
Any-Width Networks

Thanh Vu Marc Eder True Price Jan-Michael Frahm

University of North Carolina at Chapel Hill

Chapel Hill, NC

{tvu, meder, jtprice, jmf}@cs.unc.edu

Abstract

Despite remarkable improvements in speed and accu-

racy, convolutional neural networks (CNNs) still typically

operate as monolithic entities at inference time. This

poses a challenge for resource-constrained practical ap-

plications, where both computational budgets and perfor-

mance needs can vary with the situation. To address these

constraints, we propose the Any-Width Network (AWN), an

adjustable-width CNN architecture and associated training

routine that allow for fine-grained control over speed and

accuracy during inference. Our key innovation is the use of

lower-triangular weight matrices which explicitly address

width-varying batch statistics while being naturally suited

for multi-width operations. We also show that this design

facilitates an efficient training routine based on random

width sampling. We empirically demonstrate that our pro-

posed AWNs compare favorably to existing methods while

providing maximally granular control during inference.

1. Introduction

Recent advancements in convolutional neural networks

(CNNs) have significantly improved both the speed and ac-

curacy of state-of-the-art computer vision algorithms, in

turn enabling the development of low-latency applications

such as those for mobile platforms and autonomous vehi-

cles. However, fast execution alone is not always sufficient.

Time constraints can be situationally dependent for many

applications, and there is an observable trade-off between

speed and accuracy for many vision systems [15]. For ex-

ample, those in autonomous vehicles can have a limited, yet

dynamic, computational budget that varies over time due to

changes in the vehicle’s velocity, competition for resources,

and other factors. Thus, vision algorithms must not simply

be fast, but also adaptive and flexible to varying budgets.

This need is at odds with the typical architectural design

of CNNs as monolithic entities. Yet, ideally, a resource-

constrained CNN should allow the flexibility to vary its op-

eration along a speed-accuracy curve at inference time.

Proposed AWN

Architecture...

...

...

...

S S S

S S S

...

...

...

...
Standard
CNN

Slimmable
Network

Any-Width
Network

ReLU BN S-BN Conv TriConv
S Slimmable

Architecture [32, 33]...

...

...

...

S S S

S S S

...

...

...

...
Standard
CNN

Slimmable
Network

Any-Width
Network

ReLU BN S-BN Conv TriConv
S

...

...

...

...

S S S

S S S

...

...

...

...
Standard
CNN

Slimmable
Network

Any-Width
Network

ReLU BN S-BN Conv TriConv
S

...

...
Any-Width
Network

ReLU BN S-BN Conv TriConv
S

Figure 1: Our AWN architecture provides a single model

for all widths of operation. We propose to use a lower-

triangular convolution layer (TriConv), which permits net-

works to use traditional batch normalization layers (BN). In

contrast, prior works [32, 33] require a custom, switchable

batch normalization layer (S-BN) to store separate versions

of activation statistics for every desired width of operation.

Many recent works have focused on improving effi-

ciency by adjusting the number of layers, or depth, of the

network [2, 5, 13, 25, 28, 29]. Fewer techniques [17, 32, 33]

have been proposed to modify the number of active chan-

nels at each layer, or width, of a network to control the trade-

off between speed and accuracy. Width manipulation not

only reduces necessary computation, but it can also reduce

a network’s memory footprint as the number of intermediate

feature maps is reduced when fewer channels are active. Re-

cent width-modulation strategies have followed an N -Width

design, training a single network to operate at a fixed set of

N modes that can be switched between at inference time.

To function in this way, these networks typically store mul-

tiple copies of some elements of the trained model. For

example, Slimmable Networks [32, 33] maintain N sepa-

rate batch normalization layers per convolutional layer for

use during inference, while Nested Nets [17] store multiple

sparsity masks for each layer to mask out neurons according

to the width of operation.

There are a few notable drawbacks to the N -Width de-

sign, however. First, the layer widths are fixed after training,

which limits inference-time control to a fixed set of prede-

termined “switchable” modes. If N is small, the resulting

model has only coarse control during inference, but if N is

increased to provide more fine-grained control, the memory

footprint can increase significantly due to the need to store

N versions of certain layers of the model. Yu et al. [33]

note that each additional set of batch normalization parame-

ters in their Slimmable Network can add roughly 1% to the

model size. While this is may not seem burdensome with

a small number of modes, it quickly becomes prohibitive

as N grows. For example, training the light-weight Mo-

bileNetV2 [24] at 20 widths would result in an 18.5% in-

crease in the model size. Additionally, at large values of

N , training becomes inefficient and impractical due to the

simultaneous training of N sub-networks, which increases

training complexity and time. Yu and Huang [32] address

this concern by randomly sampling widths during training,

which allows for simultaneous optimization of a large num-

ber of widths, but they still require a post-training step to ac-

cumulate batch statistics. Finally, the selection of functional

widths must happen during training, before the network’s

speed-accuracy trade-off curve can actually be computed.

Thus, we are forced into a causality dilemma wherein we

must define the desired control over the widths of operation

without knowing how a network will respond at each width.

In this work, we rethink the N -Width design in order to

address these shortcomings. We propose Any-Width Net-

works (AWNs), which provide maximally granular control

over the width of operation and can be trained using an ef-

ficient algorithm based on random width sampling. AWNs

leverage lower-triangular weight matrices to operate at any

width without the need for switchable modules. This de-

sign explicitly removes the width-dependent variation in

batch normalization statistics observed by [33] while still

allowing AWNs to use a single batch normalization layer

per convolution for all widths. Additionally, AWNs can

be efficiently trained using a random width sampling strat-

egy similar to Yu and Huang [32], but without any addi-

tional post-training processing steps. Lastly, AWNs provide

a smoother, more consistent trade-off curve at all widths

than prior work, which lessens the need to know the exact

trade-off curve during training.

We summarize our contributions as follows:

� We present a theoretical and empirical analysis of the

problem of varying activation statistics in multi-width

networks.

� We introduce triangular convolutional layers, which

not only explicitly address the varying statistics prob-

lem but are also naturally suitable for multi-width

setup and enable any-width control.

� We propose the Any-Width Network (AWN) architec-

ture, combining triangular convolution, standard batch

normalization, and an efficient training algorithm to

provide fine-grained control over speed and accuracy

at inference-time.

2. Related Work

A number of prior works have examined the trade-

off between model size and accuracy in network design.

Zagoruyko and Komodakis [35] study the performance

of the popular ResNet architecture [9] when varying the

width of the network. Huang et al. [15] investigate the

speed-accuracy trade-off of various object detection algo-

rithms to provide a guide for application-based model se-

lection. Howard et al. [11] and Sandler et al. [24] pro-

pose a family of fast, compact networks called MobileNets

that provide levers such as width and resolution multi-

pliers to appropriately scale the network for different ap-

plications. Other researchers have proposed various net-

work pruning techniques to accelerate inference and re-

duce redundancy in deep CNNs. This line of work, also

known as network compression, includes weight pruning

[1, 3, 6, 7, 8, 26, 34], channel pruning [10, 19, 20, 21, 22],

layer skipping [2, 14, 28, 29], and decomposition [4, 23].

While these methods are effective, the performance trade-

off decisions therein are made through the network design

or at training time. We are looking to enable this type of

control at inference time instead.

Numerous previous approaches have considered modi-

fying a network’s depth as a mechanism for inference time

control. One such design is to use early-exits or early-

stopping where predictions can be extracted from early lay-

ers in order to meet a resource budget [2, 5, 12, 13]. Others

dynamically adapt networks by skipping or dropping layers

on the fly based on the network input [2, 28, 29]. These

efforts share the same overarching goal of our approach,

but depth modulation is an orthogonal approach to resource-

constrained control.

Most closely related to our efforts are methods that pro-

vide adjustable width operation during inference. Kim et al.

[17] and Yu et al. [33] both propose to consider a single

network as a collection of sub-networks in order to train a

network to operate at different widths. These papers form

the basis for the N -Width design paradigm. Kim et al. [17]

propose a connection pruning method to iteratively train a

network for a predefined number of sparsity ratios to obtain

a fixed set of inference paths or internal networks. They

then jointly optimize them to learn a final “N -in-1” nested

network. Conversely, Yu et al. [33] train a network for a

fixed N number of predefined widths and raise the issue of

inconsistent activation statistics for multi-width networks.

They propose a “switchable” batch normalization module to

address the problem. Yu and Huang [32] build on this idea,

proposing the Universally-Slimmable Network, which uses

random width-sampling to efficiently train arbitrary widths.

They also propose a post-training routine to accumulate ac-

tivation statistics for each desired width of operation. While

this approach provides viable inference-time control, it still

relies on defining N switchable modes for inference. In our

work, we aim to provide consistent performance with max-

imally granular control. That is, we aim to provide assured

performance at any width of operation.

3. Varying Activation Statistics

Batch normalization [16] is a prolific and important tech-

nique that helps to stabilize and expedite network train-

ing and provides better network generalization. Due to

these welcomed improvements, the operation is prevalent

in many common network architectures [9, 11, 24, 27].

The operation normalizes each activation within a layer to

have zero mean and unit variance, according to running

means and variances accumulated over all mini-batches dur-

ing training. It also learns a pair of scale and shift param-

eters which it uses to tune the degree of normalization. At

inference time, all parameters are fixed and used to approxi-

mate the true statistics. Key to this process is the assumption

that we can obtain a reasonable model of the distributions

of activation states during training. Yet this premise may no

longer hold in a multi-width setting because the number of

active features at each layer changes with the width.

3.1. Why statistics vary between widths

Consider a fully-connected network comprised of layers

whose outputs are feature vectors with m dimensions. Each

layer has an associate weight matrix, W . The i-th layer is

computed via matrix multiplication as:

y
{mi}
i = W

{mi×mi−1}
i x

{mi−1}
i (1)

where xi and yi are the input and output, respectively, and

the superscripts indicate the dimensionality of each vector

or matrix. Note that xi is typically the output of the pre-

vious layer, and hence has dimension mi−1. For simplic-

ity, we leave out bias and the non-linear activation function

without loss of generality.

When the network is trained in a multi-width setting, the

number of active features in a given layer, k, is changed as:

ki = αmi (2)

where α is a scalar width-factor of the whole network and

mi is the total number of feature dimensions, active and in-

active, in that layer. For example, in a multi-width network,

a fully-connected layer with k = 1 is computed as:

y{1} = W {1}x{1}

[

y1
]

=
[

w11

] [

x1

]

=
[

w11x1

]

(3)

and with k = 2, it is:

y{2} = W {2}x{2}

[

y1
y2

]

=

[

w11 w12

w21 w22

] [

x1

x2

]

=

[

w11x1 + w12x2

w21x1 + w22x2

]

(4)

Architectures that use batch normalization will subse-

quently normalize y according to accumulated statistics be-

fore passing it to the next layer. However, traditional batch

normalization assumes that a single distribution can model

all states of a given feature. While this is understood to be

an effective assumption for standard networks operating at

a single-width, it is clear from this example that the distri-

butions of a feature will not necessarily be consistent across

different widths in a multi-width network. Consider a single

feature, y1:

y1 =











w11x1 if k = 1

w11x1 + w12x2 if k = 2

.

(5)

This feature’s expected value will differ between widths:

E[y
{1}
1

] = E[w11x1] = µ
{1}
1

E[y
{2}
1

] = E[w11x1 + w12x2]

= E[w11x1] + E[w12x2]

= µ
{1}
1

+ E[w12x2]

(6)

Clearly, both y
{1}
1

and y
{2}
1

should not be normalized ac-

cording to the same distribution. Unless we can ensure that

E[w12x2] = 0, there is no guarantee that traditional batch

normalization [16] can properly model the activation statis-

tics of a feature in a multi-width network.

3.2. Varying statistics in action

The variation of batch statistics is empirically visible

when training multi-width networks. To demonstrate it, we

train and test a variation of the LeNet architecture [31] on

the MNIST handwritten digits dataset and tracking the ac-

tivation statistics during training. Our model, LeNet-3C1L,

has 3 convolutional layers with 32 neurons each, followed

by a single fully connected layer. Every convolutional layer

is followed by a traditional batch normalization layer.

Training Accuracy Validation Accuracy

w=1.00 w=0.75 w=0.50 w=0.25 w=1.00 w=0.75 w=0.50 w=0.25

Standard BN 99.29% 99.21% 99.02% 98.59% 98.49% 98.78% 96.59% 98.49%

Switchable BN [32, 33] 99.30% 99.24% 99.03% 98.57% 99.05% 98.93% 98.91% 98.69%

AWN (ours) 99.23% 99.19% 99.04% 98.50% 98.97% 98.87% 98.82% 98.43%

Table 1: Comparison of different methods to address width-varying statistics using the LeNet-3C1L network for MNIST digit

classification. Even though the training accuracies all seem quite similar, we see that, during validation, the use of a standard

batch normalization layer results in inconsistent performance. Note that our AWN with triangular convolution performs only

slightly worse than switchable batch normalization [32, 33] on this simple problem, but with a smaller memory footprint.

0 500 1000 1500 2000
iterations

0.15

0.10

0.05

0.00

0.05

0.10

0.15

bn
-s

ta
ts

 m
ea

n

1.0
0.75
0.5
0.25
shared

0 500 1000 1500 2000
iterations

0.15

0.10

0.05

0.00

0.05

0.10

0.15

bn
-s

ta
ts

 m
ea

n
1.0
0.75
0.5
0.25

0 500 1000 1500 2000
iterations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

bn
-s

ta
ts

 m
ea

n

1.0
0.75
0.5
0.25
shared

0 500 1000 1500 2000
iterations

0.2

0.4

0.6

0.8

bn
-s

ta
ts

 v
ar

1.0
0.75
0.5
0.25
shared

(a) Standard BN

0 500 1000 1500 2000
iterations

0.2

0.4

0.6

0.8

bn
-s

ta
ts

 v
ar

1.0
0.75
0.5
0.25

(b) Switchable BN

0 500 1000 1500 2000
iterations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

bn
-s

ta
ts

 v
ar

1.0
0.75
0.5
0.25
shared

(c) AWN

Figure 2: Tracking the activation means (top row) and variances (bottom row) at 4 width factors of LeNet-3C1L as a function

of training iterations. Column (a) uses traditional batch normalization layers, column (b) uses switchable batch normalization

[32, 33], and column (c) uses our proposed AWN architecture. The “shared” line on the plots in columns (a) and (c) indicate

the statistics tracked by a traditional batch normalization layer shared across all widths. Note how AWN statistics do not

deviate from this line at different widths.

We train LeNet-3C1L with 4 width-factors, α ∈
{0.25, 0.5, 0.75, 1.0}, similar to Yu et al. [33]. All 4 width

configurations are trained simultaneously as sub-networks

using unweighted sum of losses. To examine the effect

of multi-width training on activation statistics, this network

uses traditional batch normalization, which shares the same

set of accumulated statistics across all widths. During train-

ing, we track the means and variances for each feature at

each width and compare them to the running statistics be-

ing accumulated by the batch normalization layer. Given

our analysis in Section 3.1, we expect to see a noticeable de-

viation in the statistics between widths. Sure enough, Fig-

ure 2a shows four distinct sets of activation statistics when

switching between the four different width configurations.

Even though the distributions all fluctuate over the course of

training, the variation between them stays fairly consistent

and shows no sign of convergence.

Additionally, we are also interested in whether or not this

discrepancy also correlates with poor classification perfor-

mance, as hypothesized by Yu et al. [33]. To answer this

question, we also train a Slimmable version of LeNet-3C1L

using switchable batch normalization layers [33]. These

layers contain a separate batch normalization module for

each width. As switchable batch normalization explicitly

accounts for the activation statistics at each width, we con-

sider this to be our baseline. The results of this comparison,

given in Table 1, support the hypothesis that the variation

in activation statistics impacts network accuracy. Not only

is the overall performance lower than the baseline, but we

also see that a middle width configuration, α = 0.75, actu-

Width = 1 Width = 2 Width = 3

Figure 3: AWN operations with different widths.

ally performs better than the full-width version (α = 1.0).

Note that Figure 2b shows varying statistics even when

using switchable batch normalization. This confirms that

the different width configurations require tracking different

sets of statistics. Because switchable batch normalization

explicitly models the statistics at each width, validation ac-

curacy is higher and more consistent. However, while this

is effective for N = 4, this approach does not scale well;

the number of batch normalization versions to be measured

and stored increases linearly with N . Therefore, in the next

section, we propose a novel architecture, Any-Width Net-

work (AWN), that combats the width-varying batch statis-

tics issue without requiring a separate model for each width

configuration.

4. Any-Width Networks

Although existing solutions for multi-width network op-

eration have addressed the problem of varying activation

statistics, they fall short of guaranteeing functionality at all

widths. The N -Width design has inherent shortcomings in

its ability to make inference-time guarantees about network

function at a given width. In particular, it creates a chicken-

and-egg problem, where the width-accuracy trade-off curve

needs to be known in order to determine the N widths to

train, but the trade-off curve cannot be generated without

having trained all possible widths. To address this paradox,

we propose Any Width Networks (AWNs), which circum-

vent the problem by enabling operation at all widths after a

single training routine without requiring different versions

of the model for each width.

4.1. Triangular weight matrices

To provide multi-width operation without storing sepa-

rate activation statistics for each width, we must provide an

alternative solution to the varying statistics problem. For

AWN architecture, our solution is to use lower-triangular

weight matrices. Constraining the weight matrices to this

form explicitly removes the problem.

Recall our observation in Equation (6) that the only way

to ensure that y
{2}
1

can be modeled by the same distribution

as y
{1}
1

would be to ensure that E[w12x2] = 0. More gener-

ally, we need to be able to guarantee that in a layer operating

at width ki = ki−1, for any feature y
{k}
s , where s ≤ ki:

∀t : t > s → E [wstxt] = 0 (7)

where wst ∈ W and xt ∈ x. Because x is a function

of the network input and parameters of previous layers, it

is impossible to predetermine E [wstxt] when designing the

network. Instead, we achieve this constraint by simply set-

ting wst = 0. Doing this for all possible widths produces a

lower-triangular weight matrix. The same idea holds for

layers operating at ki 6= ki−1. A visualization of these

triangular matrices at different widths is shown for fully-

connected layers in Figure 3. This design can be used in

both fully-connected layers and convolutional layers. A net-

work constructed with these triangular layers can use tra-

ditional batch normalization without worrying that multi-

width operation will cause deviation from the accumulated

statistics, as highlighted in Figure 2c. Table 1 shows that

when we replace the normal convolution layers with tri-

angular convolution layers in our previous experiment, we

also see that our AWN version of LeNet-3C1L has compa-

rable validation accuracy to the version that uses switchable

batch normalization [33].

Note that, in addition to addressing the varying activation

statistics problem, the triangular weight matrix design also

establishes fully granular control over all widths of the net-

work. As we design the triangular layers around the varying

statistics issue, models using these operations do not need

to store multiple versions of any layer. As a result, they

do not need to be explicitly trained at pre-selected widths

and can operate at any desired width. Hence, we refer to a

network constructed using triangular layers and traditional

batch normalization as an Any Width Network.

4.2. Random sample training

Intuitively, we expect AWNs to perform best when

trained at a variety of widths. To do this efficiently, we

employ a random-width sampling strategy to train multi-

ple widths at each training iteration. Rather than perform

N explicit forward and backward passes for N widths at

each iteration, we randomly sample n width-factors (n ≪
N) uniformly between a minimum width αmin and max-

imum width αmax. Figure 4 demonstrates how including

more widths during training improves the resulting trade-

off curve.

Our approach is similar to that proposed by Yu and

Huang [32] for Universally-Slimmable Networks. Where

our method diverges from theirs, though, is that AWNs do

not require any post-training step. Universally-Slimmable

Networks require additional processing during training to

accumulate activation statistics at each operating width due

their use of switchable batch normalization layers. In con-

trast, AWNs can operate at any width immediately after

training.

0.00.20.40.60.81.0
Width Multiplier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

TriConv (4w)
TriConv (2w)
TriConv (1w)

Figure 4: As we add more widths to the training process,

we see the area under the width-accuracy trade-off curve

increase, indicating better performance. TriConv (nw) de-

notes network trained with n widths.

Algorithm 1 AWN RS TRAIN(A, Niters, αmin, αmax, n)

Input: A, any-width network

Input: Niters, number of training iterations

Input: αmin, minimum width-factor

Input: αmax, maximum width-factor

Input: n, number of simultaneous widths to train

1: A.initialize()
2: for i = 1, ...Niters do

3: Load training data, x, and labels, y∗

4: S = sample(αmin, αmax, n) →
{αmin, αmax}

⋃{αi ∼ U (αmin, αmax)}2<i≤n

5: ∆ = 0
6: for αj in S do

7: A.set width(αj)
8: y = A.forward(x)
9: L = compute loss(y,y∗)

10: ∆ += A.backward(L)
11: end for

12: A.grad update(∆)
13: end for

For the experiments in this paper, we set n = 4, and

follow the scheme proposed by Yu and Huang [32], where

the network is trained using αmin, αmax, and (n−2) random

widths at each iteration. Algorithm 1 outlines our training

routine.

5. Experiments

We perform two types of experiments. In the first, we

look to evaluate the architecture’s performance in simulated

resource-constrained conditions. For this, we use the im-

age classification task to examine how accuracy is affected

as the width of operation is varied. We measure this effect

by computing the area under the width-accuracy trade-off

curve (AUC) and use this criterion to compare AWNs to

prior work. In the second experiment, we aim to understand

what makes the AWN network effective for multi-width op-

eration. To do this, we analyze the performance of the tri-

angular convolutional layer at different widths.

5.1. Width­accuracy trade­off

We assess performance on three datasets: FashionM-

NIST [30], CIFAR-10, and CIFAR-100 [18]. FashionM-

NIST contains 28 × 28 pixel grayscale images labeled ac-

cording to 10 classes. The dataset is split into training and

test sets of 60,000 and 10,000 images, respectively. CIFAR-

10 and CIFAR-100 both consist of 32 × 32 pixel color im-

ages, with 50,000 in each training set and 10,000 in each test

set. The datasets differ in that the former has 10 classes,

while the latter has 100. On each dataset, we compare

our AWN performance to Slimmable Networks (S-Net) [33]

and Universally Slimmable Networks (US-Net) [32], which

are both examples of N -Width architectures.

Experimental setup For these experiments, we use two

base network architectures, LeNet-3C1L and MobileNetV2

[24], and implement three variants of each: an AWN, an

S-Net, and a US-Net. We widen the AWN variants by a fac-

tor of
√
2 so that the number of total network parameters

doubles. This is necessary to maintain parity in the number

of total active parameters in each model variant, because

the triangular weight matrix constraint in AWNs roughly

halves the number of parameters used by each layer. For the

AWNs, we use traditional batch normalization [16] after ev-

ery convolutional layer. For the S-Net and US-Net variants,

we use the relevant switchable batch normalization modules

and post-training procedures as described in the original pa-

pers. In order to compare resource-constrained performance

of the fully-granular AWNs to that of the N -Width S-Net

and US-Net, we must define a selection strategy for α val-

ues between the trained widths of the N -Width models. For

this, we select the next-larger sampled width for our desired

width of operation. For example, given an S-Net trained at

αS-Net = {0.25, 0.5}, we would use the batch statistics from

αS-Net = 0.5 to evaluate at a width-factor of α = 0.3.

All experiments use four width samples per train-

ing iteration. For fixed-width training, we set {αi} =
{1.0, 0.75, 0.5, 0.25} for LeNet-3C1L and {αi} =
{1.0, 0.75, 0.5, 0.35} for MobileNetV2, following the setup

in [32, 33]. For random-sample training we follow the

sampling strategy described in Section 4.2. We denote the

variant of our networks trained with random sampling as

AWN+RS. We compare US-Net performance at 4, 10, and

20 post-training width samples, evenly spaced in [αmin, 1].

Training Details For reproducibility, we provide all the

training parameters used in our experiments. All experi-

ments are trained using SGD using a momentum of 0.9
and a batch size of 128. All LeNet-C31L experiments are

trained with an initial learning rate of 0.01, decaying by a

4-Width Training Random Sample Training

Model Dataset AWN S-Net AWN+RS US-Net(4w) US-Net(10w) US-Net(20w)

LeNet F-MNIST 90.67% 83.78% 91.06% 90.40% 90.70% 90.74%

CIFAR10 71.12% 56.99% 73.75% 67.84% 71.30% 72.45%

CIFAR100 42.69% 26.94% 43.65% 40.12% 41.38% 41.80%

MobileNetV2 CIFAR10 90.91 % 50.97% 90.72% 90.10% 91.98% 92.09%

CIFAR100 70.16% 49.84% 67.28% 66.69% 71.62% 72.24%

Table 2: Comparison of AUC performance of our proposed AWNs to Slimmable Networks (S-Net) [33] and Universally-

Slimmable Networks (US-Net) [32]. For a fair comparison with the multi-width flexibility of US-Net, we also run their

post-training statistics processing routine for 10 and 20 widths, which incur a larger network size cost compared to AWN.

0.30.40.50.60.70.80.91.0
Width Multiplier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

AWN+RS
US-Net (10w)
AWN
S-Net

LeNet-3C1L on FashionMNIST

0.30.40.50.60.70.80.91.0
Width Multiplier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

AWN+RS
US-Net (10w)
AWN
S-Net

LeNet-3C1L on CIFAR-10

0.30.40.50.60.70.80.91.0
Width Multiplier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

AWN+RS
US-Net (10w)
AWN
S-Net

LeNet-3C1L on CIFAR-100

0.40.50.60.70.80.91.0
Width Multiplier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

AWN+RS
US-Net (10w)
AWN
S-Net

MobileNetV2 on CIFAR-10

0.40.50.60.70.80.91.0
Width Multiplier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

AWN+RS
US-Net (10w)
AWN
S-Net

MobileNetV2 on CIFAR-100

Figure 5: Visualization of the area under the width-accuracy trade-off curves for our classification experiments described in

Section 5.1. Our AWN architecture provides a significantly more consistent performance at all widths than S-Net [33]. We

achieve similar performance to US-Net [32], but without the use of switchable batch normalization.

factor of 0.1 at 50% and 75% of the total epochs. The Fash-

ionMNIST experiments are trained for 20 epochs without

weight decay, while the CIFAR-10 and CIFAR-100 experi-

ments are trained for 100 epochs with weight decay 5e−4.

For the MobileNetV2 experiments, our S-Net and US-Net

variants are trained for 100 epochs with a weight decay of

5e−4 and an initial learning rate of 0.1, decaying linearly

with each iteration. We observe that AWNs do not train as

well at such a large learning rate, so we lower it and increase

the training time instead. All AWN experiments, with the

exception of CIFAR-100 are trained with a weight decay of

0.001. The AWN variant is trained on CIFAR-10 for 700

epochs with an initial learning rate of 0.02, decaying by a

factor of 0.2 at epochs 500 and 600. The AWN+RS vari-

ant is trained on CIFAR-10 for 350 epochs with an initial

learning rate of 0.01, decaying by a factor of 0.1 at epochs

250 and 300. The AWN variant is trained on CIFAR-100

for 100 epochs with a weight decay of 5e−4 and an initial

learning rate of 0.1. Finally, the AWN+RS variant is trained

on CIFAR-100 for 1050 epochs with initial learning rate of

0.01, decaying by a factor of 0.1 at epochs 750 and 900.

Results and analysis Results of all experiments are

given in Table 2 and Figure 5. In most cases, our AWN

performs as well or better than its Slimmable Network and

Universally-Slimmable Network counterparts. There are a

few points worth discussing further.

While US-Net performs marginally better than AWN in

the MobileNetV2 experiments, this advantage only begins

to appear when the number of explicitly trained widths in-

creases. In order to exploit these potential gains, the US-Net

must store additional parameters for the switchable batch

normalization layers. In the MobileNetV2 experiments,

the 10-width and 20-width US-Net models require an ad-

ditional 9% and 18% more space, respectively, compared

to using a traditional batch normalization layer. This limi-

tation of the N -Width design emphasizes an important ad-

vantage of the AWN architecture: AWNs can operate at all

possible networks widths, potentially much more than 20,

without any impact on the model size.

Furthermore, notice in Figure 5 that AWNs produce

smooth, consistent width-accuracy trade-off curves, while

the S-Nets and US-Nets can have erratic dips, especially at

lower widths. This consistent curve is an additional ben-

efit of the AWN design. The accuracy drops are expected

behavior for S-Nets and is an acknowledged limitation, ac-

cording to the authors in their follow-up work [32]. How-

ever, US-Nets also suffer from reduced performance at un-

processed widths. This outcome is because, despite the ben-

efit of random width sampling during training, US-Nets are

still limited by the N modes of switchable batch normal-

ization during inference. As such, these networks can only

hope to achieve a similarly consistent curve by running their

post-training statistics accumulation routine for every de-

sired width, with an additional cost of network size.

5.2. Multi­width suitability

The Slimmable Network family [32, 33] are not inher-

ently suited for the multi-width problem. They are prone to

worse performance at widths too far removed from any of

their switchable modes. Figure 5 illustrates this effect quite

clearly: the red curve representing the Slimmable Network

drops considerably between the four modes for which it is

trained. Although random width-sampling during training

and the post-processing of statistics for additional widths

of operation, introduced in the Universally-Slimmable Net-

work, appear to be a viable solution for this problem, they

do not address the underlying issue that N -Width design is

not naturally “slimmable.” Hence, we aim to understand if

our AWN design provides any improvement in this regard.

Experimental setup To evaluate this trait, we compare

the performance curve of a LeNet-3C1L network containing

triangular convolutional layers, as used in an AWN, to the

curve of a standard version using regular convolutional lay-

0.00.20.40.60.81.0
Width Multiplier

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

TriConv
Standard Conv

Figure 6: Compared to standard, full-weight matrices

(AUC: 20.51%), triangular convolutional layers (AUC:

35.85%) are inherently more suited for multi-width use.

ers. The two networks are trained on CIFAR-10 using the

same set of hyperparameters described in Section 5.1, but

at full width. We then test both models at different width

values to produce the width-accuracy trade-off curves.

Results and analysis The results in Figure 6 show that

our triangular convolutional layer design performs 75%

better than standard convolution as the network width is

decreased. This graceful performance degradation is more

suitable for multi-width applications. We suspect that the

source of this benefit is in the triangular design constraint.

We hypothesize that constraining each output feature to be a

function of a fixed set of input features implicitly imposes a

hierarchical importance structure on the features at different

widths. This result suggests that triangular convolutional

layers may naturally encourage a smooth trade-off curve,

even without random width sampling during training.

6. Conclusion

We have proposed Any-Width Networks (AWNs), a fam-

ily of adjustable-width convolutional neural networks that

provide fine-grained control over the width of operation at

inference time. We have shown that AWNs sufficiently re-

move the impact of varying batch statistics on multi-width

functionality. We have also demonstrated that AWNs of-

fer maximally granular control with smooth, consistent per-

formance across different widths, without the need to store

multiple versions of any network layers. Furthermore, we

highlight that the triangular convolutions used in AWNs are

naturally suited for multi-width networks. Our results sug-

gest that AWNs provide a promising research direction for

resource-constrained inference. Avenues for future work in-

clude applying AWNs to other computer vision tasks such

as object detection and segmentation.

Acknowledgments This work was supported by NSF grant

CPS 1837337.

References

[1] Jose M. Alvarez and Mathieu Salzmann. Compression-aware

training of deep networks. In NIPS, 2017. 2
[2] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh

Saligrama. Adaptive neural networks for efficient inference.

In ICML, 2017. 1, 2
[3] Miguel Á. Carreira-Perpiñán and Yerlan Idelbayev.

“learning-compression” algorithms for neural net pruning.

In CVPR, 2018. 2
[4] Abhimanyu Dubey, Moitreya Chatterjee, and Narendra

Ahuja. Coreset-based neural network compression. In

ECCV, 2018. 2
[5] M. Maire G. Larsson and G. Shakhnarovich. Fractalnet:

Ultra-deep neural networks without residuals. In ICLR,

2017. 1, 2
[6] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-

work surgery for efficient DNNs. In NIPS, 2016. 2
[7] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural network with prun-

ing, trained quantization and huffman coding. CoRR,

abs/1510.00149, 2015. 2
[8] Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-

ing both weights and connections for efficient neural net-

works. In NIPS, 2015. 2
[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. arXiv preprint

arXiv:1512.03385, 2015. 2, 3
[10] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. ICCV, pages

1398–1406, 2017. 2
[11] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017. 2, 3
[12] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and J. An-

drew Bagnell. Learning anytime predictions in neural net-

works via adaptive loss balancing. In AAAI, 2017. 2
[13] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens

van der Maaten, and Kilian Q. Weinberger. Multi-scale

dense convolutional networks for efficient prediction. CoRR,

abs/1703.09844, 2017. 1, 2
[14] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-

ian Q. Weinberger. Deep networks with stochastic depth. In

ECCV, 2016. 2
[15] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,

Anoop Korattikara Balan, Alireza Fathi, Ian Fischer, Zbig-

niew Wojna, Yang Song, Sergio Guadarrama, and Kevin

Murphy. Speed/accuracy trade-offs for modern convolu-

tional object detectors. In CVPR, 2017. 1, 2
[16] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 3, 6
[17] Eunwoo Kim, Chanho Ahn, and Songhwai Oh. Nestednet:

Learning nested sparse structures in deep neural networks.

In CVPR, 2018. 1, 2
[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Technical report, 2009.

6

[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. CoRR,

abs/1608.08710, 2016. 2
[20] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime

neural pruning. In NIPS, 2017. 2
[21] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. ICCV,

pages 2755–2763, 2017. 2
[22] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In ICCV, 2017. 2
[23] Bo Peng, Wenming Tan, Zheyang Li, Shun Zhang, Di Xie,

and Shiliang Pu. Extreme network compression via filter

group approximation. In ECCV, 2018. 2
[24] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Inverted residuals and

linear bottlenecks: Mobile networks for classification, detec-

tion and segmentation. CoRR, abs/1801.04381, 2018. 2, 3,

6
[25] Mohammad Saeed Shafiee, Mohammad Javad Shafiee, and

Alexander Wong. Dynamic representations toward efficient

inference on deep neural networks by decision gates. In

CVPR Workshops, 2018. 1
[26] Suraj Srinivas, Akshayvarun Subramanya, and R. Venkatesh

Babu. Training sparse neural networks. CVPR Workshops,

pages 455–462, 2017. 2
[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. CVPR, pages 1–9, 2015. 3
[28] Andreas Veit and Serge J. Belongie. Convolutional networks

with adaptive inference graphs. In ECCV, 2018. 1, 2
[29] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven

Rennie, Larry S. Davis, Kristen Grauman, and Rogerio Feris.

Blockdrop: Dynamic inference paths in residual networks.

In CVPR, 2018. 1, 2
[30] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

MNIST: a novel image dataset for benchmarking machine

learning algorithms, 2017. 6
[31] Y. Bengio Y. LeCun, L. Bottou and P. Haffner. Gradient-

based learning applied to document recognition. In Proceed-

ings of the IEEE, 1998. 3
[32] Jiahui Yu and Thomas Huang. Universally slimmable net-

works and improved training techniques. arXiv:1903.05134,

2019. 1, 2, 3, 4, 5, 6, 7, 8
[33] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas Huang. Slimmable neural networks. In Inter-

national Conference on Learning Representations (ICLR),

2019. 1, 2, 4, 5, 6, 7, 8
[34] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I.

Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and

Larry S. Davis. NISP: Pruning networks using neuron im-

portance score propagation. In CVPR, 2018. 2
[35] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In BMVC, 2016. 2

