGS00] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus fair scheduling: A

proportional-share CPU scheduling algorithm for symmetric multiprocessors. In

Proceedings of the 4th ACM Symposium on Operating System Design and Imple-

mentation, pages 45–58, October 2000.

195

[CAS01] A. Chandra, M. Adler, and P. Shenoy. Deadline fair scheduling: Bridging the

theory and practice of proportionate-fair scheduling in multiprocessor servers. In

Proceedings of the 7th IEEE Real-time Technology and Applications Symposium,

pages 3–14, May 2001.

[CC89] H. Chetto and M. Chetto. Some results of the earliest deadline scheduling algo-

rithm. IEEE Transactions on Software Engineering, 15(10):1261–1269, October

1989.

[CL90] M. Chen and K. Lin. Dynamic priority ceiling: A concurrency control protocol

for real time systems. Real-time Systems, 2(1):325–346, 1990.

[CO01] K. Coffman and A. Odlyzko. The size and growth rate of the internet. March

2001. Available at http://www.firstmonday.dk/issues/issue3_10/coffman/.

[DD86] S. Davari and S. Dhall. An on-line algorithm for real-time tasks allocation. In

Proceedings of the 7th Real-time Systems Symposium, pages 194–200, 1986.

[Der74] M. Dertouzos. Control robotics : the procedural control of physical processors.

In Proceedings of the IFIP Congress, pages 807–813, 1974.

[DKS89] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair

queueing algorithm. In Proceedings of the ACM Symposium on Communications

Architectures and Protocols, pages 1–12, 1989.

[DL78] S. Dhall and C. Liu. On a real-time scheduling problem. Operations Research,

26(1):127–140, 1978.

[DLS97] Z. Deng, J. Liu, and J. Sun. A scheme for scheduling hard real-time appli-

cations in open system environment. In Proceedings of 9th Euromicro Workshop

on Real-time Systems, pages 191–199, June 1997.

[DM89] M. Dertouzos and A. Mok. Multiprocessor online scheduling of hard-real-time

tasks. IEEE Transactions on Software Engineering, 15(12):1497–1506, December

1989.

[FF62] L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[FGP+00] A. Ferrari, S. Garue, M Peri, S. Pezzini, L.Valsecchi, F. Andretta, and

W. Nesci. The design and implementation of a dual-core platform for power-

train systems. In Convergence 2000, October 2000.

196

[GB95] T. Ghazalie and T. Baker. Aperiodic servers in a deadline scheduling environ-

ment. Real-time Systems, 9(1):31–67, 1995.

[GFB03] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic

task systems on multiprocessors. Real-time Systems, 25(2-3):187–205, 2003.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, 1979.

[Gol94] S. Golestani. A self-clocked fair queueing scheme for broadband applications.

In Proceedings of IEEE INFOCOM, pages 636–646, April 1994.

[GVC96] P. Goyal, H. Vin, and H. Cheng. Start-time fair queuing: A scheduling

algorithm for integrated services packet switching networks. In Proceedings of

ACM Sigcomm, August 1996.

[HA01] P. Holman and J. Anderson. Guaranteeing Pfair supertasks by reweighting.

In Proceedings of the 22nd IEEE Real-time Systems Symposium, pages 203–212,

December 2001.

[HA02a] P. Holman and J. Anderson. Locking in Pfair-scheduled multiprocessor sys-

tems. In Proceedings of the 23rd IEEE Real-time Systems Symposium, pages

149–158, December 2002.

[HA02b] P. Holman and J. Anderson. Object sharing in Pfair-scheduled multiprocessor

systems. In Proceedings of the 14th Euromicro Conference on Real-time Systems,

pages 111–120, June 2002.

[HW79] G. Hardy and E. Wright. An Introduction to the Theory of Numbers. Oxford

University Press, 1979.

[JB95] K. Jeffay and D. Bennett. A rate-based execution abstraction for multimedia

computing. In Proceedings of the 5th International Workshop on Network and

Operating System Support for Digital Audio and Video, pages 64–75, April 1995.

[Jef92] K. Jeffay. Scheduling sporadic tasks with shared resources in hard real-time

systems. In Proceedings of the 13th IEEE Symposium on Real-time Systems,

pages 89–98, December 1992.

[JG99] K. Jeffay and S. Goddard. The rate-based execution model. In Proceedings of

the 20th IEEE Real-time Systems Symposium, pages 304–314, December 1999.

197

[JSMA98] K. Jeffay, F. Smith, A. Moorthy, and J. Anderson. Proportional share

scheduling of operating system services for real-time applications. In Proceed-

ings of the 19th IEEE Real-time Systems Symposium, pages 480–491, December

1998.

[LGDG00] J. Lopez, M. Garcia, J. Diaz, and D. Garcia. Worst-case utilization bound

for EDF scheduling on real-time multiprocessor systems. In Proceedings of the

12th Euromicro Conference on Real-time Systems, pages 25–33, June 2000.

[LHS+98] C.-G. Lee, J. Hahn, Y.-M. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, and

C. Kim. Analysis of cache-related preemption delay in fixed-priority preemtive

scheduling. IEEE Transactions on Computers, 47(6):700–713, 1998.

[LL73] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[LLH+01] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. Min, R. Ha, S. Hong, C. Park,

M. Lee, and C. Kim. Bounding cache-related preemption delay for real-time

systems. IEEE Transactions on Software Engineering, 27(9):805–826, 2001.

[LM80] J. Leung and M. Merrill. A note on preemptive scheduling of periodic, real-time

tasks. Information Processing Letters, 11(3):115–118, November 1980.

[LMM98] S. Lauzac, R. Melhem, and D. Mosse. An efficient RMS admission control and

its application to multiprocessor scheduling. In Proceedings of the International

Symposium on Parallel Processing, pages 511–518, March 1998.

[LRT92] J. Lehoczky and S. Ramos-Thuel. An optimal algoririthm for scheduling soft-

aperiodic tasks in fixed priority preemptive systems. In Proceedings of the 13th

IEEE Real-time Systems Symposium, pages 110–123, December 1992.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:

Exact characterization and average case behavior. In Proceedings of the 10th

IEEE Real-time Systems Symposium, pages 166–171, December 1989.

[LSS87] J. Lehoczky, L. Sha, and J. Strosnider. Enhanced aperiodic responsiveness

in hard real-time environments. In Proceedings of 8th IEEE Real-time Systems

Symposium, pages 261–270, 1987.

198

[Mok83] A. Mok. Fundamental Design Problems of Distributed Systems for the Hard-

real-time Environment , 1983. Ph.D. thesis, Massachussets Institute of Technol-

ogy.

[MR99] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and migrating periodic

tasks on multiple resources. In Proceedings of the 20th IEEE Real-time Systems

Symposium, pages 294–303, December 1999.

[OB98] D. Oh and T. Baker. Utilization bounds for N -processor rate monotone schedul-

ing with static processor asssignment. Real-time Systems, 15(2):183–192, 1998.

[OS95a] Y. Oh and S. Son. Allocating fixed-priority periodic tasks on multiprocessor

systems. Real-time Systems, 9(3):207–239, 1995.

[OS95b] Y. Oh and S. Son. Fixed-priority scheduling of periodic tasks on multiprocessor

systems. Technical Report 95-16, Department of Computer Science, University

of Virginia, March 1995.

[PG93] A. Parekh and R. Gallagher. A generalized processor sharing approach to

flow-control in integrated services networks: the single-node case. IEEE/ACM

Transactions on Networking, 1(3):344–357, 1993.

[PG94] A. Parekh and R. Gallagher. A generalized processor sharing approach to

flow-control in integrated services networks: the multiple node case. IEEE/ACM

Transactions on Networking, 2(2):137–150, 1994.

[Raj02] R. Rajkumar. Personal communication. 2002.

[Ram97] S. Ramamurthy. A Lock-Free Approach to Object Sharing in Real-time Sys-

tems , 1997. Ph.D. thesis, University of North Carolina at Chapel Hill.

[RSL88] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols

for multiprocessors. In Proceedings of the 9th IEEE Real-time Systems Sympo-

sium, pages 259–269. IEEE, 1988.

[SA02] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiproces-

sors. In Proceedings of the 34th Annual ACM Symposium on Theory of Comput-

ing, pages 189–198, May 2002.

199

[SA03] A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications

on multiprocessors. In Proceedings of the 15th Euromicro Conference on Real-time

Systems, pages 51–59, July 2003.

[SA04a] A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applica-

tions on multiprocessors. Journal of Embedded Computing, June 2004. Under

submission. (A preliminary version of this paper was presented at the 15th Eu-

romicro Conference on Real-time Systems.).

[SA04b] A. Srinivasan and J. Anderson. Fair scheduling of dynamic task systems on

multiprocessors. Journal of Systems and Software, 2004. Under submission.

(A preliminary version of this paper was presented at the 11th International

Workshop on Parallel and Distributed Real-time Systems.).

[SAWJ+96] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and C. Plax-

ton. A proportional share resource allocation algorithm for real-time, time-shared

systems. In Proceedings of the 17th IEEE Real-time Systems Symposium, pages

288–299, December 1996.

[SB96] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dynamic priority

systems. Real-time Systems, 10(2):179–210, 1996.

[SB02] A. Srinivasan and S. Baruah. Deadline-based scheduling of periodic task systems

on multiprocessors. Information Processing Letters, 84(2):93–98, November 2002.

[SHA02] A. Srinivasan, P. Holman, and J. Anderson. Integrating aperiodic and recur-

rent tasks on fair-scheduled multiprocessors. In Proceedings of the 14th Euromicro

Conference on Real-time Systems, pages 19–28, June 2002.

[SHA+03] A. Srinivasan, P. Holman, J. Anderson, S. Baruah, and J. Kaur. Multi-

processor scheduling in processor-based router platforms: Issues and ideas. In

Proceedings of the 2nd Workshop on Network Processors, pages 48–62, February

2003.

[SHAB03] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah. The case for fair

multiprocessor scheduling. In Proceedings of the 11th International Workshop on

Parallel and Distributed Real-time Systems, April 2003.

200

[SRL90] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An

approach to real-time system synchronization. IEEE Transactions on Computers,

39(9):1175–1185, 1990.

[SRLR89] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change

protocols for priority-driven pre-emptive scheduling. Real-time Systems, 1(3):244–

264, 1989.

[SSL89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard real-

time systems. Real-time Systems, 1(1):27–60, 1989.

[SVC98] S. Saez, J. Vila, and A. Crespo. Using exact feasibility tests for allocating

real-time tasks in multiprocessor systems. In Proceedings of the 10th Euromicro

Workshop on Real-time Systems, pages 53–60, June 1998.

[SZN97] I. Stoica, H. Zhang, and T. Ng. A hierarchical fair service curve algorithm

for link-sharing, real-time and priority service. In Proceedings of ACM Sigcomm,

August 1997.

[TBW92] K. Tindell, A. Burns, and A. Wellings. Mode changes in priority pre-emptive

scheduled systems. In Proceedings of the 13th IEEE Real-time Systems Sympo-

sium, pages 100–109, December 1992.

[Vui78] J. Vuillemin. A data structure for manipulating priority queues. Communica-

tions of the ACM, 21:309–315, 1978.

[WH95] D. Wood and M. Hill. Cost-effective parallel computing. IEEE Computer,

28(2):69–72, 1995.

[Zha91] L. Zhang. Virtual clock: A new traffic control algorithm for packet-switched

networks. ACM Transactions on Computer Systems, 9(2):101–124, May 1991.

