
Nonatomic Mutual Exclusion with Local Spinning∗

Yong-Jik Kim
Tmax Soft Research Center

272-6 Seohyeon-dong, Seongnam-si
Gyeonggi-do, Korea 463-824

Email: jick@tmax.co.kr

James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175
Email: anderson@cs.unc.edu

April 2003, Revised October 2005

Abstract

We present an N -process local-spin mutual exclusion algorithm, based on nonatomic reads and writes,
in which each process performs Θ(log N) remote memory references to enter and exit its critical section.
This algorithm is derived from Yang and Anderson’s atomic tree-based local-spin algorithm in a way
that preserves its time complexity. No atomic read/write algorithm with better asymptotic worst-case
time complexity (under the remote-memory-references measure) is currently known. This suggests that
atomic memory is not fundamentally required if one is interested in worst-case time complexity.

The same cannot be said if one is interested in fast-path algorithms (in which contention-free time
complexity is required to be O(1)) or adaptive algorithms (in which time complexity is required to depend
only on the number of contending processes). We show that such algorithms fundamentally require
memory accesses to be atomic. In particular, we show that for any N -process nonatomic algorithm,
there exists a single-process execution in which the lone competing process accesses Ω(log N/ log log N)
distinct variables to enter its critical section. Thus, fast and adaptive algorithms are impossible even if
caching techniques are used to avoid accessing the processors-to-memory interconnection network.

1 Introduction

This paper is concerned with shared-memory mutual exclusion algorithms based on read and write op-
erations.1 In work on such algorithms, nonatomic and local-spin algorithms have received considerable
attention. In nonatomic algorithms, variable accesses are assumed to take place over intervals of time, and
hence may overlap one another. In contrast, each variable access in an atomic algorithm is viewed as taking
place instantaneously. Requiring atomic memory access is tantamount to assuming mutual exclusion in
hardware [22]. Thus, mutual exclusion algorithms requiring this are in some sense circular.

In local-spin algorithms, all busy-waiting loops are read-only loops in which only locally-accessible vari-
ables are read; a variable is locally accessible if it is in a local cache line (possible on a multiprocessor with
coherent caches) or stored in a local memory partition (possible on a distributed shared-memory machine).
By structuring busy-waiting loops in this way, contention for the processors-to-memory interconnection net-
work can be greatly reduced. Performance studies presented in several papers [13, 17, 27, 34] have shown
that local-spin algorithms typically scale well as contention increases, while non-local-spin algorithms do not.

In this paper, we present possibility and impossibility results concerning the time complexity of mutual
exclusion algorithms that are both nonatomic and use local spinning. We exclusively use the RMR (remote-
memory-reference) measure to assess time complexity. As its name suggests, only remote memory references
that cause an interconnect traversal are counted under this measure. We assess the RMR time complexity

∗Work supported by NSF grants CCR 9972211, CCR 9988327, ITR 0082866, and CCR 0208289.
1All claims made hereafter are assumed to pertain to this class of algorithms unless otherwise indicated.

1

of an algorithm by counting the total number of remote memory references required by one process to enter
and then exit its critical section once.

Before describing our main contributions, we first give a brief overview of relevant related research on
nonatomic and local-spin algorithms.

Nonatomic algorithms. Lamport was the first to point out the circularity inherent in assuming atomic
statement execution [22]. He also presented the first nonatomic algorithm, his famous bakery algorithm
[22]. Lamport’s work on the bakery algorithm was a catalyst for much subsequent work by him on proof
formalisms for nonatomic algorithms (e.g., [26]).

The bakery algorithm is not a local-spin algorithm. In addition, it requires unbounded memory. In
later work, Lamport presented four other nonatomic algorithms, each with bounded memory [23]. These
algorithms differ in the progress and fault-tolerance properties they satisfy. None are local-spin algorithms.

Local-spin algorithms. The earliest local-spin algorithm based only on reads and writes is also the
only prior nonatomic local-spin algorithm known to us [6]. This algorithm, due to Anderson, is composed
of a collection of constant-time two-process algorithms, which are used to allow each process to compete
individually against every other process. The resulting algorithm has Θ(N) RMR time complexity, where N
is the number of processes. The correctness of the nonatomic version of the algorithm is mainly a consequence
of the fact that only single-writer, single-reader, single-bit variables are used. With any nonatomic algorithm,
overlapping operations that access a common variable are the main concern. In Anderson’s algorithm, if
two overlapping operations access the same (single-bit) variable, then one is a read and the other is a write.
The assumption usually made (and made herein) regarding such overlapping operations is that the read may
return any value [22, 24]. Note that if such a write changes the written variable’s value, then an overlapping
read can be linearized to occur either before or after the write [22]. For example, if a write changes a variable’s
value from 1 to 0, then an overlapping read that returns 1 (0) can be linearized to occur immediately before
(after) the write.2 In Anderson’s algorithm, most writes write new values, and the structure of the algorithm
ensures that those writes that re-write a variable with its prior value have no adverse impact.

In later work, Yang and Anderson showed that sub-linear time complexity was possible, at the price of
atomic memory. They established this by presenting an algorithm with Θ(log N) RMR time complexity,
in which instances of an O(1) two-process algorithm are embedded in a binary arbitration tree [34]. Their
two-process algorithm, unlike Anderson’s, does not require statically allocated single-writer, single-reader
variables. Using such variables in an arbitration tree is problematic because the participating processes at
each node may vary with time. On the other hand, Yang and Anderson’s algorithm uses multi-bit variables,
and hence does not work if variable accesses are nonatomic.

Fast and adaptive algorithms. In recent years, there has been much interest in algorithms that are fast ,
i.e., those that take O(1) steps in the absence of contention [9, 25, 34] or that are adaptive, i.e., with time
complexity (under some measure) that is a function of the number of contending processes, independent of
the total number or processes in the system [3, 4, 8, 14, 16, 31]. In a recent paper [9], we presented a “fast-
path” mechanism that improves the contention-free time complexity of Yang and Anderson’s algorithm to
O(1), without affecting its worst-case time complexity. In another recent paper [8], we presented an extension
of this mechanism that results in an adaptive algorithm with O(min(k, log N)) RMR time complexity, where
k is “point contention,” that is, the maximum number of processes that are active simultaneously [1]. A
similar algorithm, developed independently, was recently published by Afek et al. [4].

Lower bounds. Several prior research efforts on lower bounds are of relevance to this paper. Of partic-
ular relevance are lower bounds established by Anderson and Yang, which involve trade-offs between time
complexity and write-contention [12]. The write-contention (access-contention) of a concurrent program is

2Such reasoning must be used with caution; for example, it may be impossible to linearize a sequence of such overlapping
reads by the same process without reordering them.

2

the number of processes that may potentially be simultaneously enabled to write (access) the same shared
variable.

Anderson and Yang showed that any algorithm with write-contention w must have a single-process exe-
cution in which that process executes Ω(logw N) remote operations for entry into its critical section. Further,
among these operations, Ω(

√
logw N) distinct remote variables are accessed. Similarly, any algorithm with

access-contention c must have a single-process execution in which that process accesses Ω(logc N) distinct
remote variables for entry into its critical section. Thus, a trade-off between write-contention (access-
contention) and time complexity exists even in systems with coherent caches.

Because a single-process execution is used to establish these bounds, it follows that Ω(N ε)-writer variables
(for some positive constant ε) are needed for fast or adaptive algorithms. In other work [5], Alur and
Taubenfeld showed that fast (and hence adaptive) algorithms also require variables with Ω(log N) bits (i.e.,
variables large enough to hold at least some fraction of a process identifier).

In other related work [11], we established a lower bound of Ω(log N/ log log N) remote operations for
any mutual exclusion algorithm based on reads and writes. This bound has no bearing on fast or adaptive
algorithms because it results from an execution that may involve many processes. (In a later related paper
[21], we proved the impossibility of an adaptive atomic algorithm with o(k) RMR time complexity, where k
is point contention.)

Contributions. Given the research reviewed above, two questions immediately come to mind:

• Is it possible to devise a nonatomic local-spin algorithm with Θ(log N) time complexity, i.e., that
matches the best atomic algorithm known?

• Is it possible to devise a nonatomic algorithm that is fast or adaptive?

Both questions are answered in this paper. We answer the first question in the affirmative by presenting
a Θ(log N) nonatomic algorithm, which is derived from Yang and Anderson’s arbitration-tree algorithm by
means of simple transformations. On the other hand, the answer to the second question is negative. We show
this by proving that any nonatomic algorithm must have a single-process execution in which that process
accesses Ω(log N/ log log N) distinct variables. Therefore, fast and adaptive algorithms are impossible even
if caching techniques are used to avoid accessing the interconnection network. Some of the techniques used
to establish these bounds are taken from earlier papers [11, 12], while others are new, being applicable
when memory accesses are nonatomic. Given the prior results summarized above, it follows that any fast
or adaptive algorithm necessarily must use some Ω(log N)-bit variables, some Ω(N ε)-writer variables, and
some atomic variables.

Organization. The rest of this paper is organized as follows. In Section 2, our nonatomic algorithm is
presented; a correctness proof for the algorithm is given in an appendix. Definitions needed to establish the
above-mentioned lower bound are then given in Section 3. The lower-bound proof is sketched in Section 4;
a full proof is given in a second appendix. We conclude in Section 5.

2 Nonatomic Algorithm

As mentioned earlier, our nonatomic algorithm is derived from Yang and Anderson’s algorithm. We hereafter
denote these two algorithms as Algorithms NA and YA, respectively; both are depicted in Figure 1. In
this figure, “await B” is used as a shorthand for “while ¬B do /∗ null ∗/ od,” where B is a boolean
expression.

Algorithm YA. We begin with a brief, informal description of Algorithm YA [34]. Associated with
each node n at height h in the arbitration tree is a two-process mutual exclusion algorithm, which uses the
following variables: C[n][0], C[n][1], T [n], and a subset of P [h][0], . . . , P [h][N − 1]. Variable C[n][0] ranges

3

Algorithm YA (The original algorithm in [34])

process p :: /∗ 0 ≤ p < N ∗/
const /∗ for simplicity, we assume N = 2L ∗/

L = log N ; /∗ (tree depth) + 1 = O(log N) ∗/
Tsize = 2L − 1 = N − 1 /∗ tree size = O(N) ∗/

shared variables
T : array[1..Tsize] of 0..N − 1;
C : array[1..Tsize][0, 1] of (0..N − 1, ⊥)

initially ⊥;
P : array[1..L][0..N − 1] of 0..2 initially 0

private variables
h: 1..L;
node: 1..Tsize;
side: 0..1; /∗ 0 = left, 1 = right ∗/
rival : 0..N − 1, ⊥

while true do
1: Noncritical Section;

2: for h := 1 to L do

3: node :=
¨
(N + p)/2h

˝
;

4: side :=
¨
(N + p)/2h−1

˝
mod 2;

5: C[node][side] := p;
6: T [node] := p;
7: P [h][p] := 0;
8: rival := C[node][1 − side];
9: if (rival �= ⊥ ∧ T [node] = p) then
10: if P [h][rival] = 0 then
11: P [h][rival] := 1 fi;
12: await P [h][p] ≥ 1;
13: if T [node] = p then
14: await P [h][p] = 2 fi

fi
od;

15: Critical Section;

16: for h := L downto 1 do

17: node :=
¨
(N + p)/2h

˝
;

18: side :=
¨
(N + p)/2h−1

˝
mod 2;

19: C[node][side] := ⊥;
20: rival := T [node];
21: if rival �= p then
22: P [h][rival] := 2 fi

od
od

(a)

Algorithm NA (New nonatomic algorithm)

process p :: /∗ 0 ≤ p < N ∗/

/∗ all variable declarations are as in ∗/
/∗ Algorithm YA, except that ∗/
/∗ P is replaced by the following ∗/

shared variables
Q1, Q2, R1, R2: array[1..L][0..N − 1] of

boolean

private variables
qtoggle, rtoggle, temp: 0..1

while true do
1: Noncritical Section;

2: for h := 1 to L do

3: node :=
¨
(N + p)/2h

˝
;

4: side :=
¨
(N + p)/2h−1

˝
mod 2;

5: C[node][side] := p;
6: T [node] := p;
7: rtoggle := ¬R1[h][p];
8: R2[h][p] := rtoggle;
9: qtoggle := ¬Q1[h][p];
10: Q2[h][p] := qtoggle;
11: rival := C[node][1 − side];
12: if (rival �= ⊥ ∧ T [node] = p) then
13: temp := Q2[h][rival];
14: Q1[h][rival] := temp;
15: await (Q1[h][p] = qtoggle) ∨
16: (R1[h][p] = rtoggle);
17: if T [node] = p then
18: await R1[h][p] = rtoggle fi

fi
od;

19: Critical Section;

20: for h := L downto 1 do

21: node :=
¨
(N + p)/2h

˝
;

22: side :=
¨
(N + p)/2h−1

˝
mod 2;

23: C[node][side] := ⊥;
24: rival := T [node];
25: if rival �= p then
26: temp := R2[h][rival];
27: R1[h][rival] := temp fi

od
od

(b)

Figure 1: (a) Algorithm YA and (b) its nonatomic variant. In (b), reads and writes of the C and T
variables are assumed to be implemented using register constructions.

4

over {0, . . . , N − 1,⊥} and is used by a process from the left subtree rooted at n to inform a process from
the right subtree of its intent to enter its critical section. Variable C[n][1] is similarly used by processes from
the right subtree. Variable T [n] ranges over {0, . . . , N − 1} and is used as a tie-breaker in the event that
two processes attempt to “acquire” node n at the same time. Ties are broken in favor of the first process to
update T [n]. Variable P [h][p] is the spin variable used by process p at node n (if it is among the processes
that, by the structure of the tree, can access node n).

Loosely speaking, the two-process algorithm at node n works as follows. A process l from the left subtree
rooted at n “announces” its arrival at node n by establishing C[n][0] = l. It then assigns its identifier l to
the tie-breaker variable T [n], and initializes its spin variable P [h][l]. If no process from the right-side has
attempted to acquire node n, i.e., if C[n][1] = ⊥ holds when l executes line 8, then process l proceeds directly
to the next level of the arbitration tree (or to its critical section if n is the root). Otherwise, if C[n][1] = r,
where r is some right-side process, then l reads the tie-breaker variable T [n]. If T [n] �= l, then process r has
updated T [n] after process l, so l can enter its critical section (recall that ties are broken in favor of the
first process to update T [n]). If T [n] = l holds, then either process r executed line 6 before process l did, or
process r has executed line 5 but not line 6. In the first case, l should wait until r “releases” node n in its
exit section, whereas, in the second case, l should be able to proceed past node n. This ambiguity is resolved
by having process l execute lines 10–14. Lines 10–11 are executed by process l to release process r in the
event that it is waiting for l to update the tie-breaker variable (i.e., r is busy-waiting at node n at line 12).
Lines 12–14 are executed by l to determine which process updated the tie-breaker variable first. Note that
P [h][l] ≥ 1 implies that r has already updated the tie-breaker, and P [h][l] = 2 implies that r has released
node n. To handle these two cases, process l first waits until P [h][l] ≥ 1 holds (i.e., until r has updated
the tie-breaker), re-examines T [n] to see which process updated it last, and finally, if necessary, waits until
P [h][l] = 2 holds (i.e., until process r releases node n).

After executing its critical section, process l releases node n by establishing C[n][0] = 0. If T [n] = r, in
which case process r is competing at node n, then process l updates P [h][r] so that process r does not block
at node n.

To see that Algorithm YA is a local-spin algorithm, note that each process only waits on spin variables
dedicated to it. On a distributed shared-memory machine, a process’s spin variables can be stored in a local
memory partition. On a cache-coherent machine, the first read of a spin variable by a process p in a busy-
waiting loop creates a cached copy. All subsequent reads by p until the variable is written by another process
are handled in-cache. The algorithm ensures that after such a write, p’s busy-waiting loop terminates.

Algorithm NA. In the rest of this section, we consider the problem of converting Algorithm YA into
a nonatomic algorithm. The notion of a nonatomic variable that we assume is that captured by Lamport’s
definition of a safe register [24]: a nonatomic read of a variable returns its current value if it does not
overlap any write of that variable, and any arbitrary value from the value domain of the variable if it does
overlap such a write. These assumptions are sufficient for our purposes, because our final algorithm precludes
overlapping writes of the same variable.

The most obvious way to convert Algorithm YA into a nonatomic algorithm is to implement each
atomic variable using nonatomic ones by applying wait-free register constructions presented previously [18,
19, 24, 28, 29, 30]. This is in fact the approach we take for the C and T variables. However, if such
constructions are applied to implement the P variables, then a read of such a variable necessarily requires
that one or more of the underlying nonatomic variables be written. (This was proved by Lamport [24].) As
a result, the spins in lines 12 and 14 would no longer be local.

As for the C and T variables, the tree structure ensures that C[n][s] can be viewed as a single-writer,
single-reader variable, and T [n] as a two-writer, two-reader variable. Hence, C[n][s] can be implemented
quite efficiently using the single-writer, single-reader register construction of Haldar and Subramanian [18].
In this construction, eight nonatomic variables are used, each atomic read requires at most four accesses of
nonatomic variables, and each atomic write at most seven. T [n] is more problematic, as it is a multi-reader,
multi-writer atomic variable. Nonetheless, register constructions are known that can be used to implement
such variables from nonatomic variables with time and space complexity that is polynomial in the number

5

of readers and writers [19, 24, 28, 29, 30]. For variable T [n], the number of readers and writers is constant.
Thus, it can be implemented using nonatomic variables with constant space and time complexity.

The need for register constructions to implement the T variables can be obviated by slightly modifying
the algorithm, using a technique first proposed by Kessels [20]. (For ease of exposition, this is not done
in Algorithm NA in Figure 1(b).) The idea is to replace each T [n] variable by two single-bit variables
T1[n] and T2[n]; T1[n] (T2[n]) is written by left-side (right-side) processes and read by right-side (left-
side) processes at node n. Left-side processes seek to establish T1[n] = T2[n] and right-side processes seek to
establish T1[n] �= T2[n]. Ties are broken accordingly. Because T1[n] and T2[n] are both single-writer, single-
reader, single-bit variables, it is relatively straightforward to show that this mechanism still works if variable
accesses are nonatomic. In fact, this very mechanism is used in the nonatomic algorithm of Anderson [6].

The P variables can be dealt with similarly. In Algorithm YA, the condition P [h][p] ≥ 1 indicates
that process p may proceed past its first await, and the condition P [h][p] = 2 indicates that p may proceed
past its second await. Because multi-bit variables are problematic if memory accesses are nonatomic,
we implement these conditions using separate variables. In Algorithm NA (see Figure 1(b)), variables
Q1[h][p] and Q2[h][p] are used to implement the first condition, and variables R1[h][p] and R2[h][p] are used
to implement the second. The technique used in updating both pairs of variables is similar to that used
in Kessels’ tie-breaking scheme described above. In particular, process p attempts to establish Q1[h][p] �=
Q2[h][p] ∧ R1[h][p] �= R2[h][p] in lines 7–10 and waits while this condition continues to hold at lines 15–16
(note that qtoggle = Q2[h][p] ∧ rtoggle = R2[h][p] holds while p continues to wait).3 A rival process at node
n seeks to establish Q1[h][p] = Q2[h][p] at lines 13–14; the effect is similar to lines 10–11 in Algorithm YA.
Lines 18 and 26–27 work in a similar way. As with Kessels’ tie-breaking scheme, because the new variables
being used here are all single-writer, single-reader, single-bit variables, it is relatively straightforward to show
that the algorithm is correct even if variable accesses are nonatomic.4 A complete correctness proof for the
algorithm is given in Appendix A. This gives us the following theorem.

Theorem 1 The mutual exclusion problem can be solved with Θ(log N) RMR time complexity using only
nonatomic reads and writes. �

3 Lower Bound: System Model

In this section, we present the model of a nonatomic shared-memory system that is used in our lower-bound
proof. This model is similar to that used in [11, 12].

Shared-memory systems. A shared-memory system S = (C,P, V) consists of a set of computations C,
a set of processes P , and a set of shared variables V . A computation is a finite sequence of events. To
complete the definition of a shared-memory system, we must define the notion of an “event” and state the
requirements to which events and computations are subject. This is done in the remainder of this section.
As needed terms are defined, various notational conventions are also introduced that will be used in the rest
of the paper.

Informally, an event is a particular execution of a statement of some process that involves either reading
or writing a shared variable. (However, a nonatomic write is actually represented by two events, one for its
beginning and one for its end; see below.) An initial value is associated with each shared variable. In practice,
accesses of private variables such as program counters usually determine the order in which shared variables
are accessed. For our purposes, the manner in which this access order is determined is not important. Thus,
we do not consider private variables nor events that access them in our proof.

3In the preliminary version of this paper [10], lines 9–10 in Figure 1(b) precede lines 7–8, writing Q2 before R2. We found
that that version is susceptible to livelock.

4In fact, because Q2 and R2 are not accessed within any busy-waiting loop, they can be assumed to be atomic, as they
can be implemented nonatomically via register constructions. On the other hand, Q1 and R1 are accessed within busy-waiting
loops, so implementing them using register constructions would result in non-local spinning.

6

In all computations considered in our proof, reads execute atomically (i.e., have zero duration). Writes
may execute atomically or nonatomically, but writes to the same variable never overlap each other. Thus,
we have no need to define the effects of concurrent writes. According to the definitions below, a read of
a variable that overlaps a nonatomic write of that variable may return any value, as assumed earlier in
Section 2.

We now formalize these ideas. An event e has the form of [p,Op, . . .], where p ∈ P . (The various forms of
an event are given in the Atomicity Property below.) We call Op the operation of event e, denoted op(e). Op
can be one of the following: read(v), write(v), invoke(v), or respond(v), where v is a variable in V . (Informally,
e can be an atomic read, an atomic write, an invocation of a nonatomic write, or a corresponding response
of a nonatomic write.) For brevity, we sometimes use ep to denote an event of process p. The following
assumption formalizes requirements regarding the atomicity of events.

Atomicity Property: Each event ep must be of one of the forms below.

• ep = [p, read(v), α]. In this case, ep reads the value α from v. We call ep a read event.

• ep = [p,write(v), α]. In this case, ep writes the value α to v. We call ep an atomic write event.

• ep = [p, invoke(v), α]. In this case, ep writes the value � to v, where � is a special value that means
subsequent reads of v may read any value. We call ep an invocation event.

• ep = [p, respond(v), α]. In this case, ep writes the value α to v. We call ep a response event. �

We say that an event ep writes v if op(ep) ∈ {write(v), invoke(v), respond(v)}, and that ep reads v if
op(ep) = read(v). We say that ep accesses v if it writes or reads v. We also say that a computation H
contains a write (respectively, read) of v if H contains some event that writes (respectively, reads) v.

An atomic write is merely a notational convenience to represent a write that is executed “fast enough”
to be considered atomic. Therefore, we require that a process has an enabled atomic write if and only if
it has an identical enabled nonatomic write (Property P4, given later). A nonatomic write is represented
by two successive events, for its beginning (invocation) and its end (response). An example is shown in
Figure 2(a). If a process has performed an invocation event, then it may execute the matching response
event (Property P5). As stated before, our proof strategy ensures that between a matching invocation and
response, no write to the same variable ever occurs. Therefore, in order to simplify bookkeeping, we allow
response events to be implicit. To be precise, if a process p executes an invocation event ep, and if another
process q executes an event fq that writes v after ep (but before its matching response event), then the
matching response event implicitly occurs immediately before fq, as shown in Figure 2(b). Therefore, in our
model, overlapping writes to the same variable cannot happen.5 (In fact, explicit response events are not
used at all in our proof. Although this may lead to an “open” nonatomic write that does not terminate,
such a write can always be converted into a “proper” nonatomic write by appending a corresponding explicit
response event. Explicit response events are introduced in this section merely to make our system model
easier to understand.) Thus, as far as overlapping operations are concerned, the only interesting case is that
of a read of a variable overlapping a write of the same variable. In this case, the read may return any value
(Properties P2 and P3 below). For example, in Figure 2(a), events c–f may read any value from v.

Notational conventions pertaining to computations. The value of variable v at the end of compu-
tation H, denoted value(v,H), is the last value written to v in H (or the initial value of v if v is not written
in H). The last event to write to v in H is denoted last writer event(v,H),6 and the process that executes
that event is denoted last writer(v,H). More formally, let ep be the last event in H with operation write(v),
invoke(v), or respond(v). We define last writer event(v,H) = ep, last writer(v,H) = p, and value(v,H) to
be the value written to v by ep. If ep is an invocation event [p, invoke(v), α], then we define value(v,H) to

5This does not mean that our lower bound does not apply to systems that allow overlapping writes to the same variable.
Such a system still has a subset of valid computations in which overlapping writes to the same variable do not happen.

7

Invocation event

[q, invoke(v), β]

Explicit response event

[q, respond(v), β]

An implicit

response event

by p

Another event by q

that writes v

A nonatomic write to v

c
d

e

f
Invocation event

[p, invoke(v), α]

(a) (b)

Atomic write event

[p, write(v), α]

(v has value ∗)(v has value α)

a
b

(v has value β)

g
h

Atomic reads of v

Must read α

from v

May read any

value from v

Must read β

from v

Figure 2: Overlapping reads and writes of the same variable. (a) A nonatomic write to v by p, terminated
by an explicit response event. (b) A nonatomic write to v by p, terminated by another process q’s write to
v. In this case, q’s event may be an atomic write event or an invocation event.

be �, not α. If v is not written by any event in H, then we define last writer(v,H) = ⊥ and last writer
event(v,H) = ⊥.

We use 〈e, . . .〉 to denote a computation that begins with the event e, 〈〉 to denote the empty computation,
and H ◦G to denote the computation obtained by concatenating computations H and G. For a computation
H and a set of processes Y , H |Y denotes the subcomputation of H that contains all events in H of processes
in Y .7 If G is a subcomputation of H, then H −G is the computation obtained by removing all events in G
from H. A computation H is a Y-computation if and only if H = H |Y . For simplicity, we abbreviate the
preceding definitions when applied to a singleton set of processes (e.g., H | p instead of H | {p}).

Properties of shared-memory systems. The following properties apply to any shared-memory sys-
tem. (Note that these properties are not complete, i.e., they do not generate the complete set of all valid
computations. These “incomplete” rules are sufficient for our purpose.)

P1: If H ∈ C and G is a prefix of H, then G ∈ C.

— Informally, every prefix of a valid computation is also a valid computation.

P2: Assume that H ◦ 〈ep〉 ∈ C, G ∈ C, G | p = H | p. Also assume that either (i) ep is not a read event, or
(ii) ep reads v and value(v,G) ∈ {value(v,H), �} holds. Then, G ◦ 〈ep〉 ∈ C holds.

— Informally, assume that two computations H and G are not distinguishable to process p, and that
p can execute an event ep after H. If ep is not a read event, then it can be executed also after G. On
the other hand, if ep is a read event of some variable v, then it can be executed after G if v’s value
after G is either � or the same value as after H. Note that ep may read any value from a variable with
value �, i.e., a variable that is concurrently being accessed by a nonatomic write.

P3: For any H ∈ C and a read event ep = [p, read(v), α], H ◦ 〈ep〉 ∈ C implies that value(v,H) is either α
or �.

— Informally, only the last value written to a variable may be read, unless the last write was an
invocation event on that variable.

6Although our definition of an event allows multiple instances of the same event, we assume that such instances are dis-
tinguishable from each other. (For simplicity, we do not extend our notion of an event to include an additional identifier for
distinguishability.)

7The subcomputation H |Y is not necessarily a valid computation in a given system S, that is, an element of C. However,
we can always consider H |Y to be a computation in a technical sense, i.e., it is a sequence of events.

8

P4: For any H ∈ C, p ∈ P , v ∈ V , and α, H◦〈[p,write(v), α]〉 ∈ C holds if and only if H◦〈[p, invoke(v), α]〉 ∈
C holds.

— Informally, p can write to v atomically (via [p,write(v), α]) if and only if p can start writing to v
nonatomically (via [p, invoke(v), α]).

P5: For any H ∈ C, p ∈ P , v ∈ V , and α, H ◦ 〈[p, respond(v), α]〉 ∈ C holds if and only if last writer
event(v,H) = [p, invoke(v), α] holds.

— Informally, a response event on v may appear only if preceded by the corresponding invocation
event, and only if there is no intervening write to v, since such a write would entail an implicit response
event.

As stated above, our proof does not make use of explicit response events. Therefore, we hereafter assume
that every computation of concern is free of explicit response events.

One-shot mutual exclusion systems. We now define a special kind of shared-memory system, namely
one-shot mutual exclusion systems, which are our main interest. Such systems solve a simplified version of
the mutual exclusion problem in which the first process that enters its critical section halts immediately.

A one-shot mutual exclusion system S = (C,P, V) is a shared-memory system that satisfies the following
properties. Each process p ∈ P has two dummy auxiliary variables, entryp and csp. These variables are
accessed only by the following events: Enterp = [p,write(entryp), 0], and CSp = [p,write(csp), 0]. (Since
private variables are completely ignored in our formalism, entryp and csp are considered “shared” variables,
even though they are accessed only by p.)

These events are allowed in the following situations. For all H ∈ C,

• if H | p �= 〈〉, then the first event (and only the first event) by p in H is Enterp;
• if H | p = 〈〉, then H ◦ 〈Enterp〉 ∈ C;
• if H contains CSp, then it is the last event of H | p.

We say that a process p is in its entry section if it has executed Enterp but not CSp, and that p is in its
critical section if it has executed both Enterp and CSp. (Processes of a one-shot mutual exclusion system
do not have exit sections.)

In our proof, Enterp is used as an easy way to construct our “first” computation, that is, a computation
in which every process p executes only its first operation, Enterp. (Without Enterp, constructing the “first”
computation would require an additional mechanism, since our proof requires that processes do not gain
knowledge of each other. By introducing Enterp, this is automatically satisfied.) The remaining requirements
of a one-shot mutual exclusion system are as follows.

Exclusion: For all H ∈ C, if H contains CSp, then it does not contain CS q for any q �= p.

Progress (of a solo computation): For all H ∈ C, if H is a p-computation and H does not contain
CSp, then there exists a p-computation G such that H ◦ G ◦ 〈CSp〉 ∈ C holds.

Note that the Progress property above is much weaker than that usually specified for the mutual exclusion
problem. Clearly, it is satisfied by any livelock-free mutual exclusion algorithm.

Critical events. Since our lower bound is concerned with the number of distinct variables accessed, in
order to facilitate the proof, we define certain events as critical events. An event of p in a computation
H is critical if it is the first read of some variable v by p or the first atomic write to v by p. Thus, if p
has m critical events in H, then it accesses at least m/2 distinct variables. Note that Enterp and CSp are
critical events in any computation, since they appear at most once and access new variables (entryp and csp,
respectively).

9

write entryp := 0; /∗ Enterp ∗/
write u := 1;
read v = 2;
read u = 1;
read v = 2;
write u := 3;
write w := 4;
write csp := 0 /∗ CSp ∗/
halt

S(p, 1): write entryp := 0; /∗ Enterp ∗/
S(p, 2): write u := 1;
S(p, 3): read v = 2;
S(p, 4): read u = 1; read v = 2; write u := 3;
S(p, 5): write w := 4;
S(p, 6): write csp := 0 /∗ CSp ∗/
halt

(a) (b)

Figure 3: A possible solo computation by a process p. (a) Critical and noncritical events. Critical events are
shown in boldface. u, v, and w denote shared variables. Private variable accesses are ignored and are not
shown. (b) The same computation, partitioned into solo segments.

Consider the “solo” computation Sp by a process p, such that every write in it is atomic. As defined
above, the first event in Sp must be Enterp. By the Progress property, p eventually executes CSp, and
then terminates. (An example is shown in Figure 3(a).) We define ce(p, j) as the jth critical event by p
in its solo computation. For example, in Figure 3(a), we have ce(p, 1) = Enterp, ce(p, 2) = [p,write(u), 1],
ce(p, 3) = [p, read(v), 2], and so on. Note that, for any process p, its first and last critical events are Enterp

and CSp, respectively.

If ce(p, j) is a critical write event of v, then we also denote its corresponding invocation event on v by
ie(p, j). For example, in Figure 3, we have ie(p, 2) = [p, invoke(u), 1] and ie(p, 5) = [p, invoke(w), 4], but
ie(p, 3) is undefined.

We partition Sp into solo segments S(p, j) (for j = 1, 2, . . .), such that S(p, j) starts with p’s jth critical
event ce(p, j) and ends right before p’s (j + 1)st critical event. Note that the first (respectively, last) solo
segment of p consists of a single event, Enterp (respectively, CSp). An example is shown in Figure 3(b).

4 Lower Bound: Proof Sketch

In Appendix B, we show that for any nonatomic one-shot mutual exclusion system S = (C,P, V), there
exists a computation H such that some process p accesses Ω(log N/ log log N) distinct variables to enter its
critical section in isolation, where N = |P |. In this section, we sketch the key ideas of our proof.

4.1 Brief Overview

Our proof focuses on a special class of computations called “regular” computations. A regular computation
H consists of events of two groups of processes, “active processes” (denoted by Act(H)) and “covering
processes” (denoted by Cvr(H)). Informally, an active process is a process in its entry section, competing
with other active processes; a covering process is a process that has executed some part of its entry section,
and has started (or is ready to start) a nonatomic write (by executing an invocation event) of some variable
v in order to “cover” v, so that other processes may concurrently access v without gaining knowledge of each
other.

At the end of this section, a detailed overview of our proof is given. Here, we give cursory overview, so
that the definitions that follow will make sense. Initially, we start with a regular computation H1 in which all
the processes in P are active and execute their first solo segments (i.e., 〈Enterp〉 for each p ∈ P). The proof
proceeds by inductively constructing longer and longer regular computations, until the desired lower bound
is attained. The regularity condition defined below ensures that no participating process has “knowledge” of
any other process that is active.8 This has three consequences: each process executes the same sequence of
events as its solo computation (i.e., as it does when it is executed alone); we can “erase” any active process

10

(i.e., remove its events from the computation) and still get a valid computation; each active process has a
“next” critical event, and hence, a “next” solo segment. In each induction step, we append to each of the
n active processes its next solo segment. These next solo segments may introduce unwanted information
flow, i.e., they may cause an active process to acquire knowledge of another active process, resulting in a
non-regular computation. Such information flow is problematic because we are ultimately interested in solo
computations.

Information flow among processes is prevented either by covering variables, as described above, or by
erasing processes — when a process is erased, its events are completely removed from the computation
currently being considered. Thus, at each induction step, a process may undergo one of the following changes:
(i) an active process is erased, (ii) a covering process is erased, or (iii) an active process becomes a covering
process. (A covering process never becomes active again.) These basic techniques, covering and erasing,
have been previously used to prove other lower bounds pertaining to concurrent systems [2, 11, 15, 21, 32].
However, the particular covering strategy being used here is different from those applied in earlier papers,
as it strongly exploits the fact that nonatomic writes may occur for arbitrary durations.

As explained above, at each induction step, we append one solo segment per each active process (that
is not erased). Therefore, after m − 1 induction steps (for some m > 2), a regular computation H can
be decomposed into m − 1 segments H1, H2, . . . , Hm−1, where each Hj consists of the events that are
appended at the jth induction step (and are not erased so far).9 Thus, the structure of H is as shown in
Figure 4.

S(p1, 1)
S(p2, 1)

. . .

S(pk, 1)| {z }
H1: added at the first step

S(p1, 2)
S(p2, 2)

. . .

S(pk, 2)| {z }
H2: added at the second step

· · ·

S(p1, m − 1)
S(p2, m − 1)

. . .

S(pk, m − 1)| {z }
Hm−1: added at the last ((m − 1)st) step

Figure 4: Structure of a regular computation H after m − 1 induction steps. This diagram does not show
the full structure of H; additional details will be introduced as needed.

Here, Act(H) = {p1, p2, . . . , pk} is the set of active processes. We also assume that H satisfies the
following property.

Property A: For each variable v, a regular computation H may contain at most one process
that executes “uncovered” write(s) of v.

Informally, an uncovered write to v (by a process p) is a write to which the covering strategy is not
applied. Thus, if some other process q reads v later, then it may gain knowledge of p, which is clearly
undesirable. Property A limits the number of uncovered writes, so that we can prevent such a case from
happening without too much difficulty, as explained shortly. (This property is also formally stated in R4,
given later.)

As explained above, each active process pj has its “next” solo segment, S(pj ,m), which can be potentially
executed after H. We now present examples that demonstrate why and when the two strategies — covering
and erasing — are necessary.

Example of the erasing strategy. First, we consider an “ideal” case, shown in Figure 5(a), in which
each next critical event ce(pj ,m) accesses a distinct variable vj . Moreover, we assume that each vj is not

8A process p has knowledge of other processes if it has read a variable with a value (different from �) written by another
process. If a process p reads a variable with the value �, then any value can be returned. We assume the value returned is the
same value as in its solo computation.

9We consider the initial computation H1 to have taken one induction step to construct. Thus, a computation after m − 1
induction steps has m − 1 solo segments per each active process.

11

(a) S(p1, 1)
S(p2, 1)

. . .

S(pk, 1)

· · ·

S(p1, m − 1)
S(p2, m − 1)

. . .

S(pk, m − 1)| {z }
H = H1 ◦ H2 ◦ · · · ◦ Hm−1

S(p1, m)
S(p2, m)

. . .

S(pk, m)| {z }
Hm: consists of
newly appended solo segments

(b) S(p2, 1)
S(p4, 1)

. . .

S(pk, 1)

· · ·

S(p2, m − 1)
S(p4, m − 1)

. . .

S(pk, m − 1)| {z }
H, with odd-numbered active processes erased

S(p2, m)
S(p4, m)

. . .

S(pk, m)| {z }
Hm

(c) S(p1, 1)

. . .

S(pk, 1)

· · ·
S(p1, m − 1)

. . .

S(pk, m − 1)| {z }
H

S(p1, m)

. . .

S(pk, m)| {z }
Hm: each segment
writes v

S(p1, m + 1)

. . .

S(pk, m + 1)| {z }
Hm+1: each segment
reads and writes v

Figure 5: Extensions of H: only relevant details are shown. (a) An ideal case. Each next critical event
ce(pj ,m) accesses a distinct variable vj , which is not accessed in H. (b) Erasing strategy. Each next critical
event ce(pj ,m) writes variable v�j/2�, which is not accessed in H. (c) A case in which the covering strategy
is necessary. Each next critical event ce(pj ,m) writes the same variable v, and each (m + 1)st critical event
ce(pj ,m + 1) reads v. Each (m + 1)st solo segment S(pj ,m + 1) also contains noncritical write(s) of v. Note
that this computation incurs information flow.

accessed in H. (As explained in detail later, this condition can be ensured by erasing some processes.) In this
case, we simply append all of the next solo segments. Since each critical event accesses a distinct variable,
they cannot induce information flow. (For now, we ignore the possibility that noncritical events in these
next solo segments may induce information flow. We will address that issue later.) Thus, we can construct
a longer regular computation with a (partial) structure given in Figure 5(a).

In this ideal case, no erasing or covering is necessary. However, consider another case, depicted in
Figure 5(b), in which k active processes access k/2 distinct variables, where for simplicity, k is assumed to be
even. Suppose that each variable vj (for 1 ≤ j ≤ k/2) is written by both ce(p2j−1,m) and ce(p2j ,m). In this
case, we cannot append both S(p2j−1,m) and S(p2j ,m), because then Property A would be violated. Thus,
we apply the erasing strategy: we erase, say, every odd-numbered active process, and construct a regular
computation with k/2 active processes, as shown in Figure 5(b).

If the next critical events collectively access many distinct variables, then we can apply this erasing
strategy in the obvious way (by selecting one process for each variable and erasing the rest), and obtain a
longer regular computation with enough active processes. Thus, for each variable v of concern, there exists
exactly one process that accesses v, and hence information flow is precluded and Property A is preserved.
(As explained later, we can also ensure that every write to v in H (if any) is properly covered, with some
additional erasing.) However, if the next critical events collectively write only a small number of variables,
this strategy may leave too few active processes, and the induction may stop before the desired lower bound
is achieved. We now consider an example of such a situation.

12

Example of the covering strategy. As a stepping stone toward a general covering strategy, we present
here a simplified version of the basic technique. Assume that next critical events collectively access only
a small number of variables. If the majority of the next critical events are reads, then we may prevent
information flow as follows: (i) we erase each process that has a write as its next critical event, and (ii)
for each variable v that is read by some next critical read event, we erase a process (if any) that executes
uncovered write(s) of v in H. (By Property A, for each such v, we erase at most one process.) We thus
ensure that each next critical read event reads the initial value of the variable it accesses.

On the other hand, if the majority of the next critical events are writes, then we apply the covering
strategy. For simplicity, assume that every next critical event writes the same variable v. (That is, ce(pj ,m)
is a write event of v, for each pj ∈ Act(H).) In this case, appending all next solo segments as in Figure 5(a)
may lead to information flow in further induction steps. To see why, suppose that each pj in our example
reads v in its (m + 1)st critical event ce(pj ,m + 1). Moreover, suppose that each (m + 1)st solo segment
S(pj ,m + 1) contains noncritical write(s) of v. This situation is depicted in Figure 5(c).

Although simple, this is the “worst case” scenario in a sense: every process, in its (m + 1)st segment,
reads from v a value written by another process. For example, process p1 reads from v the value written
by pk in S(pk,m). Erasing pk will not eliminate this information flow, because then p1 will read the value
written by pk−1 instead. (Similarly, each pj+1 reads from v the value written by pj in S(pj ,m + 1).)

Information flow may be eliminated here by changing some critical writes into invocation events on the
same variable. Since the (m+1)st solo segments contain noncritical writes of v, we must include an invocation
event on v after each (m + 1)st solo segment (that is not erased) in order to cover such writes. (We again
assume that k is even, for simplicity.) By stalling half of the active processes (say, the odd-numbered ones)
and letting the other half continue their active execution, we append the following computations at the mth

and (m + 1)st steps, respectively:

Hm = S(p2,m) ◦ S(p4,m) ◦ · · · ◦ S(pk,m),
Hm+1 = 〈ie(p1,m)〉 ◦ S(p2,m + 1) ◦ 〈ie(p3,m)〉 ◦ S(p4,m + 1) ◦ · · · ◦

〈ie(pk−1,m)〉 ◦ S(pk,m + 1).

Here, Hm consists of the solo segments of all even-numbered active processes. Hm+1 starts with an
invocation event by p1 on v, so that the following critical read of v in S(p2,m + 1) does not gain knowledge
of pk. Similarly, in Hm+1, solo segments by even-numbered active processes are interleaved with invocation
events on v by odd-numbered processes, so that information flow among them is prevented. We thus
guarantee that any read from v by a process pj (for even j) either reads a value written by pj , or happens
concurrently with a nonatomic write to v (by some covering process). In the latter case, by our system
model, any value may be read. Thus, information flow can be prevented by assuming that each such process
pj reads the same value as in its solo computation.

After appending both Hm and Hm+1, we thus have k/2 active processes (the even-numbered ones), plus
k/2 covering processes (the odd-numbered ones) that have been used in covering v and do not participate
in further induction steps.

Unfortunately, the construction above is somewhat simplified and does not really work. This is because,
in further induction steps (beyond the (m + 1)st), we may append additional solo segments S(pj , l) (for odd
j and l > m + 1) that contain both noncritical reads and writes of v. Thus, they too must be interleaved
with invocation events on v to prevent information flow, but we do not have any more “available” covering
processes that may execute these events.

In order to solve this problem, we do not stall only half of the active processes, but “most” of them: for
each active process (that is not stalled), we stall s processes, where s = Ω(log N/ log log N), so that there
are enough invocation events to insert in further induction steps. (We thus reduce the number of active
processes by a factor of s + 1.) We then insert an invocation event after every solo segment S(pj , l) such

13

that l ≥ m. Thus, segments appended at the mth and later steps may have the following structure.

Hm = S(p1,m) ◦ 〈ie(p2,m)〉 ◦ S(ps+2,m) ◦ 〈ie(ps+3,m)〉 ◦ · · ·
Hm+1 = S(p1,m + 1) ◦ 〈ie(p3,m)〉 ◦ S(ps+2,m + 1) ◦ 〈ie(ps+4,m)〉 ◦ · · ·
Hm+2 = S(p1,m + 2) ◦ 〈ie(p4,m)〉 ◦ S(ps+2,m + 2) ◦ 〈ie(ps+5,m)〉 ◦ · · ·

.

(1)

Note that some of these invocation events are actually unnecessary. For example, event ie(p2,m) is
unnecessary because the following segment S(ps+2,m) starts with a write to v (i.e., ce(ps+2,m)), thus
overwriting the value written by S(p1,m). Also, for any l > m, the solo segment S(pj , l) does not necessarily
contain a (noncritical) write to v. Thus, it may be overkill to insert an invocation event after every S(pj , l).
We still include such unnecessary invocation events to simplify bookkeeping.

A generic description of the covering strategy. The structure depicted in (1) is still simplified, for
three reasons. First, solo segments may contain writes to variables other than v, in which case invocation
events on these variables will be placed together with invocation events on v. Second, in practice, the mth

critical events (by all active processes) may collectively access multiple variables. In that case, we have
to apply the covering strategy separately to each variable. Finally, it is generally impossible to index and
arrange processes in a regular fashion as above, since some of these active processes may be erased later.

Thus, we need a more dynamic approach, as depicted in Figure 6. Assume that, at the mth induction
step, we find that there are “too many” processes whose mth critical event is a write to v, as shown in
Figure 6(a). (In (1), these processes comprise all active processes; in general, they will form a subset of the
active processes.) We partition these processes into two sets: AW m

v , the set of “active writers,” and CW m
v ,

the set of “covering writers.” Processes in AW m
v continue active execution, while processes in CW m

v are
stalled just before they execute their critical writes of v, and may later execute invocation events on v (see
Figure 6(b); the “reserve writers” in this figure will be considered later). For example, in (1), processes p1

and ps+2 belong to AW m
v , while processes p2, p3, p4, ps+3, ps+4, and ps+5 belong to CW m

v . We say that
we select processes in CW m

v for covering variable v.

For each process p ∈ AW m
v , we append its mth solo segment S(p,m) to construct the mth segment. Since

S(p,m) contains ce(p,m), a write to v, we have to cover this write. Thus, we choose a process q from CW m
v

and append ie(q,m), q’s invocation event on v, after S(p,m) (see Figure 6(b)). We say that we deploy a
process q from CW m

v in order to cover S(p,m).

We now consider the lth induction step, where l > m (see Figure 6(c)). For each process p ∈ AW m
v that

is active at that point, we append its solo computation S(p, l) in order to construct the lth segment. Since
ce(p,m) writes v, S(p, l) may contain a (noncritical) write to v. Thus, we choose a process q′ from CW m

v and
append ie(q′,m) after S(p, l). As before, we say that we deploy q′ in order to cover S(p, l). (As explained
before, ie(q′,m) may in fact be unnecessary.)

Thus, if yet another process r reads v later, then r cannot read the value written by p in S(p, l). In
particular, if r’s read is concurrent with the nonatomic write by q′, then by our system model, r may read
any value. Otherwise, the nonatomic write by q′ has been terminated by yet another (atomic or nonatomic)
write of v. (Recall that explicit response events are not used in our proof.) Thus, the value written by p is
already overwritten. By repeating this argument for each reader and covered writer of v in H, it follows that
covered writes cannot cause information flow. (This argument is formalized in Lemma 2 in Appendix B.)

Note that, after the construction of each segment, many processes in CW m
v are left unused — that

is, they are not deployed yet. These processes constitute RW m
v , the set of reserve processes (or “reserve

writers”). (See Figure 6(b) and (c).) The processes in RW m
v serve two purposes. First, when we inductively

construct longer computation(s), these processes are deployed to cover v after newly appended solo segments.
For example, process q′ is a reserve process in Hm (the computation obtained at the end of the mth step,
depicted in Figure 6(b)) but not in Hl (depicted in Figure 6(c)). Second, if some deployed process in
(CW m

v −RW m
v) is erased later (due to a conflict via some other variable), then a process in RW m

v is selected
to take its place. For example, in Figure 7 (which is a continuation of Figure 6), process q′ is erased, and
we choose a process r from RW m

v and use r to take the place of q′ in covering v.

14

. .
 .

events that are
added up to the
(m−1)st step

a subset
of active
processes

. .
 .

ready to write v:
for each process r,
ce(r, m) is a write to v

(a) right before the mth step

(plus other
 processes) . .

 .

S(p, m)

critical writes to v

(plus other
 processes)

(b) construction of the mth segment

p

. .
 .

continue active execution:
become �active writers� AWm

v

stalled:
become
�reserve writers�
RWm

v

become
�covering writers
CWm

v

deployed
in the
mth step

. .
 .

S(p, l): may contain write(s) to v

(plus other processes)

(c) at each later (lth) step

p

deployed
in the lth step

events that are
added up to the
(m−1)st step

events that are
added up to the
(l−1)st step

.
 .

deployed here

q’
ie(q’, m)

. .
 .

. .
 .

stalled: constitute RWm
v

at the end of the lth induction step

invocation events
on v

invocation events on v

ie(q, m)
q

a subset of AWm
v that are active

at the lth induction step

Figure 6: Covering strategy. We only show relevant processes. (In general, the computation has many other
processes that are not depicted here.) Here and in later figures, horizontal lines depict events of a particular
process, black circles (•) depict a single event, and empty circles (◦) depict an event that is enabled at that
point but not executed. (a) At the mth step, we find “too many” active processes that are ready to write
variable v. (b) At the same step, we stall some of these processes — these processes constitute the set of
“covering writers” CW m

v . The rest of the processes constitute the set of “active writers” AW m
v — these

processes remain active and continue execution. Some processes among CW m
v are deployed to cover the

mth solo segments. For example, q is deployed to cover S(p,m). The rest of CW m
v remain undeployed and

constitute RW m
v . We thus construct Hm. (c) Construction of Hl at the lth step (where l > m). In general,

a subset of AW m
v is active here. We also deploy a process q′ from CW m

v to cover S(p, l).

In practice, additional complications arise if a variable is chosen multiple times for covering throughout
the induction. For example, we may find that many processes write v at the mth induction step, and partition
them into two sets AW m

v and CW m
v , as described above. Later, at the kth induction step, we may again find

that many processes (that have not written v so far) write v. Since they did not write v at the mth induction
step, they are clearly disjoint from both AW m

v and CW m
v . We thus partition these processes and construct

two sets AW k
v and CW k

v . In this case, each active process that writes v is covered by its corresponding subset
of covering processes: if p ∈ AW m

v and p′ ∈ AW k
v hold, then we cover S(p, l) for each l ≥ m (respectively,

S(p′, l′) for each l′ ≥ k) by deploying some process from CW m
v (respectively, CW k

v).

15

. .
 .

S(p, l)

(p l u s o t h e r p r o c e s s e s)

p

deployed
in the lth step

.
 .

deployed between the mth and
the (l−1)st step

q’
ie(q’, m)

. .
 .

. .
 .

stalled:
constitute RWm

v

.
 .

. .
 .

deployed at or after
the (l+1)st step

�active writers�
AWm

v

. .

������ �� ���� ��	�
 ��
��
�� u
������ ��������� q ����
� ��� �
����

. .
 .

S(p, l)
p

.
 .

q’

. .
 .

. .
 .

. .
 .

. .
 .

�active writers�
AWm

v

. .

(a)

(b)

events that are
added up to the
(m−1)st step

events that are
added up to the
(l−1)st step

events that are
added at or after the
(l+1)st step

events that are
added at the
lth step

q’ ���
� ���

������ �
�����

�covering writers
CWm

v

r
ie(r, m): r ����� ���

�	�
��� �� q’new RWm
v}

(p l u s o t h e r p r o c e s s e s)

�covering writers
CWm

v

. .

Figure 7: The use of reserve processes to “exchange” two processes before erasing. (a) After Figure 6(c), at
some later step, we find that process q′ ∈ CW m

v incurs a conflict via some other variable u. (For example,
q′ may have executed an uncovered write of u at some earlier step, and then we later find that, at some kth

step (k > l), all remaining active processes read u.) Thus, we have to erase q′. (b) We choose some process
r from RW m

v , and let r execute its invocation event in place of q′. Process q′ can now be safely erased. Note
that |RW m

v | is reduced by one, since r is no longer a reserve process.

4.2 Formal Definitions

Having outlined some of the basic ideas of our proof, we now define some relevant notation and terminology.
At the core of these definitions is the notion of a regular computation, mentioned above. After formally
defining the class of regular computations, we give a detailed proof sketch.

A regular computation H has an associated induction number mH , which is the number of induction
steps taken to construct H. Such a computation H can be written H = H1 ◦ H2 ◦ · · · ◦ HmH , where Hm

is called the mth segment of H. For each segment index m (1 ≤ m ≤ mH), Hm consists of the events that
are appended at the mth induction step (and are not erased so far), and contains exactly one critical event
by each process that was active at the mth induction step. We now explain the process groups involved in
constructing H in detail.

We define P (H), the set of participating processes in H, as follows:

16

P (H) = {p ∈ P : H | p �= 〈〉}. (2)

Processes in P (H) are partitioned into two sets: Act(H), the active processes, and Cvr(H), the covering
processes.

P (H) = Act(H) ∪ Cvr(H) ∧ Act(H) ∩ Cvr(H) = {}. (3)

As explained above, each covering process p is selected to cover some variable v at some induction step
m, and is stalled right before executing its next critical event ce(p,m), which must be a write to v. In this
case, we define the covering index of p, denoted ci(p), to be m, and the covering variable of p, denoted
cv(p), to be v. We also define the set CW m

v as the set of covering processes (or “covering writers”) that are
selected at the mth induction step to cover v:

CW m
v = {p ∈ Cvr(H): (ci(p), cv(p)) = (m, v)}. (4)

By definition, we also have the following:

(ci(p), cv(p)) = (m, v) only if ce(p,m) is a write to v. (5)

As explained before, a process p in CW m
v may be deployed to cover S(q, l), for some process q in AW m

v

and segment index l ≥ m. In this case, we define cp(p), the process covered by p, to be q. We let cp(p) = ⊥
if p is not deployed in H.

The covering processes may also be grouped as follows: we define Cvrm(H), the set of covering processes
at the end of the mth segment, as follows:

Cvrm(H) = {p ∈ Cvr(H): ci(p) ≤ m} =
⋃

1≤j≤m, v∈V

CW j
v. (6)

Cvrm(H) consists of processes that are selected for covering through the mth induction step. We similarly
define Actm(H), the set of active processes at the end of the mth segment, as follows:

Actm(H) = P (H) − Cvrm(H). (7)

Actm(H) consists of processes that have not been selected for covering, and hence are active at the end
of the mth induction step. A process p in Actm(H) may be selected for covering in some later, say, lth,
induction step, in which case p belongs to both Actm(H) and Cvrl(H) (see Figure 8). Note that if a process
q is selected to cover a variable v at the mth induction step (i.e., q ∈ CW m

v), then q does not become active
again. That is, q ∈ Cvrm(H) implies q /∈ Actm′

(H), for each m′ ≥ m.

From the description above, we have Cvr(H) = CvrmH (H) and Act(H) = ActmH (H). We now describe
the structure of H l, the lth segment of H. We can write H l as follows:

H l = S(p1, l) ◦ C(p1, l;H) ◦ S(p2, l) ◦ C(p2, l;H) ◦ · · · ◦ S(pk, l) ◦ C(pk, l;H),
where {p1, p2, . . . , pk} = Actl(H).

(8)

S(p, l), the lth solo segment of p, was already defined in Section 3. We call C(p, l;H) the lth covering
segment of p. Computation C(p, l;H) consists of invocation event(s) that cover writes contained in S(p, l)
(see (1) for a simple example). When there is no possibility of confusion, we use C(p, l) as a shorthand for
C(p, l;H). We also define AW l

v, the set of active writers of v at the lth step, as follows:

AW l
v = {p ∈ Actl(H): ce(p, l) is a write to v}. (9)

We now describe the structure of C(p, l) in detail. For each m ≤ l, ce(p,m) may be a write to some
variable v (i.e., p ∈ AW m

v holds). If the covering strategy was applied at the mth induction step, then some
processes have been chosen to cover v, that is, we have CW m

v �= {}. (See Figure 6(a).) Thus, as described
before, we deploy a process q from CW m

v , and let q execute its invocation event ie(q,m) on v in C(p, l).

17

C(p,m) consists of such invocation events, as stated formally in R1 and R2 below. (Thus, the invocation
events depicted in Figure 6(b) and (c) are contained in covering segments, which have been omitted from the
figure for simplicity. For example, ie(q,m) and ie(q′, l) are contained in C(p,m) and C(p, l), respectively.)

We also define RW m
v , the set of reserve processes (or “reserve writers”), to be the set of processes in

CW m
v that are not yet deployed:

RW m
v = {q ∈ CW m

v : q is not deployed in H}
= {q ∈ CW m

v : cp(q) = ⊥}. (10)

When we consider multiple regular computations, we also write CW m
v (H), AW m

v (H), RW m
v (H), ci(p;H),

cv(p;H), and cp(p;H) in order to specify the relevant computation H. Note that, because our proof involves
erasing processes from existing computations, each induction step may alter previously constructed segments.
For example, if we refer to the computation obtained at the mth induction step as Hm, then in general, the
sets CW m

v , AW m
v , RW m

v may vary between Hm and Hm+1, and among any further induction step. Similar
remark applies to ci(p), cv(p), and cp(p).

The structure of a regular computation, explained so far, is depicted in Figure 8. We now formally define
the notion of a regular computation. Conditions R1–R4 defined below are discussed after the definition.

Definition: Let S = (C,P, V) be a one-shot mutual exclusion system. A computation H in C is regular if
and only if it satisfies the following.

H can be written as H = H1 ◦H2 ◦ · · · ◦HmH , where Hm is called the mth segment of H. Segment Hm

consists of the events appended at the mth induction step. We call mH the induction number of H.

Processes in P (H) are partitioned into Cvr(H) and Act(H). These sets, together with CW m
v (H),

Cvrm(H), Actm(H), AW m
v (H), and RW m

v (H) are defined as in (2)–(4), (6), (7), (9), and (10). Segment
Hm can be written as in (8). Moreover, H satisfies the following regularity conditions.

R1: For each event eq contained in the covering segment C(p,m), the following hold for some j ≤ m and
variable v: eq = ie(q, j), q ∈ CW j

v, cp(q) = p, and ce(p, j) is a write to v (i.e., p ∈ AW j
v). (Note that

q ∈ CW j
v implies that ie(q, j) is an invocation event on v.)

R2: For each p ∈ Actm(H) and j ≤ m, if ce(p, j) is a write to some variable v, and if CW j
v is nonempty,

then there is exactly one invocation event on v in C(p,m), which must be ie(q, j) for some q ∈ CW j
v.

R3: H does not contain CSp for any process p.

R4: Assume that, for some segment index m (1 ≤ m ≤ mH) and process p ∈ Actm(H), ce(p,m) is a write
to some variable v (i.e., p ∈ AW m

v) and CW m
v is empty. (Note that, by (8), p ∈ Actm(H) implies

that Hm contains S(p,m), and hence, ce(p,m).) Then, for each segment index j and each process
q ∈ Actj(H) different from p, the following hold:

(i) if j < m and ce(q, j) is a write to v, then CW j
v is nonempty (i.e., q’s write to v is covered);

(ii) if j < m and ce(q, j) is a read of v, then q ∈ Cvrm(H) holds;
(iii) if m ≤ j ≤ mH , then ce(q, j) does not access v. �

Conditions R1 and R2 formally describe the structure of C(p,m). Condition R3 is self-explanatory. We
now explain Condition R4, which formalizes the requirement stated in Property A. Informally, if a process
p executes an “uncovered” critical write of v in segment Hm, then we require that p be the only uncovered
writer of v throughout H. (Conditions (i) and (iii) of R4 imply that all other critical writes to v are covered.)
In this case, we say that p is the single writer of v in H. The situation is depicted in Figure 9.

To see why this is necessary, assume that R4 is violated and H contains two uncovered writers of v, p and
q. If yet another process r reads v in a future induction step, then erasing p does not eliminate information
flow, because then r would read a value written by q instead. Thus, it becomes difficult to apply the erasing
strategy without erasing too many processes. Condition R4 prevents such a case and simplifies bookkeeping.

18

. .
 .

Cvr3(H)

H2

Act3(H)

. . .

. . .

. . .

. .
 .

. .
 .

. . .

. . .

Cvr2(H)

. . .

H1 H2

Act2(H)

. . .

. .
 .

Hm−1

. .
 .

CWm
u : ready to write u

CWm
v : ready to write v

CWm
w : ready to write w

. .
 .

Actm−1(H)

Cvrm−1(H)

S(p, m)
p
q

S(q, m)

. . .

C(p, m) C(q, m)

Hm

Actm(H)

Cvrm(H)

ce(p, m) is a write
to v: p ∈ AWm

v

ce(q, m) is a write
to u: q ∈ AWm

u

ie(s, m)s

r
ie(r, m)

invocation events
deployed to cover
S(p, m)

. .
 .

Figure 8: The structure of a regular computation. The computation is depicted as a collection of boxes,
where the horizontal axis represents sequential order and the vertical axis represents different processes. A
grey-filled box represents a collection of solo segments, and a striped box represents a collection of covering
segments. For simplicity, segments H1, . . . , Hm−2 are shown simplified, and segments after Hm are not
shown. The set of covering processes (Cvr1(H), Cvr2(H), . . .) increases, and the set of active processes
decreases, as the segment index increases. (Note that Cvr1(H) is shown to be empty, since no processes are
selected for covering in the first induction step — each process p merely executes Enterp.) We assume that
the covering strategy is used at the mth induction step. Thus, a number of processes (specifically, those in
Cvrm(H) − Cvrm−1(H)) are stalled to cover the variables written by the mth critical events of processes
in Actm(H). Processes in Cvrm(H) − Cvrm−1(H) are partitioned into disjoints sets CW m

u , CW m
v , CW m

w ,
etc., and are ready to execute covering invocation events on the variables u, v, w, etc., respectively. (To
save space, subsets such as CW m

v are depicted with only a few processes, but in reality these sets are much
bigger.) A process p ∈ Actm(H) executes its mth solo segment S(p,m). S(p,m) is then followed by the
covering segment C(p,m), in which invocation events are executed to cover S(p,m).

We also require that no process other than p should read v after p writes v, because then such a process
would gain knowledge of p. Condition (iii) clearly prohibits some process q from reading v for the first time
within segment m or later. Now, consider a process q �= p that reads v in some earlier segment Hk (where
k < m). By the definition of a critical event, q must execute a critical read of v in or before Hk, i.e., ce(q, j)
is a read of v for some j ≤ k < m. In this case, Condition (ii) of R4 ensures q ∈ Cvrm(H). To see why this is
necessary, assume otherwise, i.e., assume that q ∈ Actm(H) holds. In that case, Hm would contain S(q,m)
(by (8)), which may in turn contain a noncritical read of v. Thus, q may gain knowledge of p by reading v,
which is clearly unacceptable.

Finally, in order to simplify bookkeeping, we require that no process other than p should write v in or
after Hm, as stated in Condition (iii) of R4.

We can thus define a “single writer” as follows.

19

writes/reads of v by p

reads & covered
writes of v ce(p, m) writes v.

S(p, m)

H1�Hm−1 Hm Hm+1�

Figure 9: The single-writer case. We assume that p ∈ Actm(H), ce(p,m) is a write to v (i.e., p ∈ AW m
v),

and that CW m
v is empty. Segments H1, H2, . . . , Hm−1 may contain reads and covered writes of v. In

segment Hm and later segments, p is the only process that may access v.

Definition: Given a regular computation H and a variable v, we say that a process p is the single writer
of v if p ∈ AW m

v (H) and CW m
v (H) = {} hold for some m. �

It is easy to see that if a single writer exists, then it is uniquely defined. Assume, to the contrary, that we
have two “single writers” p and q of v. Then, for some m and j, p ∈ AW m

v , q ∈ AW j
v, and CW m

v = CW j
v = {}

hold. Without loss of generality, assume m ≤ j. By (9), we have the following: p ∈ Actm(H), q ∈ Actj(H),
ce(p,m) writes v, and ce(q, j) writes v. But this contradicts R4(iii).

Properties of a regular computation. We now define some additional properties of a regular compu-
tation that are used in our proof. In order to guarantee that the induction can continue, we need to ensure
that there are enough covering processes for each covered variable and for each process writing that variable.
Consider a process p ∈ AW m

v . If p’s write to v is covered (i.e., CW m
v is nonempty), then we need to deploy

a process from CW m
v to cover each of S(p,m), S(p,m+1), and so on. Since the induction continues until we

construct Θ(log N/ log log N) segments, we may need up to Θ(log N/ log log N) covering processes in CW m
v

in order to cover p.10 Therefore, we need |AW m
v | · Θ(log N/ log log N) processes in CW m

v to ensure that we
do not run out of covering processes during the induction.

To simplify bookkeeping, we assume the existence of some positive integer value c = c(N), satisfying

c = Θ(log N), (11)

and require that CW m
v has at least c · |AW m

v | processes. (The exact value of c is unimportant, since we are
interested in an asymptotic lower bound. Throughout our proof, we assume the existence of a fixed one-shot
mutual exclusion system, and hence we consider c as a fixed constant.)

Unfortunately, this bound on |CW m
v | is still insufficient, since processes in CW m

v may also be erased
in induction steps beyond the mth. (See Figure 7 for an example.) Thus, we actually need to ensure that
c · |AW m

v | covering processes survive even after some such processes are erased in future induction steps. As
explained in detail later, we ensure that, on the average, each induction step erases at most c processes from
CW m

v . Thus, at the mth step, we select c · (c − m) additional processes for covering, since we have at most
c − m induction steps beyond the mth.

It follows that we need to select at least c · (|AW m
v | + c − m) covering processes for CW m

v , at the mth

induction step. Since H has taken a total of mH induction steps to construct, c·(mH−m) processes may have
already been erased from CW m

v (c processes for each step between (m+1)st and mH
th). Therefore, we define

req(m, v;H), the required number of covering processes for AW m
v (H), as c·(|AW m

v (H)|+c−m)−c·(mH−m):

req(m, v;H) = c · (|AW m
v (H)| + c − mH). (12)

10If p is not active at the end of H (i.e., p /∈ Act(H)), or if p becomes a covering process at some future induction step, then
p requires fewer covering processes throughout the induction, since it has fewer solo segments in H or its extensions.

20

To capture the notion of how “deficient” a computation is of covering processes, we use the notion of a
“rank,” defined next. Consider a fixed regular computation H. For each pair (m, v), where 1 ≤ m ≤ mH

and v ∈ V , we define its rank π(m, v;H) as follows:

π(m, v;H) =
{

max{0, req(m, v;H) − |CW m
v (H)|}, if AW m

v (H) �= {} ∧ CW m
v (H) �= {};

0, otherwise. (13)

When there is no possibility of confusion, we use req(m, v) and π(m, v) as shorthands for req(m, v;H)
and π(m, v;H). Note that π(m, v) is always nonnegative.

We also say that a pair (m, v) of a segment index and a variable, where 1 ≤ m ≤ mH and v ∈ V , is a
covering pair if both AW m

v and CW m
v are nonempty. Thus, π(m, v) is nonzero only if (m, v) is a covering

pair. We also define the maximum rank πmax(H) and the total rank π(H) of a regular computation H to
be the maximum and the sum of its ranks:

πmax(H) = max
1≤m≤mH , v∈V

π(m, v;H); (14)

π(H) =
∑

1≤m≤mH , v∈V

π(m, v;H)

=
∑

(m,v): covering pair in H

π(m, v;H).
(15)

Informally, a zero rank indicates that we have enough processes in CW m
v to cover AW m

v throughout the
rest of the induction, while a positive rank indicates that CW m

v is not large enough. We ensure that each
induction step results in a regular computation H with a maximum rank of zero (i.e., π(m, v;H) is zero
for all m and v). Within a single induction step, however, we may obtain intermediate computations with
positive maximum ranks; if π(m, v) becomes too high (for some m and v), then we erase some processes in
AW m

v to decrease req(m, v) and π(m, v).

The following lemma ensures that a regular computation with a “low” maximum rank has “enough”
reserve writers, for each covering pair.

Lemma 1 Consider a regular computation H in C with induction number mH . Assume the following:

• mH ≤ c − 2, and (16)
• πmax(H) ≤ c. (17)

Then, for each covering pair (j, w) of H, we have

|RW j
w| > |AW j

w|.
Proof: For each covering pair (j, w), by (17), and by the definitions of πmax and ‘req’ (given in (12)–(14)),
we have req(j, w;H) − |CW j

w| ≤ c, and hence,

|CW j
w| ≥ req(j, w;H) − c = c · (|AW j

w| + c − mH − 1) > c · |AW j
w|, (18)

where the last inequality follows from (16).

Note that, by R1 and R2, there exists a one-to-one correspondence between deployed processes in CW j
w

and covering segments C(q, k) such that k ≥ j and q ∈ AW j
w ∩ Actk(H) (see Figure 6). Thus,

|RW j
w| = |CW j

w| −
mH∑
k=j

|AW j
w ∩ Actk(H)|

≥ |CW j
w| − (mH − j + 1) · |AW j

w|
≥ |CW j

w| − mH · |AW j
w|

> (c − mH) · |AW j
w| {by (18)}

> |AW j
w|, {by (16)}

21

/∗ First, construct a regular computation H with induction number 1, in which Act(H1) = P , Cvr(H1) = {}, and
each process p ∈ P executes its first solo segment 〈Enterp〉.
Each process is indexed as a number between 1 and N , i.e., we have P = {1, 2, . . . , N}. ∗/

1: Construct H1 := S(1, 1) ◦ S(2, 1) ◦ · · · ◦ S(N, 1) (= 〈Enter1,Enter2, . . . ,EnterN 〉);
2: m := 1;
3: while (m ≤ c − 2) ∧ (|Act(Hm)| ≥ 2) do

/∗ Loop invariant: Hm is a regular computation with induction number m and maximum rank zero (i.e.,
πmax(H) = 0). ∗/

4: Construct Hm+1 := ApplySingleInductionStep(Hm);
5: m := m + 1

od

function ApplySingleInductionStep(H: regular computation): regular computation
6: m := (induction number of H);
7: n := |Act(H)|;

/∗ We may assume m ≤ c − 2, n ≥ 2, and πmax(H) = 0. ∗/
8: (F, ZAct, ZCvr) := EliminateConflict(H);

/∗ F is a regular computation with induction number m, satisfying (19) below. ∗/
8>><
>>:

πmax(F) ≤ c
Act(F) = ZAct ∪ ZCvr (disjoint union)

|ZAct| ≥ (c − 2)(n − 1)

48c2(c − 1)(2m + 1)

(19)

9: Construct E := BuildNextSegment(F, ZAct, ZCvr); /∗ Build the next (m + 1)st segment E. ∗/
10: G := F ◦ E;

/∗ G is a regular computation with induction number m + 1, such that πmax(G) = 0 and Act(G) = ZAct. ∗/
11: return G
end

Figure 10: High-level description of the lower bound construction: the main algorithm.

which completes the proof. �

4.3 Detailed Proof Overview

Due to its complexity, our lower-bound proof is sketched in Figures 10, 11, 15 and 16 as a pseudo-algorithm.
We now give a detailed account of each step involved.

Lines 1–5 comprise the “main” part of our pseudo-algorithm. Initially (lines 1 and 2), we start with a
regular computation H1 with induction number 1, in which Act(H1) = P , Cvr(H1) = {}, and each process
p ∈ P executes its first solo segment 〈Enterp〉.

We then repeatedly apply an induction step (lines 4 and 5) until the loop condition (line 3) becomes false.
Lines 4 and 5 comprise the (m+1)st induction step. Here, we consider a computation Hm = H1◦H2◦· · ·◦Hm

such that Act(Hm) consists of n processes, each of which executes m critical events. As stated before, we
also assume that Hm has a maximum rank of zero. By applying a single induction step, we erase some
processes in Hm and append a new (m + 1)st segment. As a result, we obtain a regular computation Hm+1

with a maximum rank of zero and induction number m + 1 (i.e., each process in Act(Hm+1) executes m + 1
solo segments in Hm+1). Moreover, as explained shortly (see (20) below), Act(Hm+1) consists of Ω(n/c3)
(= Ω(n/ log3 N)) processes.11

By repeating the induction step, we construct a series of regular computations H1, H2, . . . , Hm. The
induction terminates when either m = c − 1 is established or only one active process is left.12 In the

11We use log n to denote log2 n (base-2 logarithm), and use logk n to denote (log2 n)k.

22

former case, by (11), we have m = Θ(log N). In the latter case, by combining the inequality |Act(Hk+1)| =
Ω(|Act(Hk)|/ log3 N) over k = 1, 2, . . . , m − 1, and using |Act(Hm)| = 1, we can show m = Ω(log N/
log log N). Therefore, in either case, we have established m = Ω(log N/ log log N). Since each active process
in Hm executes m solo segments (and hence, m critical events) in Hm, we have our lower bound.

Each induction step, shown as function ApplySingleInductionStep, starts with a regular computation H
(with induction number m) and yields another regular computation G with induction number m + 1. This
function in turn calls the following two functions.

• Function EliminateConflict determines which process may generate conflicts if its next ((m+1)st) critical
event is appended to H, and then eliminates possible conflicts by erasing some of these processes. (A
process or event conflicts with another if information flow is possible, or if a regularity condition is
violated. These conflicts must be eliminated in order to obtain G.) As a result, we obtain a computation
F with induction number m, in which all “troublesome” processes are already erased. In addition,
EliminateConflict also determines whether each surviving active process in F should remain active or
become a covering process. The former set of processes are returned as ZAct, the latter as ZCvr.

• Function BuildNextSegment actually builds the next segment E. Since Act(G) = ZAct, by (19) (given
at line 8), we have |Act(G)| ≥ [

(c − 2)(n − 1)
]
/
[
48c2(c − 1)(2m + 1)

]
. Combined with m ≤ c − 2 and

n ≥ 2 (and hence n − 1 = Θ(n)), this in turn implies

|Act(G)| = Ω(n/c3), (20)

as claimed before.

We now describe function EliminateConflict (Figure 11), which constitutes the centerpiece of our proof
and is formally described in Lemma 8 in Appendix B. We are given a regular computation H with induction
number m, in which n active processes participate. Since EliminateConflict is called only from line 8, we
may also assume m ≤ c − 2, n ≥ 2, and πmax(H) = 0. Our goal is to erase some (active and covering)
processes, partition the remaining active processes into ZAct and ZCvr, and yield a regular computation F
which satisfies (19). Towards this goal, EliminateConflict executes the following four steps.

Step 1: choosing readers or writers. Every process in Act(H) has executed its first m solo segments,
and hence is ready to execute its (m+1)st. For each p ∈ Act(H), we define its “next” critical event, denoted
ep, to be ce(p,m + 1), the event p is ready to execute after H.

By the Exclusion property, it follows that at most one process p in Act(H) may execute CSp after H.
Consider the remaining n − 1 active processes (or all n active processes, if there exists no such process).
They can be partitioned into two subsets (one of which may be empty): the set of readers, which have a
next critical event that is a read, and the set of writers, which have a next critical event that is a write. We
define Y to be the larger of the two (line 14), and erase all other active processes (line 15). Clearly, we have
|Y | ≥ (n− 1)/2 (see Figure 12). Although erasing up to half of the active processes is not strictly necessary,
this greatly reduces the amount of bookkeeping required in later steps.

When we erase an active process p, we erase all of its solo segments S(p, j) (for 1 ≤ j ≤ m), as well
as its covering segments C(p, j). (Recall that p’s covering segment consists of invocation events by other
processes, which are deployed to cover writes by p. See (8) and Figure 8.) Thus, processes that are deployed
to cover p’s solo segments are turned into reserve processes. Also note that, by definition, erasing an active
process may never increase the maximum rank, and hence we have πmax(H ′) = 0. (This is formally proved
in Lemma 5 in Appendix B; the formal definition of the “erasing operator” erasep, used in Lemma 5, is given
right after Lemma 2.)

12In Appendix B, we actually terminate the induction if fewer than seven active processes are left (condition (133) of Lemma 8).
This allows us to eliminate certain boundary cases; in particular, it is easier to show that we do not accidently erase all active
processes. (See footnote 17.) Clearly, this does not affect our asymptotic lower bound.

23

function EliminateConflict(H: regular computation):
(regular computation, set of processes, set of processes) /∗ Lemma 8 ∗/

/∗ This function eliminates conflicts by erasing some processes.
We examine the next solo segment S(p, m + 1) for each p ∈ Act(H), in order to identify any conflict (information
flow) that may arise should we append S(p, m + 1) to H.
We then erase some active and covering processes in order to eliminate all such conflicts. The resulting computation
F also has induction number m (i.e., the next solo segments are not yet appended); Act(F) is partitioned into
two disjoint sets, ZAct and ZCvr. ZAct (ZCvr) will be the set of active (covering) processes in G, constructed in
line 10. ∗/

12: m := (induction number of H);
13: n := |Act(H)|;

/∗ We may assume m ≤ c − 2, n ≥ 2, and πmax(H) = 0. ∗/
/∗ Step 1. Among the active processes, choose the larger of either the “readers” or the “writers,” and erase the

rest — see Figure 12. ∗/
14: For each p ∈ Act(H), let ep be its next critical event, ce(p, m + 1);

By the Exclusion Property, there exists at most one process p such that ep = CSp;
Choose a set Y ⊆ Act(H) satifying the following:

8<
:

ep �= CSp, for all p ∈ Y
|Y | ≥ (n − 1)/2`∀p : p ∈ Y :: ep is a read event

´ ∨ `∀p : p ∈ Y :: ep is an atomic write event
´
;

15: Erase all processes in Act(H) − Y , and denote the resulting computation as H ′;
/∗ H ′ is a regular computation such that Act(H ′) = Y and πmax(H

′) = 0. ∗/
/∗ Step 2 (Chain Erasing). Eliminate conflicts between Y and Cvr(H ′) (= Cvr(H)), while maintaining the

invariant (maximum rank < c). ∗/
16: Construct a conflict map K: Y → P (H ′) ∪ {⊥}, as follows:

For each p ∈ Y , let vce(p) be the variable accessed by p’s next critical event ep;
If vce(p) has a single writer (see Figure 9) q in H ′, and if q �= p, then let K(p) = q; otherwise, let K(p) = ⊥;

17: Define CE := {K(p): p ∈ Y ∧ K(p) ∈ Cvr(H ′)};
18: Construct H ′′ := ChainErase(H ′,CE); /∗ Apply chain erasing (Lemma 7). ∗/
19: Define Y ′ := Act(H ′′);

/∗ H ′′ is a regular computation with induction number m, such that πmax(H
′′) < c, |Act(H ′′)| ≥ |Y |−|CE |/(c−1),

and P (H ′′) ∩ CE = {}. ∗/
/∗ Step 3. Eliminate conflicts between the next critical events (by processes in Y ′), and pre-existing write events

in H ′′ by processes in Y ′. ∗/
20: Construct an undirected graph G = (Y ′, EG), where each vertex is a process in Y ′, as follows: for each process p

in Y ′, we introduce edge {p, K(p)} if K(p) ∈ Y ′ holds;
21: Apply Turán’s Theorm (Theorem 2) and obtain an independent set Z ⊆ Y ′;

/∗ We have |Z| ≥ |Y ′|/3 and p �= K(q), for all p and q in Z. ∗/

Figure 11: High-level description of the lower bound construction: eliminating conflicts. (Continued on the
next page.)

Construction of the conflict map K. The next critical events by processes in Y may generate con-
flicts, either with pre-existing events in H ′ or among themselves. We can partition these conflicts into four
categories: (A) a conflict between some next critical event (by a process in Y) and a pre-existing event by
some covering process (i.e., one in Cvr(H ′)), (B) a conflict between some next critical event (by a process
in Y) and a pre-existing write event by some process in Y , (C) a conflict between some next critical write
event (by a process in Y) and some pre-existing read event by a process in Y ,13 and (D) conflicts among
the next critical events. Steps 2 and 3 eliminate conflicts of types A and B, respectively; Step 4 eliminates
both types C and D.

13At first sight, it may seem unclear why a write following a read should be considered a conflict. However, this violates
Condition R4(ii), as discussed earlier.

24

/∗ Step 4. Eliminate all remaining conflicts. ∗/
22: Group processes in Z depending on the variables accessed by their next critical events;

For each v ∈ V , define Zv to be the set of processes in Z that access v in their next critical events:

Zv = {p ∈ Z: vce(p) = v};
23: Define VHC, the set of variables that experience “high contention” (i.e., those that are accessed by “sufficiently

many” next critical events), and VLC, the set of variables that experience “low contention,” as

VHC = {v ∈ V : |Zv| ≥ 4c2}, and
VLC = {v ∈ V : 0 < |Zv| < 4c2};

Similarly, define PHC and PLC, the set of processes that experience “high contention” and “low contention,”
respectively, as

PHC =
S

v∈VHC
Zv = {p ∈ Z: ep accesses some variable in VHC}, and

PLC =
S

v∈VLC
Zv = {p ∈ Z: ep accesses some variable in VLC};

24: if (all next critical events by Z are reads) then
/∗ Note that, by Step 1 above, either all next critical events by Z are reads, or they are all writes. ∗/

/∗ Case 1: readers only. ∗/
25: Define ZAct := Z and ZCvr := {}
26: elseif (|PHC| < |Z|/2) then

/∗ Case 2: erasing strategy. ∗/
27: Construct a subset X of PLC that contains exactly one process from each Zv (for each v ∈ VLC);
28: Construct an undirected graph H = (X, EH), where each vertex is a process in X, as follows: for each pair

{p, q} of different processes in X, we introduce edge {p, q} if p reads vce(q) in H ′′ (see Figure 14);
/∗ The average degree of X is at most 2m. ∗/

29: Apply Turán’s Theorem (Theorem 2) and obtain an independent set X ′ such that |X ′| ≥ |X|/(2m + 1);
30: Define ZAct := X ′ and ZCvr := {}

else

/∗ Case 3: covering strategy; ∗/
31: For each v ∈ VHC, choose exactly

¨|Zv|/c2
˝ − 1 processes and insert them into ZAct; insert the rest into ZCvr

fi

32: Erase all processes in Y ′ − (ZAct ∪ ZCvr) from H ′′, and denote the resulting computation as F ;
/∗ F is a regular computation with induction number m, satisfying (19) (see line 8). ∗/

33: return (F, ZAct, ZCvr)
end

Figure 11: High-level description of the lower bound construction: eliminating conflicts, continued.

We begin by considering conflicts of types A and B together. In order to determine “who conflicts with
whom,” we define a “conflict mapping” K, defined over Y (line 16). For each p ∈ Y , we define K(p) = q
if p’s next critical event ep accesses variable v, and if q (�= p) is the single writer of v in H (as depicted in
Figure 9). (If H has no single writer of v, then we define K(p) = ⊥.) If K(p) = q, then we must erase either
p or q, because appending p’s next solo segment without erasing q would violate R4.

Step 2: the chain erasing. In order to eliminate type-A conflicts, we define CE , the “Covering processes
to be Erased,” as {K(p): p ∈ Y and K(p) ∈ Cvr(H ′)} (line 17). We then apply the chain erasing procedure
(line 18), described in detail later, in order to erase processes in CE . Erasing covering processes (in CE) is
not as simple as erasing active processes, for the following two reasons.

25

H (mH induction steps)
Cvr(H)

Act(H)
(n processes)

next solo
segments
of Act(H)

. .
 .

. .
 .

<CSp>: at most one process � erased

�writers�

�readers�

the bigger set becomes Y;
the smaller is erased

Figure 12: Construction of Y from Act(H). As in Figure 8, the grey-filled region represents a collection of
solo segment(s), and the striped region represents a collection of covering segment(s). At most one process
p in Act(H) may enter its critical section (i.e., execute CSp) after H. We partition the rest of Act(H) into
readers and writers, let Y be the larger of the two, and erase other active processes.

First, if a process q ∈ CE ∩ CW j
v (for some j and v) is already deployed to cover another process, then

we have to find some reserve process r ∈ RW j
v, and “exchange” the role of q and r, before erasing q (see

Figure 7). We also have to show that RW j
v is nonempty, so that we can choose r.

Second, we have to ensure that we do not erase “too many” covering processes, because otherwise we
may not have enough reserve processes in later induction steps. We solve this problem by ensuring that
the maximum rank remains lower than c. Towards this goal, we may have to erase some active processes,
even though they do not cause conflicts. (Recall that a large rank indicates that we may not have enough
covering processes, i.e., we may have too many active processes.)

Later in this section, we give a detailed account of the chain erasing procedure, depicted in func-
tion ChainErase (Figure 16). This function returns a computation H ′′ with maximum rank at most c− 1, in
which all processes in CE are erased (along with at most |CE |/(c− 1) active processes). We define Y ′ to be
the set of surviving active processes (line 19). Thus, we have

|Y ′| ≥ |Y | − |CE |/(c − 1). (21)

By definition (given in (12)), for each covering pair (j, v), req(j, v) is reduced by c when we later append
the new (m+1)st segment (E) at line 10. Hence, the rank π(j, v), being less than c in H ′′, is reduced to zero
after appending E. It follows that all covering pairs in H ′′ will have zero rank in the extended computation
G (line 11).

Step 3: eliminating conflicts of type B. We now consider Step 3 (lines 20 and 21). In order to
eliminate conflicts of type B, we construct a conflict graph, in which each vertex is a process in Y ′ and
each edge represents a conflict between two processes. That is, for each pair of processes p and q in Y ′, we
introduce edge {p, q} if and only if K(p) = q ∨ K(q) = p holds. Clearly, we introduce at most |Y ′| edges in
total. The construction of G is shown in Figure 13.

We now want to find an independent set Z of G, i.e., a subset of the vertices such that no edge in G is
incident to two vertices in Z. It is clear that such a set is free of conflicts of type B. Toward this goal, we
use Turán’s Theorem [33], stated below.

Theorem 2 (Turán) Let G = (V,E) be an undirected graph with vertex set V and edge set E. If the average
degree of G is d, then an independent set exists with at least �|V |/(d + 1)� vertices. �

Since G has |Y ′| vertices and at most |Y ′| edges, by applying Turán’s Theorem, we can obtain an
independent set Z ⊆ Y ′ with at least |Y ′|/3 processes. (All processes in Y ′ − Z are eventually erased in
line 32.)

26

. .
 .

Y’ : active processes
that survived the
chain erasing procedure

1
2
3
4
5

events that are in H’’
(includes m solo
segments each)

next solo segments

: processes that are erased

: processes that are saved

: �conflicts� of type B
1 2

3 4 5

. .
 .

Z: saved processes
(no conflicts of
type B)

1
2
3
4
5

�conflict graph�

Figure 13: Construction of the “conflict graph” G. For simplicity, covering processes are not shown in this
figure. In this figure, we assume K(1) = 3, K(2) = 1, K(3) /∈ Y ′, etc.

Step 4: eliminating conflicts of types C and D. The processes in Z collectively execute |Z| next
critical events. We may partition Z into Zv for each variable v, depending on the variables that are accessed
by these critical events (line 22). Among these variables, we also identify VHC, the set of “high contention”
variables, that are accessed by at least 4c2 next critical events. Similarly, we define VLC, the set of “low
contention” variables, as those that are accessed by at least one but less than 4c2 next critical events. (The
constant factor 4 is needed in the covering strategy, described shortly.) Next, we partition the processes in Z
into PHC and PLC, depending on whether their next critical events access a variable in VHC or VLC (line 23).

Because Z consists of active processes, we can erase any process in Z and preserve regularity. We now
have to eliminate conflicts of types C and D (by erasing some processes in Z), and determine which processes
remain active and which processes are selected for covering, in order to construct the new (m+1)st segment.
As explained before, these selected processes comprise subsets ZAct and ZCvr of Z, respectively. Processes
in Z − (ZAct ∪ ZCvr) (if any) are simply erased (see line 32).

Recall that, thanks to Step 1, Z consists of either all “writers” or all “readers.” We consider three cases.

Readers only. Consider a variable v that is read by the next critical event of some process p in Z. Note
that H satisfies one of the following three cases: (i) v is not written in H, (ii) all writes to v in H are
covered, or (iii) v has a single writer q in H. In the first and and the second cases, the same conditions hold
for H ′′, and hence p’s read of v does not cause information flow. In the third case, we have K(p) = q, so q is
already erased. In particular, if q ∈ Cvr(H), then q has been erased in Step 2 (a type-A conflict). If, on the
other hand, q ∈ Act(H), and if q survives Steps 1 and 2, then we have q ∈ Y ′. Hence, {p, q} = {p,K(p)} is
an edge in G, and hence p ∈ Z implies q /∈ Z (a type-B conflict; erased in Step 3).

Therefore, we can simply define ZAct = Z and ZCvr = {} (line 25). Later, in the extended computation G,
the next critical event by each process in Z reads the initial value of the variable it reads.

Erasing strategy. Assume that Z consists only of “writers,” and that PLC is larger than PHC. In this
case, we can erase PHC and retain at least half of the processes in Z. Since every variable in VLC is accessed
by at most 4c2 different next critical events, VLC contains at least |PLC|/4c2 variables. By selecting one
process for each such variable, we can create a set X of active processes, such that |X| ≥ |PLC|/4c2, in which
each next critical event accesses a distinct variable (line 27).

We want each process p ∈ X to become the single writer of vce(p). Note that H ′′ does not contain a
single writer of vce(p), as discussed above in the “readers only” case. In order to eliminate type-C conflicts,

27

. .
 .

X

1

2

3

4

5

events that are in H’’
(includes m solo
segments each)

next solo segments

: processes that are erased

: processes that are saved

: �conflicts� of type C
1 2

3 4 5

. .
 .

ZAct (= X’): saved processes
(no conflicts)

1
2
3
4
5

�conflict graph�

. . .

. . .

read v write v

read v

Figure 14: Erasing strategy. For simplicity, covering processes are not shown in this figure. In this figure,
we assume that the next critical event of process 2 writes v (i.e., vce(2) = v), and that processes 1 and 5
read v in H ′′.

we still must ensure that no active process in H ′′ reads vce(p). Toward this goal, we create another conflict
graph, as shown in Figure 14.

Since each process p in X executes m critical events in H, p may read at most m different variables. For
each variable v read by p, we introduce edge {p, q} if v = vce(q) (line 28). Since each vce(q) is distinct (by
the construction of X), we introduce at most m edges per each process in X. By applying Theorem 2 again,
we can construct a subset X ′ of X without any conflicts, such that |X ′| ≥ |X|/(2m + 1) (line 29). We then
define ZAct = X ′ and ZCvr = {} (line 30). Every process p ∈ ZAct will become the single writer of vce(p) in
the extended computation G. Note that, since |PLC| ≥ |Z|/2, we have the following:

|ZAct| = |X ′| ≥ |X ′|
2m + 1

≥ |PLC|
4c2(2m + 1)

≥ |Z|
8c2(2m + 1)

.

Covering strategy. Assume that Z consists only of “writers,” and that PHC is larger than PLC. In this
case, we first erase PLC. Every next critical event by a process in PHC writes a variable in VHC. We now
apply the covering strategy (see Figure 6) to each variable in VHC. Since each variable v ∈ VHC is written by
at least 4c2 processes in PHC, we can choose active writers (i.e., processes in ZAct) and covering writers (i.e.,
processes in ZCvr), satisfying the following: (i) the number of all active writers is Ω(|Z|/c2) (specifically, at
least |PHC|/2c2), and (ii) for each variable v ∈ VHC, the rank π(m+1, v;G) is zero, where G is the extended
computation to be constructed,

Formally, for each v ∈ VHC, assume that k(v) (≥ 4c2) processes in PHC write v. Among these processes,
we choose a(v) processes to become active writers, and the rest to become covering writers, where

a(v) =
⌊
k(v)/c2

⌋ − 1. (22)

As a result, we have the following inequalities, from which Conditions (i) and (ii) follow.

a(v) >
k(v)
c2

− 2 {by (22)}

≥ k(v)
c2

− k(v)
2c2

=
k(v)
2c2

{since k(v) ≥ 4c2}

28

|CW m+1
v | = k(v) − a(v)

≥ c2 · (a(v) + 1) − a(v) {by (22)}
= (c2 − 1) · a(v) + c2

> c · a(v) + c2 {c2 − 1 > c for c ≥ 2}
> c · (a(v) + c − mG) {mG = m + 1}
= req(m + 1, v;G) {by the definition of “req,” given in (12)}

The collection of all active writers becomes ZAct, and the collection of all covering writers becomes ZCvr.
(Hence, we have ZAct ∪ZCvr = PHC.) Note that, since all next writes are properly covered, type-C conflicts
do not arise in this case.

Analysis of EliminateConflict. As the last step of EliminateConflict, we erase all active processes not in
ZAct ∪ ZCvr (line 32), and return the resulting computation (line 33).

We now claim that F satisfies condition (19), given at line 8 of Figure 10. Since erasing active processes
cannot increase any rank, we have πmax(F) ≤ πmax(H ′′) < c. Clearly, we also have Act(F) = ZAct ∪ ZCvr.
Finally, note that we have one of the following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|ZAct| = |Z| (Readers only),

|ZAct| ≥ |Z|
8c2(2m + 1)

(Erasing strategy),

|ZAct| ≥ |Z|
4c2

(Covering strategy).

Combining this with |Y | ≥ (n − 1)/2 (see line 14), |CE | ≤ |Y | (by definition; see line 17), |Y ′| ≥ |Y | −
|CE |/(c− 1) (by (21)), and |Z| ≥ |Y ′|/3 (see line 21), the third line of (19) follows. (For a detailed analysis,
we refer the reader to Claim 2 in the proof of Lemma 8.)

Construction of the next segment. We now describe function BuildNextSegment, which is depicted in
Figure 15 and formally described in Lemma 9 in Appendix B.

During the execution of BuildNextSegment, variable E holds the partially constructed prefix of the next
segment. As defined in (8) and illustrated in Figure 8, the next segment can be constructed by alternating
next solo segments S(p,m+1) and next covering segments C(p,m+1), for each p ∈ ZAct. Each C(p,m+1)
is in turn constructed by deploying appropriate covering processes so that any write (critical or noncritical)
contained in S(p,m + 1) is properly covered (see Figure 6).

To facilitate this, BuildNextSegment uses a boolean array deployed , which indicates whether each de-
ployable process is deployed so far. The value of deployed [p] is meaningful only if p is in either Cvr(H) or
ZCvr — in the latter case, p eventually becomes a covering process in the extended computation G = H ◦E.

BuildNextSegment starts with lines 34–38, which initialize variables to be used in the following loop. For
each p ∈ ZAct, appending its next solo segment is straightforward (line 40). In order to construct its next
covering segment C(p,m+1), we first iterate over each j (1 ≤ j ≤ m) (lines 41–45) and check if the covering
strategy was used at the jth induction step (line 42).

In particular, if the condition stated at line 42 is true, then p’s jth critical event writes to v, and hence
S(p,m+1) may (noncritically) write to v. In order to cover this, we choose a reserve process q from RW j

v(H)
and deploy it (lines 43–45). (On the other hand, if CW j

v(H) is empty, then p is the single writer of v, and
hence no covering is necessary.)

We now claim that we can always choose an undeployed process q at line 43. Consider a fixed covering
pair (k, u). Because BuildNextSegment is called only from line 9, we may assume m ≤ c−2 and πmax(H) ≤ c.
Hence, by Lemma 1, we have |RW k

u(H)| > |AW k
u(H)|. Also, lines 43–45 can be executed with (j, v) = (k, u)

at most |AW k
u(H)| times (to be exact, once for each p ∈ AW k

u(H)∩ZAct). Since every process in RW k
u(H)

is initially undeployed by definition, the claim follows.

29

function BuildNextSegment(H: regular computation, ZAct: set of processes, ZCvr: set of processes):
computation /∗ Lemma 9 ∗/

variables deployed: array[1..N] of boolean

34: m := (induction number of H);
/∗ We may assume m ≤ c − 2 and πmax(H) ≤ c. ∗/

35: For each p ∈ Act(H), let ep be its next critical event, ce(p, m + 1);
36: E := 〈〉;
37: for each p ∈ Cvr(H) ∪ ZCvr do
38: deployed [p] := if (p is deployed in H) then true else false

od;

39: for each p ∈ ZAct do
40: E := E ◦ S(p, m + 1); /∗ Append p’s next solo segment. ∗/
41: for j := 1 to m do
42: if

`∃v : v ∈ V :: p ∈ AW j
v(H) ∧ CW j

v(H) �= {}´
then

/∗ p’s jth critical event writes v; we deploy a reserve process from RW j
v(H) in order to cover p’s

(possible) write to v in S(p, m + 1). ∗/
43: Choose a process q such that q ∈ RW j

v(H) and deployed [q] = false;
44: E := E ◦ 〈ie(q, j)〉;
45: deployed [q] := true

fi od;

46: if (ZCvr �= {}) then
/∗ Covering strategy was selected in EliminateConflict. ∗/

47: Let v be the variable written by p;
Choose a process q such that q ∈ ZCvr, ce(q, m + 1) writes v, and deployed [q] = false;

48: E := E ◦ 〈ie(q, m + 1)〉;
49: deployed [q] := true

fi
od;

50: return E
end

Figure 15: High-level description of the lower bound construction: building the next segment.

Additionally, if the covering strategy (line 31) was chosen at Step 4 of EliminateConflict, then we also
have to cover p’s next critical write (ep) by deploying a process from ZCvr (lines 46–49). Recall that, if k(v)
(≥ 4c2) processes in ZAct ∪ ZCvr write v in their next critical events, then exactly a(v) =

⌊
k(v)/c2

⌋ − 1 of
them belong to ZAct (see (22)). Hence, among these k(v) processes, more processes belong to ZCvr than to
ZAct. Therefore, we can always choose an undeployed process q at line 47.

Finally, we can examine all necessary conditions and verify that H ◦ E is indeed a regular computation
with induction number m + 1 and maximum rank zero. The detailed argument, formally presented in
Lemma 9, is rather mechanical and is omitted here.

Detailed analysis of the chain erasing procedure. We now describe function ChainErase, which is
depicted in Figure 16 and formally described in Lemma 7. The objective of this function is to erase each
process in CE by iteration, while preserving the loop invariant πmax(F) < c. (Variable F holds the in-
termediate computation.) An example execution is illustrated in Figure 17. Initially, since ChainErase is
called only from line 18, F has induction number mF = mH′ ≤ c − 2 and maximum rank of zero. For each
p ∈ CE , we execute lines 53–65: unless p is already erased as a side effect of earlier iterations, we first erase
p (lines 54–58), and then apply the “chain erasing” strategy in order to ensure πmax(F) < c (lines 59–65).

We now examine lines 54–65 in detail. Since p is a covering process, p ∈ CW j
v(F) holds for some covering

pair (j, v) (i.e., p was selected to cover v at the jth induction step). If p is not yet deployed in F (i.e.,
p ∈ RW j

v(F)), then we can safely erase p and obtain a regular computation (line 58). On the other hand, if

30

function ChainErase(H ′: regular computation, CE : set of processes):
regular computation /∗ Lemma 7 ∗/
/∗ We may assume CE ⊆ Cvr(H ′), πmax(H

′) = 0, and mH′ ≤ c − 2. ∗/
51: F := H ′;
52: for each p ∈ CE do

/∗ Loop invariant: πmax(F) < c. ∗/
53: if p ∈ P (F) then /∗ Is p not yet erased? ∗/
54: j := ci(p); v := cv(p); /∗ p ∈ CW j

v(F) holds. ∗/
55: if (p /∈ RW j

v(F)) then /∗ Is p deployed in F? ∗/
56: Choose a process q ∈ RW j

v(F);
57: Exchange p and q from F ; let the resulting computation be F

fi;
58: Erase p from F ; let the resulting computation be F ;

59: while πmax(F) = c do
60: There exists exactly one covering pair (j, v) satisfying π(j, v; F) = c; choose a process r from AW j

v(F);
61: if (r is a deployed covering process in F) then

62: k := ci(r); u := cv(r); /∗ r ∈ CW k
u(F) holds. ∗/

63: Choose a process q ∈ RW k
u(F);

64: Exchange r and q from F ; let the resulting computation be F
fi;

65: Erase r from F ; let the resulting computation be F .
od fi od;

66: return F
end

Figure 16: The chain erasing procedure.

p is already deployed in F to cover another process, then we must first find some reserve process q ∈ RW j
v(F),

and “exchange” the roles of p and q (lines 56 and 57), before we can erase p at line 58. (See Figure 7; this
“exchange and erase” strategy is formally described in Lemma 6.)

As shown shortly, πmax(F) < c is always true at lines 56–58. Hence, by Lemma 1, we have |RW j
v(F)| >

|AW j
v(F)| ≥ 0. It follows that we can always find an (undeployed) reserve process q at line 56.

Although we can erase p and preserve regularity, erasing p reduces |CW j
v| by one and hence may increase

π(j, v). If π(j, v) is increased to c, then our loop invariant is violated. Informally, a high rank is problematic
because there may not be enough reserve processes to continue further induction steps. Note that π(j, v)
satisfies the following properties, by (12) and (13).

• Erasing a process from CW j
v increases π(j, v) by at most one. (23)

• If we erase a process from AW j
v while π(j, v) = c holds, then π(j, v) = 0 is established. (24)

Lines 59–65 are executed in order to bound the value of π(j, v). We consider two cases.

• If (πmax(F) < c) ∧ (π(j, v) < c − 1) holds before line 58, then by (23), (πmax(F) < c) ∧ (π(j, v) < c)
holds after line 58. In this case, lines 60–65 need not be executed at all.

• If π(j, v) = c − 1 holds before line 58, then π(j, v) = c holds after line 58. In this case, we select some
process r from AW j

v (line 60) for erasing. If r is either an active process or a reserve process, then we
may simply erase r (line 65). Otherwise, r was selected to cover some other variable u at some kth

step (j < k ≤ mH′), and was actually deployed at some lth step (k ≤ l ≤ mH′). In this case, we again
apply the “exchange and erase” strategy (lines 62–65). (Since πmax(F) = c holds here, we can again
use Lemma 1.) In either case, by (24), line 65 establishes π(j, v) = 0.

If r was a covering process (deployed or not) before executing line 65, then erasing r may in turn increase
π(ci(r), cv(r)) by (23). If erasing r establishes π(ci(r), cv(r)) = c, then πmax(F) = c is again true after the

31

(a) covering pair (j, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW j
v

{1..29, 56,
s1..s70}

{30..38, 57,
s71..s140} · · · {39..46, r1, r4,

s141..s200} · · · {47..55, 58, 59,
s201..s279} · · ·

|CW j
v| 100 80 · · · 70 · · · 90 · · ·

AW j
v {r1, r2, r3} {r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·

req(j, v) 80 80 · · · 70 · · · 90 · · ·
π(j, v) 0 0 · · · 0 · · · 0 · · ·

(b) covering pair (j, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW j
v

{56, s1..s70}
(1..29 erased)

{57, s71..s140}
(30..38 erased)

· · ·
{r1, r4,

s141..s200}
(39..46 erased)

· · ·
{58, 59,

s201..s279}
(47..55 erased)

· · ·

|CW j
v| 71 71 · · · 62 · · · 81 · · ·

AW j
v {r1, r2, r3} {r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·

req(j, v) 80 80 · · · 70 · · · 90 · · ·
π(j, v) 9 9 · · · 8 · · · 9 · · ·

(c) covering pair (j, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW j
v

{s1..s70}
(56 erased)

{57, s71..s141} · · · {r1, r4, s141..s200} · · · {58, 59, s201..s279} · · ·
|CW j

v| 70 71 · · · 62 · · · 81 · · ·
AW j

v {r1, r2, r3} {r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·
req(j, v) 80 80 · · · 70 · · · 90 · · ·
π(j, v) 10 9 · · · 8 · · · 9 · · ·

(d) covering pair (j, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW j
v {s1..s70} {57, s71..s140} · · · {r4, s141..s200}

(r1 erased)
· · · {58, 59, s201..s279} · · ·

|CW j
v| 70 71 · · · 61 · · · 81 · · ·

AW j
v

{r2, r3}
(r1 erased)

{r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·
req(j, v) 70 80 · · · 70 · · · 90 · · ·
π(j, v) 0 9 · · · 9 · · · 9 · · ·

Figure 17: An example of chain erasing. In this figure, we assume c = 10 and mF = 5. Thus, we also have
req(j, v) = 10 · |AW j

v| + 50. We only show four covering pairs. Processes to be erased (i.e., processes in
CE) are denoted by sans serif numbers (1..59), and each other process is denoted as rj (if it belongs to some
set of active writers depicted here) or sj (otherwise). Changes are marked with boldface. We assume that
processes 1..59 are selected at line 52 sequentially. (a) Initial configuration before chain erasing starts. By
assumption, π(j, v) = 0 holds for all covering pairs. (b) After erasing processes 1..55. No chain erasing is
necessary so far. (c) After erasing 56 (line 58), we have π(2, w) = 10 = c. Thus, we find πmax(F) = c at
line 59. Some process must be erased from AW 2

w. (d) We choose process r1 at line 60, and erase it to reduce
π(2, w) to zero (line 65). This in turn increases π(3, y) to 9, but we still maintain π(3, y) < c. Thus, we find
πmax(F) < c at line 59, so no more chain erasing is necessary. (Continued on the next page.)

execution of line 65. Thus, we execute lines 60–65 again, and erase yet another process from AW ci(r)
cv(r). The

chain erasing procedure continues in this manner as long as necessary.

Figure 17 shows two instances of chain erasing, as described above. Note that processes r1, r4, and 59
belong to multiple subsets: for example, r1 writes w in its second critical event, and is stalled before writing
y at the third induction step. (Thus, we have ci(r1) = 3 and cv(r1) = y.) Processes 1..55 can be safely erased
without violating the invariant. The chain erasing due to 56 is illustrated in insets (c) and (d); another chain
erasing due to 57 is illustrated in insets (e)–(g).

32

(e) covering pair (j, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW j
v {s1..s70} {s71..s140}

(57 erased)
· · · {r4, s141..s200} · · · {58, 59, s201..s279} · · ·

|CW j
v| 70 70 · · · 61 · · · 81 · · ·

AW j
v {r2, r3} {r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·

req(j, v) 70 80 · · · 70 · · · 90 · · ·
π(j, v) 0 10 · · · 9 · · · 9 · · ·

(f) covering pair (j, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW j
v {s1..s70} {s71..s140} · · · {s141..s200}

(r4 erased)
· · · {58, s201..s279}

(59 erased)
· · ·

|CW j
v| 70 70 · · · 60 · · · 80 · · ·

AW j
v {r2, r3} {r5, r6}

(r4 erased)
· · · {r7}

(59 erased)
· · · {r8, r9, r10, r11} · · ·

req(j, v) 70 70 · · · 60 · · · 90 · · ·
π(j, v) 0 0 · · · 0 · · · 10 · · ·

(g) covering pair (j, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·
CW j

v {s1..s70} {s71..s140} · · · {s141..s200} · · · {58, s201..s279} · · ·
|CW j

v| 70 70 · · · 60 · · · 80 · · ·
AW j

v {r2, r3} {r5, r6} · · · {r7} · · · {r9, r10, r11}
(r8 erased)

· · ·
req(j, v) 70 70 · · · 60 · · · 80 · · ·
π(j, v) 0 0 · · · 0 · · · 0 · · ·

(h) covering pair (j, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW j
v {s1..s70} {s71..s140} · · · {s141..s200} · · · {s201..s279}

(58 erased)
· · ·

|CW j
v| 70 70 · · · 60 · · · 79 · · ·

AW j
v {r2, r3} {r5, r6} · · · {r7} · · · {r9, r10, r11} · · ·

req(j, v) 70 70 · · · 60 · · · 80 · · ·
π(j, v) 0 0 · · · 0 · · · 1 · · ·

Figure 17: An example of chain erasing, continued. (e) After erasing 57 (line 58), we have π(2, x) = c, and
hence some process must be erased from AW 2

x. (f) We erase r4 to reduce π(2, x) to zero (line 65), which in
turn establishes π(3, y) = c. Hence, we execute lines 60–65 again, and erase 59 to lower π(3, y). (This is an
example of a process in CE being erased at line 65.) However, this in turn establishes π(5, z) = c. (g) We
erase r8 to reduce π(5, z) to zero. Note that r8 is an active process, since r8 ∈ AW 5

z ⊆ Act5(F) = Act(F).
Thus, we have established πmax(F) < c, and the inner loop (lines 59–65) terminates. (If mF were bigger
than 5, the inner loop might further continue, as long as necessary.) (h) Finally, we assign p := 58 at line 52
and erase 58. No further chain erasing is necessary.

Note that, in some cases, erasing a process q ∈ CE results in erasing another process in Act(F), if we
choose a process r ∈ Act(F) at line 60. If such a case happens frequently, then the number of erased active
processes may approach |CE |, and we may be left with too few active processes. This is clearly undesirable.

Fortunately, we can prove that the chain erasing procedure actually erases at most |CE |/(c − 1) active
processes. In order to show this, we first need the following two observations.

• Erasing a process q in CE may increase the total rank π(F) by at most one. (25)
• Erasing a process r not in CE decreases π(F) by at least c − 1. (26)

33

In order to prove (25), consider a covering pair (k, u). By definition, erasing q may change π(k, u) only if
either q ∈ AW k

u or q ∈ CW k
u holds. If q ∈ AW k

u holds, then by (12), req(k, u) is decreased by c, and hence
π(k, u) cannot increase. On the other hand, if q ∈ CW k

u holds, then by (13), π(k, u) may increase by at
most one. Since q ∈ CW k

u holds for at most one covering pair (k, u) (namely, (ci(q), cv(q))), it follows that
erasing q may increase π(F) by at most one.

We now prove (26). Note that a process r /∈ CE may be erased only at line 65. In this case, we have
r ∈ AW j

v and π(j, v) = c, and by (24), π(j, v) is reduced to zero. (For example, in Figure 17(d), erasing r1

from AW (2, w) reduces π(2, w) from c = 10 to 0.) Thus, by erasing r, the rank of each covering pair (l, w)
is changed as follows:

(i) if (l, w) = (j, v), then π(l, w) decreases by c;

(ii) otherwise, if r ∈ AW l
w, then by (12) and (13), π(l, w) cannot increase;

(iii) otherwise, if r ∈ CW l
w, then by (13), π(l, w) increases by at most one;

(iv) otherwise, π(l, w) does not change.

Since r ∈ CW l
w holds for at most one covering pair (l, w), Case (iii) may apply to at most one covering

pair. By definition (given in (15)), π(F) is the sum of the ranks of all covering pairs. Therefore, by summing
over Cases (i)–(iv), we have (26).

By (25), it follows that π(F), being initially zero, increases by at most |CE | throughout the execution of
ChainErase. Since π(F) is always nonnegative by definition, by (26), processes not in CE may be erased at
most |CE |/(c− 1) times. Since CE ⊆ Cvr(H ′) (line 17), it follows that we erase at most |CE |/(c− 1) active
processes in total.

The argument explained so far (and proved formally in Appendix B) establishes the following theorem.

Theorem 3 For any one-shot mutual exclusion system S = (C, P, V), there exist a p-computation F such
that F does not contain CSp, and p executes Ω(log N/ log log N) critical events in F , where N = |P |. �

5 Concluding Remarks

We have presented a nonatomic local-spin mutual exclusion algorithm with Θ(log N) worst-case RMR time
complexity, which matches that of the best atomic algorithm proposed to date. We have also shown that
for any N -process nonatomic algorithm, there exists a single-process execution in which the lone competing
process accesses Ω(log N/ log log N) distinct variables in order to enter its critical section. These bounds
show that fast and adaptive algorithms are impossible if variable accesses are nonatomic, even if caching
techniques are used to avoid accessing the processors-to-memory interconnection network.

Our work suggests several avenues for further research. The most obvious is to close the gap between
our Θ(log N) algorithm and our Ω(log N/ log log N) lower bound. We conjecture that Ω(log N) is a tight
lower bound on the number of distinct variables remotely accessed, even when restricting attention to single-
process executions. Another interesting question arises from our lower-bound proof. This proof hinges on
the ability to “stall” nonatomic writes for arbitrarily long intervals. This gives rise to the following question:
Is it possible to devise a nonatomic algorithm that is fast or adaptive if each write is guaranteed to complete
within some bound ∆? We hope to resolve this question in future work.

Acknowledgement: We are grateful to the anonymous referees for their helpful suggestions concerning an
earlier draft of this paper.

34

References

[1] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming made adaptive. In
Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, pages 91–
103. ACM, May 1999.

[2] Y. Afek, P. Boxer, and D. Touitou. Bounds on the shared memory requirements for long-lived and
adaptive objects. In Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing, pages 81–89. ACM, July 2000.

[3] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive collect with applications. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science, pages 262–272. IEEE, October 1999.

[4] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive splitter and applications. Distributed Comput-
ing, 15(2):67–86, 2002.

[5] R. Alur and G. Taubenfeld. Contention-free complexity of shared memory algorithms. Information and
Computation, 126(1):62–73, April 1996.

[6] J. Anderson. A fine-grained solution to the mutual exclusion problem. Acta Informatica, 30(3):249–265,
May 1993.

[7] J. Anderson and M. Gouda. Atomic semantics of nonatomic programs. Information Processing Letters,
28(2):99–103, June 1988.

[8] J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning. In Proceedings of the 14th
International Symposium on Distributed Computing, pages 29–43. Lecture Notes in Computer Science
1914, Springer-Verlag, October 2000.

[9] J. Anderson and Y.-J. Kim. A new fast-path mechanism for mutual exclusion. Distributed Computing,
14(1):17–29, January 2001.

[10] J. Anderson and Y.-J. Kim. Nonatomic mutual exclusion with local spinning. In Proceedings of the 21st
Annual ACM Symposium on Principles of Distributed Computing, pages 3–12. ACM, July 2002.

[11] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of mutual exclusion.
Distributed Computing, 15(4):221–253, December 2003.

[12] J. Anderson and J.-H. Yang. Time/contention tradeoffs for multiprocessor synchronization. Information
and Computation, 124(1):68–84, January 1996.

[13] T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 1(1):6–16, January 1990.

[14] H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusion. In Proceedings of the 19th Annual
ACM Symposium on Principles of Distributed Computing, pages 91–100. ACM, July 2000.

[15] J. Burns and N. Lynch. Mutual exclusion using indivisible reads and writes. In Proceedings of the 18th
Annual Allerton Conference on Communication, Control, and Computing, pages 833–842, 1980.

[16] M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem. Distributed Computing,
8(1):1–17, 1994.

[17] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiprocessors. IEEE
Computer, 23:60–69, June 1990.

[18] S. Haldar and P. Subramanian. Space-optimum conflict-free construction of 1-writer 1-reader multival-
ued atomic variable. In Proceedings of the Eighth International Workshop on Distributed Algorithms,
pages 116–129. Lecture Notes in Computer Science 857, Springer-Verlag, 1994.

35

[19] S. Haldar and K. Vidyasankar. Constructing 1-writer multireader multivalued atomic variables from
regular variables. Journal of the ACM, 42(1):186–203, 1995.

[20] J. Kessels. Arbitration without common modifiable variables. Acta Informatica, 17:135–141, 1982.

[21] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. In Proceedings of
the 15th International Symposium on Distributed Computing, pages 1–15. Lecture Notes in Computer
Science 2180, Springer-Verlag, October 2001.

[22] L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Communications of the
ACM, 17(8):453–455, August 1974.

[23] L. Lamport. The mutual exclusion problem: Part II - Statement and solutions. Journal of the ACM,
33(2):327–348, 1986.

[24] L. Lamport. On interprocess communication: Part II - Algorithms. Distributed Computing, 1:86–101,
1986.

[25] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer Systems, 5(1):1–11,
February 1987.

[26] L. Lamport. win and sin: Predicate transformers for concurrency. ACM Transactions on Programming
Languages and Systems, 12(3):396–428, July 1990.

[27] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memory multi-
processors. ACM Transactions on Computer Systems, 9(1):21–65, February 1991.

[28] G. Peterson and J. Burns. Concurrent reading while writing II: The multi-writer case. In Proceedings
of the 28th Annual ACM Symposium on the Foundation of Computer Science. ACM, 1987.

[29] R. Schaffer. On the correctness of atomic multi-writer registers. Technical Report MIT/LCS/TM-364,
Laboratory for Computer Science, MIT, Cambridge, 1988.

[30] A. Singh, J. Anderson, and M. Gouda. The elusive atomic register. Journal of the ACM, 41(2):311–339,
1994.

[31] E. Styer. Improving fast mutual exclusion. In Proceedings of the 11th Annual ACM Symposium on
Principles of Distributed Computing, pages 159–168. ACM, August 1992.

[32] E. Styer and G. Peterson. Tight bounds for shared memory symmetric mutual exclusion. In Proceedings
of the 8th Annual ACM Symposium on Principles of Distributed Computing, pages 177–191. ACM,
August 1989.

[33] P. Turán. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok, 48:436–452, 1941.

[34] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Computing,
9(1):51–60, August 1995.

36

Appendix A: Detailed Correctness Proof of Algorithm NA

In this appendix, we present a detailed correctness proof of Algorithm NA. To simplify the proof, we
present a recursive version of Algorithm NA, shown in Figure 18. In particular, only the root node
(lines 2–20) is presented in detail, and the details of the left and right subtrees beneath the root are hidden
in lines 1 and 21. We begin by stating several notational conventions that will be used in our proof.

We use s.p to denote the statement with label s of process p, and p.v to represent p’s private variable v.
Let S be a subset of the statement labels in process p. Then, p@S holds if and only if the program counter for
process p equals some value in S. As shown in [7], a nonatomic algorithm can be converted into an equivalent
atomic algorithm as follows: we assume that all reads execute atomically, and replace each nonatomic write
v := val (where val is an expression over private variables) by the following code fragment.14

L: flag := (a nondeterministically selected boolean value);
if flag then

v := (a nondeterministically selected value over the domain of v);
goto L

else
v := val

fi

For example, in Figure 18, if process p executes line 5 while p.rtoggle = true holds, then it may establish
one of the following three conditions: (i) R2[p] = true ∧ p@{5}, (ii) R2[p] = false ∧ p@{5}, or (iii)
R2[p] = true ∧ p@{6}. (Note that if s is a statement label, then p@{s} means that statement s of process
p is enabled, i.e., p has not yet executed s.) Lines 7, 11, and 20 also have similar properties. Note that
these four lines are the only writes of nonatomic variables in Algorithm NA, since variables T and C are
implemented using register constructions. Variables Q1 and R1 cannot be so implemented, because then
we would have writes inside the busy-waiting loops of lines 12, 13, and 15. Variables Q2 and R2 can be
implemented either way; in this proof, we assume that they are nonatomic. As a result, we assume that
each labeled sequence of statements (except lines 5, 7, 11, and 20) in Figure 18 is atomic. For example,
statement 8.p reads C[1−p.side], stores its value to p’s private variable p.rival , and establishes either p@{9}
(if C[1−p.side] �= ⊥ holds) or p@{16} (otherwise). We number statements in this way to reduce the number
of cases that must be considered in the proof. Note that each numbered sequence of statements (except
lines 1 and 21, which are considered below) reads or writes at most one shared variable.

We establish the correctness of Algorithm NA by induction on the level of the tree. That is, we prove
that if Algorithm NA is correct for an arbitration tree with l levels, then it is also correct for an arbitration
tree with l + 1 levels. By induction, we may assume that the left and the right subtrees (lines 1 and 21)
are correct mutual exclusion algorithms, and hence we may assume that lines 1 and 21 execute atomically.
Moreover, we have the following invariant.

invariant
∣∣{p :: p@{2..21} ∧ p.side = s

}∣∣ ≤ 1 (I0)

Invariant (I0) states that at most one process may execute lines 2–21 from either side at any time. Thus,
we need to consider at most two processes executing in these lines at any given state.

We now prove that each of invariants (I1)–(I16), stated below, is an invariant. Invariant (I6) establishes
the mutual exclusion property; invariants (I7)–(I16) are used to prove starvation freedom. (Many of these
invariants are adapted from [34].) For each invariant I, we prove that for any pair of consecutive states t
and u, if all invariants hold at t, then I holds at u. (It is easy to see that each invariant is initially true,
so we leave this part of the proof to the reader.) If I is an implication (which is the case for most of our
invariants), then it suffices to check only those program statements that may establish the antecedent of I,
or that may falsify the consequent if executed while the antecedent holds.

14This code transformation is purely for the ease of correctness proof; we still consider the execution of this whole code
fragment as a single RMR operation.

37

shared variables
T : 0..N − 1;
C: array[0, 1] of (0..N − 1, ⊥) initially ⊥;
Q1, Q2, R1, R2: array[0..N − 1] of boolean

private variables
qtoggle, rtoggle, temp: boolean;
rival : 0..N − 1,⊥

private constant
side = if p < N/2 then 0 else 1 fi

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: if side = 0 then
(enter the left subtree)

else
(enter the right subtree)

fi

2: C[side] := p;
3: T := p;
4: rtoggle := ¬R1[p];
5: R2[p] := rtoggle;
6: qtoggle := ¬Q1[p];
7: Q2[p] := qtoggle;
8: rival := C[1 − side];

if (rival �= ⊥ ∧
9: T = p) then
10: temp := Q2[rival];
11: Q1[rival] := temp;
12: await (Q1[p] = qtoggle) ∨
13: (R1[p] = rtoggle);
14: if T = p then
15: await R1[p] = rtoggle fi

fi;

16: Critical Section;

17: C[side] := ⊥;
18: rival := T ;

if rival �= p then
19: temp := R2[rival];
20: R1[rival] := temp

fi;

21: if side = 0 then
(exit the left subtree)

else
(exit the right subtree)

fi
od

Figure 18: Recursive version of Algorithm NA. Only lines 5, 7, 11, and 20 are executed nonatomically.

Invariant (I1) states that variable C[0] (C[1]) accurately represents the winner of the left (right) subtree.
(For the reader’s convenience, we provide several “primed” invariants that are created by exchanging s with
1 − s and p with q. Needless to say, it suffices to prove only the “unprimed” versions.)

invariant
(
C[s] = p ∧ p �= ⊥)

=
(
p@{3..17} ∧ p.side = s

)
(I1)

invariant
(
C[1 − s] = q ∧ q �= ⊥)

=
(
q@{3..17} ∧ q.side = 1 − s

)
(I1′)

Proof: The only statements that may establish or falsify either side of (I1) are 2.p and 17.p (by establishing
or falsifying p@{3..17} and by updating C[s]), and 2.q and 17.q (by updating C[s]), where q �= p is any
arbitrary process. Statement 2.p establishes both expressions, and statement 17.p falsifies both expressions.
Statements 2.q and 17.q might potentially falsify (I1) only if executed when p@{3..17} ∧ p.side = q.side = s
holds. However, this is precluded by (I0). �

Invariant (I2) states that, if two processes p and q are competing (at the root node), then variable T
holds the identity of one of them. Hence, T can be used as a tie-breaker.

invariant p@{4..20} ∧ q@{4..20} ∧ p �= q ⇒ T = p ∨ T = q (I2)

Proof: The only statements that may establish the antecedent are 3.p and 3.q, which also establish the
consequent. The only statement that may falsify the consequent is 3.r, where r is any arbitrary process
different from both p and q. However, by (I0), r@{3} and the antecedent cannot hold simultaneously. �

38

Invariant (I3) states that, if a process p has read the value of C[1−p.side] at line 8, then either p correctly
knows the identity of its rival, q (i.e., p.rival = q), or q has executed line 3 after p did (i.e., T = q). In the
latter case, ties are broken in favor of p, so p need not know the identity of q.

invariant p@{9..17} ∧ q@{4..17} ∧ p �= q ⇒ p.rival = q ∨ T = q (I3)
invariant q@{9..17} ∧ p@{4..17} ∧ p �= q ⇒ q.rival = p ∨ T = p (I3′)

Proof: The only statements that may establish the antecedent are 8.p and 3.q. Statement 8.p may establish
the antecedent only if executed when q@{4..17} holds. By (I0), p@{8} ∧ q@{4..17} implies p.side = 1−q.side,
and hence, by (I1), we have C[1− p.side] = q. Thus, in this case, 8.p also establishes p.rival = q. Statement
3.q establishes T = q.

The only statements that may falsify the consequent are 8.p, 18.p, and 3.r, where r is any arbitrary
process different from q. Statement 8.p preserves (I3) as shown above. The antecedent is false after the
execution of 18.p. By (I0), statement 3.r cannot be executed while the antecedent holds. (In particular,
r@{3} ∧ p@{9..17} implies r �= p. But by (I0), at most two processes can be at lines 2–21.) �

Recall from Section 2 that statements 4.p and 5.p seek to establish R1[p] �= R2[p], while statements
19.q and 20.q (where q is p’s rival) seek to establish R1[p] = R2[p]. (The latter condition tells p that it can
enter its critical section.) Invariant (I4) states that, if the value of R1[p] has changed after the execution of
4.p, then ties are broken in favor of p, so p can safely enter its critical section.

invariant p@{5..15} ∧ q@{4..19} ∧ R1[p] = p.rtoggle ∧ p �= q ⇒ T = q (I4)
invariant q@{5..15} ∧ p@{4..19} ∧ R1[q] = q.rtoggle ∧ p �= q ⇒ T = p (I4′)

Proof: The only statements that may falsify (I4) are 4.p (by establishing p@{5..15}, and by updating
p.rtoggle), 3.q (by establishing q@{4..19}, and by updating T), 3.r (by updating T), and 20.q and 20.r (by
updating R1[p]), where r is any arbitrary process different from q. However, statement 4.p establishes R1[p] �=
p.rtoggle, and hence falsifies the antecedent. Statement 3.q establishes the consequent. The antecedent is
false after the execution of 20.q. By (I0), statements 3.r and 20.r cannot be executed while the antecedent
holds. �

Invariant (I5) implies that, if p and q are competing, and if p executes its critical section (line 16), then
ties are indeed broken in favor of p.

invariant p@{16..20} ∧ q@{4..17} ∧ p �= q ⇒ T = q (I5)
invariant q@{16..20} ∧ p@{4..17} ∧ p �= q ⇒ T = p (I5′)

Proof: The only statements that may establish the antecedent are 8.p, 9.p, 14.p, 15.p, and 3.q. Statement
8.p may establish the antecedent only if executed when q@{4..17} holds. By (I0), p@{8} ∧ q@{4..17} implies
p.side = 1 − q.side, and hence, by (I1), we have C[1 − p.side] = q. Thus, in this case, 8.p cannot establish
p@{16..20}. Statements 9.p and 14.p may establish the antecedent only if T �= p ∧ q@{4..17} holds, which
implies T = q by (I2). Statement 15.p may establish the antecedent only if R1[p] = p.rtoggle ∧ q@{4..17}
holds, which implies T = q by (I4). Statement 3.q establishes the consequent.

The only statement that may falsify the consequent is 3.r, where r is any arbitrary process different from
q. Statement 3.r might potentially falsify (I5) only if executed when r@{3} and the antecedent hold, which
is precluded by (I0). �

invariant (Mutual Exclusion)
∣∣{p :: p@{16}}∣∣ ≤ 1 (I6)

Proof: For the sake of contradiction, assume that there are two distinct processes, p and q, such that
p@{16} ∧ q@{16} holds. By (I5) and (I5′), we then have T = q and T = p, a contradiction. �

Invariants (I7) and (I8) follow trivially from the structure of the algorithm.

39

invariant p@{6..15} ⇒ R2[p] = p.rtoggle (I7)
invariant p@{8..15} ⇒ Q2[p] = p.qtoggle (I8)

Invariant (I9) is similar to (I3); it states that, if a process p is busy-waiting in its entry section, and if its
rival q has executed statement 18.q, then q has correctly read the identity of p from T .

invariant p@{9..15} ∧ q@{19, 20} ⇒ q.rival = p (I9)

Proof: The only statements that may falsify (I9) are 8.p, 8.q, and 18.q. The antecedent is false after the
execution of 8.q. Statement 18.q may establish the antecedent only if executed when T �= q ∧ p@{9..15} ∧
q@{18} holds, which implies T = p by (I2). Thus, in this case, 18.q establishes q.rival = p.

Statement 8.p may establish the antecedent only if executed when q@{19, 20} holds. By (I0), p@{8} ∧
q@{19, 20} implies p.side = 1 − q.side.

We claim that C[q.side] = ⊥ holds in this case. Assume otherwise. Then, we have C[q.side] = r, where r
is any arbitrary process. Thus, by applying (I1) with ‘p’ ← r and ‘s’ ← q.side, we have r@{3..17} ∧ r.side =
q.side. Taken together with q@{19, 20}, we have r �= q, and hence we have a contradiction of (I0).

Therefore, we have C[q.side] = C[1− p.side] = ⊥. Thus, in this case, 8.p cannot establish p@{9..15}. �

Taken together with (I9), invariant (I10) states that statement 20.q eventually establishes R1[p] = R2[p],
which signals p to proceed to its critical section.

invariant p@{9..15} ∧ q@{20} ⇒ q.temp = R2[p] (I10)

Proof: The only statements that may establish the antecedent are 8.p and 19.q. Statement 8.p cannot
establish the antecedent as shown in the proof of (I9) above. By (I9), if 19.q establishes the antecedent, then
it also establishes the consequent.

The only statements that may falsify the consequent are 5.p, 10.q, and 19.q. The antecedent is false after
the execution of 5.p and 10.q. Statement 19.q preserves (I10) as shown above. �

Invariant (I11) states that, if p is busy-waiting in its entry section, and if R1[p] �= R2[p] holds,15 then
there exists some rival process q that is still active. Hence, q will eventually execute statement 20.q, which
establishes R1[p] = R2[p] as shown above.

invariant p@{9..15} ∧ R1[p] = ¬p.rtoggle ⇒ (∃q : q �= p :: q@{3..20}) (I11)

Proof: The only statements that may falsify (I11) are 4.p (by updating p.rtoggle), 8.p (by establishing
p@{9..15}), and 18.q and 20.q (by falsifying q@{3..20}), where q is any arbitrary process. The antecedent is
false after the execution of 4.p. Statement 8.p establishes the antecedent only if C[1− p.side] = q �= ⊥ holds
for some q, in which case the consequent holds by (I1′). Statement 18.q might potentially falsify (I11) only if
executed when p@{9..15} ∧ q@{18} holds. By (I5′), this implies T = p, and hence 18.q preserves q@{3..20}.
Statement 20.q might potentially falsify (I11) only if executed when p@{9..15} ∧ q@{20} holds. However,
in this case, 20.q either preserves q@{20} (by nonatomicity) or establishes R1[p] = p.rtoggle by (I7), (I9),
and (I10). �

Invariants (I12) and (I13) imply that, if p@{10..15} ∧ q@{11..15} holds, then one of the following holds:
(i) ties are broken in favor of q (i.e., T = p), or (if T = q) (ii) q will eventually establish (or has already
established) Q1[p] = Q2[p] by executing 11.q. (Note that the antecedent of (I12) or (I13) implies q.rival = p,
by (I3′), and Q2[p] = p.qtoggle, by (I8).) In the former case, q will enter its critical section first. In the latter
case, statement 11.q will signal p to proceed to line 14; since T = q, p will then immediately proceed to its
critical section before q does. (This description does not cover the case of (p@{15} ∧ T = q), which is dealt
with later by (I16).)

15Note that the antecedent of (I11) implies R1[p] �= R2[p], by (I7).

40

invariant p@{10..15} ∧ q@{11} ∧ p �= q ⇒ q.temp = Q2[p] ∨ T = p (I12)

Proof: The only statements that may establish the antecedent are 9.p and 10.q. Statement 9.p may establish
the antecedent only if T = p holds. Statement 10.q may establish the antecedent only if executed when
p@{10..15} ∧ q@{10} holds, in which case, by (I3′), we have q.rival = p ∨ T = p. Moreover, if q.rival = p
holds, then 10.q establishes q.temp = Q2[p].

The only statements that may falsify the consequent are 7.p (by updating Q2[p]), 10.q and 19.q (by
updating q.temp), and 3.r (by updating T), where r is any arbitrary process. The antecedent is false after
the execution of 7.p and 19.q. Statement 10.q preserves (I12) as shown above. By (I0), statement 3.r cannot
be executed while the antecedent holds. �

invariant p@{10..15} ∧ q@{12..15} ∧ p �= q ⇒ Q1[p] = p.qtoggle ∨ T = p (I13)

Proof: The only statements that may establish the antecedent are 9.p and 11.q. Statement 9.p may
establish the antecedent only if T = p holds. Statement 11.q may establish the antecedent only if executed
when p@{10..15} ∧ q@{11} holds. In this case, by (I3′), (I8), and (I12), we have q.rival = p ∨ T = p,
Q2[p] = p.qtoggle, and q.temp = Q2[p] ∨ T = p, respectively. Thus, 11.q establishes the consequent in this
case.

The only statements that may falsify the consequent are 6.p, 3.r, and 11.r, where r is any arbitrary
process. The antecedent is false after the execution of 6.p. By (I0), statement 3.r cannot be executed while
the antecedent holds. Finally, we consider 11.r. If r = p, then statement 11.r (= 11.p) cannot change Q1[p].
(Note that p.rival may only hold process identifiers from the other subtree, rather than the subtree that
contains p.) If r = q, then statement 11.r (= 11.q) preserves (I13) as shown above. If r �= p and r �= q hold,
then by (I0), 11.r cannot be executed while the antecedent holds. �

By invariant (I14), if both p and q are busy-waiting at lines 12–13, then at least one of them eventually
stops waiting.

invariant p@{12, 13} ∧ q@{12, 13} ∧ p �= q ⇒ Q1[p] = p.qtoggle ∨ Q1[q] = q.qtoggle (I14)

Proof: Since T �= p ∨ T �= q is always true, (I14) follows easily from (I13). �

Invariant (I16), given later, implies that if a process p is busy-waiting at line 15, and if ties are broken in
favor of p, then p eventually enters its critical section. The following invariant is used as an intermediate step
toward the proof of (I16); it enumerates all the possible locations in which p’s rival (q) might be executing,
together with the possible values of R1[p] and R2[p].

invariant

p@{7..15} ⇒ p@{7..13} ∧ Q1[p] = ¬p.qtoggle ∧ R1[p] = ¬p.rtoggle (D1)
∨ (∃q : q �= p :: q@{11..18}) ∧ R1[p] = ¬p.rtoggle (D2)
∨ (∃q : q �= p :: q@{19} ∧ q.rival = p

) ∧ R1[p] = ¬p.rtoggle (D3)
∨ (∃q : q �= p :: q@{20} ∧ q.rival = p ∧ q.temp = R2[p]

)
(D4)

∨ (∃q : q �= p :: q@{2, 3, 21}) ∧ R1[p] = p.rtoggle (D5)
∨ ¬(∃q : q �= p :: q@{2..21}) ∧ R1[p] = p.rtoggle (D6)
∨ p@{7..13} ∧ (∃q : q �= p :: q@{20}) ∧ Q1[p] = ¬p.qtoggle (D7)
∨ T �= p (D8)

(I15)

Proof: The only statement that may establish the antecedent is 6.p. We consider three cases. First, if
statement 6.p is executed while R1[p] = ¬p.rtoggle holds, then it establishes (D1). Second, if 6.p is executed
while T �= p holds, then (D8) is true after its execution. Third, if 6.p is executed while R1[p] = p.rtoggle ∧ T =
p holds, then by (I4), we have ¬(∃q : q �= p :: q@{4..19}), and hence, one of (D5), (D6), or q@{20} (for some

41

q) holds before and after the execution of 6.p. However, if 6.p is executed while q@{20} holds, then it
establishes (D7).

The only statements that may falsify (D1) are 4.p and 6.p (by updating p.qtoggle or p.rtoggle), 8.p,
9.p, 12.p, and 13.p (by falsifying p@{7..13}), and 11.q and 20.q (by updating Q1[p] or R1[p]), where q is
any arbitrary process. The antecedent is false after the execution of 4.p. Statement 6.p preserves (I15) as
shown above. If statement 8.p or 9.p falsifies (D1), then it also falsifies the antecedent. Statements 12.p
and 13.p cannot falsify p@{7..13} while (D1) holds. If statement 11.q is executed while (D1) holds, then it
establishes q@{11, 12}, and hence (D2) is established. Statement 20.q may falsify (D1) only if it establishes
R1[p] = p.rtoggle. Since 20.q also establishes q@{20, 21}, in this case, either (D5) or (D7) is established.

The only statements that may falsify (D2) are 4.p, 18.q, and 20.r, where r is any arbitrary process. The
antecedent is false after the execution of 4.p. If statement 18.q is executed while (D2) and the antecedent
hold, then by (I0), we have p.side = 1 − q.side, and hence by (I1′), we have C[1 − q.side] = p. Also, by
(I5′), we have T = p. Thus, in this case, 18.q establishes (D3). By (I0), 20.r cannot be executed while
p@{7..15} ∧ q@{11..18} holds.

The only statements that may falsify (D3) are 4.p (by updating p.rtoggle), 8.q and 18.q (by updating
q.rival), 19.q (by falsifying q@{19}), and 20.r (by updating R1[p]), where r is any arbitrary process. The
antecedent is false after the execution of 4.p. Statements 8.q and 18.q cannot be executed while (D3) holds.
If statement 19.q is executed while (D3) holds, then it establishes (D4). By (I0), 20.r cannot be executed
while p@{7..15} ∧ q@{19} holds.

The only statements that may falsify (D4) are 5.p (by updating R2[p]), 8.q and 18.q (by updating
q.rival), 10.q and 19.q (by updating q.temp), and 20.q (by falsifying q@{20}). The antecedent is false after
the execution of 5.p. Statements 8.q, 10.q, 18.q, and 19.q cannot be executed while (D4) holds. If statement
20.q is executed while (D4) holds, then it either preserves (D4) (by preserving q@{20}), or establishes
q@{21} ∧ R1[p] = R2[p]. In the latter case, by (I7), it also establishes (D5).

The only statements that may falsify (D5) are 4.p (by updating p.rtoggle), 3.q and 21.q (by falsifying
q@{2, 3, 21}), and 20.r (by updating R1[p]), where r is any arbitrary process. The antecedent is false after
the execution of 4.p. Statement 3.q establishes (D8). By (I0), if statement 21.q is executed while p@{7..15}
holds, then it establishes ¬(∃q : q �= p :: q@{2..21}). Thus, if statement 21.q is executed while (D5) and the
antecedent hold, then it establishes (D6). By (I0), 20.r cannot be executed while p@{7..15} ∧ q@{2, 3, 21}
holds.

The only statements that may falsify (D6) are 4.p, 1.q, and 20.q, where q is any arbitrary process different
from p. The antecedent is false after the execution of 4.p. If statement 1.q is executed while (D6) holds,
then it establishes (D5). Statement 20.q cannot be executed while (D6) holds.

The only statements that may falsify (D7) are 6.p (by updating p.qtoggle), 8.p, 9.p, 12.p, and 13.p (by
falsifying p@{7..13}), 20.q (by falsifying q@{20}), and 11.r (by updating Q1[p]), where r is any arbitrary
process. Statement 6.p preserves (I15) as shown in the first paragraph of this proof. If statement 8.p or 9.p
falsifies (D7), then it also falsifies the antecedent. Statement 12.p cannot falsify p@{7..13} while (D7) holds.
Statement 13.p may falsify (D7) only if executed while q@{20} holds. However, p@{13} ∧ q@{20} implies
q.rival = p ∧ q.temp = R2[p] by (I9) and (I10). Thus, 13.p establishes (D4) in this case.

Assume that statement 20.q is executed while (D7) holds. If 20.q establishes R1[p] = ¬p.rtoggle, then it
also establishes (D1). On the other hand, if 20.q establishes R1[p] = p.rtoggle, then it either preserves (D7)
(by maintaining q@{20}), or establishes (D5) (by establishing q@{21}). Finally, by (I0), statement 11.r can
be executed while p@{7..13} ∧ q@{20} only if r = p, in which case 11.r (= 11.p) does not change Q1[p].
(Note that p.rival may only hold process identifiers from the other subtree, rather than the subtree that
contains p.)

The only statement that may falsify (D8) is 3.p. However, the antecedent is false after its execution. �

invariant p@{15} ∧ T = q ∧ p �= q ⇒ R1[p] = p.rtoggle ∧ q@{4..15} (I16)
invariant q@{15} ∧ T = p ∧ p �= q ⇒ R1[q] = q.rtoggle ∧ p@{4..15} (I16′)

42

Proof: The only statements that may establish the antecedent are 14.p and 3.q. Statement 14.p may
establish p@{15} only if executed while T = p holds, in which case it cannot establish the antecedent.

Statement 3.q may establish the antecedent only if executed while p@{15} ∧ q@{3} holds. If 3.q is
executed while p@{15} ∧ q@{3} ∧ T = r ∧ r �= p holds, then by applying (I16) with ‘q’ ← r, we have
r@{4..15}. Thus, we have p@{15} ∧ q@{3} ∧ r@{4..15}, which is impossible by (I0). Therefore, assume that
3.q is executed while p@{15} ∧ q@{3} ∧ T = p holds. In this case, by (I15), one of disjuncts (D2)–(D5) must
be true. (Disjuncts (D1) and (D7) are precluded by p@{15}; (D6), by q@{3}; (D8), by T = p.) Moreover,
by (I0), we have ¬(∃r : r �= p :: r@{2, 4..21}), which precludes (D2)–(D4). Thus, we have disjunct (D5).
Therefore, statement 3.q establishes the consequent.

The only statements that may falsify the consequent are 4.p (by updating p.rtoggle), 8.q, 9.q, 14.q,
and 15.q (by falsifying q@{4..15}), and 20.r (by updating R1[p]), where r is any arbitrary process. The
antecedent is false after the execution of 4.p. Statement 8.q might potentially falsify (I16) only if executed
when p@{15} holds. By (I0), p@{15} ∧ q@{8} implies p.side = 1 − q.side, and hence, by (I1), we have
C[1− q.side] = p. Thus, in this case, 8.q cannot falsify q@{4..15}. Statements 9.q and 14.q cannot falsify the
consequent while the antecedent holds. Statement 15.q might potentially falsify (I16) only if executed when
p@{15} ∧ T = q ∧ R1[q] = q.rtoggle holds, which is precluded by (I4′). By (I0), statement 20.r cannot be
executed while p@{15} ∧ q@{4..15} holds. �

We now prove the following “unless” properties. (A unless B is true if the following holds: if A holds
before some statement execution, then A ∨ B holds after that execution. Informally, A is not falsified until B
is established.) Taken together, (U1)–(U4) imply the following: Assume that p@{12..15} ∧ R1[p] = p.rtoggle
holds. If q is not expected to enter its critical section before q (i.e., q@{4..15} ∧ T = p is false), then
R1[p] = p.rtoggle continues to hold, allowing p to proceed to its critical section.

p@{12..15} ∧ R1[p] = p.rtoggle ∧ (∃q : q �= p :: q@{21})
unless p@{16} ∨ ¬(∃q : q �= p :: q@{2..21}) (U1)

p@{12..15} ∧ R1[p] = p.rtoggle ∧ ¬(∃q : q �= p :: q@{2..21})
unless p@{16} ∨ (∃q : q �= p :: q@{2, 3}) (U2)

p@{12..15} ∧ R1[p] = p.rtoggle ∧ q@{2, 3}
unless p@{16} ∨ (q@{4..15} ∧ T = q) (U3)

p@{12..15} ∧ R1[p] = p.rtoggle ∧ q@{4..15} ∧ T = q
unless p@{16} (U4)

Proof: Our proof obligation is to show that, for each of (U1)–(U4), if its left-hand side is falsified, then its
right-hand side is established. The only statements that may falsify p@{12..15} are 14.p and 15.p. If they
falsify p@{12..15}, then they establish p@{16}. The only statements that may falsify R1[p] = p.rtoggle are
4.p and 20.q, where q is any arbitrary process. Statement 4.p cannot be executed while p@{12..15} holds.
By (I0), statement 20.q cannot be executed while the left-hand side of any of (U1)–(U4) holds.

For each of (U1)–(U3), it is obvious that each statement by q either preserves its left-hand side or
establishes its right-hand side. (Note that (I0) and the left-hand side of (U1) together imply ¬(∃r : r /∈
{p, q} :: r@{2..21}).

We now consider (U4). The only other statements that might potentially falsify the left-hand side are
8.q, 9.q, 14.q, 15.q, and 3.r, where r is any arbitrary process. We now claim that these statements cannot in
fact falsify the left-hand side.

If statement 8.q is executed while p@{12..15} holds, then by (I0), we have p.side = 1− q.side, and hence,
by (I1), we have C[1− q.side] = p. Thus, in this case, 8.q cannot falsify q@{4..15}. Statements 9.q and 14.q
cannot falsify q@{4..15} while T = q holds. Statement 15.q might potentially falsify the left-hand side only
if executed when R1[q] = q.rtoggle holds. However, by (I4′), the left-hand side of (U4) and R1[q] = q.rtoggle
cannot hold simultaneously. By (I0), 3.r cannot be executed while p@{12..15} ∧ q@{4..15} holds. �

43

Proof of starvation freedom. We begin by proving livelock freedom. It suffices to consider the loops
represented by the await statements at lines 12–13 and line 15. If only one process p executes one of these
loops while all other processes remain in their noncritical sections or lower in the tree, then (I11) ensures
R1[p] = p.rtoggle, and hence both loops eventually terminate.

We now consider two processes p and q, and assume p@{12, 13, 15} and q@{12, 13, 15}. We show that
either p or q eventually terminates its await statement. Without loss of generality, it suffices to consider
the following three cases.

First, assume p@{12, 13} and q@{12, 13}. By (I14), it follows that either p or q eventually terminates its
await statement.

Second, assume p@{12, 13} and q@{15}. By (I2), we have either T = p or T = q. If T = q, then by (I13),
we have Q1[p] = p.qtoggle, and hence p eventually terminates its await statement. On the other hand, if
T = p, then by (I16′), we have R1[q] = q.rtoggle, and hence q eventually terminates its await statement.

Third, assume p@{15} and q@{15}. By (I2) again, we have either T = q or T = p. Thus, by (I16) and
(I16′), we have either R1[p] = p.rtoggle or R1[q] = q.rtoggle, and hence either p or q eventually terminates
its await statement.16

It follows that Algorithm NA is livelock free. We now show that Algorithm NA is also starvation
free. For the sake of contradiction, assume that process p remains forever at lines 12–13 or 15. (That
is, p@{12, 13, 15} holds indefinitely.) Because of livelock freedom, this may happen only if other processes
repeatedly enter and exit their critical sections. Thus, eventually some process q �= p executes line 18. By
(I5′), q finds T = p at line 18, and hence it executes lines 19 and 20. Moreover, by (I7), (I9), and (I10), 20.q
eventually establishes R1[p] = p.rtoggle ∧ q@{21}, which equals the left-hand side of (U1). By applying
(U1)–(U4), it follows that R1[p] = p.rtoggle holds continuously until p@{16} is established, which contradicts
our assumption that p@{12, 13, 15} holds indefinitely. It follows that Algorithm NA is starvation free.

16In fact, with several more invariants, it can be shown that p@{15} ∧ q@{15} is impossible.

44

Appendix B: Detailed Lower-bound Proof

In this appendix, our lower-bound proof is presented in detail. First, we state some properties that directly
follow from the definition of a regular computation.

• For each m and v, AW m
v (H) and CW m

v (H) are disjoint (see Figure 6). (27)
• For each m and v, Act(H) and CW m

v (H) are disjoint. (28)
• For each m and v, Act(H) and RW m

v (H) are disjoint. (29)
• Each invocation event ep in H is the last event in H | p. (30)
• Each atomic write or read event fq in H is contained in some active segment S(q,m). (31)

We now present several lemmas. Throughout this appendix, we assume the existence of a fixed one-shot
mutual exclusion system S = (C,P, V). Lemma 2 asserts that information flow does not happen in a regular
computation.

Lemma 2 Consider a regular computation H in C, an event ep in H, and a variable v. Denote H as
F ◦ 〈ep〉 ◦ G, where F and G are subcomputations of H. If ep reads v, then the following holds:

last writer(v, F) = p ∨ last writer(v, F) = ⊥ ∨ value(v, F) = �.

Proof: Let fq = last writer event(v, F). If we have either q = p or q = ⊥, then we are done. Thus, assume
q �= p ∧ q �= ⊥. By the Atomicity property, fq is either an atomic write event of v or an invocation event
on v. If fq is an invocation event, then we have value(v, F) = �, and hence we are done.

We claim that fq cannot be an atomic write event. For the sake of contradiction, assume otherwise.
Then, by (31),

• fq is contained in solo segment S(q,m), for some m. (32)

Thus,

• ce(q, j) is a write to v, for some j ≤ m; (33)
• q ∈ AW j

v. (34)

By (32), H contains S(q,m). Thus, by (8),

q ∈ Actm(H). (35)

Since ep reads v, by (31), and from the fact that ep comes after fp in H, it follows that

• ep is contained in S(p, l), for some l ≥ m. (36)

Therefore, from the structure of H l, given in (8), we have p ∈ Actl(H), and hence, since Actl(H) ⊆
Actm(H) (by (6) and (7)), we also have

p ∈ Actm(H). (37)

Also, since ep reads v,

• ce(p, k) is a read of v, for some k ≤ l. (38)

We consider two cases. (Note that j is defined in (33).)

First, if CW j
v is nonempty, then by R2, (33), and (35), C(q,m) contains an invocation event g on v.

Thus, by (32) and (36), and since ep comes after fq, H can be written as

H = · · · ◦ S(q,m) ◦ C(q,m) ◦ · · · ◦ S(p, l) ◦ · · · ,

45

where fq, g, and ep are contained in S(q,m), C(q,m), and S(p, l), respectively. Since H = F ◦ 〈ep〉 ◦ G, F
contains S(q,m)◦C(q,m). But then F contains an event that writes v (namely, g) after fq, which contradicts
fq = last writer event(v, F).

Second, if CW j
v is empty, then by (34), (38), and applying R4 with ‘p’ ← q, ‘m’ ← j, and ‘j’ ← k, we have

p ∈ Cvrj(H). Since j ≤ m (by (33)), we also have Cvrj(H) ⊆ Cvrm(H) (by (6)), and hence p ∈ Cvrm(H).
However, since Cvrm(H) and Actm(H) are disjoint (by (7)), we have a contradiction of (37). �

We now define two “operators” on regular computations, which are used to implement the erasing strategy.
Informally, the operator erasep erases all events by p from a regular computation. Toward this goal, we erase
all active segments S(p,m) (for each m), and also erase the corresponding covering segments C(p,m), since
they are no longer needed. (Thus, deployed processes that execute their invocation events in C(p,m) now
become reserve processes.) This operation is allowed only if p is either an active process or a reserve process.
Otherwise, p is deployed to cover the write of some variable v by some process r, and hence we cannot apply
erasep directly, since that may cause r’s write to v to be “uncovered” and create information flow. In that
case, we first apply operator exchangepq. Informally, exchangepq is an operator that exchanges the role of
a deployed process p and a reserve process q, if both belong to the same set CW m

v (see Figure 7). Thus,
p becomes a reserve process in exchangepq(H), and hence can be safely erased by applying erasep. (This
“erase after exchange” strategy is formally described in Lemma 6, given later in this section.)

Definition: Consider a regular computation H in C and a process p. Assume that either p ∈ Act(H) or
p ∈ RW m

v (H) holds for some m and v. If p ∈ Act(H), then H contains solo segment S(p, j) and covering
segment C(p, j) for each segment index j (1 ≤ j ≤ mH). On the other hand, if p ∈ RW m

v (H) holds, then
H contains solo segment S(p, j) and covering segment C(p, j) for each segment index j (1 ≤ j < m). (See
Figure 8; formally, this property follows from (4), (6), (7), (8), (10).)

We define erasep(H) to be the computation where these segments are erased, i.e., erasep(H) = H −
(S(p, 1) ◦ C(p, 1)) − (S(p, 2) ◦ C(p, 2)) − · · · − (S(p,m′) ◦ C(p,m′)), where m′ is defined to be mH (if p is
active) or m − 1 (if p ∈ RW m

v (H) holds). �

Definition: Consider a regular computation H in C, and two processes p and q. Assume that {p, q} ⊆
CW m

v (H), and that p is deployed to cover some solo segment S(r,m′) while q is not deployed in H (i.e.,
q ∈ RW m

v (H)). Thus, we can write H as F ◦ 〈ie(p,m)〉 ◦ G, where ie(p,m) is the invocation event by p on
v, contained in the covering segment C(r,m′).

We define the exchange operator exchangepq to be the computation obtained by replacing ie(p,m) with
ie(q,m), i.e., exchangepq(H) = F ◦ 〈ie(q,m)〉 ◦ G. �

Note that these two operators also change the relevant sets of processes. For example, if p and q are defined
as in the definition of exchangepq, then we have p ∈ RW m

v (H ′) and cp(q) = r, where H ′ = exchangepq(H).

We claim that these two operators indeed produce valid computations, and that they preserve regularity
and the structure of H (e.g., Act(H), Cvr(H), etc.), with appropriate changes. This claim is formalized in
Lemmas 3 and 4.

Lemma 3 Consider a regular computation H in C with induction number mH , and two processes p and
q. Assume that {p, q} ⊆ CW m

v (H), p is deployed to cover some solo segment S(r,m′), and that q is not
deployed in H (i.e., q ∈ RW m

v (H)). Define H ′ = exchangepq(H). Then, H ′ is a regular computation in C
with induction number mH , satisfying the following for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w,
and process s:

P (H ′) = P (H); (39)
Actj(H ′) = Actj(H); (40)
Cvrj(H ′) = Cvrj(H); (41)

AW j
w(H ′) = AW j

w(H); (42)
CW j

w(H ′) = CW j
w(H); (43)

46

RW j
w(H ′) =

{
(RW j

w(H) ∪ {p}) − {q}, if j = m and w = v

RW j
w(H), otherwise.

(44)

Proof: Note that, by the definition of exchangepq, the only difference between H and H ′ is that ie(p,m) is
replaced by ie(q,m). Moreover, both ie(p,m) and ie(q,m) are invocation events on the same variable v. It
follows that processes other than p or q cannot distinguish between H ′ and H, and hence we have H ′ ∈ C.

Assertions (39)–(44) follow immediately from the definition of exchangepq. Since H satisfies (2)–(10) and
R1–R4, by applying (39)–(44), assertions (2)–(10) and R1–R4 follow immediately. It follows that H ′ is also
regular. �

Lemma 4 Consider a regular computation H in C with induction number mH , and a process p. Assume
either of the following:

• p ∈ Act(H) ∧ |Act(H)| ≥ 2, or (A)

• p ∈ RW m
v (H) ∧ (AW m

v (H) = {} ∨ |CW m
v (H)| ≥ 2), for some m and v. (B)

Define H ′ = erasep(H). Then, H ′ is a regular computation in C with induction number mH , satisfying
the following for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w, and process q:

P (H ′) = P (H) − {p}; (45)
Actj(H ′) = Actj(H) − {p}; (46)
Cvrj(H ′) = Cvrj(H) − {p}; (47)

AW j
w(H ′) = AW j

w(H) − {p}; (48)
CW j

w(H ′) = CW j
w(H) − {p}; (49)

RW j
w(H ′) ⊇ RW j

w(H). (50)

Proof: Step 1. First, we show that H ′ is a valid computation in C.

Note that operator erasep completely removes events by p, plus p’s covering segments (which consist
only of invocation events). By (30), each such removed event (except events by p) is the last event by that
process. Therefore,

• for each process q such that H ′ | q �= 〈〉, H ′ | q is either H | q, or the subcomputation of H | q obtained by
removing its last event. (51)

We use induction on the length of H ′, and inductively apply P2 to each event in H ′ in order. Consider
an event eq in H ′. By the definition of erasep, eq is also an event of H. Denote H and H ′ as

H = F ◦ 〈eq〉 ◦ G and H ′ = F ′ ◦ 〈eq〉 ◦ G′, (52)

where F and G (respectively, F ′ and G′) are subcomputations of H (respectively, H ′). Also, by the definition
of erasep, and by (51), we have the following:

• F ′ is a subcomputation of F ; (53)
• F ′ | q = F | q. (54)

By induction, we have
F ′ ∈ C. (55)

Our proof obligation is to show F ′ ◦ 〈eq〉 ∈ C. We now establish the following claim.

47

Claim 1: If eq reads a variable u, and if last writer event(u, F ′) �= ⊥, then value(u, F ′) =
value(u, F) holds.

Proof of Claim: By (31),

• eq is contained in some solo segment S(q, l). (56)

Hence, since eq reads u,

• ce(q, j) reads u, for some j ≤ l. (57)

Also, by (8) and (56), we have
q ∈ Actl(H). (58)

Note that, by (53), last writer event(u, F ′) �= ⊥ implies

last writer(u, F) �= ⊥. (59)

We consider two cases. First, assume that last writer(u, F) = q holds. Let fq = last writer
event(u, F). By (54), fq is also contained in F ′. By (53), this implies that fq = last writer
event(u, F ′), and hence the claim follows.

Second, assume that last writer(u, F) �= q holds. In this case, by (59), and by applying Lemma 2
with ‘ep’ ← eq and ‘v’ ← u, we have value(u, F) = �. (The assumptions stated in Lemma 2 follow
from (52) and the assumption of Claim 1.) If we also have value(u, F ′) = �, then we are done.
For the sake of contradiction, assume otherwise. Define fr as

fr = last writer event(u, F ′). (60)

(By the assumption of Claim 1, fr �= ⊥ holds.) Since last writer(u, F) �= q, we have r �= q. Since
fr writes to u a value different from �, by the Atomicity property, fr is an atomic write event on
u, and hence, by (31),

• fr is contained in some solo segment S(r, l′). (61)

Hence, by (8),
r ∈ Actl′(H). (62)

Since fr is contained in F ′, by (52), (53), and the definition of erasep,

• fr precedes eq in H, and (63)
• r �= p. (64)

Combining (56), (61), and (63), we also have l′ ≤ l. Since fr writes u,

• ce(r, k) is a write to u for some k ≤ l′. (65)

We claim that CW k
u(H) is nonempty. Assume otherwise. Then, by (57) and (65), and by

applying R4 with ‘m’ ← k, ‘p’ ← r, and ‘v’ ← u, we have q ∈ Cvrk(H). Since k ≤ l (by (65)), we
also have Cvrk(H) ⊆ Cvrl(H) (by (6)), and hence we have q ∈ Cvrl(H). However, since Cvrl(H)
and Actl(H) are disjoint (by (7)), we have a contradiction of (58).

It follows that CW k
u(H) is nonempty, and hence, by (62) and (65), and by applying R2 with

‘p’ ← r, ‘m’ ← l′, and ‘j’ ← k, it follows that C(r, l′;H) contains an invocation event g on u.
Thus, by (56), (61), and (63), H can be written as

H = · · · ◦ S(r, l′) ◦ C(r, l′;H) ◦ · · · ◦ S(q, l) ◦ · · · ,

where fr, g, and eq are contained in S(r, l′), C(r, l′;H), and S(q, l), respectively. By (64), and by
the definition of erasep, C(r, l′;H) is also contained in F ′. But then F ′ contains an event that
writes u (namely, g) after fr, which contradicts (60). �

48

The following claim establishes F ′ ◦ 〈eq〉 ∈ C, and hence, by induction, H ′ ∈ C.

Claim 2: F ′ ◦ 〈eq〉 ∈ C.

Proof of Claim: We consider three cases. First, if eq is not a read event, then by (55), and by
applying P2 with ‘H’ ← F , ‘ep’ ← eq, and ‘G’ ← F ′, the claim follows.

Second, assume that eq reads some variable u, and that last writer event(u, F ′) �= ⊥ holds. By
Claim 1, we again have value(u, F ′) = value(u, F). Thus, by (55), and by applying P2 with
‘H’ ← F , ‘ep’ ← eq, ‘G’ ← F ′, and ‘v’ ← u, the claim follows.

Third, assume that eq reads some variable u, and that last writer event(u, F ′) = ⊥ holds. By
(31), eq is contained in some solo segment S(q,m). Hence, by the definition of a solo segment,
(F ′ | q) ◦ 〈eq〉 is a valid solo computation, that is,

(F ′ | q) ◦ 〈eq〉 ∈ C. (66)

Since F ′ | q is a subcomputation of F ′, we also have

value(u, F ′ | q) = value(u, F ′) = (initial value of u). (67)

By (55), (66), (67), and applying P2 with ‘H’ ← F ′ | q, ‘ep’ ← eq, ‘G’ ← F ′, and ‘v’ ← u, the
claim follows. �

Step 2. We now show that H ′ is regular, and that H ′ satisfies (45)–(50). Assertions (45)–(50) follow
immediately from the definition of erasep. Since H satisfies (2)–(10), by applying (45)–(50), it can be easily
shown that H ′ also satisfies (2)–(10).

In order to show that H ′ has induction number mH , it suffices to prove that (H ′)mH is not an empty
computation. By (8), this is equivalent to saying that ActmH (H ′) is nonempty. By applying (46) with
‘j’ ← mH , we have

ActmH (H ′) = ActmH (H) − {p} = Act(H) − {p}.
If Condition (A) is true, then this clearly implies ActmH (H ′) �= {}; if Condition (B) is true, then by (29),

we have ActmH (H ′) = Act(H) �= {}. It follows that H ′ has induction number mH .

We now show that H ′ satisfies each of R1–R4. In order to show that H ′ satisfies R1, consider an event
eq contained in a covering segment C(r, l;H ′). By the definition of erasep, we have C(r, l;H ′) = C(r, l;H),
q �= p, and r �= p. Thus, by applying R1 to eq in H, we have the following for some j ≤ l and variable
u: er = ie(q, j), q ∈ CW j

u(H), cp(q;H) = r, and ce(r, j) is a write to u. By (49) and q �= p, we have
q ∈ CW j

u(H ′). By r �= p, and by the definition of erasep, cp(q;H ′) = r also holds. Thus, we have R1.

In order to show that H ′ satisfies R2, consider a process q ∈ Actl(H ′) and a segment index j ≤ l, such
that ce(q, j) writes some variable u and CW j

u(H ′) is nonempty. By (46), we have q ∈ Actl(H) and q �= p.
By (49), CW j

u(H) is also nonempty. Thus, by applying R2 to q in H, it follows that C(q, l;H) has exactly
one invocation event on u (plus perhaps some other events), which is ie(r, j) for some r ∈ CW j

u(H). As
shown above, since q �= p, we have C(q, l;H ′) = C(q, l;H). Moreover, since r is deployed to cover q, we have
r �= p. (Note that Conditions (A) and (B) in the statement of the lemma imply that p is not deployed in
H.) Thus, by (49), we have r ∈ CW j

u(H ′). It follows that C(q, l;H ′) contains exactly one invocation event
on u (namely, ie(r, j)), where r ∈ CW j

u(H ′). Thus, we have R2.

Since H ′ is a subcomputation of H, R3 follow easily.

Before showing that H ′ satisfies R4, we need the following claim.

Claim 3: If both AW j
w(H) and CW j

w(H) are nonempty, then so is CW j
w(H ′).

Proof of Claim: We consider two cases. First, if Condition (A) holds, then since Act(H) and
CW j

w(H) are disjoint (by (28)), we have p /∈ CW j
w(H). Therefore, by (49), CW j

w(H ′) equals
CW j

w(H), and hence is nonempty.

49

Second, assume that Condition (B) holds. If (j, w) = (m, v), then since AW j
w(H) is nonempty,

we have |CW m
v (H)| ≥ 2, and hence, by (49), CW j

w(H ′) (= CW m
v (H ′)) is nonempty. On the

other hand, if (j, w) �= (m, v), then CW j
w(H) and CW m

v (H) are disjoint by (4). Moreover, by
Condition (B), we have p ∈ RW m

v (H) ⊆ CW m
v (H). Thus we have p /∈ CW j

w(H). Therefore, by
(49), we have CW j

w(H ′) = CW j
w(H), and hence CW j

w(H ′) is nonempty. �

We now claim that H ′ satisfies R4. Consider some segment index l, process q, and variable u such that
q ∈ AW l

u(H ′) and CW l
u(H ′) is empty. By (48), we have q ∈ AW l

u(H) and q �= p. By Claim 3, CW l
u(H)

is also empty. Therefore, by applying R4 to H with ‘m’ ← l, ‘p’ ← q, and ‘v’ ← u, it follows that, for each
segment index j and each process r ∈ Actj(H) different from q, the following hold:

(i) if j < l and ce(r, j) is a write to u, then CW j
u(H) is nonempty;

(ii) if j < l and ce(r, j) is a read of u, then r ∈ Cvrl(H) holds;
(iii) if l ≤ j ≤ mH , then ce(r, j) does not access u.

By (46), r ∈ Actj(H ′) implies r ∈ Actj(H) and r �= p. Note that, if (i) is true, then r ∈ AW j
u(H) holds

by definition. Thus, by Claim 3, it follows that CW j
u(H ′) is also nonempty. Also note that, since r �= p, if

(ii) is true, then r ∈ Cvrl(H) and (47) imply r ∈ Cvrl(H ′). From these assertions, R4 easily follows. �

The next lemma is a simple application of Lemma 4. It states that we can safely erase any proper subset
of active processes.

Lemma 5 Consider a regular computation H in C with induction number mH , and a proper subset K =
{p1, p2, . . . , ph} of Act(H).

Define H ′ as the result of applying operation erasepi
to H for each pi ∈ K, i.e.,

H ′ = eraseph
(eraseph−1(· · · erasep2(erasep1(H)) · · ·)).

Then, H ′ is a regular computation in C with induction number mH , satisfying the following:

• πmax(H ′) ≤ πmax(H); (68)
• for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w, and process q,

P (H ′) = P (H) − K; (69)
Actj(H ′) = Actj(H) − K; (70)
Cvrj(H ′) = Cvrj(H); (71)

AW j
w(H ′) = AW j

w(H) − K; (72)
CW j

w(H ′) = CW j
w(H); (73)

RW j
w(H ′) ⊇ RW j

w(H). (74)

Proof: By inductively applying Lemma 4, assertions (69)–(74) follow easily. (Note that, after applying the
erase operator i times (0 ≤ i < h), we have |Act(H)| − i active processes left, by (46). Since |K| = h <
|Act(H)|, this implies Condition (A) of Lemma 4.) As for (73), note that (28) implies that Act(H) and
CW j

w(H) are disjoint for each j and w. Since K ⊆ Act(H), this also implies that K and each CW j
v(H)

are disjoint, and hence (73) follows. Similarly, by (6) and (28), Act(H) and Cvrj(H) are disjoint for each j,
from which (71) follows.

We now prove that H ′ satisfies (68). It suffices to show that, for each covering pair (j, w) in H ′, we have
π(j, w;H ′) ≤ π(j, w;H). Consider each covering pair (j, w) in H ′. By definition, we have

AW j
w(H ′) �= {} ∧ CW j

w(H ′) �= {}. (75)

50

By (72), we have
|AW j

w(H ′)| ≤ |AW j
w(H)|. (76)

Thus, since both H and H ′ have induction number mH , by the definition of ‘req’, given in (12), we have

req(j, w;H ′) ≤ req(j, w;H). (77)

By (73), (75), and (76), it follows that (j, w) is also a covering pair in H. Thus, by (13), we have
π(j, w;H) = max{0, req(j, w;H)−|CW j

w(H)|}. Combining this with (73) and (77), assertion (68) follows. �

The next lemma is a simple application of Lemmas 3 and 4. Given a regular computation H satisfying
πmax(H) ≤ c, and a process p ∈ P (H), we can erase p from H as follows. If p is either an active or a
reserve process, then we apply erasep. On the other hand, if p is deployed, then πmax(H) ≤ c implies that
there exists a reserve process q that may be exchanged with p by applying exchangepq to H. After applying
exchangepq, p becomes a reserve process, so we can erase p by applying erasep. (Note that this procedure
may increase the maximum rank, by reducing the number of covering processes.)

Lemma 6 Consider a regular computation H in C with induction number mH , and a process p. Assume
the following:

• mH ≤ c − 2, (78)
• πmax(H) ≤ c, (79)
• p ∈ P (H), and (80)
• |Act(H)| ≥ 2. (81)

Then, there exists a regular computation H ′ in C with induction number mH , satisfying the following for
each segment index j (1 ≤ j ≤ mH) and variable w:

• if AW j
w(H ′) is nonempty and CW j

w(H ′) is empty, then CW j
w(H) is also empty ; (82)

• if p ∈ CW j
w(H), then π(j, w;H ′) ≤ π(j, w;H) + 1; (83)

• if p /∈ CW j
w(H), then π(j, w;H ′) ≤ π(j, w;H); (84)

• the following hold:

P (H ′) = P (H) − {p}; (85)
Actj(H ′) = Actj(H) − {p}; (86)
Cvrj(H ′) = Cvrj(H) − {p}; (87)

AW j
w(H ′) = AW j

w(H) − {p}; (88)
CW j

w(H ′) = CW j
w(H) − {p}. (89)

Proof: First, we consider the case in which p ∈ Act(H) holds. Let H ′ = erasep(H). By applying Lemma 4,
assertions (85)–(89) can be easily shown to be true. (Condition (A) of Lemma 4 follows from (81).) Moreover,
for each segment index j and variable w, p ∈ Act(H) implies p /∈ CW j

w(H) (by (3) and (4)). Therefore, by
(89), we have CW j

w(H ′) = CW j
w(H), and hence (82) follows. Combining CW j

w(H ′) = CW j
w(H) with (12),

(13), and (88), we also have π(j, w;H ′) ≤ π(j, w;H), and hence we also have (83) and (84).

Thus, in the rest of the proof, we may assume p /∈ Act(H). In this case, by (3), (4), and (80), we have
the following:

p ∈ CW m
v (H), for some m (1 ≤ m ≤ mH) and variable v. (90)

We now establish the following simple claim.

Claim 1: AW m
v (H) = {} ∨ |RW m

v (H)| ≥ 2.

51

Proof of Claim: If AW m
v (H) is empty, then we are done. Otherwise, by (90), (m, v) is a

covering pair in H. Thus, by applying Lemma 1, we have |RW m
v (H)| > |AW m

v (H)| ≥ 1, and
hence the claim follows. (Assumptions (16) and (17) stated in Lemma 1 follow from (78) and
(79), respectively.) �

Since RW m
v (H) ⊆ CW m

v (H) (by (10)), Claim 1 implies the following:

AW m
v (H) = {} ∨ |CW m

v (H)| ≥ 2. (91)

The rest of the proof consists of two steps. In Step 1, we construct a regular computation H ′ (in C) with
induction number mH , satisfying (85)–(89). In Step 2, we show that H ′ also satisfies (82)–(84).

Step 1. We consider two cases.

First, if p is not deployed in H, then by (90), we have p ∈ RW m
v (H). In this case, let H ′ = erasep(H). By

applying Lemma 4, it follows that H ′ is a regular computation in C with induction number mH , satisfying
(85)–(89). (Condition (B) of Lemma 4 follows from p ∈ RW m

v (H) and (91).)

Second, assume that p is deployed in H to cover some solo segment S(r, l) (i.e., p’s invocation event is
contained in C(r, l;H)). In this case, by applying R1 with ‘q’ ← p, ‘p’ ← r, and ‘m’ ← l, it follows that
p ∈ CW j

u(H) and r ∈ AW j
u(H) hold for some segment index j and variable u. By (4) and (90), we have

(j, u) = (m, v), and hence we have r ∈ AW m
v (H). Thus,

• AW m
v (H) is nonempty, (92)

and by Claim 1, RW m
v (H) is also nonempty. Fix a process q ∈ RW m

v (H), and let H ′′ = exchangepq(H). By
applying Lemma 3, it follows that H ′′ is a regular computation in C with induction number mH , satisfying
the following for for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), and variable w:

P (H ′′) = P (H); (93)
Actj(H ′′) = Actj(H); (94)
Cvrj(H ′′) = Cvrj(H); (95)

AW j
w(H ′′) = AW j

w(H); (96)
CW j

w(H ′′) = CW j
w(H); (97)

RW j
w(H ′′) =

{
(RW j

w(H) ∪ {p}) − {q}, if j = m and w = v

RW j
w(H), otherwise.

(98)

By (98), we have p ∈ RW m
v (H ′′). Also, by (91), (92), and (97), we have |CW m

v (H ′′)| ≥ 2. That is,

p ∈ RW m
v (H ′′) ∧ |CW m

v (H ′′)| ≥ 2. (99)

Let H ′ = erasep(H ′′). We now apply Lemma 4 with ‘H’ ← H ′′. (Condition (B) of Lemma 4 follows from
(99).) It follows that H ′ is a regular computation in C with induction number mH , satisfying the following
for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), and variable w:

P (H ′) = P (H ′′) − {p}; (100)
Actj(H ′) = Actj(H ′′) − {p}; (101)
Cvrj(H ′) = Cvrj(H ′′) − {p}; (102)

AW j
w(H ′) = AW j

w(H ′′) − {p}; (103)
CW j

w(H ′) = CW j
w(H ′′) − {p}. (104)

By combining (93)–(97) with (100)–(104), it follows that H ′ satisfies (85)–(89).

Step 2. We now show that H ′ constructed above satisfies (82)–(84). We prove (82) by proving its logical
equivalent: if CW j

w(H ′) is empty and CW j
w(H) is nonempty, then AW j

w(H ′) is empty. By (89), the

52

antecedent of this implication implies CW j
w(H) = {p}. However, by (4) and (90), this implies (j, w) = (m, v),

and hence, by (91), it follows that AW j
w(H) is empty. Thus, by (88), AW j

w(H ′) is also empty. It follows
that H ′ satisfies (82).

Since AW m
v (H) and CW m

v (H) are disjoint (by (27)), by (90), we have p /∈ AW m
v (H), and hence, by (88),

we have AW m
v (H ′) = AW m

v (H). Thus, since both H and H ′ have induction number mH , by the definition
of ‘req’ (given in (12)), we have

req(m, v;H ′) = req(m, v;H).

Also, by (89) and (90), we have

|CW m
v (H ′)| = |CW m

v (H)| − 1.

Combining these two assertions with the definition of π(m, v) (given in (13)), (83) easily follows. (Note
that p ∈ CW m

v (H) implies (j, w) = (m, v).)

In order to prove (84), consider a segment index j and a variable w such that (j, w) �= (m, v). If (j, w) is
not a covering pair in H ′, then by the definition of π, we have π(j, w;H ′) = 0 and π(j, w;H) ≥ 0, and hence
(84) follows easily.

On the other hand, if (j, w) is a covering pair in H ′, then by (4), (90), and (j, w) �= (m, v), we have
p /∈ CW j

w(H), and hence, by (89), we have

CW j
w(H ′) = CW j

w(H).

Also, by (88), we have |AW j
w(H ′)| ≤ |AW j

w(H)|, and hence, since both H and H ′ have induction number
mH , by the definition of ‘req’ (given in (12)), we have

req(j, w;H ′) ≤ req(j, w;H).

Combining these two assertions with (13), assertion (84) easily follows. �

We now formally present the chain erasing procedure, described in Section 4. Here, we denote the set of
processes to erase by K. The procedure is shown in Figure 19. The following lemma proves its correctness.

Lemma 7 Consider a regular computation H in C with induction number mH , and a set K of processes.
Assume the following:

• mH ≤ c − 2, (105)
• πmax(H) = 0, (106)
• K ⊆ Cvr(H), and (107)
• |Act(H)| ≥ |K|/(c − 1) + 2. (108)

Then, there exists a regular computation H ′ in C with induction number mH , satisfying the follow-
ing:

• πmax(H ′) < c; (109)
• |Act(H ′)| ≥ |Act(H)| − |K|/(c − 1); (110)
• for each segment index j (1 ≤ j ≤ mH) and variable w,

− if AW j
w(H ′) is nonempty and CW j

w(H ′) is empty, then CW j
w(H) is also empty ; (111)

− the following hold:

P (H ′) ⊆ P (H) − K; (112)
Actj(H ′) ⊆ Actj(H) − K; (113)
Cvrj(H ′) ⊆ Cvrj(H) − K; (114)

AW j
w(H ′) ⊆ AW j

w(H) − K; (115)
CW j

w(H ′) ⊆ CW j
w(H) − K. (116)

53

1: F := H; cnt := 0;
2: for i := 1 to h do

/∗ loop invariant:
1. F is a regular computation in C with induction number mH ;
2. πmax(F) < c

∗/
3: if pi ∈ P (F) then
4: erase pi from F by applying Lemma 6 with ‘H’ ← F and ‘p’ ← pi;

let the resulting computation be F ;
cnt := cnt + 1;

5: while πmax(F) = c do
/∗ loop invariant: there exists exactly one covering pair (m, v) satisfying π(m, v; F) = c ∗/

6: choose a process r from AW m
v (F);

7: erase r from F by applying Lemma 6 with ‘H’ ← F and ‘p’ ← r;
let the resulting computation be F

od fi od
8: H ′ := F

Figure 19: The chain erasing procedure to erase processes in K = {p1, p2, . . . , ph}. We assume that H is
a regular computation with πmax(H) = 0, and that K ∈ Cvr(H) holds. The correctness of this algorithm is
formally proved in Lemma 7.

Proof: Arbitrarily index processes in K as K = {p1, p2, . . . , ph}, where h = |K|. We prove the lemma
by applying the algorithm shown in Figure 19. We claim that the algorithm preserves the following four
invariants after executing line 1.

invariant F is a regular computation in C with induction number mH . (J1)
invariant For each segment index j and variable w, if AW j

w(F) is nonempty and CW j
w(F) is empty, then

CW j
w(H) is also empty. (J2)

invariant πmax(F) ≤ c. (J3)
invariant (c − 1) · (|Act(H)| − |Act(F)|) + π(F) ≤ cnt . (J4)

(Note that (J3) is weaker than the loop invariant πmax(F) < c stated in Figure 19, because (J3) holds
throughout lines 2–8.) It is easy to see that line 1 establishes these invariants. In particular, (J3) and (J4)
follow from (106). (Note that πmax(H) = 0 implies π(H) = 0 by definition.) We now show that, for each
line s (2 ≤ s ≤ 7) of the algorithm, if line s is executed while invariants (J1)–(J4) hold, then (J1)–(J4) also
hold after the execution of line s. This will establish each of (J1)–(J4) as an invariant. Since F and cnt may
be updated only by execution of lines 4 and 7, it suffices to check these two lines to prove the correctness of
(J1)–(J4).

First, we claim that we can apply Lemma 6 at these lines. It suffices to show that the assumptions
(78)–(81) stated in Lemma 6 are satisfied before executing either line 4 or 7. Assumptions (78) and (79)
follow from (105) and (J3), respectively; (80) is guaranteed by lines 3 and 6. In order to obtain (81), note
that cnt ≤ h (= |K|) is trivially an invariant, and that π(F) is always nonnegative by definition. Thus, by
(108) and (J4), we have |Act(F)| ≥ |Act(H)| − |K|/(c − 1) ≥ 2, which implies (81).17

We now claim that execution of these lines preserves invariants (J1)–(J3). Let Fold be the value of F
before executing line 4 or 7, and Fnew be the value of F after executing that line. Lemma 6 implies that
(J1) is preserved. (That is, if Fold satisfies (J1), then so does Fnew.)

Also, by applying (82) and (88) with ‘H’ ← Fold and ‘H ′’ ← Fnew, we have the following for each segment
index j and variable w.

17The sole purpose of assumptions (81) and (108) is to prevent the degenerate case in which we happen to erase all active
processes. (Clearly, our induction cannot proceed if we do not have any active processes.) Fortunately, as described in
Section 4.3, such a case actually never occurs in our proof.

54

• If AW j
w(Fnew) is nonempty and CW j

w(Fnew) is empty, then CW j
w(Fold) is also empty. (117)

• AW j
w(Fnew) ⊆ AW j

w(Fold) holds. In particular, if AW j
w(Fnew) is nonempty, then so is AW j

w(Fold). (118)

By (117) and (118), it follows that lines 4 and 7 preserve (J2). In particular, if AW j
w(Fnew) is nonempty

and CW j
w(Fnew) is empty, then by (117) and (118), it follows that AW j

w(Fold) is nonempty and CW j
w(Fold)

is empty. Since Fold satisfies (J2), this in turn implies that CW j
w(H) is empty.

In order to show that (J3) is an invariant, we need to prove the following assertions.

• The execution of line 4 or 7 may increase π(j, w;F) for at most one pair (j, w) (where 1 ≤ j ≤ mH

and w ∈ V). Moreover, if such a pair exists, then p ∈ CW j
w(Fold) ∧ π(j, w;Fnew) = π(j, w;Fold) + 1

holds. (119)
• Line 4 is executed only if πmax(Fold) < c holds. (120)
• If line 4 establishes πmax(Fnew) = c, then it also establishes the following: there exists exactly one covering

pair (m, v) of Fnew that satisfies π(m, v;Fnew) = c. (121)
• Assume that lines 6 and 7 are executed when πmax(Fold) = c holds and that there exists exactly one

covering pair (m, v) of Fold satisfying π(m, v;Fold) = c. In this case, line 7 establishes the following:
− π(m, v;Fnew) = 0, (122)
− there exists at most one covering pair (m′, v′) in Fnew that satisfies π(m′, v′;Fnew) = c, and (123)
− πmax(Fnew) ≤ c. (124)

Proof of (119)–(124): Assertion (119) easily follows from applying (83) and (84) with ‘H’ ← Fold

and ‘H ′’ ← Fnew, and from the fact that p ∈ CW j
w(Fold) holds for at most one pair (j, w), namely,

(ci(p), cv(p)).

Assertion (120) follows easily by inspecting the algorithm. In particular, line 1 establishes
πmax(F) = 0 by (106), and the while loop of lines 5–7 establishes πmax(F) < c upon termi-
nation.

We now prove (121). By the definition of πmax (given in (14)), πmax(Fnew) = c implies that
π(m, v;Fnew) = c holds for some covering pair (m, v). By (119) and (120), π(m, v;Fnew) = c may
be established for at most one pair (m, v). We thus have (121).

We now prove (122). Consider the execution of line 7. By applying (88) with ‘j’ ← m,
‘w’ ← v, ‘H’ ← Fold, ‘H ′’ ← Fnew, and ‘r’ ← p, it follows that line 7 establishes AW m

v (Fnew) =
AW m

v (Fold) − {r}. Since line 6 ensures r ∈ AW m
v (Fold), we have

|AW m
v (Fnew)| = |AW m

v (Fold)| − 1,

and hence, by the definition of ‘req’ (given in (12)), we have

req(m, v;Fnew) = req(m, v;Fold) − c. (125)

Moreover, since AW m
v (H) and CW m

v (H) are disjoint (by (27)), r ∈ AW m
v (Fold) implies r /∈

CW m
v (Fold), and hence, by applying (89) as above, we have

CW m
v (Fnew) = CW m

v (Fold). (126)

Combining (125) and (126) with the definition of π (given in (13)), and using π(m, v;Fold) = c
(from the antecedent of (122)–(124)), we have π(m, v;Fnew) = 0, and hence (122) follows.

Finally, the antecedent of (122)–(124) implies that π(j, w;Fold) < c holds for each pair (j, w) �=
(m, v). Hence, (123) and (124) easily follow from (119), (122), and the definition of πmax (given
in (14)). �

We now prove that (J3) is an invariant. First, consider line 4. Combining (119) with the definition of
πmax, it follows that line 4 may increase πmax(F) by at most one. Therefore, by (120), line 4 establishes
πmax(Fnew) ≤ πmax(Fold) + 1 ≤ c, and hence preserves (J3).

55

Next, consider line 7. By combining (121), (123), and (124), it is easy to see that the loop invariant of
the while loop (shown before line 6 in Figure 19) is indeed a correct invariant:

• Before the execution of lines 6 and 7, πmax(Fold) = c holds, and there exists exactly one covering pair
(m, v) of Fold satisfying π(m, v;Fold) = c. (127)

Since this loop invariant implies the antecedent of (124), it follows that line 7 establishes πmax(Fnew) ≤ c,
thereby maintaining (J3).

In order to show that (J4) is an invariant, we first need the following two properties.

• The execution of line 4 increases π(F) by at most one. (128)
• The execution of line 7 decreases π(F) by at least c − 1. (129)

Proof of (128) and (129): Consider the execution of line s, where s is 4 or 7. By (119), one of
the following holds.

(i) There exists exactly one pair (j, w) (where 1 ≤ j ≤ mH and w ∈ V) satisfying π(j, w;Fnew) =
π(j, w;Fold) + 1. Moreover, for all other pairs (l, u) �= (j, w) (where 1 ≤ l ≤ mH and u ∈ V),
we have π(l, u;Fnew) ≤ π(l, u;Fold).

(ii) For all pairs (l, u) (where 1 ≤ l ≤ mH and u ∈ V), we have π(l, u;Fnew) ≤ π(l, u;Fold).

By (i) and (ii), (128) easily follows. As for (129), note that, by (122) and (127), there exists
a covering pair (m, v) of Fold satisfying π(m, v;Fold) = c and π(m, v;Fnew) = 0. Moreover, by
(i) and (ii), the sum of ranks over all pairs except for (m, v) is increased by at most one by the
execution of line 7. From these two observations, we have (129). �

Since line 4 erases a process pi in K, by (3) and (107), we have pi /∈ Act(H). Moreover, by applying (86)
with ‘j’ ← mH , ‘H’ ← Fold, ‘H ′’ ← Fnew each time Lemma 6 is used (at either line 4 or line 7), it easily
follows that Act(F) is always a subset of Act(H). Hence, line 4 cannot change Act(F). Since line 4 increases
cnt , by (128), line 4 preserves (J4).

By applying (86) as above again, line 7 may decrease |Act(F)| by at most one. Hence, by (129), line 7
preserves (J4). It follows that (J4) is indeed an invariant.

In order to prove that the algorithm constructs the needed computation H ′, we have yet to show that
the algorithm eventually terminates. Note that, by (85), each application of Lemma 6 removes a process
from P (F). Since P (F) is initially finite, this procedure cannot continue indefinitely. It follows that the
algorithm eventually terminates.

Invariants (J1) and (J3) imply that, after the algorithm terminates, we obtain a regular computation
H ′ in C with induction number mH , satisfying (109). In particular, note that the while loop of lines 5–7
establishes πmax(F) �= c upon termination. By (J3), it follows that line 8 establishes πmax(H ′) < c, and
hence we have (109).

Since the final value of cnt is at most |K|, and since π(H ′) is nonnegative by definition, (J4) implies
(110). Assertion (111) follows from (J2).

Finally, note that every process pi in K is eventually erased at line 4 (if it has not already been erased
via the execution of line 7 with ‘r’ ← pi). Thus, by inductively applying (85)–(89), we have (112)–(116). �

Consider a regular computation H. Each process p ∈ Act(H) is ready to execute its next critical event
ce(p,mH + 1). As explained in Section 4, in order to extend a regular computation, we must eliminate
“conflicts” that are caused by appending these critical events. To facilitate this, we define a “conflict-free”
computation to be a regular computation in which these conflicts have been eliminated, as follows.

Definition: Consider a regular computation H. For each process p ∈ Act(H), define ep to be its next
critical event ce(p,mH + 1). For each variable v ∈ V , define Zv(H), the set of active processes that access v

56

in their next critical events, as

Zv(H) = {p ∈ Act(H): ep accesses v}.

Consider two disjoint subsets ZAct and ZCvr of Act(H). We say that the pair (ZAct, ZCvr) is conflict-free
in H if (130) and one of (C1)–(C3), stated below, are satisfied.

• for each p ∈ ZAct ∪ZCvr, if ep accesses a variable v, and if H has a single writer q of v, then either p = q
or q ∈ Act(H) − (ZAct ∪ ZCvr) holds. (130)

Condition (C1): (erasing strategy)

• ZCvr = {};
• for each p ∈ ZAct, ep is an atomic write event, writing a distinct variable;
• for each p ∈ ZAct, ep �= CSp;
• for each p ∈ ZAct, if ep writes a variable v, and if a process q �= p reads v in H, then q /∈ ZAct.

Condition (C2): (covering strategy)

• For each variable v, if ZAct∩Zv(H) is nonempty, then |ZCvr∩Zv(H)| ≥ c · |ZAct∩Zv(H)|+c2;
• for each p ∈ ZAct ∪ ZCvr, ep is an atomic write event;
• for each p ∈ ZAct ∪ ZCvr, ep �= CSp.

Condition (C3): (readers only)

• ZCvr = {};
• for each p ∈ ZAct, ep is a read event. (In particular, ep �= CSp.)

We also say that H is conflict-free if there exists a partition of Act(H) into two disjoint sets ZAct(H)
and ZCvr(H) (one of which may possibly be empty), such that Act(H) = ZAct(H) ∪ ZCvr(H) and the pair
(ZAct(H), ZCvr(H)) is conflict-free in H. �

In Lemma 9, given later, we show that a conflict-free computation H with induction number mH can
be extended to obtain another regular computation G with induction number mH + 1. By extending H,
processes in ZAct(H) become active processes in the extended computation G, and processes in ZCvr(H)
become new covering processes to cover variables written by processes in ZAct(H). (Formally, we establish
Act(G) = ZAct(H) and Cvr(G) = Cvr(H) ∪ ZCvr(H).)

The following lemma shows that, for any regular computation H, we can choose “enough” active processes
in H and construct a conflict-free computation F with the same induction number. The strategy chosen to
eliminate conflicts determines which condition is established: each of (C1)–(C3) is established by the erasing
strategy, the covering strategy, and the “readers only” case, respectively.

Lemma 8 Let H be a regular computation in C with induction number mH . Let n = |Act(H)|. Assume
the following:

• mH ≤ c − 2, (131)
• πmax(H) = 0, and (132)
• n ≥ 7. (133)

Then, there exists a regular computation F in C with induction number mH , satisfying the follow-
ing:

• πmax(F) ≤ c, (134)

57

• F is conflict-free, and (135)

• |ZAct(F)| ≥ (c − 2)(n − 1)
48c2(c − 1)(2mH + 1)

. (136)

Proof: For each p ∈ Act(H), let ep be its next critical event ce(p,mH + 1). We claim that ep = CSp holds
for at most one process p in Act(H). Assume, to the contrary, that there exist two distinct processes p and q,
such that ep = CSp and eq = CS q. Since CSp does not read any variable, by applying P2 with ‘H’ ← H | p,
‘ep’ ← CSp, and ‘G’ ← H, we have H ◦ 〈CSp〉 ∈ C. By applying P2 again with ‘H’ ← H | q, ‘ep’ ← CS q,
and ‘G’ ← H ◦ 〈CSp〉, we have H ◦ 〈CSp,CS q〉 ∈ C. However, this contradicts the Exclusion property.

Let Y0 = {p ∈ Act(H): ep �= CSp}. As shown above, we have n − 1 ≤ |Y0| ≤ n. We partition Y0 into the
sets of “readers” and “writers,” and choose the bigger of the two (see Figure 12). That is, we choose a set
Y such that

Y ⊆ Act(H); (137)

ep �= CSp, for all p ∈ Y ; (138)

|Y | ≥ (n − 1)/2; (139)(∀p : p ∈ Y :: ep is a read event
) ∨ (∀p : p ∈ Y :: ep is an atomic write event

)
. (140)

We now erase processes in Act(H)−Y . (Note that Y is nonempty by (133) and (139).) Since Act(H)−Y ⊆
Act(H), by applying Lemma 5 with ‘K’ ← Act(H) − Y , we can construct a regular computation H ′ in C
with induction number mH , satisfying the following:

• πmax(H ′) ≤ πmax(H); (141)
• for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w, and process q,

P (H ′) = P (H) − (Act(H) − Y); (142)
Actj(H ′) = Actj(H) − (Act(H) − Y); (143)
Cvrj(H ′) = Cvrj(H); (144)

AW j
w(H ′) = AW j

w(H) − (Act(H) − Y); (145)
CW j

w(H ′) = CW j
w(H); (146)

RW j
w(H ′) ⊇ RW j

w(H).

By (132) and (141), and since πmax(H ′) is nonnegative by definition, we also have

πmax(H ′) = 0. (147)

By (137), and by applying (143) with ‘j’ ← mH , we also have

Act(H ′) = ActmH (H ′) = ActmH (H) − (Act(H) − Y) = Act(H) − (Act(H) − Y) = Y. (148)

We now create a “conflict mapping” K: Y → P (H ′) ∪ {⊥}, i.e., a mapping indicating which process
conflicts with which process, defined over Y . For each p ∈ Y , define vce(p) to be the variable accessed by p’s
next critical event ep. That is,

• for each p ∈ Y , ep accesses vce(p). (149)

For each p ∈ Y , we define K(p) = q if q (�= p) is the single writer of vce(p) in H ′ (see Figure 9). If H ′ has
no single writer of vce(p), or if p itself is the single writer of vce(p), then we define K(p) = ⊥. By definition,

K(p) �= p, for all p ∈ Y . (150)

We now eliminate conflicts between Y and Cvr(H ′) by applying the chain erasing procedure. Define CE ,
the “covering processes to be erased,” as

CE = {K(p): p ∈ Y ∧ K(p) ∈ Cvr(H ′)}.

58

Clearly, we have
|CE | ≤ |{K(p): p ∈ Y }| ≤ |Y |, and (151)

CE ⊆ Cvr(H ′). (152)

By (133), (139), and (148), we also have |Act(H ′)| = |Y | ≥ 3 ≥ 2(c − 1)/(c − 2) for large enough c. By
(151), this in turn implies

|Y | ≥ |Y |
(c − 1)

+ 2 ≥ |CE |
(c − 1)

+ 2. (153)

We now apply Lemma 7 with ‘H’ ← H ′ and ‘K’ ← CE . Assumptions (105)–(108) stated in Lemma 7
follow from (131), (147), (152), and (148) and (153), respectively. We thus obtain a regular computation H ′′

in C with induction number mH , satisfying the following:

• πmax(H ′′) < c; (154)
• |Act(H ′′)| ≥ |Act(H ′) − CE | − |CE |/(c − 1); (155)
• for each segment index j (1 ≤ j ≤ mH) and variable w,

− if AW j
w(H ′′) is nonempty and CW j

w(H ′′) is empty, then CW j
w(H ′) is also empty; (156)

− the following hold:

P (H ′′) ⊆ P (H ′) − CE ; (157)
Actj(H ′′) ⊆ Actj(H ′) − CE ; (158)
Cvrj(H ′′) ⊆ Cvrj(H ′) − CE ; (159)

AW j
w(H ′′) ⊆ AW j

w(H ′) − CE ; (160)
CW j

w(H ′′) ⊆ CW j
w(H ′) − CE .

(161)

Since CE ⊆ Cvr(H ′) holds by definition, CE and Act(H ′) are disjoint by (3), and hence, by (155), we
also have

|Act(H ′′)| ≥ |Act(H ′)| − |CE |/(c − 1). (162)

Define
Y ′ = Act(H ′′). (163)

By (148), and by applying (158) with ‘j’ ← mH , we have

Y ′ = ActmH (H ′′) ⊆ ActmH (H ′) − CE = Y − CE . (164)

Also, by applying (162), (148), (151), and (139) (in that order),

|Y ′| ≥ |Act(H ′)| − |CE |
c − 1

= |Y | − |CE |
c − 1

≥ |Y | − |Y |
c − 1

=
c − 2
c − 1

|Y | ≥ (c − 2)(n − 1)
2(c − 1)

. (165)

We now construct an undirected graph G = (Y ′, EG), where each vertex is a process in Y ′ (see Figure 13).
For each process p in Y ′, we introduce edge {p,K(p)} if K(p) ∈ Y ′ holds. Since K(p) �= p (by (150)), each
edge is properly defined. Since we introduce at most |Y ′| edges, the average degree of G is at most two.
Hence, by Theorem 2, there exists an independent set Z ⊆ Y ′ such that

|Z| ≥ |Y ′|
3

≥ (c − 2)(n − 1)
6(c − 1)

, (166)

where the latter inequality follows from (165). By (164), we also have

Z ⊆ Y ′ ⊆ Y − CE . (167)

59

Since Y ′ = Act(H ′′) ⊆ P (H ′′) (by (3) and (163)), we have Z ⊆ P (H ′′). Thus, by (157), we have

Z ⊆ P (H ′′) ⊆ P (H ′). (168)

We now claim that a process in Z does not conflict with any covering process in H ′′, or with any other
process in Z.

Claim 1: For each p ∈ Z, K(p) ∈ P (H ′′) implies K(p) ∈ Y ′ − Z.

Proof of Claim: Let q = K(p), and assume q ∈ P (H ′′). By (3), q is either in Cvr(H ′′) or
Act(H ′′). If q ∈ Cvr(H ′′), then by applying (159) with ‘j’ ← mH , we have q ∈ Cvr(H ′) − CE .
But, by the definition of CE , we also have K(p) /∈ Cvr(H ′) − CE , a contradiction.

It follows that q ∈ Act(H ′′) holds. Hence, by (163) and (167), we have {p, q} ⊆ Y ′. Therefore,
the edge {p, q} (= {p,K(p)}) is in G by definition. Since Z is an independent set of G, p ∈ Z
implies q /∈ Z, and hence the claim follows. �

We now group processes in Z depending on the variables accessed by their next critical events. For each
v ∈ V , define Zv, the set of processes in Z that access v in their next critical events, as

Zv = {p ∈ Z: vce(p) = v}.

Clearly, the sets Zv form a disjoint partition of Z:

Z =
⋃

v∈V

Zv, and

Zv ∩ Zu �= {} ⇒ v = u.
(169)

Define VHC, the set of variables that experience “high contention” (i.e., those that are accessed by
“sufficiently many” next critical events), and VLC, the set of variables that experience “low contention,” as

VHC = {v ∈ V : |Zv| ≥ 4c2}, and
VLC = {v ∈ V : 0 < |Zv| < 4c2}.

Then, we have

|VHC| ≤ |Z|
4c2

. (170)

Define PHC (respectively, PLC), the set of processes whose next critical event accesses a variable in VHC

(respectively, VLC), as follows:
PHC =

⋃
v∈VHC

Zv, PLC =
⋃

v∈VLC

Zv. (171)

Since the sets Zv partition Z, PHC and PLC also partition Z:

Z = PHC ∪ PLC ∧ PHC ∩ PLC = {}. (172)

We now construct subsets ZAct and ZCvr of Z, such that the pair (ZAct, ZCvr) is conflict-free in H ′′.
(Later, by retaining ZAct and ZCvr, and erasing all other active processes, we construct a conflict-free
computation F satisfying ZAct(F) = ZAct and ZCvr(F) = ZCvr.)

Claim 2: There exist two disjoint subsets ZAct and ZCvr of Z, such that (ZAct, ZCvr) is conflict-
free in H ′′, satisfying the following inequality:

|ZAct| ≥ (c − 2)(n − 1)
48c2(c − 1)(2mH + 1)

. (173)

Proof of Claim: By Claim 1, any choice of (ZAct, ZCvr) from Z satisfies (130). Thus, it suffices
to show one of (C1)–(C3). By (140) and (167), we have either of the following.

60

• For each p ∈ Z, ep is a read event. (R)

• For each p ∈ Z, ep is an atomic write event. (W)

We consider three cases.

Case 1 (readers only): Condition (R) is true.

Let ZAct = Z and ZCvr = {}. Condition (R) implies Condition (C3). By (166), we have

|ZAct| = |Z| ≥ (c − 2)(n − 1)
6(c − 1)

≥ (c − 2)(n − 1)
48c2(c − 1)(2mH + 1)

,

which establishes (173).

Case 2 (erasing strategy): Condition (W) is true, and |PHC| < |Z|/2 holds.

By (166) and (172), we have

|PLC| = |Z| − |PHC| >
|Z|
2

≥ (c − 2)(n − 1)
12(c − 1)

. (174)

Note that, by (171), PLC is partitioned into nonempty sets Zv, for each v ∈ VLC. Moreover, by
the definition of VLC, each such Zv contains less than 4c2 processes. Therefore, by (174),

|VLC| >
|PLC|
4c2

>
(c − 2)(n − 1)
48c2(c − 1)

. (175)

By the definition of VLC, Zv is nonempty for each v ∈ VLC. Thus, we can construct a subset X
of PLC that contains exactly one process from each Zv (for each v ∈ VLC). Then, by (167), (172),
(175), and the definition of Zv, we have the following:

• X ⊆ PLC ⊆ Y ′ (= Act(H ′′)), (176)

• |X| = |VLC| >
(c − 2)(n − 1)
48c2(c − 1)

, and (177)

• vce(p) is distinct for each process p ∈ X. (178)

As explained in Section 4, we want to find a subset of X in which every process p becomes the
single writer of vce(p). Toward this goal, we now construct an undirected graph H = (X,EH),
where each vertex is a process in X (see Figure 14). For each pair {p, q} of different processes in
X, we introduce edge {p, q} if p reads vce(q) in H ′′. By (176), each p ∈ X executes mH critical
events in H ′′, and hence reads at most mH distinct variables in H ′′. Therefore, by (178), we
collectively introduce at most |X| · mH edges. Hence, the average degree of H is at most 2mH .
Therefore, by Theorem 2, there exists an independent set X ′ ⊆ X such that

|X ′| ≥ |X|
2mH + 1

>
(c − 2)(n − 1)

48c2(c − 1)(2mH + 1)
, (179)

where the latter inequality follows from (177). Also, by (178),

• vce(p) is distinct for each process p ∈ X ′, (180)

and by (149) and the definition of H,

• for each p ∈ X ′, if ep writes a variable v, and if a process q �= p reads v in H ′′, then q /∈ X ′. (181)

Also, since by (138), (164), and (176), we have the following:

ep �= CSp, for each p ∈ X ′. (182)

61

We now define ZAct = X ′ and ZCvr = {}. By (179), we have (173). By (180)–(182) and Condi-
tion (W), we have Condition (C1). Thus, Claim 2 follows.

Case 3 (covering strategy): Condition (W) is true, and |PHC| ≥ |Z|/2 holds.

By (166), we have

|PHC| ≥ |Z|
2

≥ (c − 2)(n − 1)
12(c − 1)

. (183)

By (171), PHC is partitioned into subsets Zv, for each v ∈ VHC. Moreover, by the definition of
VHC,

|Zv| ≥ 4c2, for each v ∈ VHC. (184)

Thus, we can partition each such Zv into two disjoint sets ZAct
v and ZCvr

v , such that the following
holds:

Zv = ZAct
v ∪ ZCvr

v ∧ ZAct
v ∩ ZCvr

v = {}; (185)

|ZAct
v | =

⌊ |Zv|
c2

⌋
− 1. (186)

By (169) and (184)–(186), we have the following:

ZAct
v ∩ ZAct

u �= {} ⇒ v = u, for each variable v and u; (187)

|ZAct
v | >

|Zv|
c2

− 2 ≥ |Zv|
c2

− |Zv|
2c2

=
|Zv|
2c2

; (188)

|ZCvr
v | = |Zv| − |ZAct

v | ≥ c2 · (|ZAct
v | + 1) − |ZAct

v | = (c2 − 1) · |ZAct
v | + c2. (189)

We can now define ZAct and ZCvr as follows:

ZAct =
⋃

v∈VHC

ZAct
v and ZCvr =

⋃
v∈VHC

ZCvr
v . (190)

By definition, the sets ZAct and ZCvr partition PHC:

PHC = ZAct ∪ ZCvr ∧ ZAct ∩ ZCvr = {}; (191)

Also, we have the following:

|ZAct| =
∣∣⋃

v∈VHC
ZAct

v

∣∣ =
∑

v∈VHC
|ZAct

v | {by (187)}

>
∑

v∈VHC

|Zv|
2c2

{by (188)}

=
1

2c2

∣∣⋃
v∈VHC

Zv

∣∣ {since each Zv is disjoint with each other, by (169)}

=
1

2c2
|PHC| {by (171)}

≥ (c − 2)(n − 1)
24c2(c − 1)

{by (183)}

>
(c − 2)(n − 1)

48c2(c − 1)(2mH + 1)
,

and hence we have (173). Finally, by (169) and (185), the sets Zv are mutually disjoint, each
partitioned into ZAct

v and ZCvr
v . Thus, by (190), it follows that ZAct (respectively, ZCvr) is

a disjoint union of ZAct
v (respectively ZCvr

v) over variables v ∈ VHC. Hence, we have ZAct
v =

ZAct ∩ Zv and ZCvr
v = ZCvr ∩ Zv. Thus, by (189), we have

|ZCvr ∩ Zv| ≥ (c2 − 1) · |ZAct ∩ Zv| + c2 > c · |ZAct ∩ Zv| + c2, (192)

62

where the last inequality follows from c = Θ(log N) (given in (11)), assuming N = ω(1).

Also, since PHC ⊆ Y (by (167) and (172)), by (138), we have the following:

ep �= CSp, for each p ∈ ZAct ∪ ZCvr. (193)

Combining (192) and (193) with Condition (W), we have Condition (C2), and hence Claim 2
follows. �

Define Z ′ = ZAct ∪ ZCvr. By (167) and Claim 2, we have

ZAct ∪ ZCvr = Z ′ ⊆ Z ⊆ Y ′ ⊆ Y − CE . (194)

We now erase processes in Y ′ − Z ′ by applying Lemma 5 with ‘H’ ← H ′′ and ‘K’ ← Y ′ − Z ′. (Since
Y ′ is defined to be Act(H ′′) in (163), and since, by (133) and (173), ZAct is nonempty, we have Y ′ − Z ′ �

Act(H ′′). As noted prior to (154), H ′′ is a regular computation with induction number mH .) We thus
construct a regular computation F in C with induction number mH , satisfying assertions (195)–(200), given
below:

• πmax(F) ≤ πmax(H ′′); (195)
• for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w, and process q,

P (F) = P (H ′′) − (Y ′ − Z ′); (196)
Actj(F) = Actj(H ′′) − (Y ′ − Z ′); (197)
Cvrj(F) = Cvrj(H ′′); (198)

AW j
w(F) = AW j

w(H ′′) − (Y ′ − Z ′); (199)
CW j

w(F) = CW j
w(H ′′). (200)

By (163), (194), and by applying (197) with ‘j’ ← mH , we also have

Act(F) = ActmH (F) = ActmH (H ′′) − (Y ′ − Z ′) = Y ′ − (Y ′ − Z ′) = Z ′. (201)

We now claim that F satisfies (134)–(136). By (154) and (195), we have (134). Since (ZAct, ZCvr) is
conflict-free in H ′′ (by Claim 2), it is also conflict-free in F . Define ZAct(F) = ZAct and ZCvr(F) = ZCvr.
Since Z ′ = ZAct ∪ ZCvr by definition, by (201), Act(F) is partitioned into two disjoint sets ZAct(F) and
ZCvr(F), such that (ZAct(F), ZCvr(F)) is conflict-free in F . Thus, F is conflict-free by definition, so we have
(135). Finally, by (173), we have (136). �

The following lemma extends a conflict-free computation, thus providing the induction step that leads
to the lower bound in Theorem 3.

Lemma 9 Let H be a regular computation in C with induction number mH . Assume the following:

• mH ≤ c − 2, (202)
• H is conflict-free, and (203)
• πmax(H) ≤ c. (204)

Since H is conflict-free, by definition, Act(H) is partitioned into two disjoint sets ZAct = ZAct(H) and
ZCvr = ZCvr(H).

Then, there exists a regular computation G = H ◦ E in C with induction number mH + 1, where E =
GmH+1 is the newly appended (mH + 1)st segment, satisfying the following:

• πmax(G) = 0, and (205)
• Act(G) = ZAct. (206)

63

Proof: As stated above, Act(H) can be partitioned into two disjoint sets ZAct = ZAct(H) and ZCvr =
ZCvr(H), such that (ZAct, ZCvr) is a conflict-free pair in H:

ZAct ∪ ZCvr = Act(H) and ZAct ∩ ZCvr = {}. (207)

For each p ∈ Act(H), define ep, p’s next critical event, to be ce(p,mH + 1). Also define vce(p) to be the
variable accessed by ep:

• for each p ∈ Act(H), ep accesses vce(p). (208)

Define Zv, the set of active processes that access v via their next critical events, as Zv = {p ∈ Z:
vce(p) = v}. Arbitrarily index processes in ZAct as

ZAct = {p1, p2, . . . , pb}, (209)

where b = |ZAct|. In order to construct the new (mH + 1)st segment E, for each p ∈ ZAct, we have to
construct its “next covering segment” C(p,mH + 1), which we denote by C(p). We do this by adding the
following events to C(p), for each p ∈ ZAct (see Figure 6).

Step 1. For each m (1 ≤ m ≤ mH), if ce(p,m) writes a variable v (i.e., p ∈ AW m
v (H)), and if CW m

v (H) is
nonempty, then we choose a process q from RW m

v , and deploy q by adding ie(q,m), its invocation
event on v, to C(p). (After deployment, q becomes a deployed process, dp(p,m), and does not belong
to RW m

v any more.)

Step 2. If Condition (C2) (from the definition of a conflict-free pair, given before Lemma 8) is true, then let
v = vce(p). We choose a process q from ZCvr such that its next critical event eq is a write to v. (Thus,
we have p ∈ ZAct ∩ Zv and q ∈ ZCvr ∩ Zv.) We then deploy q by adding ie(q,mH + 1), its invocation
event on v, to C(p). (Similarly, q becomes a deployed process, dp(p,mH + 1).)

We claim that there exist enough reserve processes to deploy throughout the construction of all next
covering segments. By Lemma 1, for each covering pair (m, v) of H, we have |RW m

v (H)| > |AW m
v (H)|.

(Assumptions (16) and (17) stated in Lemma 1 follow from (202) and (204), respectively.) Thus, H has
enough reserve processes to use in Step 1. Also, if Condition (C2) is true, then we have |ZCvr ∩ Zv| ≥
c · |ZAct ∩ Zv| + c2 > |ZAct ∩ Zv|, and hence we have enough processes in ZCvr ∩ Zv to use in Step 2.

We now construct E as follows:

E = S(p1,mH + 1) ◦ C(p1) ◦ S(p2,mH + 1) ◦ C(p2) ◦ · · · ◦ S(pb,mH + 1) ◦ C(pb). (210)

In order to show that G is a valid computation in C, we first need the following claim. (Informally, we
show that G satisfies Lemma 2.)

Claim 1: Consider an event fp in G, and a variable v. Denote G as F1 ◦ 〈fp〉 ◦F2, where F1 and
F2 are subcomputations of G. If fp reads v, then the following holds:

last writer(v, F1) = p ∨ last writer(v, F1) = ⊥ ∨ value(v, F1) = �.

Proof of Claim: If fp is an event in H, then by applying Lemma 2 with ‘H’ ← H and ‘ep’ ← fp,
the claim follows. Hence, assume that fp is an event in E.

Since covering segments consist entirely of invocation events, by the definition of E (given in
(210)),

• fp is contained in S(p,mH + 1), (211)

and also p ∈ ZAct holds. By (207), we also have

p ∈ ZAct ⊆ Act(H). (212)

Since fp reads v, p executes a critical read of v in G. Thus,

64

• ce(p,m) reads v, for some m (1 ≤ m ≤ mH + 1). (213)

Let gq = last writer event(v, F1). If we have either q = p or q = ⊥, then we are done. Thus,
assume q �= p ∧ q �= ⊥. By the Atomicity property, gq is either an atomic write event of v or an
invocation event on v. If gq is an invocation event, then we have value(v, F1) = �, and hence we
are done.

We claim that gq cannot be an atomic write event. For the sake of contradiction, assume other-
wise, i.e., gq is an atomic write event of v. Then, by (31) and (210),

• gq is contained in solo segment S(q, l), for some l (1 ≤ l ≤ mH + 1). (214)

Thus,

• ce(q, j) is a write to v, for some j ≤ l; (215)

We consider two cases, depending on the value of j.

Case 1: j = mH + 1.

In this case, by (215),

• eq = ce(q,mH + 1) is a write to v. (216)

Moreover, by (214) and (215), gq is contained in S(q,mH + 1), and hence, by (209) and (210),
we have

q ∈ ZAct. (217)

Thus, by (203), (216), and the definition of a conflict-free computation,

• either Condition (C1) or Condition (C2) is true,

and hence, by (212), ep = ce(p,mH + 1) is also a write event. Therefore, by (213), we have
m ≤ mH , and hence,

• p reads v in H. (218)

By (212), (216), (217), and (218), we have a contradiction of (the last line of) Condition (C1).
Thus, assume that Condition (C2) is true. By (208) and (216), it follows that Step 2 (in the
construction of E) adds an invocation event h on v to C(q). Therefore, by (211), and since gq

precedes fp, E can be written as follows:

E = · · · ◦ S(q,mH + 1) ◦ C(q) ◦ · · · ◦ S(p,mH + 1) ◦ · · · ,

where events gq, h, and fp are contained in S(q,mH + 1), C(q), and S(p,mH + 1), respectively.
Therefore, G contains a write on v (namely, h) between gq and fp, which contradicts gq = last
writer event(v, F1).

Case 2: 1 ≤ j ≤ mH .

In this case, by (215), q writes v in H, and q ∈ AW j
v(H) holds. We consider two cases.

First, assume that CW j
v(H) is empty, i.e.,

• q is the single writer of v in H. (219)

65

If 1 ≤ m ≤ mH , then by (213), and by applying R4 with ‘p’ ← q, ‘q’ ← p, and ‘m’ ← j, we have
p ∈ Cvrj(H). However, since Cvrj(H) ⊆ Cvr(H) (by (6)), and since Act(H) and Cvr(H) are
disjoint (by (3)), this contradicts (212).

Therefore, by (213), m = mH + 1 holds, and ep = ce(p,mH + 1) reads v. Thus, by (130) and
(219), we have q ∈ Act(H) − (ZAct ∪ ZCvr). However, this is impossible by (207).

Second, assume that q is not the single writer of H, i.e., CW j
v(H) is nonempty. If l ≤ mH , then

by (214), and by applying R2 with ‘m’ ← l, it follows that C(q, l) contains an invocation event
h on v. On the other hand, if l = mH + 1, then by (209), (210), and (214), we have q ∈ ZAct,
and hence, Step 1 adds an invocation event h on v to C(q) = C(q,mH + 1). Therefore, by (211),
and since gq precedes fp, G can be written as follows:

G = · · · ◦ S(q, l) ◦ C(q, l) ◦ · · · ◦ S(p,mH + 1) ◦ · · · ,

where events gq, h, and fp are contained in S(q, l), C(q, l), and S(p,mH + 1), respectively.
Therefore, G contains a write on v (namely, h) between gq and fp, which contradicts gq = last
writer event(v, F1). �

Claim 1 implies that each process p ∈ ZAct cannot distinguish its execution in G = H ◦ E from its solo
computation. Thus, each such p can execute its next solo segment after H. Moreover, all events in the next
covering segments are invocation events, and hence they cannot read any variable. Thus, by inductively
applying P2, we can easily show that G is a valid computation in C.

We now claim that G is a regular computation with induction number mH + 1, satisfying the following
for each segment index m (1 ≤ m ≤ mH + 1) and variable v:

Actm(G) =
{

Actm(H), if m ≤ mH

ZAct, if m = mH + 1; (220)

Cvrm(G) =
{

Cvrm(H), if m ≤ mH

Cvr(H) ∪ ZCvr, if m = mH + 1; (221)

AW m
v (G) =

⎧⎨
⎩

AW m
v (H), if m ≤ mH

ZAct ∩ Zv, if m = mH + 1 and Condition (C1) or (C2) is true
{}, if m = mH + 1 and Condition (C3) is true;

(222)

CW m
v (G) =

⎧⎨
⎩

CW m
v (H), if m ≤ mH

ZCvr ∩ Zv, if m = mH + 1 and Condition (C2) is true
{}, if m = mH + 1 and Condition (C1) or (C3) is true.

(223)

From (210) and the construction of the next covering segments, assertions (2)–(10) and (220)–(223) follow
immediately. The construction of the next covering segments ensures that G satisfies R1 and R2. From (203)
and the definition of a conflict-free computation, it follows that each next critical event ep (that is in E) is
different from CSp, and hence we have R3.

We now claim that G satisfies R4. Consider some segment index m (1 ≤ m ≤ mH + 1), process p, and
variable v, such that p ∈ AW m

v (G) and CW m
v (G) is empty. We consider two cases.

First, assume m ≤ mH . Note that, in this case, we have AW m
v (G) = AW m

v (H) and CW m
v (G) =

CW m
v (H). (Thus, p is the single writer of v in H by definition.) By applying R4 to H, it follows that, for

each segment index j (1 ≤ j ≤ mH) and each process q ∈ Actj(G) = Actj(H) different from p, the following
hold:

(i) if j < m and ce(q, j) is a write to v, then CW j
v(H) is nonempty;

(ii) if j < m and ce(q, j) is a read of v, then q ∈ Cvrm(H) holds;
(iii) if m ≤ j ≤ mH , then ce(q, j) does not access v.

Thus, in order to prove that m, p, and v satisfy R4, it suffices to assume j = mH + 1 and consider a
process q ∈ ActmH+1(G). Our proof obligation is to show that ce(q,mH + 1) does not access v.

66

For the sake of contradiction, assume otherwise. By (203), (ZAct, ZCvr) satisfies (130) with respect to H.
By (220), we have q ∈ ZAct. Thus, applying (130) with ‘p’ ← q and ‘q’ ← p, and using p �= q and the fact
that p is the single writer of v in H, we have q ∈ Act(H) − (ZAct ∪ ZCvr), but this is impossible by (207).

Second, assume that m = mH + 1. Since p ∈ ActmH+1(G), by (220), we have p ∈ ZAct. Since ep =
ce(p,mH + 1) writes v and CW m

v (G) is empty, Condition (C1) must be true. Consider a segment index j
(1 ≤ j ≤ mH + 1) and a process q ∈ Actj(G) different from p. Our proof obligation is to show the following
three conditions:

(i) if j ≤ mH and ce(q, j) is a write to v, then CW j
v(G) is nonempty;

(ii) if j ≤ mH and ce(q, j) is a read of v, then q ∈ CvrmH+1(G) holds;
(iii) if j = mH + 1, then ce(q, j) does not access v.

Proof of (i)–(iii): First, consider (i). For the sake of contradiction, assume that CW j
v(G)

is empty. Thus, q is a single writer of v in H. As shown above, (ZAct, ZCvr) satisfies (130)
with respect to H, and hence we have either p = q or q ∈ Act(H) − (ZAct ∪ ZCvr). The former
contradicts our assumption, and the latter is impossible by (207).

Second, consider (ii). In this case, the last line of Condition (C1) implies q /∈ ZAct, which in turn
implies q ∈ CvrmH+1(G) by (207), (220), and (221).

Finally, consider (iii). By (220), q ∈ ActmH+1(G) implies q ∈ ZAct. Combining this with p ∈
ZAct, and using the second line of Condition (C1), (iii) follows easily.

Finally, we claim that G satisfies (205) and (206). From (220), we have (206). (Note that ZAct is defined
to be ZAct(H).) In order to show (205), we must show π(m, v;G) = 0 for every covering pair (m, v) in G.
We consider two cases.

First, if m ≤ mH , then by (204), we have

π(m, v;H) ≤ c.

Since m ≤ mH , we have AW m
v (G) = AW m

v (H) and CW m
v (G) = CW m

v (H). Hence, by (12), and since G
has an induction number of mH + 1, we also have

req(m, v;G) = req(m, v;H) − c.

Combining these two assertions with the definition of ‘π’ (given in (13)), we have π(m, v;G) = 0.

Second, if m = mH +1, then (m, v) is a covering pair only if ZCvr is nonempty, i.e., only if Condition (C2)
is true. Moreover, by (222) and (223), we have AW m

v (G) = ZAct ∩ Zv and CW m
v (G) = ZCvr ∩ Zv. Hence,

by (C2), we have |CW m
v (G)| ≥ c · |AW m

v (G)| + c2 > c · (|AW m
v (G)| + c − mH) = req(m, v;G), and hence

π(m, v;G) = 0 follows. �

Theorem 3 For any one-shot mutual exclusion system S = (C, P, V), there exist a p-computation F such
that F does not contain CSp, and p executes Ω(log N/ log log N) critical events in F , where N = |P |.

Proof: Let H1 = S(1, 1) ◦S(2, 1) ◦ · · · ◦S(N, 1) = 〈Enter1, Enter2, . . . , EnterN 〉, where P = {1, 2, . . . , N}.
By the definition of a mutual exclusion system, H1 ∈ C. In H1, each process p becomes a “single writer” of
its auxiliary variable entryp. By checking conditions (2)–(10) and R1–R4 individually, it follows that H1 is
a regular computation with induction number 1.

We repeatedly apply Lemma 8 and Lemma 9, and we can construct a sequence of computations H1, H2,
. . . , Hk, such that each computation Hm has induction number m. We stop the induction at step k when
assumption (131) or (133) of Lemma 8 is not satisfied.

67

Define nm = |Act(Hm)| for each m. Applying Lemma 8 with ‘H’ ← Hm, we construct a conflict-free
computation Fm satisfying

|ZAct(Fm)| ≥ (c − 2)(nm − 1)
48c2(c − 1)(2m + 1)

.

(This inequality follows from (136).) Applying Lemma 9 with ‘H’ ← Fm, we construct Hm+1 such that
Act(Hm+1) = ZAct(Fm) (by (206)). Combining these relations, we have

nm+1 ≥ (c − 2)(nm − 1)
48c2(c − 1)(2m + 1)

,

and hence, by (11), (131), and (133),

nm+1 ≥ a′nm

m log2 N
≥ anm

log3 N
,

where a and a′ are some fixed constants. This in turn implies

log nm+1 ≥ log nm − 3 log log N + log a.

Therefore, by iterating over 1 ≤ m < k, and using n1 = N , we have

log nk ≥ log N − 3(k − 1) log log N + (k − 1) log a. (224)

If we stop the induction at step k because assumption (131) is not satisfied, then we have k = c− 2, and
hence, by (11), k = Θ(log N) holds. On the other hand, if we stop the induction because assumption (133)
is not satisfied, then we have nk < 7, and hence, by (224),

log 7 > log N − 3(k − 1) log log N + (k − 1) log a,

which in turn implies

k >
log N − log 7

3 log log N − log a
+ 1 = Θ

(
log N

log log N

)
.

Therefore, in either case, we have k = Ω(log N/ log log N). Since Hk−1 satisfies (133), we can choose a
process p from Act(Hk−1) that executes exactly k − 1 solo segments (and hence, k − 1 critical events) in
Hk−1. Thus, Hk−1 | p is a solo computation that satisfies the theorem. �

68

