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Abstract
Graphics processing units (GPUs) are becoming increas-
ingly important in today’s platforms as their increased
generality allows for them to be used as powerful co-
processors. In this paper, we explore possible applica-
tions for GPUs in real-time systems, discuss the limita-
tions and constraints imposed by current GPU technol-
ogy, and present a summary of our research addressing
many such constraints.

1 Introduction
The parallel architecture of the graphics processing unit
(GPU) often allows data parallel computations to be car-
ried out at rates orders of magnitude greater than those
offered by a traditional CPU. Enabled by increased pro-
grammability and single-precision floating-point support,
the use of graphics hardware for solving non-graphical
(general purpose) computational problems began gain-
ing wide-spread popularity in the early part of the last
decade [10, 20, 23]. However, early approaches were
limited in scope and flexibility because non-graphical
algorithms had to be mapped to languages developed
exclusively for graphics. Graphics hardware manufac-
tures recognized the market opportunities for better sup-
port of general purpose computations on GPUs (GPGPU)
and released language extensions and runtime environ-
ments,1 eliminating many of the limitations found in early
GPGPU solutions. Since the release of these second-
generation GPGPU technologies, both graphics hard-
ware and runtime environments have grown in general-
ity, increasing the applicability of GPGPU to a breadth
of domains. Today, GPUs can be found integrated on-
chip in mobile devices and laptops [1, 6, 3], as discrete
cards in higher-end consumer computers and worksta-
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CNS 1016954; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-
09-1-0549; and AFRL grant FA8750-11-1-0033.

1Notable platforms include the Compute Unified Device Architec-
ture (CUDA) from NVIDIA [4], Stream from AMD/ATI [2], OpenCL
from Apple and the Khronos Group [9], and DirectCompute from Mi-
crosoft [8].
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Figure 1: Historical trends in processor performance in
terms of approximate peak floating-point operations per
second (FLOPS).

tions, and also within some of the world’s fastest super-
computers [22].

There are strong motivations for utilizing GPUs in real-
time systems. Most importantly, their use can signifi-
cantly increase computational performance. For exam-
ple, in terms of theoretical floating-point performance,
GPUs offer greater capabilities than traditional CPUs.
This is illustrated in Fig. 1, which depicts floating-point
performance trends of Intel CPUs and NVIDIA GPUs
over much of the past decade [5, 7, 28]. Growth in raw
floating-point performance does not necessarily translate
to equal gains in performance for actual applications.
However, a review of published research shows that per-
formance increases commonly range from 4x to 20x [4].
Tasks accelerated by GPUs may execute at higher fre-
quencies or perform more computation per unit time,
possibly improving system responsiveness or accuracy.
GPUs can also carry out computations at a fraction of
the power needed by traditional CPUs, especially in in-
tegrated on-chip designs. This is an ideal feature for em-
bedded and cyber-physical systems.

In this paper we identify several real-time applications
that may benefit from the use of GPUs. In particular, we
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Figure 2: Spectrum of possible temporal requirements for a number of automotive applications that may utilize a GPU.
Each feature may cross domains, as indicated by the line beneath each feature name.

note that the use of GPUs appears to be the only eco-
nomically feasible solution able to meet the processing
requirements of advanced driver-assist and autonomous
features in future automotive applications. Unfortunately,
there are obstacles created by current GPU technology
that must be overcome before GPUs can be incorporated
into real-time systems. In this paper we discuss several
of these obstacles and present a summary of solutions we
have found through our research to date. We hope to en-
gage the real-time and cyber-physical systems communi-
ties to identify additional applications where the use of
GPUs may be beneficial or even necessary. Through fur-
ther research and the development of a breadth of appli-
cations, we hope to inspire GPU manufactures to incor-
porate features into their products to improve real-time
behaviors.

This paper is organized as follows. In the next sec-
tion, we present several applications where GPUs may
be beneficial in real-time systems. In Sec. 3, we present
the unique constraints imposed by current GPU technol-
ogy that pose challenges to the use of GPUs in real-time
systems. In Sec. 4, we present a summary of solutions
that we have developed that address several of these con-
straints and allow GPUs to be used in real-time systems.
In Sec. 5, we present future directions for our research and
discuss what changes may be necessary in current GPU
technology to better support real-time systems. Finally,
in Sec. 6, we conclude with remarks on the field of real-
time GPUs.

2 Real-Time GPU Applications
There are a number of real-time domains where GPUs
may be applied. For example, a GPU can efficiently
carry out many digital signal processing operations such
as multidimensional FFTs and convolution as well as ma-
trix operations such as factorization on data sets of up
to several gigabytes in size. These operations, coupled

with other GPU-efficient algorithms, can be used in med-
ical imaging and video processing, where real-time con-
straints are common. Additionally, a particularly com-
pelling application for real-time GPUs is that of automo-
biles.

GPUs can be used to implement a number of system
features in the automotive domain. For user interface fea-
tures, a GPU may be used to realize rich displays for the
vehicle operator and to implement responsive voice-based
controls [16], all while possibly driving video entertain-
ment displays for other passengers simultaneously. Fur-
ther, a GPU can also be used to track the eyes of the
vehicle operator [24]. Such tracking could be used to
implement a number of safety features. Real-time ap-
plications for GPUs in automobiles become even more
apparent when we consider driver-assist and autonomous
vehicle features. In these platforms, multiple streams
of data from video feeds, laser range sensors, and radar
can be processed and correlated to provide environmen-
tal data for a number of vehicle functions. This data can
be used for automatic sign recognition [27], local naviga-
tion (such as lane following), and obstacle avoidance [29].
GPUs are well suited to handle this type of workload since
these sensors generate enormous amounts of data. Indeed,
GPUs are likely the only efficient and cost-effective solu-
tion. Moreover, these are clearly safety-critical applica-
tions where real-time constraints are important.

Fig. 2 depicts a number of automobile features that
could make use of a GPU. These features are plotted
along a spectrum of temporal requirements showing our
view of the relative need for real-time performance. The
spectrum is broken up into four regions: general-purpose,
“real-fast,”2 soft real-time, and hard real-time. Features in
the general-purpose region are those that could possibly
be supported by general-purpose scheduling algorithms,
though may still be a part of a real-time system. The “real-
fast” region captures applications that may have general

2The term “real-fast” is borrowed from Paul McKenny [26].



quality-of-service requirements or must exhibit low la-
tency behaviors. The soft real-time region has features
that may require some level of temporal guarantees, such
as bounded deadline tardiness. Finally, the hard real-time
region captures features that have strong safety repercus-
sions if temporal guarantees are not met. It should be
noted that an automobile manufacture might opt to put
conservative real-time requirements on features to both
aid in vehicle certification from governmental bodies and
to also reduce exposure to legal liability in case of an ac-
cident.

3 GPU Constraints
A GPU that is used for computation is an additional pro-
cessor that is interfaced to the host system as an I/O de-
vice, even in current on-chip architectures. With this
interface, a GPU is not a system programmable device,
i.e., an OS cannot directly schedule or otherwise con-
trol a GPU. Instead, a driver in the OS manages all sys-
tem GPUs. This imposes several constraints on a real-
time system. First, due to the fact that high-performance
drivers are closed source, a real-time system must be iso-
lated from unknown behaviors of the driver. Driver prop-
erties may change from vendor to vendor, GPU to GPU,
and even from driver version to version. Since even soft
real-time systems require provable analysis, the uncer-
tain behaviors of the driver force integration solutions to
treat it as a black box. Second, computer graphics and
high-performance computing are the main markets for
current GPU technology. The needs of these non-real-
time domains drive many hardware and software features.
As a result, driver software (and even GPU hardware)
is throughput-oriented and optimized for use by a single
process at a time; low latency of operations and the shar-
ing of GPUs among processes, very important features
for a real-time system, are only supported to a limited de-
gree.

4 Summary of Research
The constraints imposed by current GPU technology do
not make it impossible to integrate GPUs into real-time
systems. In our research, we have found ways to imple-
ment real-time GPU resource arbitration, effectively re-
moving the driver’s unknown arbitration methods from
impacting real-time tasks. Further, we have developed
and implemented methods to manage GPU device inter-
rupts, reducing their impact on real-time tasks by signif-
icantly shortening the duration of priority inversions that
interrupts may cause.

GPU Resource Management. In [17], we discovered
several issues stemming from the above constraints that
must be addressed before GPUs can be integrated into a
real-time system.3 First, the execution of a GPU program
is non-preemptive. This may cause priority inversions,
as high-priority tasks may have to wait until one or more
lower-priority GPU-using tasks complete. Second, when
a single GPU comes under contention, blocked tasks spin-
wait, consuming CPU resources and budget, while wait-
ing for the GPU resource. While spinning may be the best
blocking mechanism in a real-time system for short dura-
tions [14], this becomes a major limitation for systems
with GPUs since the execution of a GPU program can
last from tens of milliseconds to several seconds, depend-
ing upon the application. This can negatively affect the
timely execution of other real-time tasks. Finally, since
GPU drivers are designed for general-purpose operating
systems,4 they have no notion of task priority. Thus it
is difficult to quantify the effects of a GPU driver has on
real-time systems.

Also in [17], we presented two solutions to address
these limitations for globally-scheduled multiprocessor
real-time systems with a single GPU. The first solution,
which we call the Container Method (CM), groups all
GPU-using tasks into a container that models a single log-
ical processor. The container is given an execution bud-
get equal to the utilization of the contained GPU-using
tasks. A hierarchical scheduler is then used to schedule
the real-time system. Non-GPU-using tasks and the GPU
container are scheduled on the multiprocessor system us-
ing the global earliest-deadline-first algorithm. When the
GPU container is scheduled to execute, a first-in-first-
out (FIFO) secondary scheduler selects which of the con-
tained GPU-using tasks to run. Because GPU-using tasks
are contained within one logical processor and scheduled
in FIFO order, it is impossible for the GPU to ever come
under contention by multiple tasks since only one GPU-
using task may execute at a time and must execute to com-
pletion before another may commence. As a result, the
major limitations of non-preemptivity, spin-waiting, and
lack of respect for scheduling priority become non-issues.
While this solution may work well for many real-time
systems, the FIFO scheduling of GPU-using tasks can be
inefficient since these tasks often require normal CPU ex-
ecution time as well—there is no reason why these tasks
cannot execute simultaneously as long as the GPU is not

3To date, we have limited our focus to the CUDA platform for
NVIDIA GPUs. NVIDIA is widely recognized as the leader in GPGPU
products.

4Currently, no GPU drivers support GPGPU computation for any
commercially available real-time operating system. Further, they do not
appear to respect system priorities as used in general-purpose operating
systems.



under contention.
To address this inefficiency, we also developed the

Shared Resource Method (SRM), which treats the GPU
as a shared resource protected by a real-time mutual ex-
clusion locking protocol. This effectively removes the
GPU driver from resource arbitration decisions, so spin-
waiting never occurs. Further, the use of a real-time lock-
ing protocol respects system priorities and uses priority
inheritance techniques to reduce durations of priority in-
versions. This allows us to bound the effects of a GPU in
a real-time system.

In schedulability experiments, we found that both the
CM and SRM are able to schedule greater computational
workloads than pure CPU systems in common cases,
where the GPU offers at least a 4x speedup over a sin-
gle CPU. Indeed, we found that tasks sets with common
characteristics and an effective CPU utilization5 as great
as 15.0 could be scheduled on a soft real-time system of
four CPUs with a single GPU. Such a system configura-
tion is conceivable for an embedded platform using to-
day’s technology.

As part of the research effort described in [17], we
implemented the SRM in our Linux-based real-time op-
erating system, LITMUSRT [13]. We found in execution
experiments that the SRM offered superior control over
deadline tardiness in comparison to a real-time system
without the SRM. Indeed, some task sets could not be
scheduled at all without the SRM.6 An example of such a
case is depicted in Fig. 3, where the tardiness of a GPU-
using task grows unboundedly over time when the default
GPU driver behaviors are relied upon. In contrast, there is
no observed tardiness when the SRM is in use. This result
shows that a real-time mechanism is required to integrate
a GPU with available software drivers into a real-time sys-
tem.

More recently, we have extended the SRM to support
systems with a pool of several GPUs [18]. Minimizing
blocking time is critically important for GPU systems
since GPU programs execute for long, non-preemptive,
durations. This may result in conservative system provi-
sioning, which is only exacerbated by large bounds on
worst-case blocking time. The development of a new
real-time k-exclusion locking protocol, the Optimal k-
Exclusion Global Locking Protocol (O-KGLP), to effi-
ciently manage the GPU resources in a globally sched-
uled real-time system was required in order to minimize
blocking time. Using techniques inspired by [11, 12], the

5We define effective CPU utilization of a task set to be the utilization
of the task set if it were implemented and scheduled on a CPU-only
platform.

6In our experiments, we considered task sets to be schedulable on
our soft real-time system if the observed tardiness of any task never
exceeded its period after two and a half minutes of task set execution.
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Figure 3: Tardiness growth can be unbounded when the
default GPU driver behaviors are in effect, as shown in
line [2] for this GPU-using task. In contrast, there was no
observed tardiness when the SRM is in use in this partic-
ular experimental case.

blocking time GPU-using tasks experience while waiting
for a GPU under the O-KGLP is O(m/k), where m is
the number of CPUs and k is the number of GPUs. This
is an especially interesting result since even informed ap-
proaches may lead to less efficient O(m− k) protocols or
O(m/k) protocols that block non-GPU-using tasks.

GPU Interrupt Handling. An interrupt is an asyn-
chronous hardware signal issued from a system device
to a system CPU. Upon receipt of an interrupt, a CPU
halts the execution of the task it is currently executing and
immediately executes an interrupt handler. An interrupt
handler is a segment of code responsible for taking the
appropriate actions to process a given interrupt. Each de-
vice driver, such as a GPU driver, registers a set of driver-
specific interrupt handlers for all of the interrupts its asso-
ciated device may raise. Only after the interrupt handler
has completed execution may an interrupted CPU resume
the execution of the previously scheduled task.

Interrupts are difficult to manage in a real-time sys-
tem. Interrupts may occur periodically, sporadically, or
at entirely unpredictable moments, depending upon the
application. Interrupts often cause disruptions in a real-
time system since the CPU must temporarily halt the ex-
ecution of the currently scheduled task. In uniproces-
sor and partitioned multiprocessor systems, one may be
able model an interrupt source and handler as the highest-
priority real-time task in a system [25] or as a blocking
source [21], though the unpredictable nature of interrupts
in some applications may require conservative analysis.
Such approaches can also be extended to multiproces-



sor systems where real-time tasks may migrate between
CPUs [15]. However, in such systems the subtle differ-
ence between an interruption and preemption creates an
additional concern: an interrupted task cannot migrate to
another CPU since the interrupt handler temporarily uses
the interrupted task’s program stack. Stack corruption
would occur if a task resumed execution before the in-
terrupt handler completed. As a result, conservative anal-
ysis must also be used when accounting for interrupts in
these systems too. A real-time system, both in analysis
and in practice, benefits greatly by minimizing interrup-
tion durations. Split interrupt handling is a common way
of achieving this, even in non-real-time systems.

Under split interrupt handling, an interrupt handler
only performs the minimum amount of processing nec-
essary to ensure proper functioning of hardware; any ad-
ditional work that may need to be carried out in response
to an interrupt is deferred for later processing. This de-
ferred work may then be scheduled in a separate thread
of execution with an appropriate priority. The duration of
interruption is minimized and deferred work competes by
priority with other tasks for CPU time. This, in essence,
describes proper interrupt handling in a real-time system.
However, achieving this in practice is actually more com-
plicated.

High-performance GPGPU drivers are commonly only
available for general-purpose operating systems, specifi-
cally, Microsoft Windows, Mac OS X, and Linux. This
limits our ability to implement a real-time operating sys-
tem that uses GPUs since Windows and Mac OS X are
both closed source and not real-time operating systems;
thus, they cannot be modified to support robust real-time
features such as the CM or SRM. This leaves only Linux.
Using the Linux-based LITMUSRT, we can begin to sup-
port real-time GPUs. However, being based upon Linux,
LITMUSRT also uses Linux’s general-purpose method of
interrupt handling. Being out of scope for this paper, we
do not delve fully into the real-time limitations of inter-
rupt handling in Linux. However, it is sufficient to say that
Linux’s interrupt handling method can lead to long prior-
ity inversions as interrupt handlers may execute for a long
duration before returning to normal execution. We re-
cently extended LITMUSRT to better support better real-
time handling of GPU interrupts [19].

The real-time handling of GPU interrupts in
LITMUSRT required two major features. First, it
was necessary for LITMUSRT to identify interrupts
raised by specific GPUs. An in-depth study of the GPU
driver, in addition to a process of trial and error, was
needed to understand the format of data that could be
intercepted by LITMUSRT. With this information, the
bottom-halves of GPU interrupts were scheduled in
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durations for this particular task set show that the typi-
cal inversion is significantly reduced when LITMUSRT is
used to schedule GPU interrupt handlers in comparison to
standard Linux interrupt handling.

separate real-time threads (the second major feature),
thus reducing the duration of priority inversions. All
of this was accomplished despite the fact that the GPU
driver was closed-source. However, merely scheduling
interrupt handlers individually is not sufficient if a spo-
radic task model is to be maintained. Since GPU-using
tasks may use GPUs in an asynchronous fashion, as is
quite common in high-performance code, it is possible
for a GPU interrupt to be raised while the task using the
GPU is currently executing. If the interrupt handler and
GPU-using task execute simultaneously, then the system
deviates from the sporadic task model, which assumes
that a particular task executes only on one CPU at a time.
Measures had to be taken to ensure that the bottom-half
interrupt handler and the GPU-using task that triggered it
were never scheduled simultaneously.

In experimentation with our extended version of
LITMUSRT, we found that both the number and duration
of priority inversions were significantly reduced in nearly
every experimental case. A cumulative distribution func-
tion of priority inversion durations for a particular task
set after two minutes of execution is shown in Fig. 4. As
seen, a typical priority inversion is much shorter when
LITMUSRT is used to schedule GPU interrupts in compar-
ison to standard Linux interrupt handling. For example,
90% of inversions under LITMUSRT interrupt handling
are shorter than 9µs, whereas the 90th percentile exceeds
30µs under standard Linux interrupt handling.



5 Future Work
To date, our research has primarily been on soft real-time
systems. There is still a great deal of work to be done
to fully explore this domain. To begin with, we have
only explored a subset of systems with global and clus-
tered CPU deadline-based schedulers. The choice of CPU
scheduler constrains the choice of locking protocols since
not all protocols may be used with all schedulers. It is
not clear what combination of scheduler and locking pro-
tocol is best able to guarantee soft real-time constraints
when an SRM-based approach to GPU management is
used. There are many possible scheduler/locking proto-
col combinations, and we plan to study each in-depth in
hopes of conclusively identifying the best configuration.

There are several other problems within the soft real-
time domain that have yet to be addressed. One major
issue is to discover the best method to allow simultaneous
data transmission to/from a GPU while the GPU is busy
executing program code. This technique is used very fre-
quently in high-performance GPGPU programming since
it can be used to mask communication latencies. How-
ever, both the CM and SRM prevent such techniques since
GPUs are used exclusively by one task at a time.

Another area to explore is simultaneous GPU program
execution. The latest GPU technology allows the simul-
taneous execution of GPU program code in some limited
cases. We have yet to see if this feature may be leveraged
to help alleviate the very negative long blocking durations
caused by non-preemptive GPU execution.

It is our hope that any solutions developed for the soft
real-time domain can also be applied to the hard real-
time domain. However, it appears infeasible to implement
a hard real-time GPU system using current technology.
Firstly, a hard real-time system may require preemption
of GPU execution, which is currently not possible. Sec-
ondly, it is likely that the I/O interface between the CPU
and GPU may introduce latencies too great for hard real-
time requirements. Integrated on-chip CPU/GPU tech-
nology may need more time to mature to the point where
both processors can quickly and seamlessly share the
same pool of system memory. Finally, and perhaps the
greatest obstacle, GPU drivers should be redesigned with
hard real-time constraints in mind. It appears that either
the GPU driver must integrate tightly with the operating
system, or more likely, it must at least expose a sufficient
interface to the operating system that may be used to af-
fect driver behavior. However, the design of such an in-
terface is non-trivial and could require a commitment of
GPU manufactures to maintain a degree of stable driver
behaviors in addition to agreement from operating system
developers. GPU manufactures would be very careful to
avoid any behaviors that could limit performance in their

greater throughput-oriented markets, although a separate
real-time driver could also be implemented. In any case,
it is necessary for the real-time and cyber-physical sys-
tems communities to show that there is both a market and
body of research to build upon for such investments.

6 Conclusion
The use of GPUs as a high-performance co-processor is
becoming a mature technology and may be applied in a
number of diverse real-time applications. However, this
throughput-oriented technology presents challenges to its
integration into real-time systems. In this paper, we have
presented a summary of our research on this topic to date.
We have found that GPU resources in soft real-time sys-
tems can be managed through specialized CPU sched-
ulers, or alternatively through efficient locking protocols.
We have also implemented methods for real-time han-
dling of interrupts raised by GPU devices, which greatly
reduces the duration of priority inversions that interrupts
may cause. There is still a great deal of research to be
done for GPUs in the soft real-time domain. It is our hope
that the development of real-time GPU techniques will
help sway GPU manufactures to incorporate hard real-
time features into their products.

Acknowledgement: We would like to thank Pinar
Muyan-Ozcekil for furthering our understanding of road
sign recognition in automotive applications, as well as
putting forth the idea of exploiting concurrent GPU pro-
gram execution as a method to address the limitations of
non-preemptive execution.
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