
A Linear Model for Setting Priority Points in Soft
Real-Time Systems

Bryan C. Ward, Jeremy P. Erickson and James H. Anderson

Department of Computer Science
The University of North Carolina at Chapel Hill

Abstract. The earliest-deadline-first (EDF) scheduling algorithm, while not op-
timal for globally-scheduled hard real-time systems, can support any feasible task
system with bounded lateness. Furthermore, global-EDF-like (GEL) scheduling
algorithms, which prioritize jobs by assigning them fixed priority points based
on per-task relative priority points, have been shown to share this same property.
Some such algorithms exhibit better lateness bounds than G-EDF. This paper
surveys existing research on bounded-lateness analysis for GEL schedulers, and
formulates one such analysis technique called compliant vector analysis (CVA)
as a linear program (LP). Using this LP, per-task relative priority points can be
set to optimize for application-specific lateness constraints, and minimize average
and/or maximal lateness bounds. An empirical study is presented that compares
the lateness bounds of a variety of GEL schedulers and analysis techniques on
randomly generated task systems.

1 Introduction

For some types of computing workloads, such as multimedia applications, it is not
necessary to use schedulers amenable to hard real-time analysis that ensures that all
deadlines are met. A larger system utilization can often be supported by instead using a
scheduler that is amenable to soft real-time analysis that ensures that the lateness of any
job, or the amount of time between its deadline and its completion, remains bounded.

Although bounded lateness is achievable by a wide range of real-time scheduling
algorithms with no utilization loss [6], one class of such algorithms, called G-EDF-like
(GEL) algorithms [7], is of particular interest because such algorithms are straightfor-
ward to implement. In a GEL algorithm, each task has a relative priority point, and
each job has an absolute priority point defined by adding its tasks’s relative priority
point to its release. Jobs are scheduled globally on an earliest-absolute-priority-point-
first basis. Devi and Anderson [2] proved that G-EDF itself has bounded lateness, and
subsequently improvements to this original analysis were proposed in [3–5]. Erickson
and Anderson [3] further proposed the global fair lateness (G-FL) scheduler, a GEL
scheduler that provably provides the smallest maximum (over all tasks) lateness bound
possible using current analysis for GEL schedulers. In addition, Leontyev and Ander-
son [6] analyzed a much more general class of schedulers in which not all processors
are necessarily fully available. However, due to its generality, this analysis is not as tight
as the analysis in [3].



Fig. 1. Key for all figures in this paper.

Lateness bounds under GEL schedulers can be computed using an algorithm de-
scribed in [5], and the maximum lateness bound can be minimized by using G-FL as
described in [3]. However, G-FL will ensure the same lateness bound for all tasks in
a system, even though it is sometimes possible to reduce the lateness of some tasks
while maintaining the same maximum lateness bound as G-FL. Furthermore, [3] does
not propose a straightforward way to optimize criteria other than maximum lateness. In
this paper, we propose to model current lateness analysis using linear programming in
order to broaden the set of achievable lateness criteria.

2 SRT Lateness Bounds

We consider a system τ of n sporadic tasks {τ1,τ2, . . . ,τn} running on m processors.
Each task τi is defined by a tuple (Ci,Ti), where Ci is the worst-case per-job execution
time of τi and Ti is the minimum separation time between jobs of τi. We assume implicit
deadlines, i.e., if a job of τi is released at time r, then it has a deadline at time r + Ti.
The utilization of τi, Ui = Ci/Ti, is the long-term processor share it requires. Under any
GEL scheduler, τi has a scheduler-defined relative priority point (PP) Yi and a job of τi
released at time r has an absolute PP at time r +Yi. Jobs with earlier PPs are prioritized
over those with later PPs. If a job completes at time c, then it has a response time of
c− r and a lateness of c− (r +Ti).

In our analysis, we assume that time is continuous. For each task τi, we also assume
that Ui ≤ 1 and that ∑τi∈τ Ui ≤ m. As demonstrated in [2, 6], these conditions are nec-
essary to achieve bounded lateness. We further assume that n > m, because otherwise
each task can execute on its own processor, and no job of task τi will have a response
time exceeding Ci.

Example. We will illustrate several forms of lateness-bound analysis through an ex-
ample task system τ = {(4,5),(4,5),(8,20)} on m = 2 processors. We will show two
types of figures: analysis and actual schedules. We emphasize that the figures depicting
analysis do not show actual schedules. All presented forms of analysis determine how
long a job can execute after its PP. Such analysis pessimistically assumes that each job
cannot begin execution until after some non-negative constant after its PP. Both this
constant and the worst-case execution time of the task are terms of the lateness bound.
In our analysis figures, we align deadlines rather than PPs to depict lateness bounds.
The key for all figures is shown in Fig. 1.



(a) Example G-EDF schedule.

(b) Devi and Anderson’s lateness analysis (c) CVA lateness analysis (see Sec. 2.2).

Fig. 2. (a) shows a G-EDF schedule of the example task system τ = {(4,5),(4,5),(8,20)}, and
(b) and (c) show the lateness analysis of G-EDF from [2] and CVA [3–5], respectively. In (b) and
(c), the deadlines of all tasks are aligned to depict how lateness bounds compare among tasks.

2.1 Devi and Anderson’s Lateness Bound

Lateness bounds for G-EDF were first provided by Devi and Anderson [2]. Let Cmin be
the smallest Ci value of τi in τ . (In our example, Cmin = 4.) Letting

x =
∑m−1 largest Ci−Cmin

m−∑m−2 largest Ui
, (1)

Devi and Anderson [2] established x+Ci as a lateness bound for τi. In our example,

x =
C3−C1

m
=

8−4
2

= 2. (2)

Therefore, τ1 and τ2 each have a lateness bound of 2 + 4 = 6, and τ3 has a lateness
bound of 2 + 8 = 10. A G-EDF schedule of τ is depicted in Fig. 2(a), and Devi and
Anderson’s analysis is depicted in Fig. 2(b).

2.2 Compliant Vector Analysis

Erickson et. al. [4] introduced compliant-vector analysis (CVA), an improved method
to analyze lateness under G-EDF. This analysis was later extended in [3, 5] to apply
to systems with arbitrary PP assignments. We present this more general analysis and
apply it to G-EDF, which is modeled by setting Yi = Ti for each τi.

CVA is similar to the analysis described in [2], but rather than defining a single x
for the task system so that the response time of each task τi is at most Ti + x +Ci, a



vector x = 〈x1,x2, . . . ,xn〉 is derived that ensures that the response time of each task τi
is at most

Yi + xi +Ci. (3)

Note that response times are determined based on Yi rather than Ti.
We apply the following optimization rule before analysis.

PP Reduction Rule. If all relative PPs in the system are decreased by the same
constant, then the ordering of absolute PPs will not change, so the resulting
schedule will not change. Under CVA, lateness bounds are minimized for a
given GEL scheduler when, analytically, all relative PPs are reduced by the
smallest relative PP, so that the smallest relative PP becomes zero [3].

We note that a more complicated alternative optimization rule is presented in [4],
which is not compatible with the PP Reduction Rule because it assumes that Yi = Ti.
For simplicity of presentation we do not describe this rule here, but we consider it in
our experimental study in Sec. 3.

In order to find lateness bounds for a system, the vector x must be computed. In [3],
the authors demonstrate that there exists a constant s such that xi = vi(s) for each i
where

vi(s) =
s−Ci

m
. (4)

As a result, determining the correct value for s is sufficient to determine the value of the
entire vector x. In order to determine this value of s, the authors of [3] define

Si = Ci ·max
{

0,1− Yi

Ti

}
, (5)

G(s) = ∑
m−1 largest

(vi(s)Ui +Ci−Si), (6)

and
S(τ) = ∑

τi∈τ

Si. (7)

They demonstrate that the smallest lateness bounds valid under CVA occur iff

s = G(s)+S(τ). (8)

An algorithm to compute the necessary s, along with a proof that a unique such s exists,
is provided in [5]. It works by finding the zero of

M(s) = G(s)+S(τ)− s. (9)

By the uniqueness of s, M(s) will have one zero. Because each of (4)–(7) above is
piecewise linear with respect to s, M(s) is piecewise linear with respect to s. The com-
putation algorithm works by attempting to find a zero between each pair of points where
the slope of M(s) changes.



-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40

ti
m

e
u

n
it
s

s

2s/5 - 8/5

s/5 + 22/5

M(s)

zero

slope

change

Fig. 3. Graph of expressions used to compute CVA bounds for G-EDF.

Here we will demonstrate the computation algorithm via our example system. For
G-EDF, each relative PP Yi is initially Ti. However, after applying the PP Reduction
Rule, Y1 = Y2 = 0 and Y3 = 15. By (5),

S1 = S2 = 4 · (1−0) = 4 (10)

and

S3 = 8 ·
(

1− 15
20

)
= 2. (11)

Thus, by (6):

G(s) = max
{

s−4
2
· 4

5
+4−4,

s−8
2
· 8

20
+8−2

}
= max

{
2s
5
− 8

5
,

s
5

+
22
5

}
, (12)

and by (7),
S(τ) = 4+4+2 = 10. (13)

Because S(τ) is a constant and s is a simple linear function, by (9), the slope of
M(s) can only change where the slope of G(s) changes. The expressions in (12) and the
resulting M(s) are depicted in Fig. 3.

In order to determine where the slope of M(s) can change, we now compute where
the two expressions in (12) intersect:

2s
5
− 8

5
=

s
5

+
22
5

s
5

= 6

s = 30.

Therefore, for s≤ 30,

G(s) =
s
5

+
22
5

, (14)



and for s > 30,

G(s) =
2s
5
− 8

5
. (15)

We will first try to find a zero of M(s) assuming s≤ 30. In this case,

M(s) = {By (9)}
G(s)+S(τ)− s

= {By (13) and (14)}
s
5

+
22
5

+10− s

= {Rearranging}
−4s

5
+

72
5

. (16)

Setting M(s) to 0 in (16),

s =
(

72
5

)(
5
4

)
= 18. (17)

s = 18 satisfies our assumption that s ≤ 30, so 18 is indeed a zero of M(s). As
demonstrated in [4], the zero of M(s) is unique, so we do not need to consider s > 30.
Therefore, by (4),

x1 = x2 =
18−4

2
= 7, (18)

and by (3), the maximum response time of any job of τ1 or τ2 is 0+7+4 = 11, which
gives a maximum lateness bound of 11−5 = 6. Also, by (4)

x3 =
18−8

2
= 5, (19)

and by (3), the maximum response time of any job of τ3 is 15+5+8 = 28, which gives
a maximum lateness bound of 28− 20 = 8. These results are depicted graphically in
Fig. 2(c).

2.3 G-FL

In [3], the authors also propose G-FL, an algorithm that has the optimal maximum
lateness bound over all GEL schedulers using CVA. Rather than using Yi = Ti, G-FL
uses Yi = Ti− m−1

m Ci. Therefore, in our example system,

Y1 = Y2 = 5− 1
2
·4 = 3 (20)

and

Y3 = 20− 1
2
·8 = 16. (21)



-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 40

ti
m

e
u

n
it
s

s

2s/5 - 8/5

s/5 + 18/5

M(s)

zero

slope

change

Fig. 4. Graph of expressions used to compute CVA bounds for G-FL.

However, by the PP Reduction Rule from Sec. 2.2, we can instead use Y1 = Y2 = 0
and Y3 = 13 in the analysis. Here, we repeat the analysis from Sec. 2.2 as applied to
G-FL.

By (5),
S1 = S2 = 4 · (1−0) = 4 (22)

and

S3 = 8 ·
(

1− 13
20

)
=

14
5

. (23)

Thus, by (6):

G(s) = max
{

s−4
2
· 4

5
+4−4,

s−8
2
· 8

20
+8− 14

5

}
= max

{
2s
5
− 8

5
,

s
5

+
18
5

}
, (24)

and by (7),

S(τ) = 4+4+
14
5

=
54
5

. (25)

The expressions in (24) and the resulting M(s) are displayed in Fig. 4. As before,
M(s) can change slope only when G(s) changes slope, so we now compute where the
two expressions in (24) intersect:

2s
5
− 8

5
=

s
5

+
18
5

s
5

=
26
5

s = 26.

Therefore, for s≤ 26,

G(s) =
s
5

+
18
5

, (26)



and for s > 26,

G(s) =
2s
5
− 8

5
. (27)

We will first try to find a zero of M(s) assuming s≤ 26. In this case,

M(s) = {By (9)}
G(s)+S(τ)− s

= {By (25) and (26)}
s
5

+
18
5

+
54
5
− s

= {Rearranging}
−4s

5
+

72
5

. (28)

Compared to Sec. 2.2, notice that the increased S3 term in G(s) cancels out the
increased S3 term in S(τ), so (16) and (28) are identical.

Setting M(s) to 0 in (28),

s =
(

72
5

)(
5
4

)
= 18. (29)

s = 18 satisfies our assumption that s ≤ 26, so 18 is indeed a zero of M(s). As
before, because the zero of M(s) must be unique, we do not need to consider s > 26.
Therefore, by (4),

x1 = x2 =
18−4

2
= 7, (30)

and by (3), the maximum response time of any job of τ1 or τ2 is 0+7+4 = 11, which
gives a maximum lateness bound of 11−5 = 6. Also, by (4)

x3 =
18−8

2
= 5. (31)

By (3), the maximum response time of any job of τ3 is 13 + 5 + 8 = 26, which gives a
maximum lateness bound of 28−20 = 6. Thus, all tasks have the same lateness bound,
as claimed.

A G-FL schedule of the example system is depicted in Fig. 5(a), and its associated
analysis is depicted in Fig. 5(b). Although all analytical bounds are identical, due to the
pessimism of the bounds the actual lateness is not necessarily identical.

2.4 Linear Programming

Next, we show how CVA can be formulated as a LP. Such a formulation allows sys-
tem designers to optimize lateness bounds for arbitrary (linear) optimization objectives
by adjusting PPs. We show how to use this LP formulation of CVA to minimize aver-
age lateness, and to minimize average lateness while maintaining the same maximum



(a) G-FL schedule. (b) G-FL lateness bounds.

Fig. 5. Illustration of the G-FL schedule (a) and lateness bounds (b). Note that the deadlines are
aligned in (b) to depict how lateness compares among tasks.

lateness as G-FL. Furthermore, using this LP formulation, average lateness can be min-
imized while ensuring that application-specific lateness tolerances are all satisfied (if it
possible under CVA).

Recall that under CVA, to find the lateness bound of a task τi, xi = vi(s) must be
computed using Equations (4)-(8). We show how these equations can be reformulated
as constraints in a LP that minimizes average lateness (or possibly other objectives). We
assume that xi, Yi, Si, S(τ), G(s), and s are variables, and we also introduce the auxiliary
variables b and zi. All other values are constants (i.e., Ui, Ci, and m).

Constraint Set 1 The linear constraints corresponding to (4) are given by

∀i : xi =
s−Ci

m
.

Constraint Set 2 The linear constraints corresponding to (5) are given by

∀i : Si ≥ 0; Si ≥Ci(1−Yi/Ti).

The two constraints in Constraint Set 2 model the two terms of the max in (5). If
Ci(1−Yi/Ti) ≤ 0, then the constraint Si ≥ 0 ensures that the value of Si is correct. If
Ci(1−Yi/Ti)≥ 0, then the constraint Si≥Ci(1−Yi/Ti) ensures the value of Si is correct.

The next equation to be linearized, (6), is less straightforward. We first show how to
minimize the sum of the largest k elements in a set A = {a1, . . . ,an} using only linear
constraints, by an approach similar to one presented in [8]. The intuition behind this
approach is shown in Fig. 6. This figure corresponds to the following linear program

Minimize : G
Subject to : G = kb+∑

n
i=1 zi,

zi ≥ 0 ∀i,
zi ≥ ai−b ∀i,

in which G, b, and zi are variables and both k and ai are constants. In Fig. 6, the term
kb corresponds to the gray-shaded area, and ∑

n
i=1 zi corresponds to the black-shaded

area. When G is minimized, it is equal to the sum of the largest k elements in A. This is
achieved when zi = 0 for each element ai that is not one of the k largest elements in A,
and b is at most the kth largest element in A, as is shown in Fig. 6 (b).

Using this technique, we can formulate (6) as a set of linear constraints.



a1 a2 a3 a4 a5 a6 a7

k

{{b

z1 z2 z3 z4
z5

z6, z7 = 0

a5 overcounted

(a) b too small.

a1 a2 a3 a4 a5 a6 a7

k

{{b

z1 z2 z3

z4, . . . , z7 = 0

(b) b correct.

a1 a2 a3 a4 a5 a6 a7

k

{{b

z1
z2 z3, . . . , z7 = 0

a4 overcounted

(c) b too large.

Fig. 6. Illustration of the auxiliary variables used to sum the largest k elements in the set A =
{a1, . . . ,an}. The total of the gray and black shaded areas is equal to G. The gray areas correspond
to kb while the black areas correspond to positive zi’s. When G is minimized, as in (b), G is equal
to the sum of the largest k elements in A. As is shown in (a) and (c), if b is too small or too large
then G will be larger than the maximum k elements in A. Note that elements of A are depicted in
sorted order only for visual clarity.

Constraint Set 3 The linear constraints corresponding to (6) are given by

G(s) = b(m−1)+ ∑
τi∈τ

zi,

∀i : zi ≥ 0,

∀i : zi ≥ xiUi +Ci−Si−b.

In the optimization objectives we consider, G(s) is not itself explicitly minimized, as
in the example linear program. However, the objective functions we consider minimize
average lateness subject to some constraints, and because the lateness of all tasks is a
function of G(s), G(s) is also minimized.1

Constraint Set 4 The linear constraint corresponding to (7) is given by

S(τ) = ∑
τi∈τ

Si.

Constraint Set 5 The linear constraint corresponding to (9) is given by

G(s)+S(τ) = s.

Constraint Sets 1–5 model CVA through a set of linear constraints. Next we show
how these constraints can be coupled with an optimization objective to find optimal
priority point settings under CVA. We refer to schedulers produced by setting priority
points using our LP formulation of CVA, as G-LP. First, we show how G-LP can be
optimized to minimize average lateness.

Minimizing Average Lateness. The following linear program may be solved to mini-
mize average lateness under CVA.

Minimize : ∑
τi∈τ

Yi + xi

Subject to : Constraint Sets 1–5

1 If G(s) is not minimized, then the resulting lateness bounds are still correct, just not as tight.



(a) G-LP Schedule. (b) G-LP Analysis.

Fig. 7. Illustration of the G-FL schedule (a) and lateness bounds (b). Note that the deadlines are
aligned in (b) to depict how lateness compares among tasks.

Note that average lateness is given by ∑τi∈τ(Yi + xi +Ci−Ti)/n, but Ci, Ti, and n are
all constants that are not necessary to include in the optimization objective. We denote
G-LP optimized for average lateness as G-LP-AL.

While G-LP-AL is optimal with respect to average lateness, as is shown experimen-
tally in Sec. 3, the lateness of some tasks may be larger than the maximum lateness
bound of G-FL, which we denote Lmax. Next, we show how to optimize the average
lateness of all tasks while maintaining a maximum lateness no greater than Lmax.

Minimizing Average Lateness from G-FL. The following linear program may be solved
to minimize the average lateness under CVA while maintaining the same maximum
lateness bound as G-FL.

Minimize : ∑
τi∈τ

Yi + xi

Subject to : ∀i : Yi + xi +Ci−Ti ≤ Lmax,
2

Constraint Sets 1–5

As before, the constants Ci, Ti and n are omitted from the objective function. We denote
the scheduler produced by this program as G-LP-FL.

For our previous example task system, both G-LP-AL and G-LP-FL set the priority
point of τ3 to Y3 = 12, instead of Y3 = 16 as in G-FL. This priority point assignment
improves the lateness bound of τ3 from 6 under G-FL to 2 for G-LP. A schedule and
a visual depiction of the analysis are given in Fig. 7. Table 1 summarizes the lateness
bounds under different schedulers and analysis techniques for our running example.
Note that, in general, G-LP-AL and G-LP-FL do not produce the same schedules, as
will be evident in Sec. 3.

We note that the LP formulation of CVA can be used and extended to other opti-
mization objectives, perhaps most notably, application-specific optimization objectives.
For example, an LP solver can be used to assign PPs to ensure application-specific late-
ness tolerances are satisfied (if possible under CVA), or to maximize total system utility
under some linear definitions of lateness-based utility.

2 Application-specific per-task lateness tolerances could be used instead of Lmax.



Scheduler Analysis τ1 τ2 τ3
G-EDF Devi and Anderson [2] 6 6 10
G-EDF CVA [3] 6 6 8
G-FL CVA [3] 6 6 6

G-LP-AL CVA [3] & LP 6 6 2
G-LP-FL CVA [3] & LP 6 6 2

Table 1. Lateness bounds under different schedulers and analysis assumptions for the example
task system τ = {(4,5),(4,5),(8,20)} on m = 2 processors.

3 Experiments

In this section, we present experiments that demonstrate how G-LP can improve late-
ness bounds over existing scheduling algorithms. We generated random task sets using
a similar experimental design as in previous studies (e.g., [3]). We generated implicit-
deadline task sets in which per-task utilizations were distributed either uniformly, bi-
modally, or exponentially. For task sets with uniformly distributed utilizations, per-task
utilizations were chosen to be light, medium or heavy, which correspond to utilizations
uniformly distributed in the range [0.001,0.1], [0.1,0.4], or [0.5,0.9], respectively. For
task systems with bimodally distributed utilizations, per-task utilizations were chosen
from either [0.001,0.5] or [0.5,0.9] with respective probabilities of 8/9 and 1/9; 6/9
and 3/9; or 4/9 and 5/9. For task systems with exponentially distributed utilization,
per-task utilizations were distributed exponentially with a mean of 0.10, 0.25 or 0.50.
The periods of all tasks were generated using an integral uniform distribution between
[3ms,33ms], [10ms,100ms] and [50ms,250ms] for tasks with short, moderate, and
long periods, respectively. We considered a system with m = 8 processors, as clustered
scheduling typically is preferable to global scheduling for larger processor counts [1].
For each per-task utilization and period distribution combination, 1,000 task sets were
generated for each total system utilization value in {1.25,1.50, . . . ,8.0} (we did not
consider task systems with utilizations of one or less as they are schedulable on one
processor).

For each generated task system, we evaluated the average and maximum per-task
lateness bounds under Devi and Anderson’s analysis of G-EDF [2] (EDF-DA), CVA
analysis of G-EDF scheduling (EDF-CVA) using the PP Reduction Rule, CVA analysis
of G-EDF using the alternative optimization rule in [4] (EDF-CVA2), G-FL, and G-LP
when optimizing for average lateness subject to the constraint that no task has a lateness
bound greater than it would have under G-FL (G-LP-FL), and G-LP when optimizing
for average lateness without constraining maximum lateness (G-LP-AL). In Fig. 8, we
show the mean average and maximum lateness bounds for each total system utilization
value over all generated task systems from a representative combination of per-task
utilization and period distributions, medium and moderate, respectively. Note that the
lateness bound results are analytical, and that in an actual schedule observed latenesses
may be smaller.



EDF-CVA [2] EDF-CVA2 [3]EDF-DA [1] G-FL [4] G-LP-FL [5] G-LP-AL [6]

1 2 3 4 5 6 7 8
Sys tem Utilization

40

20

0

20

40

60

A
ve

ra
g

e
La

te
n

e
ss

(m
s) [1]

[2]
[3]

[4]

[5]

[6]

(a) Average lateness.

1 2 3 4 5 6 7 8
Sys tem Utilization

40

20

0

20

40

60

M
a

xi
m

u
m

La
te

n
e

ss
(m

s)

[1]

[2]

[3]

[6]

[4] & [5]

(b) Maximum lateness.

Fig. 8. Average and maximum lateness bounds under the different analysis techniques and sched-
ulers discussed for a system with moderate periods and uniform medium utilizations.

Observation 1. EDF-CVA2 dominates EDF-DA with respect to both average
and maximum lateness bounds. For task systems will small utilizations, the PP
Reduction Rule of EDF-CVA outperforms the optimization in EDF-CVA2 [4];
however, the converse is true for large utilizations. Furthermore, for large uti-
lizations, EDF-DA can have lower lateness bounds than EDF-CVA.

This can be seen in insets (a) and (b) of Fig. 8. EDF-CVA2 always dominates EDF-
DA, and EDF-CVA has slightly smaller lateness bounds than EDF-DA for task systems
with total utilization less than six, while for utilizations greater than six, EDF-DA has
better lateness bounds than EDF-CVA. Although the optimization from [4] in EDF-
CVA2 performs very well for task systems with large utilizations, it is only applicable
if Yi = Ti, for all i. The PP Reduction Rule is applicable to any GEL scheduler.

Observation 2. All three of the GEL schedulers we considered with PPs differ-
ent from G-EDF, namely, G-FL, G-LP-AL and G-LP-FL, had smaller average
lateness bounds than G-EDF as determined via either CVA or Devi and Ander-
son’s analysis.

These three scheduling algorithms optimize, with respect to CVA, either the average
or maximum lateness of all tasks by moving PPs. Therefore, these algorithms should
have smaller average lateness bounds than G-EDF. This can be observed in inset (a) of
Fig. 8.

Observation 3. The maximum lateness bounds of G-LP-FL and G-FL are the
same, but the average lateness bound of G-LP-FL is at worst the average late-
ness bound of G-FL.

Based on the constraints and the optimization objective of G-LP-FL, the average and
maximum lateness bounds are provably no worse than G-FL. As is seen in inset (a) of
Fig. 8, the improvement in average lateness in the task systems seen in our experiments
was usually only a few ms.



Observation 4. Average lateness bounds were lower under G-LP-AL than un-
der G-FL and G-LP-FL. This improvement in average lateness is made possible
by allowing for increased maximum lateness.

As a result of the LP optimization, G-LP-AL is optimal with respect to average
lateness under CVA. In inset (a) of Fig. 8, we see that the average lateness of G-LP-AL
is always smaller than all other schedulers, often by 10-20ms or more. However, the
maximum lateness bounds of G-LP-AL are larger than G-FL and G-LP-FL. In most
observed cases, such as in Fig. 8 (b), lateness bounds of G-LP-AL were less than or
commensurate with G-EDF lateness bounds as determined by either CVA or Devi and
Anderson’s analysis, though in some cases the maximum lateness was greater than G-
EDF by 10-20ms. From these results, G-LP-AL may be practical in many applications.

We note that the lateness bounds of G-LP-AL in comparison to G-FL and G-LP-FL
demonstrate that the LP solver has considerable flexibility in choosing priority points
to optimize for certain lateness criteria. If some tasks have larger lateness tolerances
than others, the PPs of the more tolerant tasks can be increased to improve the lateness
bounds of the less tolerant tasks. This gives system designers much more flexibility to
optimize the scheduler for application-specific needs.

4 Conclusions

In this paper, we surveyed existing schedulers and analysis techniques for soft real-time
systems with bounded deadline lateness, and showed how to model compliant vector
analysis (CVA) as a linear program. The linear formulation of CVA allows the priority
points of tasks to be optimally (with respect to CVA) placed to minimize, for example,
average or maximum lateness. Scheduling algorithms that result from moving priority
points improve average lateness over existing algorithms. Furthermore, the linear for-
mulation of CVA gives system designers flexibility to adapt the scheduling algorithm
that is used to the lateness requirements of specific applications. We also generated ran-
dom task systems and evaluated lateness bounds under a number of different scheduling
algorithms and analysis techniques.

References

1. Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Sys-
tems. PhD thesis, University of North Carolina, Chapel Hill, NC, 2011.

2. UmaMaheswari C. Devi and James H. Anderson. Tardiness bounds under global EDF
scheduling on a multiprocessor. Real-Time Systems, 38(2):133–189, 2008.

3. Jeremy P. Erickson and James H. Anderson. Fair lateness scheduling: Reducing maximum
lateness in G-EDF-like scheduling. In ECRTS, pages 3–12, 2012.

4. Jeremy P. Erickson, UmaMaheswari C. Devi, and Sanjoy K. Baruah. Improved tardiness
bounds for global EDF. In ECRTS, pages 14–23, 2010.

5. Jeremy P. Erickson, Nan Guan, and Sanjoy K. Baruah. Tardiness bounds for global EDF
with deadlines different from periods. In OPODIS, pages 286–301, 2010. Revised version at
http://cs.unc.edu/ jerickso/opodis2010-tardiness.pdf.



6. Hennadiy Leontyev and James H. Anderson. Generalized tardiness bounds for global multi-
processor scheduling. Real-Time Systems, 44(1):26–71, 2010.

7. Hennadiy Leontyev, Samarjit Chakraborty, and James H. Anderson. Multiprocessor exten-
sions to real-time calculus. In RTSS, pages 410–421, 2009.

8. Wlodzimierz Ogryczak and Arie Tamir. Minimizing the sum of the k largest functions in
linear time. Information Processing Letters, 85(3):117–122, 2003.


