
A Fine-Grained Solution to the Mutual Exclusion

Problem
�

James H. Andersony

Department of Computer Science

The University of Maryland at College Park

College Park, Maryland 20742-3255

December 1991, Revised August 1992

Abstract

We present a \�ne-grained" solution to the mutual exclusion problem. A program is �ne-

grained if it uses only single-reader, single-writer boolean variables and if each of its atomic

operations has at most one occurrence of at most one shared variable. In contrast to other

�ne-grained solutions that have appeared in the literature, processes in our solution do not

busy-wait, but wait on one another only by executing await statements. Such statements can

be implemented in practice either by means of context switching or by means of \local" spin-

ning. We show that our algorithm is correct even if shared variables are accessed nonatomically.

Keywords: Busy-waiting, mutual exclusion, nonatomic operations, shared data, synchroniza-

tion primitives.

CR Categories: D.4.1, D.4.2, F.3.1

1 Introduction

The mutual exclusion problem is a paradigm for resolving conicting accesses to shared resources

and has long been recognized as one of the classic problems in concurrent programming. In this

problem, each of a set of processes repeatedly executes a program fragment known as its \critical

section". Intuitively, the critical section of a process is a section of code in which all accesses to a

shared resource are con�ned. In order to execute its critical section, a process must �rst execute

another program fragment, its \entry section"; upon the termination of its critical section, a process

must execute a third program fragment, its \exit section". The entry and exit sections for each

process must be designed so as to ensure that (i) at most one process executes its critical section at

any time, and (ii) each process in its entry section eventually executes its critical section.

�To appear in Acta Informatica .
yWork supported, in part, by NSF Contract CCR 9109497 and by the Center of Excellence in Space Data and

Information Sciences.

1

The mutual exclusion problem has been studied for many years, dating back to the seminal paper

of Dijkstra [3]. Since then, many solutions have been proposed, most of which are quite complicated

and di�cult to understand. A notable exception is an especially simple solution presented by

Peterson in [10]. In Peterson's paper, a two-process solution is presented and then generalized to

apply to an arbitrary number of processes. Although Peterson's algorithm requires only read/write

atomicity, it employs shared variables that can be read and written by multiple processes. As

such, its correctness is predicated upon the existence of an underlying mechanism for properly

linearizing concurrent reads and concurrent writes of the same shared variable. A re�nement of

Peterson's algorithm in which only single-writer variables are used was later presented by Kessels in

[5]. Although Kessels' algorithm is more �ne-grained than Peterson's, it still employs multi-reader

shared variables.

In this paper, we present a mutual exclusion algorithm, based upon that of Kessels, in which only

single-reader, single-writer boolean variables are used and in which each atomic operation has at most

one occurrence of at most one shared variable. We call such a solution �ne-grained . Previous �ne-

grained algorithms include the \One-Bit" algorithm discovered independently by Burns and Lynch

[2] and by Lamport [7] and also the boolean variable implementation of the algorithm presented by

Peterson in [11]. (Strictly speaking, none of these algorithms is �ne-grained as presented because

each employs multi-reader shared variables. Also, the One-Bit algorithm allows individual processes

to starve, i.e., it fails to satisfy requirement (ii) in the �rst paragraph of this section. However,

by adding an extra boolean variable to one of the processes, it is possible to obtain a two-process

version of this algorithm that is starvation-free [8].) Like these previous solutions, our algorithm

is correct even if shared variables are accessed nonatomically; thus, no underlying mechanism is

required for linearizing statements that access the same shared variable. However, unlike these

other solutions, processes in our algorithm employ await statements | speci�cally, statements of

the form \await X", where X is a shared, single-reader, single-writer boolean variable | rather

than busy-waiting loops in order to wait on one another. As discussed in Section 6, such statements

can be e�ciently implemented either by performing a context switch or by means of \local" spinning

[9]. The algorithms given in [2, 7, 11] all employ busy-waiting loops in which shared variables are

repeatedly read and updated and thus do not admit such implementations.

The rest of this paper is organized as follows. In Section 2, we present our model of concurrent

programs. In Section 3, we describe our solution to the mutual exclusion problem informally, and in

Section 4, we formally establish its correctness. In Section 5, we show that our algorithm is correct

even if shared variables are accessed nonatomically. Concluding remarks appear in Section 6.

2 Concurrent Programs

In this section, we present our model of concurrent programs and de�ne the basic relations used

in reasoning about such programs. A concurrent program consists of a set of processes and a set

of variables. A process is a sequential program consisting of labeled statements, and is speci�ed

using guarded commands [4] and await statements. An await statement has the form \await B",

where B is a predicate over program variables. This statement is enabled for execution only when

predicate B is true and is atomically executed (when enabled) by transferring control to the next

2

executable statement. Each variable of a concurrent program is either private or shared. A private

variable is de�ned only within the scope of a single process, whereas a shared variable is de�ned

globally and may be accessed by more than one process. Each process of a concurrent program has

a special private variable called its program counter : the statement with label k in process p may be

executed only when the value of the program counter of p equals k. For an example of the syntax

we employ for programs, see Figure 2.

A program's semantics is de�ned by its set of \fair histories". The de�nition of a fair history,

which is given below, formalizes the requirement that each statement of a program is subject to weak

fairness. Before giving the de�nition of a fair history, we introduce a number of other concepts; all

of these de�nitions apply to a given concurrent program.

A state is an assignment of values to the variables of the program. One or more states are

designated as initial states. If state u can be reached from state t via the execution of statement

s, then we say that s is enabled at state t and we write t
s
!u. (Unless otherwise indicated, in the

case of a do or if statement, \execution of statement s" means the evaluation of each guard in the

statement's set of guards, and the subsequent transfer of control.) If statement s is not enabled at

state t, then we say that s is disabled at t. A history is a sequence t0
s0
!t1

s1
!� � �, where t0 is an initial

state. A history may be either �nite or in�nite; in the former case, it is required that no statement

be enabled at the last state of the history. A history is fair if it is �nite or if it is in�nite and each

statement is either disabled at in�nitely many states of the history or is in�nitely often executed in

the history. Note that this fairness requirement implies that each continuously enabled statement is

eventually executed. Unless otherwise noted, we henceforth assume that all histories are fair.

When reasoning about the correctness of a concurrent program, safety properties are de�ned

using invariants and progress properties are de�ned using leads-to assertions. A �rst-order predicate

P (over program variables) is an invariant of a program i� it is true in each state of every history

of that program. Predicate P leads-to predicate Q in a given program, denoted P 7! Q, i� for each

history t0
s0
!t1

s1
!� � � of the program, if P is true at some state ti, then Q is true at some state tj

where j � i.

3 Fine-Grained Mutual Exclusion

In this section, we present a �ne-grained program that solves the mutual exclusion problem. First,

we state the conditions that must be satis�ed by such a program. In the mutual exclusion problem,

there are N processes, each of which has the following structure.

do true !

Noncritical Section;

Entry Section;

Critical Section;

Exit Section

od

It is assumed that each process begins execution in its noncritical section. It is further assumed

that each critical section execution terminates. By contrast, a process is allowed to halt in its

3

process i fi ranges over 0::N � 1g

do true !

Noncritical Section;

ENTRY(i; 0);

ENTRY(i; 1);
...

ENTRY(i; N � 1);

Critical Section;

EXIT(i; N � 1);

EXIT(i; N � 2);
...

EXIT(i; 0)

od

Figure 1: N -process mutual exclusion algorithm.

noncritical section. No variable appearing in any entry or exit section may be referred to in any

noncritical or critical section (except, of course, program counters). Let ES(i) (CS(i)) be a predicate

that is true i� the value of process i's program counter equals a label of a statement appearing in

its entry section (critical section). Then, the requirements that must be satis�ed by a program that

solves this problem are as follows.

� Mutual Exclusion: (8i; j : i 6= j :: CS(i)) :CS(j)) is an invariant. Informally, at most one

process can execute its critical section at a time.

� Progress: ES(i) 7! CS(i) holds for each i. Informally, if a process is in its entry section,

then that process eventually executes its critical section.

We also require that each process in its exit section eventually enters its noncritical section; this

requirement is trivially satis�ed by our solution (and most others), so we will not consider it further.

As in [5, 10], we obtain our solution to the mutual exclusion problem by solving the two-process

case and by using two-process mutual exclusion to solve the N -process case. We use a well-known

approach to do the latter. In particular, as illustrated in Figure 1, we obtain a solution to the N -

process case by \nesting" N � 1 di�erent two-process solutions. In this �gure, ENTRY(i; j) denotes

the entry section from a two-process solution that process i executes to compete with process j; if

i = j, then ENTRY(i; j) simply equals \skip". EXIT(i; j) is de�ned similarly. If the underlying two-

process solution satis�es the Mutual Exclusion and Progress requirements, then it is straightforward

to show that the N -process solution does as well. (In establishing the Progress requirement, it

is important that the two-process entry sections be executed in \increasing" order; this is similar

to a two-phase locking protocol, where deadlock is avoided by locking data items in a �xed linear

order.) If the underlying two-process solution is �ne-grained, then the N -process program is also

�ne-grained.

4

(In [5], Kessels describes a di�erent approach for using two-process mutual exclusion to solve N -

process mutual exclusion. In this approach, a two-process solution is applied in a binary arbitration

tree. Associated with each link in the tree is an entry section and an exit section. The entry and exit

sections associated with the two links connecting a given node to its sons constitute a two-process

mutual exclusion algorithm. Initially, all processes are \located" at the leaves of the tree. To enter

its critical section, a process is required to traverse a path from its leaf up to the root, executing

the entry section of each link on this path. Upon exiting its critical section, a process traverses this

path in reverse, this time executing the exit section of each link. Observe that Kessels' approach

is more e�cient than that described in the previous paragraph. In particular, for a process to

enter its critical section, O(log
2
N) two-process entry sections must be executed rather than O(N).

However, because di�erent processes may traverse the same link during the course of the algorithm,

in a direct application of this approach, the entry and exit sections associated with each link must

employ multi-writer variables. Depending on the two-process solution being used, the resulting

construction may require a solution to the very problem it attempts to solve. In particular, in order

to replace such multi-writer variables by single-reader, single-writer, boolean ones, an underlying

�ne-grained solution to the mutual exclusion problem may be required.)

Our two-process algorithm is depicted in Figure 2. The two processes are denoted u and v. With

the exception of statements 0, 8, and 10, the two processes are identical. (Note that the statements

of the program are not labeled in increasing linear order; this is done in order to facilitate the

Progress proof.) The program is similar to the two-process solution given by Peterson in [10] and

also to that given by Kessels in [5], but uses only single-reader, single-writer boolean variables.

The two variables T [u] and T [v] together correspond to the variable TURN of Peterson's algo-

rithm, and are used as a tie-breaker in the event that both processes attempt to enter their critical

sections at the same time. Process u attempts to establish T [u] = T [v] and process v attempts to

establish T [u] 6= T [v]. Informally, process u enters its critical section only if T [u] 6= T [v] holds or

if process v has not expressed interest in entering its critical section. Similarly, process v enter its

critical section only if T [u] = T [v] holds or if process u has not expressed interest in entering its

critical section. Thus, in the event of a \tie", process u is favored if T [u] and T [v] di�er in value

and process v is favored if T [u] and T [v] are equal. This is essentially the idea of Kessels' algorithm.

In our algorithm, each process checks the condition that is required for it to enter its critical sec-

tion by waiting on one single-reader, single-writer boolean variable. The manner in which this is

accomplished is explained next.

Because T [u] is written only by process u, process u can keep track of its value by using a private

variable; variable u:x is used for this purpose. In order for process u to wait until T [u] 6= T [v] holds,

it simply tests u:x and then waits for T [v] to have the appropriate value. In particular, if u:x is true

(which implies that T [u] is true), then process u waits until T [v] is false, and if u:x is false (which

implies that T [u] is false), then process u waits until T [v] is true. Process u waits for T [v] to have

the appropriate value by waiting on either P [v] or Q[v]. As explained next, these variables serve

the dual purpose of \signaling" the value of T [v] and \signaling" that process v is in its noncritical

section.

Loosely speaking, P [v] is used by process v to signal to process u that T [v] is false, and Q[v] is

similarly used to signal that T [v] is true. While the value of T [v] is being determined in statements

5

shared var P;Q; T : array[u; v] of boolean

initially P [u] = true ^ P [v] = true ^ Q[u] = true ^ Q[v] = true

process u process v

private var u:x : boolean private var v:x : boolean

initially u:x = T [u] initially v:x = T [v]

do true ! do true !

3: Noncritical Section; 3: Noncritical Section;

2: P [u] := false; 2: P [v] := false;

1: Q[u] := false; 1: Q[v] := false;

0: u:x := T [v]; 0: v:x := :T [u];

12: T [u] := u:x; 12: T [v] := v:x;

11: if u:x ! 11: if v:x !

10: P [u] := true; 10: Q[v] := true;

9: await P [v] 9: await P [u]

[] :u:x ! [] :v:x !

8: Q[u] := true; 8: P [v] := true;

7: await Q[v] 7: await Q[u]

�; �;

6: Critical Section; 6: Critical Section;

5: P [u] := true; 5: P [v] := true;

4: Q[u] := true 4: Q[v] := true

od od

Figure 2: Two-process mutual exclusion algorithm.

0 and 12 of process v, the appropriate value to signal is not known; thus, to ensure that process

u does not enter its critical section when it should not, P [v] and Q[v] are both kept equal to false

while this value is being determined. When process v is in its noncritical section (where it may halt),

process u should not be blocked in its entry section; thus, while v is in its noncritical section, P [v]

and Q[v] are both kept equal to true. In this way, P [v] and Q[v] serve both purposes mentioned in

the previous paragraph. Variables P [u] and Q[u] are similarly used by process u to signal the value

of T [u] to process v, except their roles are reversed: P [u] is used to signal that T [u] is true, and

Q[u] is used to signal that T [u] is false. This concludes our informal explanation of the two-process

algorithm.

A formal correctness proof for the algorithm is given in the next section. As this proof shows, the

protocol that is followed in assigning values to P [u],Q[u], P [v], and Q[v] ensures that both processes

never execute their critical sections at the same time. Thus, the Mutual Exclusion requirement is

satis�ed. The proof also shows that whenever one of the processes waits on some predicate, that

predicate eventually becomes true and remains true. By our de�nition of a fair history, this implies

that the Progress requirement is satis�ed. In order to establish the Progress requirement, we �rst

6

show that the program is free from deadlocks, i.e., it is never the case that both processes are

simultaneously waiting on predicates that are false. Ensuring that deadlock does not occur can be

especially tricky in a �ne-grained solution that uses await statements: unlike a solution that employs

busy-waiting, a process cannot break a potential deadlock by assigning new values to shared variables

while it is waiting.

4 Correctness Proof

We prove that the program of Figure 2 satis�es the Mutual Exclusion and Progress requirements.

We begin by presenting notational conventions that will be used in the remainder of this section,

and then discuss our proof obligations in establishing various assertions.

Notational Conventions: Unless otherwise speci�ed, we assume that i ranges over fu; vg. We

denote statement number k of process i as k:i. We let Enabled(k:i) be a predicate that is true i�

statement k:i is enabled. Let S be a subset of the statement labels in process i. Then, i@fSg holds

i� the program counter for process i equals some value in S. The following is a list of symbols we will

use ordered by increasing binding power: �, 7!,), (_;^), (=; 6=; >), (+;�), :, (:;@), (f; g; [;]) .

The symbols enclosed in parentheses have the same priority. 2

Proof Obligations: Two approaches are used in this paper for the purpose of proving that a given

assertion is an invariant. Under the �rst approach, the proof obligation is to show that the given

assertion holds initially and is stable. An assertion P is stable for a program i� for each statement k:i

of that program, P ^ Enabled (k:i)) wp(k:i; P) holds, where wp is the \weakest precondition"

predicate transformer [4]. The second approach involves proving that the given assertion follows

from a set of known invariants. Speci�cally, if P0; : : : ; Pk are invariants and if P0 ^ � � � ^ Pk) Q

holds, then we can conclude that Q is also an invariant.

The basic approach that we follow in proving P 7! Q involves the use of an integer well-founded

ranking R, where R > 0) P and R = 0) Q. Under this approach, the proof obligation is

to show that if R > 0, then (i) there exists some enabled statement that is eventually executed,

and (ii) each statement execution decreases the value of R. Several of the leads-to assertions that

are required in the correctness proof are quite trivial. For such cases, we either note that the given

assertion follows directly from the program text and our fairness assumption, or appeal to various

simple properties of the leads-to relation. An example of such a property is transitivity, i.e., if

U 7! V and V 7!W , then U 7! W . 2

The following simple invariants, which are stated without proof, follow directly from the program

text.

invariant i@f9; 10g) i:x (I0)

invariant i@f7; 8g) :i:x (I1)

7

invariant :i@f12g) T [i] = i:x (I2)

invariant u@f0; 1; 7; 8;11;12g) :P [u] (I3)

invariant u@f0; 9; 10; 11;12g) :Q[u] (I4)

invariant v@f0; 1; 9; 10; 11;12g) :P [v] (I5)

invariant v@f0; 7; 8; 11; 12g) :Q[v] (I6)

invariant i@f3; 4g) P [i] (I7)

invariant i@f2; 3g) Q[i] (I8)

For each of the remaining invariants, a correctness proof is given.

invariant u@f6; 7; 9g) P [u] = u:x ^ Q[u] = :u:x (I9)

Proof: We prove that (I9) is initially true and stable. The former is straightforward, as u@f6; 7; 9g

is initially false. To prove that (I9) is stable, it su�ces to consider those statements that may

establish the antecedent or modify u:x, P [u], or Q[u]. The statements to check are 0:u, 1:u, 2:u, 4:u,

5:u, 8:u, and 10:u. Note that u@f6; 7; 9g is false after the execution of 0:u, 1:u, 2:u, 4:u, and 5:u.

Thus, these statements do not falsify (I9). To see that statement 8:u does not falisfy (I9), consider

the following derivation.

I9 ^ Enabled (8:u)

) u@f8g , by the program text.

) :u:x ^ :P [u] , by (I1) and (I3).

) wp(8:u; :u:x ^ :P [u] ^ Q[u]) , 8:u establishes Q[u] = true and

does not modify u:x or P [u].

) wp(8:u; I9) , by the de�nition of (I9) and

the monotonicity of wp.

The proof that statement 10:u does not falsify (I9) is similar, except that (I0) and (I4) are used

instead of (I1) and (I3). 2

invariant v@f6; 7; 9g) P [v] = :v:x ^ Q[v] = v:x (I10)

Proof: Similar to the proof of (I9). 2

8

invariant u@f6g) ((T [u] ^ (P [v] _ v@f0::5g _ (:v:x ^ v@f8; 11; 12g))) _

(:T [u] ^ (Q[v] _ v@f0::5g _ (v:x ^ v@f10; 11; 12g)))) (I11)

Proof: We prove that (I11) is initially true and stable. Establishing the former is straightforward,

as u@f6g is initially false. To prove that (I11) is stable, we must consider those statements that

may establish the antecedent or falsify the consequent. The antecedent is established by statements

7:u and 9:u. To see that statement 7:u does not falsify (I11), observe the following.

I11 ^ Enabled (7:u)

) I11 ^ Q[v] ^ u@f7g , by the program text.

) Q[v] ^ :T [u] , by (I1) and (I2).

) wp(7:u; Q[v] ^ :T [u] ^ u@f6g) , by the program text.

) wp(7:u; I11) , by the de�nition of (I11) and

the monotonicity of wp.

The proof that 9:u does not falsify (I11) is similar, except that (I0) is used instead of (I1).

The consequent may potentially be falsi�ed by any statement that modi�es T [u], falsi�es P [v] or

Q[v], or falsi�es any of the predicates v@f0::5g, :v:x ^ v@f8; 11; 12g, or v:x ^ v@f10; 11; 12g. The

statements to check are 12:u, 0:v, 1:v, 2:v, 8:v, 10:v, and 11:v. By the program text, u@f6g is false

after the execution of 12:u, v:x = :T [u] ^ v@f12g is true after the execution of 0:v, and v@f0::5g

is true after the execution of 1:v and 2:v. It follows, then, that these statements do not falsify (I11).

In the remainder of the proof, we consider statements 8:v, 10:v, and 11:v. For statement 8:v, we

have the following.

I11 ^ Enabled (8:v)

) I11 ^ v@f8g , by the program text.

) I11 ^ v@f8g ^ :Q[v] , by (I6).

) :u@f6g _ (T [u] ^ (P [v] _ (:v:x ^ v@f8g))) , by the de�nition of (I11).

) wp(8:v; :u@f6g _ (T [u] ^ P [v])) , 8:v establishes P [v] = true.

) wp(8:v; I11) , by the de�nition of (I11) and

the monotonicity of wp.

The proof that statement 10:v does not falsify (I11) is similar, except that (I5) is used instead of

(I6). This leaves only statement 11:v. To see that 11:v does not falsify (I11), consider the following

derivation.

I11 ^ Enabled (11:v)

9

) I11 ^ v@f11g , by the program text.

) I11 ^ v@f11g ^ :P [v] ^ :Q[v] , by (I5) and (I6).

) :u@f6g _ (T [u] ^ :v:x ^ v@f11g) _ (:T [u] ^ v:x ^ v@f11g)

, by the de�nition of (I11).

) wp(11:v; :u@f6g _ (T [u] ^ :v:x ^ v@f8g) _ (:T [u] ^ v:x ^ v@f10g))

, 11:v establishes v@f8g or v@f10g,

depending on the value of v:x, and

doesn't modify u@f6g, T [u], or v:x.

) wp(11:v; I11) , by the de�nition of (I11) and

the monotonicity of wp. 2

invariant v@f6g) ((T [v] ^ (P [u] _ u@f0::5g _ (u:x ^ u@f10; 11; 12g))) _

(:T [v] ^ (Q[u] _ u@f0::5g _ (:u:x ^ u@f8; 11; 12g)))) (I12)

Proof: Similar to the proof of (I11). 2

The following invariant shows that the Mutual Exclusion requirement holds.

invariant :(u@f6g ^ v@f6g) (I13)

Proof: We show that (I13) follows from the preceding invariants. Speci�cally, we use these prior

invariants to prove that (u@f6g ^ v@f6g)) false.

u@f6g ^ v@f6g

) (u@f6g ^ v@f6g) ^

((T [u] ^ P [v]) _ (:T [u] ^ Q[v])) ^ ((T [v] ^ P [u]) _ (:T [v] ^ Q[u]))

, by (I11) and (I12).

) ((T [u] ^ :T [v]) _ (:T [u] ^ T [v])) ^ ((T [v] ^ T [u]) _ (:T [v] ^ :T [u]))

, by (I2), (I9), and (I10),

(u@f6g ^ v@f6g) implies

P [u] = T [u], P [v] = :T [v],

Q[u] = :T [u], and Q[v] = T [v].

) (T [u] 6= T [v]) ^ (T [u] = T [v]) , predicate calculus.

) false , predicate calculus. 2

The next invariant shows that the program does not deadlock. According to this invariant, if

each process is either in its noncritical section or at one of its await statements, then either one of

10

the processes is waiting on a variable whose value is true, or both processes are in their noncritical

sections.

invariant u@f3; 7; 9g ^ v@f3; 7; 9g) (u@f7g ^ Q[v]) _ (v@f7g ^ Q[u]) _ (u@f9g ^

P [v]) _ (v@f9g ^ P [u]) _ (u@f3g ^ v@f3g) (I14)

Proof: We show that (I14) follows from the preceding invariants.

u@f3; 7; 9g ^ v@f3; 7; 9g

) (u@f3g _ u@f7g _ u@f9g) ^ (v@f3g _ v@f7g _ v@f9g)

, by the de�nition of \@".

) (u@f3g ^ v@f3g) _ (u@f3g ^ (v@f7g _ v@f9g)) _ (v@f3g ^ (u@f7g _ u@f9g)) _

((u@f7g _ u@f9g) ^ (v@f7g _ v@f9g)) , predicate calculus.

) (u@f3g ^ v@f3g) _

(P [u] ^ Q[u] ^ (v@f7g _ v@f9g)) _ (P [v] ^ Q[v] ^ (u@f7g _ u@f9g)) _

((u@f7g _ u@f9g) ^ (v@f7g _ v@f9g)) , by (I7) and (I8).

) (u@f3g ^ v@f3g) _

(P [u] ^ Q[u] ^ (v@f7g _ v@f9g)) _ (P [v] ^ Q[v] ^ (u@f7g _ u@f9g)) _

(((u@f7g ^ :P [u] ^ Q[u]) _ (u@f9g ^ P [u] ^ :Q[u])) ^

((v@f7g ^ P [v] ^ :Q[v]) _ (v@f9g ^ :P [v] ^ Q[v]))) , by (I0), (I1), and (I9),

u@f7g implies :P [u] ^ Q[u] and

u@f9g implies P [u] ^ :Q[u];

by (I0), (I1), and (I10),

v@f7g implies P [v] ^ :Q[v] and

v@f9g implies :P [v] ^ Q[v].

) (u@f3g ^ v@f3g) _

(P [u] ^ Q[u] ^ v@f7g) _ (P [u] ^ Q[u] ^ v@f9g) _

(P [v] ^ Q[v] ^ u@f7g) _ (P [v] ^ Q[v] ^ u@f9g) _

(u@f7g ^ :P [u] ^ Q[u] ^ v@f7g ^ P [v] ^ :Q[v]) _

(u@f7g ^ :P [u] ^ Q[u] ^ v@f9g ^ :P [v] ^ Q[v]) _

(u@f9g ^ P [u] ^ :Q[u] ^ v@f7g ^ P [v] ^ :Q[v]) _

(u@f9g ^ P [u] ^ :Q[u] ^ v@f9g ^ :P [v] ^ Q[v]) , by rewriting previous assertion as

a disjunction of conjunctions.

) (u@f7g ^ Q[v]) _ (v@f7g ^ Q[u]) _ (u@f9g ^ P [v]) _ (v@f9g ^ P [u]) _

(u@f3g ^ v@f3g) , each disjunct of previous

assertion implies some disjunct

of this assertion. 2

We now establish the Progress requirement.

11

u@f9g 7! :u@f9g (L0)

Proof: Let v:pc denote the program counter of process v; i.e., v:pc = k i� v@fkg holds. We de�ne

a well-founded ranking R as follows.

R �

8><
>:

0 if :u@f9g

v:pc+ 1 if u@f9g ^ :v:x ^ v@f7::12g

v:pc+ 14 if u@f9g ^ (v:x _ :v@f7::12g)

By de�nition, R is always nonnegative, R = 0) :u@f9g, and R > 0) u@f9g. Therefore,

to establish that (L0) holds, it su�ces to prove that if R > 0, then (i) there exists some enabled

statement other than 3:v (note that process v may halt in its noncritical section), and (ii) each

statement execution decreases the value of R. Requirement (i) follows from (I14) and the program

text. We now show that requirement (ii) holds.

First, note that if R > 0, then u@f9g holds; this implies that 9:u is the only statement of process

u that can possibly be enabled. Each execution of this statement decreases the value of R from a

positive value to 0.

In the remainder of the proof, we consider the statements of process v. We begin by noting that

each statement of process v other than 0:v, 7:v, and 9:v decrements v:pc by at least 1 and leaves v:x

and v@f7::12g unchanged. It follows, then, that if any of these statements is executed when R > 0,

then R is decremented by at least 1.

Next, we dispose of statement 7:v. By the de�nition of R, R > 0 implies that u@f9g holds. By

(I4), this implies that :Q[u] holds. By the program text, this implies that 7:v is not enabled.

Now, consider statement 0:v. We prove that R > 0 ^ R = r ^ Enabled (0:v)) wp(0:v; R =

r � 1). First, consider the following derivation.

R > 0 ^ R = r ^ Enabled(0:v)

) u@f9g ^ R = r ^ v@f0g , R > 0 implies u@f9g;

Enabled (0:v) implies v@f0g.

) u@f9g ^ R = r ^ v@f0g ^ v:pc = 0 , by the de�nition of v:pc.

) u@f9g ^ R = r ^ r = 14 , by the de�nition of R, preceding

assertion implies R = v:pc+ 14.

) u@f9g ^ R = r ^ r = 14 ^ T [u] , by (I0) and (I2).

) wp(0:v; u@f9g ^ r = 14 ^ :v:x ^ v@f12g) , by the program text.

Now, consider the following derivation.

u@f9g ^ r = 14 ^ :v:x ^ v@f12g

) u@f9g ^ r = 14 ^ :v:x ^ v@f12g ^ v:pc = 12 , by the de�nition of v:pc.

12

) R = r � 1 , by the de�nition of R, preceding

assertion implies R = v:pc+ 1.

By the above two derivations and the monotonicity of wp, R > 0 ^ R = r ^ Enabled (0:v))

wp(0:v; R = r � 1).

Finally, consider statement 9:v. We prove that R > 0 ^ R = r ^ Enabled(9:v)) wp(9:v; R =

r � 3). First, consider the following derivation.

R > 0 ^ R = r ^ Enabled(9:v)

) u@f9g ^ R = r ^ v@f9g ^ P [u] , R > 0 implies that u@f9g;

Enabled (9:v) implies v@f9g ^ P [u].

) u@f9g ^ R = r ^ v@f9g ^ P [u] ^ v:pc = 9 , by the de�nition of v:pc.

) u@f9g ^ R = r ^ v@f9g ^ P [u] ^ v:pc = 9 ^ v:x , by (I0).

) u@f9g ^ R = r ^ r = 23 ^ P [u] , by the de�nition of R, preceding

assertion implies R = v:pc+ 14.

) wp(9:v; u@f9g ^ r = 23 ^ v@f6g) , by the program text.

Now, observe the following.

u@f9g ^ r = 23 ^ v@f6g

) u@f9g ^ r = 23 ^ v@f6g ^ v:pc = 6 , by the de�nition of v:pc.

) R = r � 3 , by the de�nition of R, preceding

assertion implies R = v:pc+ 14.

By the above two derivations and the monotonicity of wp, R > 0 ^ R = r ^ Enabled (9:v))

wp(9:v; R = r � 3). This completes the proof. 2

u@f7g 7! :u@f7g (L1)

Proof: Similar to the proof of (L0). 2

v@f9g 7! :v@f9g (L2)

Proof: Similar to the proof of (L0). 2

v@f7g 7! :v@f7g (L3)

Proof: Similar to the proof of (L0). 2

13

i@f2g 7! i@f6g (L4)

Proof: By the program text, our fairness assumption, and the transitivity of leads-to, i@f2g 7!

i@f7; 9g. By (L0), (L1), (L2), (L3), and the program text, i@f7; 9g 7! i@f6g. Hence, by transitivity

of leads-to, i@f2g 7! i@f6g. 2

5 Allowing Nonatomic Variables

Until now, we have limited our attention to programs comprised of shared variables that are accessed

atomically, i.e., by statements that cause a single state transition when executed. It turns out,

however, that our solution to the mutual exclusion problem is correct even if shared variables are

accessed nonatomically, i.e., by statements that induce several state transitions when executed. We

show this below after specifying more precisely the notion of a nonatomic shared variable.

In concurrent programs with nonatomic shared variables, it is possible for two or more statements

that access such a variable to be executed concurrently; such is the case when a state transition

induced by one such statement occurs between the �rst and last state transitions induced by another

such statement. To be able to reason about such programs, it is necessary to specify the e�ect of

such a concurrent execution. Observe that in the program of Figure 2, each shared variable is written

by one of the processes and is either read by the other process (T [u] and T [v]) or is awaited on by

the other process (P [u], Q[u], P [v], and Q[v]). Thus, in de�ning the e�ect of concurrent statement

executions, there are only two cases of interest to us: a read of a shared variable that is concurrent

with a write to that variable, and an await on a shared variable that is concurrent with a write to

that variable.

To keep the ensuing discussion as simple as possible, we follow the approach taken by Anderson

and Gouda in [1] and assume that each statement that reads or awaits on a shared variable is atomic

and that each statement that writes a shared variable is nonatomic; the semantics of each nonatomic

write is speci�ed by de�ning each such write to be equivalent to a particular sequence of atomic

statements. In Figure 2, each statement that writes a shared variable is of the form \k : X := y",

where k is a statement label of some process i, X is a shared boolean variable, and y is either a

private variable of process i or a constant. If such a statement is executed nonatomically, then we

de�ne its semantics by the following program fragment.

k: do htrue ! X := :Xi

[] htrue ! X := y; exiti

od

This program fragment consists of a do-loop comprised of two atomic statements; the scope of

each statement is indicated by enclosing it within angle brackets. When the program counter of

process i equals k, both statements are enabled. Executing the �rst statement inverts the value of

X and does not change the program counter of process i. Executing the second statement causes

the value of y to be assigned to X and modi�es the program counter of process i so as to terminate

the loop. Note that, while the program counter of process i equals k, the second atomic statement

of the loop is continuously enabled. Thus, in any fair history in which this loop is executed, the

14

second statement of the loop is eventually executed. Thus, in any fair history, each nonatomic write

eventually terminates.

Observe that our notion of a nonatomic shared variable is consistent with Lamport's de�nition

of a \safe" shared register [6]. In particular, if a read of a shared variable is executed concurrently

with a write to that variable, then the read may obtain any value from the value domain of the

variable. Also, the statement \await X", where X is a boolean shared variable, may be executed

concurrently with a write to X, even if that write \changes" the value of X from false to false.

As expected, if a read of a shared variable is not concurrent with any write to that variable, then

the read obtains the value most recently written to the variable (or the variable's initial value if no

preceding write exists). Likewise, \await X" may be enabled for execution at a state that is not

concurrent with a write to X only if X is true at that state.

To see that our solution to the mutual exclusion problem is correct under the above de�nition

of nonatomic statement execution, consider Figure 3. This �gure shows the program of Figure

2 with each nonatomic write replaced by its semantically equivalent program fragment (variable

declarations have been omitted for brevity). In the subsequent discussion, we refer to the program

of Figure 2 as the \atomic" program, and the program of Figure 3 as the \nonatomic" program. To

show that the nonatomic program is a correct solution to the mutual exclusion problem, we must

show that it satis�es the Mutual Exclusion and Progress requirements.

Verifying that the Mutual Exclusion requirement holds for the nonatomic program is straightfor-

ward. As the reader can verify, we have carefully de�ned each invariant given in Section 4 so that it

holds not only for the atomic program, but also for the nonatomic program. In particular, invariant

(I13) holds, implying that the Mutual Exclusion requirement holds for the nonatomic program.

As for the Progress requirement, it should be clear that if either process of the nonatomic program

leaves its noncritical section, then that process eventually reaches one of its await statements.

(Recall that in any fair history each nonatomic write eventually terminates.) Thus, to establish

the Progress requirement, it su�ces to show that neither process can wait forever at one of its

await statements. This amounts to proving that assertions (L0), (L1), (L2), and (L3) of Section

4 hold. Because a waiting process does not modify any shared variables, these assertions can be

proved for the nonatomic program in much the same manner as was originally done in Section 4

for the atomic program. To see this, consider the original proof of (L0). The crux of this proof

involved showing that if u@f9g holds (i.e., if process u is at its \await P [v]" statement), then each

statement execution decreases the value of the well-founded ranking R. To show that (L0) holds

for the nonatomic program in Figure 3, a slightly modi�ed version of this argument can be applied.

In particular, note that R's value depends only on the value of u:pc, v:pc, and v:x. Because the

�rst atomic statement of each loop that simulates a nonatomic write in process v leaves each of

these variables unchanged, each execution of such a statement leaves R unchanged. Nonetheless, by

reasoning as in the original proof, it can be shown that the second atomic statement of each such

loop decreases the value of R. By our fairness assumption and the original proof of (L0), it follows

that while u@f9g continues to hold, the value of R is never increased by any statement execution

and is eventually decreased by some statement execution. This is su�cient for establishing that (L0)

holds for the nonatomic program.

15

process u process v

do true ! do true !

3: Noncritical Section; 3: Noncritical Section;

2: do htrue ! P [u] := :P [u]i 2: do htrue ! P [v] := :P [v]i

[] htrue ! P [u] := false; exiti [] htrue ! P [v] := false; exiti

od; od;

1: do htrue ! Q[u] := :Q[u]i 1: do htrue ! Q[v] := :Q[v]i

[] htrue ! Q[u] := false; exiti [] htrue ! Q[v] := false; exiti

od; od;

0: u:x := T [v]; 0: v:x := :T [u];

12: do htrue ! T [u] := :T [u]i 12: do htrue ! T [v] := :T [v]i

[] htrue ! T [u] := u:x; exiti [] htrue ! T [v] := v:x; exiti

od; od;

11: if u:x ! 11: if v:x !

10: do htrue ! P [u] := :P [u]i 10: do htrue ! Q[v] := :Q[v]i

[] htrue ! P [u] := true; exiti [] htrue ! Q[v] := true; exiti

od; od;

9: await P [v] 9: await P [u]

[] :u:x ! [] :v:x !

8: do htrue ! Q[u] := :Q[u]i 8: do htrue ! P [v] := :P [v]i

[] htrue ! Q[u] := true; exiti [] htrue ! P [v] := true; exiti

od; od;

7: await Q[v] 7: await Q[u]

�; �;

6: Critical Section; 6: Critical Section;

5: do htrue ! P [u] := :P [u]i 5: do htrue ! P [v] := :P [v]i

[] htrue ! P [u] := true; exiti [] htrue ! P [v] := true; exiti

od; od;

4: do htrue ! Q[u] := :Q[u]i 4: do htrue ! Q[v] := :Q[v]i

[] htrue ! Q[u] := true; exiti [] htrue ! Q[v] := true; exiti

od od

od od

Figure 3: Two-process mutual exclusion algorithm with nonatomic shared variables.

16

6 Concluding Remarks

We have presented a �ne-grained program that solves the mutual exclusion problem, along with a

formal proof of its correctness. We have also shown that if shared variables are accessed nonatomi-

cally, then the program's correctness is una�ected. The processes of our solution wait on one another

solely by executing statements of the form \await X", where X is a shared, single-reader, single-

writer boolean variable. Such a statement can be implemented either by context switching or by

means of a lower level busy-waiting loop such as the following.

done := X;

do :done ! done := X od

As pointed out by Mellor-Crummey and Scott in [9], many of today's multiprocessing systems

permit shared variables to be locally accessible; such is the case if coherent caching schemes are

employed, or if shared variables can be allocated in a local portion of distributed shared memory.

If the shared variable X in the busy-waiting loop above is locally accessible, then this loop can be

executed with relatively little overhead, as each read of X can be accomplished without tying up

the interconnection network between processors and shared memory. This stands in sharp contrast

to the algorithms of [2, 7, 11], where busy-waiting loops are employed in which shared variables are

repeatedly tested and updated. The performance studies of [9] suggest that such busy-waiting may

result in an unacceptable degree of memory and interconnect contention.

Acknowledgement: I would like to thank Mohamed Gouda, Leslie Lamport, Udaya Shankar, and Jae-Heon

Yang for their comments on earlier drafts of this paper.

References

[1] J. Anderson and M. Gouda, \Atomic Semantics of Nonatomic Programs", Information Pro-

cessing Letters, Vol. 28, June 24, 1988, pp. 99-103.

[2] J. Burns and N. Lynch, \Bounds on Shared Memory for Mutual Exclusion", to appear in

Information and Computation. Originally appeared as \Mutual Exclusion Using Indivisible

Reads and Writes", Proceedings of the 18th Allerton Conference on Communication, Control,

and Computing , October 1980, pp. 833-842.

[3] E. Dijkstra, \Solution of a Problem in Concurrent Programming Control", Communications of

the ACM , Vol. 8, No. 9, 1965, pp. 569.

[4] E. Dijkstra, A Discipline of Programming , Prentice-Hall, Englewood Cli�s, New Jersey, 1976.

[5] J. Kessels, \Arbitration Without Common Modi�able Variables", Acta Informatica, Vol. 17,

1982, pp. 135-141.

[6] L. Lamport, \On Interprocess Communication, Parts I and II", Distributed Computing , Vol. 1,

1986, pp. 77-101.

17

[7] L. Lamport, \The Mutual Exclusion Problem II { Statement and Solutions", Journal of the

ACM , Vol. 33, No. 2, April 1986, pp. 327-348.

[8] L. Lamport, personal communication.

[9] J. Mellor-Crummey and M. Scott, \Algorithms for Scalable Synchronization on Shared-Memory

Multiprocessors", ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991, pp.

21-65.

[10] G. Peterson, \Myths About the Mutual Exclusion Problem", Information Processing Letters,

Vol. 12, No. 3, June 1981, pp. 115-116.

[11] G. Peterson, \A New Solution to Lamport's Concurrent Programming Problem Using Small

Shared Variables", ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1,

January 1983, pp. 56-65.

18

