
A New Explanation of the Glitch

Phenomenon �

James H. Anderson

Department of Computer Science

The University of Maryland at College Park

College Park, Maryland 20742

Mohamed G. Gouda

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188

August 1988
Revised July 1989

Abstract

We consider a discrete model for asynchronous circuits and show

that, under very mild restrictions, this model excludes the existence of

glitch-free arbiters. This result contradicts a long standing conjecture

that the nonexistence of glitch-free arbiters is due to the continuous

nature of such circuits.

Keywords: arbiter, asynchronous circuit, atomicity, glitch, history,

interleaving semantics, metastability, nondeterminism, waiting

CR Categories: B.4.3, D.4.1, F.1.1

�Work supported in part by O�ce of Naval Research Contract N00014-89-J-1913.

1 Introduction

We consider a fundamental problem in the theory of asynchronous circuits,

namely the construction of arbiter circuits; see, for example, Chaney and

Molnar [4], Hurtado and Elliot [6], Marino [8], Lamport [7], Black [1], and

Udding [13]. Of particular interest in the design of arbiter circuits is the so-

called \glitch" phenomenon: An arbiter circuit may take an arbitrarily long

time to adjust the values of its outputs in response to changes in the values

of its inputs. Furthermore, the values of its outputs may oscillate before

stabilizing. The glitch phenomenon usually manifests itself when the asyn-

chronous inputs of an arbiter change value at approximately the same time,

thereby forcing the arbiter to \choose" between two or more assignments to

its outputs.

It has been shown by Vosbury [14] and by Palais and Lamport [11] that

the glitch phenomenon is inherent in arbiter circuits. These proofs are based

on a continuous model of asynchronous circuits. In fact, Palais and Lamport

state that a proof of this result must be based on a continuous model. We

show otherwise; that is, we give a proof of the unavoidability of the glitch

phenomenon that is based on a discrete circuit model.

The rest of the paper is organized as follows. In the next section, we state

the arbiter construction problem and de�ne what it means for an arbiter to be

\delay-bounded" and \stable." We illustrate these concepts by presenting in

Section 3 an arbiter that is neither delay-bounded nor stable. For an arbiter

circuit to be \glitch-free," it is usually taken to mean that it is both delay-

bounded and stable. But, as shown in Sections 4 and 5, neither of these

conditions can be met. In Section 6, we discuss several issues pertaining to

our model of a circuit and our de�nition of the arbiter construction problem.

Concluding remarks appear in Section 7.

2 The Arbiter Construction Problem

In this section, we de�ne a general discrete model of a circuit, and state the

arbiter construction problem in terms of that model.

De�nition: A gate is a guarded command of the form

x 6= E ! x := E

1

where x is a boolean variable, and E is a boolean expression over a nonempty

set of boolean variables. The variables appearing in E are inputs of the gate,

and variable x is the output of the gate. 2

De�nition: A wire is a guarded command of the form

x 6= y ! x := y

where x and y are boolean variables. Variable y is the input of the wire, and

variable x is the output of the wire. 2

In the remainder of the paper, we use the term action to refer to gates and

wires collectively. Next, we de�ne a circuit to be a collection of \connected"

actions; two actions are connected when the output of one is an input of

the other, and each connection is between a gate and a wire. The de�nition

takes into account the fact that a variable can either be used to connect a

gate and a wire, or it can occur as an \external" input or output. We give a

brief justi�cation of this de�nition below.

De�nition: A circuit is a �nite collection of gates and wires whose variables

are subject to the following restrictions.

� Bipartition: The variables can be partitioned into two classes. One

class contains all gate inputs and wire outputs, and the other class

contains all wire inputs and gate outputs.

� Integrity: Each variable is the output of at most one action.

� Fanout : Each wire output is the input of at most one gate. Each gate

output, however, can be the input of several wires.

� Feedback : If the input of a wire is the output of some gate, then the

output of the wire is not an input of that same gate.

A variable that is an output of no action is called an external input . Simi-

larly, a variable that is an input of no action is called an external output . 2

The bipartition restriction states that, with the exception of external

inputs and outputs, a circuit is a directed bipartite graph where nodes are

2

gates and wires and where edges are variables; each edge either leads from a

gate to a wire or vice versa. The integrity restriction states that, with the

exception of external inputs, each variable is the output of a unique action.

According to the fanout restriction, the output of a wire is either an external

output or an input of exactly one gate. The feedback restriction disallows

\loops" that consist of only one gate and one wire. Together, the bipartition

and feedback restrictions imply that every loop in a circuit consists of at

least two gates and two wires. An example of a circuit is given pictorially in

Figure 1.

The restrictions in our de�nition of a circuit reect the physical limita-

tions of \actual" circuits. The bipartition restriction reects the fact that a

signal experiences a delay as it propagates from one gate to the next. The

integrity restriction rules out the absurd situation in which several gates or

wires share a common output. The fanout restriction can be defended on

the grounds that a physical wire can be used to deliver a signal to only one

gate. The feedback restriction can also be justi�ed based on the behavior of

physical circuits; however, we defer the defense of its inclusion to Section 6.2.

De�nition: A state of a circuit is an assignment of values to the variables

of the circuit. One state of a circuit is designated as its initial state. 2

De�nition: An action is enabled in some state i� its guard is true in that

state. An enabled action is executed by performing its assignment statement.

2

De�nition: Let s be a state of a circuit and let c be an action that is enabled

in state s. If s0 is the result of executing action c at state s, then we write

s
c

!s
0. We call s0 a successor of state s. 2

De�nition: A history of a circuit is either an in�nite sequence s0
c0!s1

c1!� � �

or a �nite sequence s0
c0!s1

c1!� � �
ck�1

! sk with no enabled action in the �nal

state sk. A history whose �rst state is the initial state is called an initialized

history. 2

Our model of a circuit is discrete. Discrete models of asynchronous cir-

cuits date back to the work of Miller [10], and have been used more recently

3

by Martin [9] and by Chandy and Misra [3]. A defense of such models is

presented later in Section 6.3.

Arbiter Construction Problem: We are required to construct a circuit,

called an arbiter , with two external inputs pin and qin and two external

outputs pout and qout such that the following requirements are satis�ed.

� In the initial state, pin = qin = true and pout = qout = false .

� In the �nal state of every �nite initialized history, pout 6= qout.

� There exists a �nite initialized history with pout^:qout in its �nal state,
and another with :pout ^ qout in its �nal state. 2

Although this de�nition captures the essence of arbitration, it does not

deal with many issues that arise in the design of \practical" arbiters. For

example, our de�nition does not specify how an arbiter should respond to the

other three input combinations, i.e., pin = false and qin = false , pin = true

and qin = false, and pin = false and qin = true. It also does not specify the

conditions under which the value of each input can change. The fact that our

statement of the problem is rather weak | i.e., has few requirements | is

no accident. By weakening the problem de�nition, the impossibility results

given in Sections 4 and 5 are strengthened.

De�nition: An arbiter is called delay-bounded i� each of its initialized histo-

ries is �nite. An arbiter is called stable i� in each of its initialized histories the

value of one external output remains unchanged. An arbiter is called glitch-

free i� it is both delay-bounded and stable; otherwise it is called glitch-prone.

2

In the rest of the paper, we show that glitch-prone arbiters can be con-

structed (Section 3), but glitch-free arbiters cannot. In particular, we show

that no arbiter is delay-bounded (Section 4) or stable (Section 5).

3 A Glitch-Prone Arbiter

The next theorem shows that a simple R-S ip-op is a delay-unbounded,

unstable arbiter. Such ip-ops are commonly used in the construction of

4

more elaborate arbiter circuits; for example, see the circuits given in [1] and

[8].

Theorem 1: There are glitch-prone arbiters.

Proof: We show that the R-S ip-op shown in Figure 1 is a delay-unbounded,

unstable arbiter. This circuit is de�ned by the following set of actions (the

actions are labeled for convenience).

NAND0 : x 6= :(pin ^ a) ! x := :(pin ^ a)

NAND1 : y 6= :(qin ^ b) ! y := :(qin ^ b)

WIRE0 : pout 6= x ! pout := x

WIRE1 : qout 6= y ! qout := y

WIRE2 : a 6= y ! a := y

WIRE3 : b 6= x ! b := x

-pin
$

%
cNAND0

-

a

WIRE2

WIRE3

-

b

$

%
cNAND1-qin

WIRE0

WIRE1

-s

�

x

-s

�

y

-pout

-qout

Figure 1: R-S ip-op.

Initially, let pin = qin = true and a = b = pout = qout = x = y = false.

We �rst show that this circuit satis�es the three conditions of the arbiter

5

construction problem, and then show that it is delay-unbounded and unsta-

ble. Clearly, this circuit satis�es the �rst requirement given in the problem

statement.

To verify the second requirement, observe that in each �nal state the

guard of each action is false. Therefore, by taking the conjunction of the

negation of each guard (and substituting pin = true and qin = true) we get

the following predicate, which holds in each �nal state.

(x = :a) ^ (y = :b) ^ (pout = x) ^ (qout = y) ^ (a = y) ^ (b = x)

This predicate implies that pout 6= qout.

To check the third requirement, note that a �nal state in which pout = true

and qout = false is reached by executing the actions in the order NAND0,

WIRE3, WIRE0. Similarly, a �nal state in which pout = false and qout = true

is reached by executing the actions in the order NAND1, WIRE2, WIRE1.

An in�nite initialized history is obtained by repeatedly executing the fol-

lowing sequence of actions: NAND0, NAND1, WIRE0, WIRE1, WIRE2,

WIRE3. Therefore, this arbiter is delay-unbounded. Moreover, in this his-

tory the value of each external output changes more than once (in fact an

in�nite number of times) indicating that the arbiter is unstable. 2

4 Nonexistence of Delay-Bounded Arbiters

In this section, we prove that delay-bounded arbiters do not exist. The fol-

lowing de�nitions are used in the proof. (The �rst de�nition is adapted from

Fischer, Lynch, and Patterson [5].)

De�nition: A state of an arbiter is called p-valent (or q-valent) i� each

history starting from that state is �nite and ends with a �nal state in which

pout^:qout (or :pout^qout). A state is called bi-valent i� it is neither p-valent

nor q-valent. 2

Note that each successor of a p-valent (q-valent) state is p-valent (q-

valent). Also, observe that if all histories starting from a bi-valent state are

�nite, then both outcomes pout ^ :qout and :pout ^ qout are reachable from

that state; hence the name bi-valent.

6

De�nition: Two states of an arbiter are compatible i� it is not the case that

one is p-valent and the other is q-valent. 2

Observe that, from the problem statement, the initial state of every ar-

biter is bi-valent. Therefore, to prove that no delay-bounded arbiter exists,

it su�ces to show that each bi-valent state of an arbiter has a bi-valent suc-

cessor. The result is given in Theorem 2 below. The following two lemmas

are used in the proof of the theorem.

Lemma 1: Let s
c

!t and s
c
0

!t
0, where c 6= c

0. Then, c0 is enabled in state t

or c is enabled in state t0 (or both).

Proof: We prove that if c0 is not enabled in state t, then c is enabled in state

t
0. By symmetry, this proves the lemma.

Assume that c0 is not enabled in state t, and let x and x
0 be the outputs

of actions c and c
0, respectively. By the integrity restriction, x and x

0 are

distinct, i.e., x0 is not the output of c and x is not the output of c0. Note

that states s and t di�er only in the value of variable x. Thus, because c0 is

enabled in s but not in t, variable x is an input of c0 (as established above,

x is not the output of c0). Because the output of c is an input of c0, the

bipartition restriction implies that one of the actions is a gate and the other

is a wire. Thus, by the feedback restriction, x0 is not an input of action c.

Note that states s and t
0 di�er only in the value of variable x

0. Therefore,

because x0 is neither an input nor the output of c, the fact that c is enabled

in state s implies that it is also enabled in state t0. 2

Lemma 2: All successors of each state are compatible.

Proof: The lemma is trivially true for a state with zero or one successor.

So, let s be a state with at least two successors. It su�ces to prove that if

s
c

!t and s
c
0

!t
0, where c 6= c

0, then t and t
0 are compatible. By Lemma 1, c0

is enabled in t or c is enabled in t
0. Without loss of generality, assume the

former. Then, there exists a state u such that t
c
0

!u as depicted in Figure

2(a).

Let action c be of the form x 6= E ! x := E. Note that states u and t
0

di�er only in the value of variable x. By the bipartition restriction, x does

7

(a)

u

t

@
@
@R

c
0

t
0

s

�
�

�	
c

@
@
@R
c
0

(b)

u

t

@
@
@R

c
0

t
0

�
�
��
c

s

�
�
�	
c

@
@
@R
c
0

(c)

u

t

@
@
@R

c
0

t
0

�
�
�	

c

s

�
�
�	
c

@
@
@R
c
0

Figure 2: Proof of Lemma 2.

not appear in E. Therefore, expression E has the same value in both states

u and t
0. Thus, since all variables are boolean, action c is enabled in exactly

one of u and t
0 and either u

c

!t
0 or t0

c

!u. These two cases are illustrated in

Figures 2(b) and 2(c), respectively. In the �rst case, because t0 is reachable

from t, t and t
0 are compatible. In the second case, if u is bi-valent, then t and

t
0 are both bi-valent, and hence are compatible. If u is p-valent (q-valent),

then neither t nor t0 is q-valent (p-valent), and thus t and t
0 are compatible.

2

Theorem 2: No arbiter circuit is delay-bounded.

Proof: Recall that the initial state of every arbiter is bi-valent. Therefore,

we can prove that every arbiter has an in�nite initialized history by proving

that every bi-valent state has a bi-valent successor. The fact that a bi-valent

state has a successor follows directly from the de�nition of \bi-valent." By

Lemma 2, all successors of a bi-valent state are compatible. Therefore, either

all successors of a bi-valent state are p- or bi-valent, or all are q- or bi-valent.

Thus, because all successors of a bi-valent state cannot be p-valent (or q-

valent), a bi-valent state has at least one successor that is bi-valent. 2

8

5 Nonexistence of Stable Arbiters

We show in this section that it is impossible to construct a stable arbiter,

even if delay-unbounded behavior is allowed. We base the proof on the no-

tion of circuit executions, de�ned next.

De�nition: A sequence of actions c0�c1� � � � �ck is an execution i� there

exist states s0; s1; : : : ; sk+1 such that s0
c0!s1

c1!� � �
ck!sk+1 is a pre�x of some

initialized history. 2

Notation: We use x, y, and z to denote sequences of actions; c and d to

denote single actions; g to denote gates; and w to denote wires. Also, we use

subscripts and superscripts as necessary. 2

The next two de�nitions are used in the proof of Theorem 3. The �rst

de�nes a relation [c] on executions; this de�nition is adapted from Chandy

and Misra [2].

De�nition: Let x and y be executions and c an action. Then, x[c]y i� exe-

cution x yields the same values for the inputs and output of action c as does

execution y. 2

De�nition: Action c reads from action d i� c has an input that is the output

of d. 2

The following properties of circuit executions can be derived from the

above de�nitions.

Property 1: If x�c�y is an execution, where y does not include c, and no

action in y reads from c, then x�y is also an execution.

Property 2: If x�y and x�c are executions, where y does not include c, and

no action in y reads from c, then x�c�y is also an execution.

Property 3: If x[c]y then x�c is an execution i� y�c is.

Before proving Theorem 3, we �rst prove two lemmas. The following

de�nitions are used in the proofs.

9

De�nition: A circuit is called well-formed i� it has at least one gate and

for each gate there exists an execution that includes that gate. 2

De�nition: A gate g of a circuit is called subordinate i� for each other gate

g
0 there exists an execution x�g0 where x is an execution that does not include

g. 2

Lemma 3: Every well-formed circuit has a subordinate gate.

Proof: Consider an arbitrary well-formed circuit. De�ne the relation � over

the gates of the circuit as follows: for gates g and g
0, g � g

0 i� in every

execution that includes g0, g appears before the �rst appearance of g0. It is

straightforward to show that � is an irreexive partial order. Because � is

an irreexive partial order, and because the set of gates is �nite, there exists

a gate g such that for each other gate g
0, it is not the case that g � g

0. In

other words, there exists a gate g such that for each other gate g0 there exists

an execution x�g0 where x does not include g | i.e., g is a subordinate gate.

2

Lemma 4: Every well-formed circuit has an execution in which each gate

appears at least once.

Proof: Consider an arbitrary well-formed circuit that has N gates. We

prove, by induction on N , that the circuit has an execution in which each

gate appears at least once.

Base Case: (N = 1) Since the circuit is well-formed, it has an execution in

which its only gate appears.

Induction Step: (N > 1) By Lemma 3, the circuit has a subordinate gate;

call it g. Let W denote the set of wires that g reads from, and let C denote

the circuit obtained from the original circuit by removing gate g, along with

each wire in W . This partitioning is depicted in Figure 3. (External inputs

and outputs are not shown in this �gure | in particular, note that g may

have an external input or output and that a wire in W may have an external

input.)

We now show that C is well-formed, i.e., for each gate g
0 in C there

10

C

-

-

q
q
q W

-
- g

?

Figure 3: Proof of Lemma 4.

exists an execution of C that includes g0. Because g is subordinate, there

exists an execution x�g0 of the original circuit where x does not include g.

Execution x may contain wires fromW ; therefore, without loss of generality,

let x = x0�w0�x1�w1� � � � �wk�1�xk where each wi is a wire in W and no xj

contains a wire in W . (If x contains no wires from W , then k = 0.) Due

to the bipartition and fanout restrictions, no action in C reads from one of

the wires in W . Therefore, by repeatedly applying Property 1, �rst with

wk�1, then with wk�2, etc., we see that x0�x1� � � � �xk�g
0 is an execution of

the original circuit. Since this execution only contains actions in C, it is also

an execution of circuit C. This establishes that C is well-formed.

Because C is well-formed, by the induction hypothesis, it has an execution

in which each of its gates appears at least once. Call this execution y. Clearly,

y is also an execution of the original circuit. Because the original circuit is

well-formed, it has an execution z�g where g does not appear in z. We will

use y and z to construct an execution of the original circuit in which each

gate, including g, appears at least once. This is accomplished by interleaving

each wire fromW that appears an odd number of times in z with the actions

in y.

Let W 0 denote the set of wires in W that appear an odd number of times

in z. To see that each wire in W
0 can be interleaved with the actions of y,

11

suppose that we have interleaved some, but not all, of the wires in W
0 with

the actions of y to obtain an execution y
0. Let w denote a wire in W

0 that

does not appear in y
0. We show that w can then be interleaved with the

actions of y0, yielding a new execution y
00.

If the input of w is external, then because the values of the external

inputs do not change, y00 = y
0�w is an execution. If, on the other hand, w

reads from some gate in C, then because this gate appears at least once in

y
0, there exists y0 and y1, where y

0 = y0�y1, such that y0�w is an execution.

By the bipartition and fanout restrictions, no action in y1 reads from a wire

in W . Thus, by Property 2, y00 = y0�w�y1 is an execution.

If we apply the above \insertion" procedure once for each wire in W
0,

then we obtain an execution y
� where y�[g]z. Now, because y� contains each

action of y, it contains each gate in C at least once. Moreover, because z�g is

an execution of the original circuit, by Property 3, y��g is also an execution

of the original circuit. In this execution, each gate appears at least once. 2

Theorem 3: No arbiter circuit is stable.

Proof: Given some arbiter A, we �rst show how to construct another arbiter

A
0 that is stable i� A is. Then, we show that A0 cannot be stable.

The arbiter A0 is constructed from A in two steps. First, each gate that

can never execute (i.e., is included in no execution) is removed from A.

Second, if A has an external output y that is the output of a wire, then

we introduce a gate x 6= y ! x := y, where x is not a variable of A, and

initially x = y; thus, x is an external output of A0. Such a gate is introduced

for each output of A that is the output of a wire (we, of course, require each

new external output introduced to be distinct). It is easy to see that A is

stable i� A
0 is.

By construction, arbiter A0 is well-formed and each of its external outputs

is the output of a gate. BecauseA0 is well-formed, then by Lemma 4, it has an

execution in which each gate appears at least once. Therefore, because each

of its external outputs is the output of a gate, it has an initialized history in

which the value of each external output changes at least once. Hence, it is

not stable. 2

12

6 Discussion

The generality of a proof concerning a physical phenomenon is dependent

on how accurately the corresponding model approximates reality. In this

section, we attest to the generality of our results by considering several is-

sues pertaining to our circuit model. In Section 6.1, we consider how signal

propagation is modeled by our de�nition of a circuit. Then, in Section 6.2,

we explain the motivation behind the feedback restriction by considering the

propagation of a signal along a loop in a circuit. Finally, in Section 6.3, we

consider some of the merits and shortcomings of discrete circuit models.

6.1 Signal Propagation

The four restrictions (bipartition, integrity, fanout, and feedback) given in

our de�nition of a circuit can be viewed as constraints on the rate of signal

propagation. According to the bipartition restriction, if two gates are con-

nected in sequence via a wire, then it takes at least two atomic steps for a

signal to propagate from the input of the �rst gate to the input of the second

gate. By the bipartition and integrity restrictions, in order to \merge" the

output signals of two gates, it is necessary to connect each gate output to a

separate wire, and then connect the output of each wire to a common gate.

Thus, it takes three atomic steps for a signal to propagate from the input

of one of the two gates to the output of the common gate. The bipartition

and fanout restrictions together prohibit a signal from being simultaneously

delivered to several gates in one atomic step. The bipartition and feedback

restrictions together imply that it takes at least four atomic steps for a signal

to traverse a loop in a circuit.

6.2 The Feedback Restriction

The �rst three restrictions in our de�nition of a circuit reect the physical

limitations of actual circuits. The feedback restriction, however, may seem

harder to accept. This restriction has been introduced in order to limit

the propagation of a signal along a loop in a circuit. As stated above, the

feedback restriction guarantees that each loop consists of at least four atomic

steps. Thus, the \delay" experienced by a signal as it travels from an input

to the output of a gate (one atomic step) is less than the \delay" experienced

13

by the signal as it traverses the feedback path from the gate's output to its

input (at least three atomic steps).

This assumption is not without precedent. In Vosbury's proof of the glitch

phenomenon (which is based upon a continuous model of a circuit) each gate

is assumed to be \ideal" | i.e., there is no lag time between a change in

the value of an input of a gate and the corresponding change in the value

of the gate's output. Furthermore, Vosbury assumes that \each closed loop

contains at least one non-zero delay" [14]. Therefore, in Vosbury's model,

the delay experienced by a signal as it travels from an input to the output of

a gate (zero) is less than the delay experienced by the signal as it traverses

the feedback path (nonzero). Thus, Vosbury's assumptions achieve the same

e�ect as our feedback restriction.

One may argue that the feedback restriction assigns more delay to a

feedback path (three atomic steps) than necessary. After all, if all that is

needed is to make the delay of each feedback path larger than that of a single

gate, then a delay of two atomic steps for each feedback path will su�ce. In

fact, this argument is correct. Notice that the feedback restriction is used

only in the proof of Lemma 1, and this proof only depends on the fact that

each loop consists of at least three actions. Therefore, the feedback restriction

can indeed be relaxed to require that each loop has at least three actions.

Nonetheless, the bipartition restriction implies that each loop consists of an

even number of actions. Thus, we still end up with the magic number of at

least four atomic actions per loop.

The feedback restriction is actually not needed to prove the nonexistence

of stable arbiters | although this restriction is depicted in Figure 3, it is not

necessary for the proof of Theorem 3. The proof that delay-bounded arbiters

do not exist is another matter. In fact, as we now show, if the feedback

restriction is removed from our de�nition of a circuit, then a delay-bounded

arbiter exists.

Consider the arbiter circuit given in Figure 4. This circuit satis�es the

bipartition, integrity, and fanout restrictions, but violates the feedback re-

striction since the input (output) of WIRE0 is an output (input) of AND.

Initially, let pin = qin = x = z = true and pout = qout = y = false . We �rst

show that this circuit satis�es the three conditions of the arbiter construction

problem, and then show that it is delay-bounded. The �rst requirement is

trivial.

To verify the second requirement, note that the following predicate is true

14

-pin

$

%
AND

-s

�

-

y

WIRE1 -pout

WIRE2 -z

WIRE0

-

x

$

%
cNAND

-qin
-qout

Figure 4: An arbiter that violates the feedback restriction.

in each �nal state.

(x = y) ^ (z = y) ^ (pout = y) ^ (qout = :z)

This predicate implies that pout 6= qout.

To verify the third requirement, observe that a �nal state in which pout =

true and qout = false is reached by executing the actions in the order AND,

WIRE1. A �nal state in which pout = false and qout = true is reached by

executing the actions in the order WIRE0, WIRE2, NAND.

To see that this circuit is delay-bounded, note that in every history one of

WIRE0 and AND is executed exactly once, and the other is not executed at

all. As WIRE0 and AND constitute the only loop of the circuit, this implies

that all histories are �nite.

6.3 Discrete Versus Continuous

Many hardware designers dismiss discrete circuit models because they are in-

adequate for studying certain aspects of circuit design, e.g. heat dissipation,

circuit layout, etc. Nonetheless, the discrete model should not be completely

ignored. When dealing with circuits at such an abstract level, powerful ver-

i�cation techniques can be employed. The desired behavior of a circuit can

be speci�ed by using a formal notation such as temporal logic. The design

15

of a given circuit can then be formally checked by proving that the required

speci�cation is satis�ed. Such an approach has been used by Martin, for

example, to construct veri�ably correct VLSI chips [9].

Some of the perceived inadequacies of the discrete model can be dismissed.

The glitch phenomenon is a case in point. While it was previously believed

that the unavoidability of the glitch phenomenon is a result of the continuous

nature of circuits, we have shown that the discrete model is adequate in this

respect, provided the atomicity of a circuit is carefully de�ned.

7 Concluding Remarks

Palais and Lamport state that a proof of the existence of the glitch phe-

nomenon \must be based upon some continuity assumption" concerning

asynchronous circuits [11]. We have shown that such a proof can, in fact, be

based upon a discrete model of a circuit, provided very mild restrictions are

placed on the atomic actions of a circuit.

Our results point out the importance of atomicity when de�ning a discrete

model of a circuit. We have carefully de�ned the atomicity of a circuit so

as to facilitate the proof of the two results that we were after, namely the

existence of glitch-prone arbiter circuits and the nonexistence of glitch-free

ones. The simplicity of our proofs leads to new insights into the nature of

arbiter circuits. In particular, if the atomicity restrictions disallow \tight"

loops of one or two actions, then it is impossible for an arbiter to always make

a nondeterministic choice in a �nite number of steps. Moreover, if each wire

output is the input of at most one gate, then oscillating behavior cannot be

prevented. Proofs that are based on the more acceptable continuous models

seem to obscure these important points.

According to Seitz [12], it is necessary in the design of self-timed circuits

to place restrictions on when the value of the input of an action can change;

such restrictions are called domain constraints. For example, a reasonable

constraint on the input of a wire is that its value should remain unchanged

until the values of the input and output of the wire are equal. We have not

attempted to devise a set of domain constraints that an arbiter circuit should

satisfy. It would be interesting to see if various constraints render the arbiter

construction problem unsolvable using our model of a circuit.

We end the paper with a comment on terminology. After reading an ear-

16

lier version of this paper, Chuck Seitz informed us that the term \glitch" has

many meanings to hardware designers, and suggested that we use the term

\indeterminate delay" instead. Although his point is well taken, we decided

to keep our original terminology since, by then, the paper had already been

widely distributed and had become known by that name. We hope that our

terminology has not been confusing.

Acknowledgements: We would like to thank Edsger Dijkstra and the members

of the Austin Tuesday Afternoon Club (Ken Calvert, Allen Emerson, David Gold-

schlag, Ted Herman, Charanjit Jutla, Edgar Knapp, Chris Lengauer, Jay Misra,

J. R. Rao, Lou Rosier, and Lincoln Wallen) for their comments on this paper. We

would also like to thank Nancy Lynch and Alan Fekete for prompting us to include

the material in Sections 5 and 6.2. Comments from K. Mani Chandy, Leslie Lam-

port, Chuck Seitz, Tom Verhoe�, and the members of the Eindhoven VLSI Club

led to the inclusion of Section 6.3; we are grateful for their helpful remarks. We

are also thankful to Jim Burns for suggesting several improvements in the presen-

tation, and for bringing reference [7] to our attention, and to Nick Pippenger for

bringing references [11] and [14] to our attention. Finally, we would like to thank

the two anonymous referees for their detailed and insightful comments, and also

Anish Arora, Bryan Bayerdor�er, Geo�rey Brown, and Mark Staskauskas for their

comments on an earlier draft of the paper.

References

[1] D. Black, \On the existence of delay-insensitive fair arbiters: trace the-

ory and its limitations," Distributed Computing, Vol. 1, No. 4, 1986, pp.

205-225.

[2] K. Chandy and J. Misra, \How processes learn," Distributed Computing,

Vol. 1, No. 1, 1986, pp. 40-52.

[3] K. Chandy and J. Misra, Parallel Program Design: A Foundation, Ad-

dison Wesley, 1988, pp. 89-94.

[4] T. Chaney and C. Molnar, \Anomalous behavior of synchronizer and

arbiter circuits," IEEE Transactions on Computers, Vol. C-22, no. 4,

April 1973, pp. 421-422.

17

[5] M. Fischer, N. Lynch, and M. Patterson, \Impossibility of distributed

consensus with one faulty process," Journal of the ACM , Vol. 32, No.

2, April 1985, pp. 374-382.

[6] M. Hurtado and D. Elliot, \Ambiguous behavior of logic bistable sys-

tems," Proceedings of the 13th Annual Allerton Conference on Circuit

and Systems Theory, October 1975, pp. 605-611.

[7] L. Lamport, \Buridan's principle," SRI Technical Report, October 1984.

[8] L. Marino, \General theory of metastable operation," IEEE Transac-

tions on Computers, Vol. C-30, No. 2, Feb. 1981, pp. 107-115.

[9] A. Martin, \Compiling communicating processes into delay-insensitive

VLSI circuits," Distributed Computing, Vol. 1, No. 3, 1986, pp. 226-234.

[10] R. Miller, \Speed independent switching circuit theory," in Switching

Theory. Sequential Circuits and Machines, Vol. 2, Chapter 10. Wiley,

New York, 1965.

[11] R. Palais and L. Lamport, \On the glitch phenomenon," Technical

Report CA-7611-0811, Massachusetts Computer Associates, Wake�eld,

Massachusetts, November 1976.

[12] C. Seitz, \System timing," in Introduction to VLSI Systems, by C. Mead

and L. Conway, Chapter 7. Addison-Wesley, 1980.

[13] J. Udding, \A formal model for de�ning and classifying delay-insensitive

circuits and systems," Distributed Computing, Vol. 1, No. 4, 1986, pp.

197-204.

[14] M. Vosbury, Hazards in Asynchronous Sequential Circuits due to Unre-

stricted Input Changes, Ph.D. dissertation, Rensselaer Polytechnic In-

stitute, Troy, New York, December 1973.

18

