
A Time Complexity Lower Bound for Adaptive Mutual

Exclusion∗

Yong-Jik Kim

Google Inc.

1600 Amphitheatre Parkway

Mountain View, CA 94043

Email: yongjik@gmail.com

James H. Anderson

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175

Email: anderson@cs.unc.edu

September 2005, revised May 2007, December 2010, and August 2011

Abstract

We consider the time complexity of adaptive mutual exclusion algorithms, where “time” is measured

by counting the number of remote memory references required per critical-section access. For systems that

support (only) read, write, and comparison primitives (such as compare-and-swap), we establish a lower

bound that precludes a deterministic algorithm with o(k) time complexity, where k is point contention. In

particular, it is impossible to construct a deterministic O(log k) algorithm based on such primitives.

∗Work supported by NSF grants CCR 9732916, CCR 9972211, CCR 9988327, ITR 0082866, and CCR 0208289. This work

was presented in preliminary form at the 15th International Symposium on Distributed Computing [30], where it received the best

student paper award.

1 Introduction

In this paper, we consider the time complexity of adaptive mutual exclusion algorithms. A mutual exclusion

algorithm is adaptive if its time complexity is a function of the number of contending processes [7, 15, 25, 28, 31,

34, 35]. Two widely used definitions of contention are “interval contention” and “point contention” [1].1 The

interval contention over a computation H is the number of processes that are active in H , i.e., that execute

outside of their noncritical sections. The point contention over H is the maximum number of processes that

are active at the same state in H . Throughout this paper, we let N denote the number of processes in the

system. Also, unless stated otherwise, k denotes the point contention experienced by an arbitrary process while

it is active. (Note that point contention is always at most interval contention. Hence, our lower bound result,

proved in terms of point contention, automatically applies to interval contention as well.)

The time complexity measure considered in this paper is motivated by work on local-spin synchronization

algorithms. In local-spin algorithms, all busy waiting is by means of read-only loops in which one or more locally-

accessible “spin variables” are repeatedly tested. The ability to locally access a shared variable is provided on

both distributed shared-memory (DSM) and cache-coherent (CC) machines, as illustrated in Figure 1. In a

DSM machine, each processor has its own memory module that can be accessed without accessing the global

interconnection network. On such a machine, a shared variable can be made locally accessible by storing it in

a local memory module. In a CC machine, each processor has a private cache, and some hardware protocol is

used to enforce cache consistency (i.e., to ensure that all copies of the same variable in different local caches

are consistent). On such a machine, a shared variable becomes locally accessible by migrating to a local cache

line.2

Because our main interest is local-spin algorithms, we determine the time complexity of a mutual exclusion

algorithm by counting the number of remote memory references generated by one process to enter and then

exit its critical section. A remote memory reference (RMR) is a memory access that requires a traversal of

the global processors-to-memory interconnect. This complexity measure is known as the RMR time complexity

measure [5].

In prior work, we presented an adaptive mutual exclusion algorithm with O(min(k, log N)) RMR time

complexity that is based only on reads and writes [31]. (A similar algorithm has also been presented by Afek

et al. [3].) Our algorithm is based on Yang and Anderson’s (non-adaptive) algorithm [39], which has Θ(logN)

RMR time complexity. In other prior work, we established a worst-case RMR time bound of Ω(logN/ log logN)

for mutual exclusion algorithms (adaptive or not) based on reads, writes, or comparison primitives3 such as

test-and-set and compare-and-swap [4]. We also conjectured that this bound can be improved to Ω(log N),

which would then prove the optimality of Yang and Anderson’s algorithm. Recently, Attiya et al. answered this

conjecture in the affirmative by proving Ω(log N) RMR time bound for a wide class of algorithms including

mutual exclusion [9], with one exception: their result does not apply to CC machines that use a write-update

protocol.4 These two results show that the Θ(logN) worst-case RMR time complexity of our O(min(k, logN))

1Another notion of contention, namely “step contention” [8], is used primarily in the study of obstruction-free algorithms [26].

We do not concern ourselves with step contention in this paper.
2Most modern multiprocessor systems are CC machines. However, DSM architectures are still being used in the embedded-

systems domain, where simpler computing technology often must be used due to cost/power limitations, and the non-deterministic

nature of cache hardware is sometimes undesirable. For example, the Cradle Technologies CT3600 multicore digital signal processor

has on-chip memory, but no data cache. If several of these processors are interconnected, then the resulting platform is a DSM

platform as considered here (with the exception that cores on the same chip can access the same local memory). A well-known older

example of a DSM machine is the BBN Butterfly 1, which was considered by Mellor-Crummey and Scott [33] in their performance

studies involving local-spin algorithms.
3A comparison primitive conditionally updates a shared variable after first testing that its value equals a prescribed value.
4In a write-update CC machine, when a processor updates a variable shared among multiple processors’ caches, the updated

1

P P

MM

Interconnect

P P

C C

Interconnect

M M

.

. . .

(a) (b)

Figure 1: (a) DSM model. (b) CC model. In both insets, ‘P’ denotes a processor, ‘C’ a cache, and ‘M’ a

memory module.

algorithm [31] is optimal for DSM machines and write-invalidate CC machines, and close to optimal (specifically,

within a factor of Θ(log logN)) for write-update CC machines.

These two lower bounds do not mention k, so they tell us very little about RMR time complexity under

low contention. The only bounds involving k that directly follow are obtained by substituting k for n in their

proofs. In particular, our Ω(logN/ log logN) lower bound is established by inductively considering longer and

longer computations, the first of which involves N processes, and the last of which may involve fewer processes.

If we start instead with k process, then a computation is obtained with O(k) processes (and hence O(k) point

contention at each state) in which some process performs Ω(log k/ log log k) remote references. A similar

argument, applied to the proof of the Ω(logN) bound [9], yields an Ω(log k) time bound.

This suggests two interesting possibilities: in all likelihood, either Ω(min(k, log N)) is in fact a tight lower

bound (i.e., the algorithm in [31] is optimal), or it is possible to design an adaptive algorithm with O(log k)

RMR time complexity (i.e., Ω(log k) is tight). Indeed, the problem of designing an O(log k) algorithm using

only reads and writes has been mentioned in at least two papers [7, 31].

In this paper, we show that an O(log k) algorithm in fact does not exist. In particular, we prove the following.

Given any k, define N̄ = N̄(k) = (2k + 4)2(2
k
−1). For any N ≥ N̄ , and for any N -process mutual

exclusion algorithm based on reads, writes, or comparison primitives, a computation exists involving

Θ(k) processes in which some process performs Ω(k) remote memory references to enter and exit its

critical section.

There exists one exception to our result: our lower bound does not apply to write-update CC machines that

have the ability to execute failed comparison events on cached variables without generating interconnect traffic.

(See Section 2.3 for details.) In fact, an algorithm with O(1) time complexity in such systems is presented in [4].

Our proof of this result extends techniques used by us and others in several earlier papers [2, 4, 6, 13, 14,

16, 36].

value propagates to these caches. On the other hand, a write-invalidate machine simply invalidates remote copies in such a case; a

subsequent read by another processor thus generates interconnect traffic to access the updated value.

2

Related work. Since the publication of these results in preliminary form [30], a number of papers have been

published that address issues pertaining to RMR time complexity [9, 10, 11, 12, 17, 18, 19, 21, 22, 23, 24, 25,

27, 28, 32, 37]. Of these, Attiya et al. [9] and Hendler and Woelfel [25] are of direct relevance to the focus of

this paper. As mentioned above, Attiya et al. [9] proved a tight RMR lower bound for mutual exclusion for

most class of machines. Their result extends ideas used by Fan and Lynch [20], which proved a lower bound

of Ω(logN) operations (per process) under a different model, namely, the state change cost model. It is worth

noting that these two papers use information-theoretic arguments, which allow processes to learn about other

running processes, unlike our result presented in this paper, where limiting the “information flow” is crucial.

Recently, Hendler and Woelfel devised a randomized mutual exclusion algorithm with expected O(log N/

log logN) RMR time complexity [24], and a randomized adaptive algorithm with an expected amortized O(log k/

log log k) RMR time complexity [25]. Thus, randomized algorithms can perform better than deterministic ones.

RMR time complexity has been also studied in light of other related algorithms such as leader election [23],

reader-writer locks [11, 12], group mutual exclusion [10, 19, 29], k-exclusion [17], first-come first-served (FCFS)

mutual exclusion [18, 27, 37], abortable mutual exclusion [28], and implementing comparison primitives using

reads and writes [22].

The rest of the paper is organized as follows. In Section 2, our system model is defined. Our lower bound

proof is then sketched in Section 3. A formal proof of it is given in Section 4. We conclude in Section 5.

2 Definitions

In this section, we provide definitions pertaining to atomic shared-memory systems that will be used in obtain-

ing our lower bound. In the following subsections, we define our model of an atomic shared-memory system

(Section 2.1), state the properties required of a mutual exclusion algorithm implemented within this model

(Section 2.2), and present a categorization of events that allows us to accurately deduce the network traffic

generated by an algorithm in a system with coherent caches (Section 2.3). The same model was used earlier by

us to establish the previously-mentioned Ω(log N/ log log N) lower bound [4]. Therefore, most of the material

in this section is taken directly from [4].

2.1 Atomic Shared-Memory Systems

Our model of an atomic shared-memory system is similar to that used by Anderson and Yang [6].

An atomic shared-memory system S = (C, P, V) consists of a set of computations C, a set of processes P ,

and a set of variables V . A computation is a finite sequence of events. To complete the definition of an atomic

shared-memory system, we must formally define the notion of an “event” and state the requirements to which

events and computations are subject. This is done in the remainder of this subsection.

Each variable is local to at most one process and is remote to all other processes. (Note that we allow

variables that are remote to all processes; thus, our model applies to both DSM and CC systems.) The locality

relationship is static, i.e., it does not change during a computation. A local variable may be shared; that is, a

process may access local variables of other processes. An initial value is associated with each variable.

We assume that each process p ∈ P asynchronously executes a series of atomic statements, as follows.

Step 1. Determine an atomic statement to execute, based on p’s internal state (i.e., its private variables and

program counter). This step may not access any shared variable.

3

Step 2. Execute the selected statement atomically. The code may contain at most one access to a remote variable,

and an unlimited number of accesses to any of p’s local variables (private or shared).

Step 3. Check for program termination (which may be indicated by a private variable, for example). If the program

has terminated, then stop execution. Otherwise, go back to Step 1.

Events, informally considered. Below, formal definitions pertaining to events are given; here, we present

an informal discussion to motivate these definitions. Informally, an event is a particular execution of an atomic

statement (Step 2 above) of some process that involves reading and/or writing one or more variables. An event

is local if it does not access any remote variables, and is remote otherwise. An event is executed by a particular

process, and may access at most one variable that is remote to that process (by reading, writing, or executing

a comparison primitive), plus any number of local (shared or private) variables. Thus, we allow arbitrarily

powerful operations on local variables. Since our proof applies to systems with reads, writes, and comparison

primitives, it is important to formally define the notion of a comparison primitive. We define a comparison

primitive to be an atomic operation on a shared variable v expressible using the following pseudo-code.

Compare and fg(v, old , new)

temp := v;

if v = old then v := f(old , new) fi;

return g(temp, old , new)

For example, compare-and-swap can be defined by defining f(old , new) = new and g(temp, old , new) = old .

We call an execution of such a primitive a comparison event . As we shall see, our formal definition of a

comparison event, which is given later in this section, generalizes the functionality encompassed by the pseudo-

code above by allowing arbitrarily many local shared variables to be accessed.

As an example, assume that variables a, b, and c are local to process p and variables x and y are remote to

p. Then, the following atomic statements by p are allowed in our model.

statement s1: a := a+ 1; b := c+ 1;
statement s2: a := x;
statement s3: y := a+ b;
statement s4: compare-and-swap(x, 0, b)

For example, if every variable has an initial value of 0, and if these four statements are executed in order,

then we will have the following four events.

e1: p reads 0 from a, writes 1 to a, reads 0 from c, and writes 1 to b; /∗ local event ∗/
e2: p reads 0 from x and writes 0 to a; /∗ remote read from x ∗/
e3: p reads 0 from a, reads 1 from b, and writes 1 to y; /∗ remote write to y ∗/
e4: p reads 0 from x, reads 1 from b, and writes 1 to x /∗ comparison primitive execution on x ∗/

On the other hand, the following atomic statements by p are not allowed in our model, because s5 accesses

two remote variables at once, and s6 and s7 cannot be expressed as a comparison primitive.

statement s5: x := y; /∗ accesses two remote variables ∗/
statement s6: a := x; x := 1; /∗ fetch-and-store (swap) on a remote variable ∗/
statement s7: x := x+ b /∗ fetch-and-add on a remote variable ∗/

4

Describing each event as in the preceding examples is inconvenient, ambiguous, and prone to error. For

example, if statement s7 is executed when x = 0 ∧ b = 1 holds, then the resulting event can be described in the

same way as e4 is. (Thus, e4 is allowed as an execution of s4, yet disallowed as an execution of s7.) In order to

systematically represent the class of allowed events, we need a more refined formalism.

Definitions pertaining to atomic statements. We classify each atomic statement based on its operation,

which determines which remote variable is accessed, and what primitive is used to access it. An atomic state-

ment must execute one of the following operations: ⊥ (which represents a local event), read(v), write(v), or

compare(v, α), where v is a variable in V and α is a value from the value domain of v. Moreover, the exact type

of the operation (including the values v and α, where applicable) must be determined by Step 1, before any

shared variable is accessed (by Step 2). This property is formally stated in Property P3, given later.

For example, if a is a shared variable, local to process p, and x and y are remote variables, then the following

statement is not a valid atomic statement for p.

statement s8: if a = 0 then x := 1 else y := 1 fi

This is because s8 may execute either write(x) or write(y) as its operation, depending on the value possibly

written to a by other processes. That is, its operation cannot be determined at Step 1. On the other hand, the

following statement is allowed, because its operation is fixed as write(x).

statement s9: if a = 0 then x := 1 else x := 2 fi

As yet another example, if k is a private variable, then the atomicity in the following code segment is

acceptable: in it, there are two distinct atomic statements, one of which will be executed depending on k’s

value. (Compare with s8.)

if k = 0 then /∗ processed at Step 1 ∗/
statement s10: x := 1

else

statement s11: y := 1

fi

Similarly, if k is a private variable and a and b are shared local variables, then the following is a valid atomic

statement with operation compare(x, α), where α is the value of k just before the execution of s12. However, if

k is a shared variable, then s12 is disallowed, because its operation cannot be determined by examining private

variables only.

statement s12: if x = k then x := a+ b+ 1; k := 0 fi

Definitions pertaining to events. We now formally define an event and state its requirements. An event

is a particular execution of an atomic statement (by a particular process). For brevity, we sometimes use ep to

denote an event executed by process p. The operation of e, denoted op(e), is the operation of the corresponding

atomic statement, as defined above. We use Rvar(e) (respectively, Wvar (e)) to denote the set of variables read

(respectively, written) by e. Rvar(e) and Wvar(e) need not be disjoint, and may contain an arbitrary number

of local variables. We also define var(e), the set of all variables accessed by e, to be Rvar(e) ∪Wvar(e). We

also say that a computation H contains a write (respectively, read) of v if H contains some event that writes

(respectively, reads) v.

5

The values read from variables in Rvar(e) or written into variables in Wvar(e) are a part of e’s specification.

(For example, if process p executes an identical atomic statement that reads variable v in two different compu-

tations, but reads a different value in either case, then these two are considered different events.) Clearly, in a

valid computation, an event e must read from each v ∈ Rvar(e) the value that v held just before the execution

of e. This requirement is formally stated in Property P4 below.

Our lower bound is dependent on the Atomicity property stated below. This assumption requires each

remote event to be an atomic read operation, an atomic write operation, or a comparison-primitive execution.

Atomicity property: The operation of each event e by a process p must satisfy one of the conditions below.

• If op(e) = ⊥, then e does not access any remote variables. (That is, all variables in var (e) are local to p.)

In this case, we call e a local event.

• If op(e) = read(v), then e reads exactly one remote variable, which must be v, and does not write any

remote variable. (That is, v ∈ Rvar(e), v /∈Wvar (e), and all other variables [if any] in var(e) are local to

p.) In this case, e is called a remote read event.

• If op(e) = write(v), then e writes exactly one remote variable, which must be v, and does not read any

remote variable. (That is, v ∈Wvar(e), v /∈ Rvar(e), and all other variables [if any] in var(e) are local to

p.) In this case, e is called a remote write event.

• If op(e) = compare(v, α), then e reads exactly one remote variable, which must be v. We say that e is a

comparison event in this case. Comparison events must be either successful or unsuccessful.

– e is a successful comparison event if e reads the value α from v and writes some different value β

(6= α) to v.

– e is an unsuccessful comparison event if e does not write v, i.e., v /∈Wvar(e) holds.

In either case, e does not write or read any other remote variable. �

Our notion of an unsuccessful comparison event includes both comparison-primitive invocations that fail

(i.e., v 6= old in the pseudo-code given for Compare and fg above) and also those that do not fail but leave the

remote variable that is accessed unchanged (i.e., v = old ∧ v = f(old , new)). In the latter case, we simply

assume that the remote variable v is not written. We categorize both cases as unsuccessful comparison events

because this allows us to simplify certain cases in our lower bound proof. (On the other hand, we do allow a

remote write event on v to preserve the value of v, i.e., to write the same value as v had before the event.)

Note that the Atomicity property allows arbitrarily powerful operations on local (shared) variables. For

example, if variable v, ranging over {0, . . . , 10}, is remote to process p, and arrays a[1..10] and b[1..10] are local

to p, then an execution of the following statement is a valid event e by p with operation compare(v, 0).

if v = 0 then

v :=
(
∑10

j=1 a[j]
)

mod 11;

for j := 1 to 10 do a[j] := b[j] od

else

for j := 1 to v do b[j] := a[j] + v od

fi

6

In this case, Wvar (e) is {v, a[1..10]} if e reads v = 0 and writes a nonzero value (i.e., e is a successful

comparison event), {a[1..10]} if e reads and writes v = 0,5 and {b[1..v]} if e reads a value between 1 and 10 from

v.

It is important to note that, saying that an event ep writes (reads) a variable v is not equivalent to saying

that ep is a remote write (read) event on v; ep may also write (read) v if v is local to process p, or if p is a

comparison event that accesses v.

We say that two events e and f are congruent, denoted e ∼ f , if and only if the following conditions are

met.

• e and f are executed by the same process;

• op(e) = op(f), where equality means that both operations are the same with the same arguments (v and/or

α).

Informally, two events are congruent if they execute the same operation on the same remote variable. For

read and write events, the values read or written may be different. For comparison events, the values read or

written (if successful) may be different, but the parameter α must be the same. (It is possible that a successful

comparison event is congruent to an unsuccessful one.) Note that e and f may access different local variables.

Definitions pertaining to computations. The definitions given until now have mostly focused on events.

We now present requirements and definitions pertaining to computations.

The value of variable v at the end of computation H , denoted value(v, H), is the last value written to v

in H (or the initial value of v if v is not written in H). The last event to write to v in H is denoted writer

event(v, H),6 and the process that executes it is denoted writer(v, H). If v is not written by any event in H ,

then we let writer(v, H) = ⊥ and writer event(v, H) = ⊥.
We use 〈e, . . .〉 to denote a computation that begins with the event e, 〈e, . . . , f〉 to denote a computation

beginning with event e and ending with event f , and 〈〉 to denote the empty computation. We use H ◦ G to

denote the computation obtained by concatenating computations H and G. An extension of computation H

is a computation of which H is a prefix. For a computation H and a set of processes Y , H | Y denotes the

subcomputation of H that contains all events in H of processes in Y .7 A computation H is a Y -computation

if and only if H = H | Y . For simplicity, we abbreviate the preceding definitions when applied to a singleton

set of processes. For example, if Y = {p}, then we use H | p to mean H | {p} and p-computation to mean

{p}-computation. Two computations H and G are congruent, denoted H ∼ G, if either both H and G are

empty, or if H = 〈e〉 ◦H ′ and G = 〈f〉 ◦G′, where e ∼ f and H ′ ∼ G′.

Until this point, we have placed no restrictions on the set of computations C of an atomic shared-memory

system S = (C, P, V) (other than restrictions pertaining to the kinds of events that are allowed in an individual

computation). The restrictions we require are as follows.

P1: If H ∈ C and G is a prefix of H , then G ∈ C.

— Informally, every prefix of a valid computation is also a valid computation.

P2: If H ◦ 〈ep〉 ∈ C, G ∈ C, G | p = H | p, and if value(v, G) = value(v, H) holds for all v ∈ Rvar(ep), then

G ◦ 〈ep〉 ∈ C.

5In other words, we consider v as not written by e.
6Although our definition of an event allows multiple instances of the same event, we assume that such instances are distinguishable

from each other. (For simplicity, we do not extend our notion of an event to include an additional identifier for distinguishability.)
7The subcomputation H | Y is not necessarily a valid computation. However, we can always consider H | Y to be a computation

in a technical sense, i.e., it is a sequence of events.

7

— Informally, if two computations H and G are not distinguishable to process p, if p can execute event ep after

H , and if all variables in Rvar(ep) have the same values after H and G, then p can execute ep after G.

P3: If H ◦ 〈ep〉 ∈ C, G ∈ C, and G | p = H | p, then G ◦ 〈e′p〉 ∈ C for some event e′p such that ep ∼ e′p.

— Informally, if two computations H and G are not distinguishable to process p, and if p can execute event ep

after H , then p can execute a congruent event after G.

P4: For any H ∈ C, H ◦ 〈ep〉 ∈ C implies that e reads the value of value(v, H) from v, for all v ∈ Rvar(ep).

— Informally, only the last value written to a variable can be read.

P5: For any H ∈ C, if both H ◦ 〈ep〉 ∈ C and H ◦ 〈e′p〉 ∈ C hold for two events ep and e′p, then ep = e′p.

— Informally, each process is deterministic. This property is included in order to simplify bookkeeping in our

proofs.

Note that Property P3 precisely defines the class of allowed events. (For example, statement s8 is disal-

lowed because it violates P3.) P3 and P5 imply that, if p cannot distinguish between two computations, then

any atomic statement p is about to execute immediately after them must result in congruent events. Hence,

congruence of execution is a necessary condition for every allowed atomic statement. We invite the reader to

verify that this is indeed satisfied by statements s1–s4 and s9–s12.

2.2 Mutual Exclusion Systems

We now define a special kind of atomic shared-memory system, namely (atomic) mutual exclusion systems,

which are our main interest. An atomic mutual exclusion system S = (C, P, V) is an atomic shared-memory

system that satisfies the properties below.

Each process p has a local auxiliary variable statp that represents which section in the mutual exclusion

algorithm p is currently in: statp ranges over ncs (for noncritical section), entry , or exit , and is initially ncs.

(For simplicity, we assume that each critical-section execution is vacuous.) Process p also has three “dummy”

auxiliary variables ncsp, entryp, and exitp. These variables are accessed only by the following atomic statements,

which only p may execute. (For simplicity, we use Enterp, CS p, and Exitp to denote both the statements given

below and the events representing their execution.)

Enterp: statp := entry; entryp := 0;

CSp: statp := exit ; exitp := 0;

Exitp: statp := ncs ; ncsp := 0

Enterp causes p to transit from its noncritical section to its entry section. CS p causes p to transit from its

entry section to its exit section.8 Exitp causes p to transit from its exit section to its noncritical section. This

behavior is depicted in Figure 2.

We define variables entryp, exitp, and ncsp to be remote to all processes. This assumption allows us to

simplify bookkeeping, because it implies that each of Enterp, CS p, and Exitp is congruent only to itself. (This

is the sole purpose of defining these three variables.)

The allowable transitions of statp are as follows: for all H ∈ C,

H ◦ 〈Enterp〉 ∈ C if and only if value(statp, H) = ncs ;

H ◦ 〈CS p〉 ∈ C only if value(statp, H) = entry;

H ◦ 〈Exitp〉 ∈ C only if value(statp, H) = exit .

8Each critical-section execution of p is captured by the single event CSp, so statp changes directly from entry to exit .

8

process p: • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

NCS

(statp = ncs)

Enter p

Entry Section

(statp = entry)

CSp

w

w

w

�

Critical section
Exit Section

(statp = exit)

Exitp

NCS

(statp = ncs)

}

“section” of p

}

p-computation
}

transition
events of p

Figure 2: Transition events of an atomic mutual exclusion system. In this figure, NCS stands for “noncritical
section,” a circle (◦) represents a non-transition event, and a bullet (•) represents a transition event.

In our proof, we only consider computations in which each process enters and then exits its critical section

at most once. Thus, we henceforth assume that each computation contains at most one Enterp event for each

process p. (Specifically, each process p halts immediately once it executes Exitp.) In addition, an atomic mutual

exclusion system is required to satisfy the following.

Exclusion: For all H ∈ C, if both H ◦ 〈CS p〉 ∈ C and H ◦ 〈CS q〉 ∈ C hold, then p = q.

Progress: Given H ∈ C, define X = {q ∈ P | value(statq, H) 6= ncs}. If X is nonempty, then there exists an

X-computation G and a process p ∈ X such that H ◦G◦〈ep〉 ∈ C and ep is either CS p (if value(statp, H) =

entry) or Exitp (if value(statp, H) = exit).

The Exclusion property precludes multiple critical-section events from being simultaneously “enabled.” Al-

though we assume that each critical-section execution is vacuous, we can certainly “augment” a given algorithm

by replacing each event CS p by a set of events that represents p’s critical-section execution. If two events

CS p and CS q are simultaneously enabled after a computation H , then we can interleave the critical-section

executions of p and q, thus violating mutual exclusion. The Exclusion property states that such a situation does

not arise.

The Progress property is implied by livelock-freedom, although it is strictly weaker than livelock-freedom.

In particular, it allows the possibility of infinitely extending H such that no active process p executes CS p or

Exitp. This weaker formalism is sufficient for our purposes.

2.3 Cache-Coherent Systems

On cache-coherent (CC) shared-memory systems, some remote-variable accesses may be handled locally, without

causing interconnection network traffic. Our lower-bound proof applies to such systems without modification.

This is because we do not count every remote event, but only certain “critical” events that generate cache

misses. (Actually, as explained below, some events that we consider critical might not generate cache misses

in certain system implementations, but this has no asymptotic impact on our proof.) The notion of a critical

event presented here is taken directly from [4].

Precisely defining the class of such events in a way that is applicable to the myriad of cache implementations

that exist is exceedingly difficult. We partially circumvent this problem by assuming idealized caches of infinite

size: a cached variable may be updated or invalidated but it is never replaced by another variable. Note that, in

practice, cache size and associativity limitations should only increase the number of cache misses. In addition,

in order to keep the proof manageable, we allow cache misses to be both undercounted and overcounted. In

particular, as explained below, in any realistic cache system, at least a constant fraction (but not necessarily

all) of all critical events generate cache misses. Thus, a single cache miss may be associated with Θ(1) critical

events, resulting in overcounting up to a constant factor. Note that this overcounting has no effect on our

asymptotic lower bound. Also, an event that generates a cache miss may be considered noncritical, resulting in

9

undercounting, which may be of more than a constant factor. Note that this undercounting can only strengthen

our asymptotic lower bound. Therefore, an asymptotic lower bound on the number of critical events is also an

asymptotic lower bound on the number of actual cache misses.

Our definition of a critical event is given below. This definition is followed by a rather detailed explanation

in which various kinds of caching protocols are considered.

Definition: Let S = (C, P, V) be an atomic mutual exclusion system. Let ep be an event in H ∈ C. Then, we

can write H as F ◦ 〈ep〉 ◦G, where F and G are subcomputations of H . We say that ep is a critical event in H

if and only if one of the following conditions holds:

Transition event: ep is one of Enterp, CS p, or Exitp.

Critical read: There exists a variable v, remote to p, such that op(ep) = read(v) and F | p does not contain

a read from v.

— Informally, ep is the first event of p that reads v in H .

Critical write: There exists a variable v, remote to p, such that ep is a remote write event on v (i.e.,

op(ep) = write(v)), and writer(v, F) 6= p.

— Informally, ep is a remote write event on v, and either ep is the first event that writes to v in H (i.e.,

writer(v, F) = ⊥), or ep overwrites a value that was written by another process.

Critical successful comparison: There exists a variable v, remote to p, such that ep is a successful compar-

ison event on v (i.e., op(ep) = compare(v, α) for some value of α and v ∈Wvar(ep)), and writer(v, F) 6= p.

— Informally, ep is a successful comparison event on v, and either ep is the first event that writes to v in H (i.e.,

writer(v, F) = ⊥), or ep overwrites a value that was written by another process.

Critical unsuccessful comparison: There exists a variable v, remote to p, such that ep is an unsuccessful

comparison event on v (i.e., op(ep) = compare(v, α) for some value of α and v /∈Wvar (ep)), writer (v, F) 6=
p, and either

(i) F | p does not contain an unsuccessful comparison event on v, or

(ii) F can be written as F1 ◦ 〈fq〉 ◦F2, where q 6= p and fq = writer event(v, F), such that F2 | p does not

contain an unsuccessful comparison event on v.

— Informally, ep must read the initial value of v (if writer(v, F) = ⊥) or a value that is written by another process

q. Moreover, either (i) ep is the first unsuccessful comparison on v by p in H , or (ii) ep is the first such event by

p after some other process has written to v (via fq).
9

�

Note that state transition events do not actually cause cache misses; these events are defined as critical so

that certain cases can be combined in the proofs that follow. A process executes only three transition events per

critical-section execution, so defining transition events as critical does not affect our asymptotic lower bound.

It is possible that the first read of v by p, the first write or successful comparison event on v by p, and the

first unsuccessful comparison event on v by p (i.e., Case (i) in the definition above) are all considered critical.

Depending on the system implementation, the second and third of these events (in the order of occurrence)

might not generate a cache miss. However, even in such a case, the first such event will always generate a cache

miss, and hence at least a third of all such “first” critical events will actually incur real interconnect traffic.

Hence, considering all of these events to be critical has no asymptotic impact on our lower bound.

9This definition is more complicated than those for critical writes and successful comparisons because an unsuccessful comparison

event on v by p does not actually write v. Thus, if a sequence of such events is performed by p while v is not written by other

processes, then only the first such event should be considered critical.

10

All caching protocols are based on either a write-through or a write-back scheme. In a write-through scheme,

all writes go directly to shared memory. In a write-back scheme, a remote write to a variable v may create a

cached copy of v, so that subsequent writes to v do not cause cache misses. With either scheme, if cached copies

of v exist on other processors when such a write occurs, then to ensure consistency, these cached copies must be

either invalidated or updated. In the rest of this subsection, we consider in some detail the question of whether

our notion of a critical write and a critical comparison is reasonable under the various caching protocols that

arise from these definitions.

First, consider a system in which there are no comparison events, in which case it is enough to consider only

critical write events. If a write-through scheme is used, then all remote write events cause interconnect traffic,

so consider a write-back scheme. In this case, a write ep to a remote variable that is not the first write to v by

p is considered critical only if writer(v, F) = q holds for some q 6= p, which implies that v is stored in a local

cache line of process q. In such a case, ep must either invalidate or update the cached copy of v (depending on

the means for ensuring consistency), thereby generating interconnect traffic.

Next, consider comparison events. A successful comparison event on a remote variable v writes a new value

to v. Thus, the reasoning given above for ordinary writes applies to successful comparison events as well. This

leaves only unsuccessful comparison events. Recall that an unsuccessful comparison event on a remote variable

v does not actually write v. Thus, the reasoning above does not apply to such events.

In the remainder of this discussion, let ep denote an unsuccessful comparison event on a remote variable

v, where Case (ii) in the definition applies. Then, some other process q writes to v (via a write or successful

comparison event, or even a local, read, or unsuccessful comparison event, if v is local to q) prior to ep but

after p’s most recent unsuccessful comparison event on v, and also after p’s most recent successful comparison

and/or remote write event on v. Consider the interconnect traffic generated, assuming an invalidation scheme

for ensuring cache consistency. In this case, p’s previous cached copy of v is invalidated prior to ep, so ep must

generate interconnect traffic in order to read the current value of v, unless an earlier read of v by p (after q’s

write) exists. Thus, ep fails to generate interconnect traffic only if there is an earlier read of v by p (after q’s

write), say fp, that does. Note that fp is either a “first” read of v by p or a noncritical read. The former

case may happen at most once per remote variable; in the latter case, we can “charge” the interconnect traffic

generated by fp to ep.

The last possibility to consider is that of an unsuccessful comparison event ep implemented within a caching

protocol that uses updates to ensure consistency. In this case, q’s write in the scenario above updates p’s cached

copy, and hence ep may not generate interconnect traffic. (Note that, for interconnect traffic to be avoided

in this case, the hardware must be able to distinguish a failed comparison event on a cached variable from

a successful comparison event or a failed comparison on a non-cached variable.) Therefore, our lower bound

does not apply to a system that uses updates to ensure consistency and that has the ability to execute failed

comparison events on cached variables without generating interconnect traffic. (If an update scheme is used,

but the hardware is incapable of avoiding interconnect traffic when executing such failed comparison events,

then our lower bound obviously still applies.) In fact, an algorithm with O(1) time complexity in such systems

is presented in [4].

As a final comment on our notion of a critical event, notice that whether an event is considered critical

depends on the particular computation that contains the event, specifically the prefix of the computation

preceding the event. Therefore, when saying that an event is (or is not) critical, the computation containing

the event must be specified.

11

3 Proof Strategy

In Section 4, we show that for any positive k, there exists some N̄ such that, for any mutual exclusion system

S = (C, P, V) with |P | ≥ N̄ , there exists a computation H such that some process p experiences point contention

k and executes at least k critical events to enter and exit its critical section. In this section, we sketch the key

ideas of the proof.

3.1 Process Groups and Regular Computations

Our proof focuses on a special class of computations called “regular” computations. The Ω(log N/ log log N)

lower bound mentioned earlier was also proved by considering such computations, so most of the definitions in

this subsection are taken directly from [4]. A regular computation consists of events of two groups of processes,

“active processes” and “finished processes.” Informally, an active process is a process in its entry section,10

competing with other active processes; a finished process is a process that has executed its critical section once,

and is in its noncritical section. (Recall that we consider only computations in which each process executes its

critical section at most once.) The allowed states of these processes are formally defined in Condition RF4,

given later in this section.

Definition: Let S = (C, P, V) be a mutual exclusion system, and H be a computation in C. We define Act(H),

the set of active processes in H , and Fin(H), the set of finished processes in H , as follows.

Act(H) = {p ∈ P | H | p 6= 〈〉 and 〈Exitp〉 is not in H}
Fin(H) = {p ∈ P | H | p 6= 〈〉 and 〈Exitp〉 is in H} �

Initially, we start with a regular computation in which all the processes in P are active. The proof proceeds

by inductively constructing longer and longer regular computations, until the desired lower bound is attained.

The regularity condition defined below ensures that no participating process has “knowledge” of any other

process that is active.11 This has two consequences: we can “erase” any active process (i.e., remove its events

from the computation) and still get a valid computation; “most” active processes have a “next” non-transition

critical event. In each induction step, we append to each of the n active processes (except at most one) one

next critical event. These next critical events may introduce unwanted information flow, i.e., these events may

cause an active process to acquire knowledge of another active process, resulting in a non-regular computation.

Informally, such information flow is problematic because an active process p that learns of another active process

may start busy waiting. If p busy waits via a local spin loop, then it might not execute any more critical events,

in which case the induction fails.

In some cases, we can eliminate all information flow by simply erasing some active processes. Sometimes

erasing alone does not leave enough active processes for the next induction step. In this case, we partition the

active processes into two categories: “invisible” processes and “promoted” processes. The invisible processes

(that are not erased — see below) will constitute the set of active processes for the next regular computation

in the induction. No process is allowed to have knowledge of another process that is invisible. The promoted

processes are processes that have been selected to “roll forward.” A process that is rolled forward finishes

executing its entry, critical, and exit sections, and returns to its noncritical section. (Both of these techniques,

10In our proof, some non-regular computations also appear as intermediate steps between regular computations. In these non-

regular computations, an active process may also be in its exit section.
11A process p has knowledge of another process q if p has read from some variable a value that is written either by q or another

process that has knowledge of q.

12

All Processes

Erased Processes

(perform no events in the

computation under consideration)

Active Processes Finished Processes

(have entered and exited

their CS’s exactly once)
Invisible Processes

(no information flow

among each other)

Promoted Processes

(will be empty for a

regular computation)
︸ ︷︷ ︸

Roll-forward Set

(((((((((
hhhhhhhhh

�
��

@
@@

Figure 3: Process groups.

erasing and rolling forward, have been used previously to prove other lower bounds related to the mutual

exclusion problem [4, 6, 13, 14, 16], as well as several other lower bounds for concurrent systems [2, 36].)

Processes are allowed to have knowledge of promoted or finished processes. Although invisible processes may

have knowledge of promoted processes, once all promoted processes have finished execution, the regularity

condition holds again (i.e., all active processes are invisible). The various process groups we consider are

depicted in Figure 3 (the roll-forward set is discussed below).

The promoted and finished processes together constitute a “roll-forward set,” which must meet Condi-

tions RF1–RF5 below. Informally, Condition RF1 ensures that an invisible process is not known to any other

processes. Conditions RF2 and RF3 bound the number of possible conflicts caused by appending a critical

event. In particular, RF2 prevents information flow between two invisible processes via a variable local to either

of them; RF3 prevents the erasing of an invisible process p from “uncovering” a write by some other process that

was subsequently overwritten by p. (For example, assume that RF3 is violated and that processes q and p, both

invisible, are the penultimate and the last writer to v, respectively. We may later want to let some process r

read v, as a means of obtaining a longer computation. In order to eliminate information flow, we have to erase

both p and q, because erasing p alone allows r to obtain knowledge of q. In general, we may have to erase an

unbounded number of processes, which makes it rather difficult to proceed with the proof.) Condition RF4

ensures that the invisible, promoted, and finished processes behave as explained above. Condition RF5 ensures

that we can erase any invisible process, maintaining that critical events (that are not erased) remain critical.

Definition: Let S = (C, P, V) be a mutual exclusion system, H be a computation in C, and RFS be a subset

of P such that Fin(H) ⊆ RFS and H | p 6= 〈〉 for each p ∈ RFS . We say that RFS is a valid roll-forward set

(RF-set) of H if and only if the following conditions hold.

RF1: Assume that H can be written as E ◦ 〈ep〉 ◦ F ◦ 〈fq〉 ◦ G.12 If p 6= q and there exists a variable

v ∈Wvar (ep) ∩ Rvar(fq) such that F does not contain a write to v (i.e., writer event(v, F) = ⊥), then
p ∈ RFS holds.

— Informally, if a process p writes to a variable v, and if another process q reads that value from v without any

intervening write to v, then p ∈ RFS holds.

RF2: For any event ep in H and any variable v in var (ep), if v is local to another process q (6= p), then either

q /∈ Act(H) or {p, q} ⊆ RFS holds.

12Here and in similar sentences hereafter, we are considering every way in which H can be so decomposed. That is, any pair of

events ep and fq inside H such that ep comes before fq defines a decomposition of H into E ◦ 〈ep〉 ◦ F ◦ 〈fq〉 ◦ G, and RF1 must

hold for any such decomposition.

13

— Informally, if a process p accesses a variable that is local to another process q, then either q is not an active

process in H , or both p and q belong to the roll-forward set RFS . Note that this condition does not distinguish

whether q actually accesses v or not, and conservatively requires q to be in RFS (or erased) even if q does not

access v. This is done in order to simplify bookkeeping.

RF3: Suppose there is a variable v ∈ V and two different events ep and fq in H such that p 6= q, both p and q

are in Act(H), v ∈ var(ep)∩ var (fq), and there exists a write to v in H . Then, writer(v, H) ∈ RFS holds.

— Informally, if a variable v is accessed by more than one process in Act(H), then the last process in H to write

to v (if any) belongs to RFS .

RF4: For any process p such that H | p 6= 〈〉,

value(statp, H) =







entry if p ∈ Act(H)− RFS ,

entry or exit if p ∈ Act(H) ∩ RFS ,

ncs otherwise (i.e., p ∈ Fin(H)).

Moreover, if p ∈ Fin(H), then the last event by p in H is Exitp.

— Informally, if a process p participates in H (H | p 6= 〈〉), then at the end of H , one of the following holds: (i) p

is in its entry section and has not yet executed its critical section (p ∈ Act(H)− RFS); (ii) p is in the process of

“rolling forward” and is in its entry or exit section (p ∈ Act(H)∩RFS); or (iii) p has already finished its execution

and is in its noncritical section (i.e., p ∈ Fin(H)). Note that Fin(H) = RFS − Act(H).

RF5: For any event ep in H , if ep is a critical write or a critical comparison in H , then ep is also a critical

write or a critical comparison in H | ({p} ∪ RFS).

— Informally, if an event ep in H is a critical write or a critical comparison, then it remains critical if we erase all

processes not in RFS and different from p. �

Condition RF5 is used to show that the property of being a critical write/comparison is conserved when

considering certain related computations. Recall that, if ep is not the first event by p to write to v, then for

it to be critical, there must be a write to v by another process q in the subcomputation between p’s most

recent write (via a remote write or a successful comparison event) and event ep. Similarly, if ep is not the first

unsuccessful comparison by p on v, then for it to be critical, there must be a write to v by another process q in

the subcomputation between p’s most recent unsuccessful comparison on v and event ep. RF5 ensures that if q

is not in RFS , then some other process q′ exists that is in RFS and that writes to v in the subcomputation in

question.

Note that a valid RF-set can be “expanded”: if RFS is a valid RF-set of computation H , then any set of

processes that participate in H , provided that it is a superset of RFS , is also a valid RF-set of H . Also note

that Act(H)∪Fin(H) (the set of all participating processes) is always a valid RF-set, since we assume that each

process p halts as soon as it executes Exitp (see Section 2.2).

The invisible and promoted processes (which partition the set of active processes) are defined as follows.

Definition: Let S = (C, P, V) be a mutual exclusion system, H be a computation in C, and RFS be a valid

RF-set of H . We define InvRFS (H), the set of invisible processes in H , and PmtRFS (H), the set of promoted

processes in H , as follows.

InvRFS (H) = Act(H)− RFS

PmtRFS (H) = Act(H) ∩ RFS �

14

For brevity, we often omit the specific RF-set if it is obvious from the context, and simply use the notation

Inv(H) and Pmt(H). Finally, the regularity condition can be defined as “all the processes we wish to roll

forward have finished execution.”

Definition: A computation H in C is regular if and only if Fin(H) is a valid RF-set of H . �

3.2 Detailed Proof Overview

Initially, we start with a regular computation H1, where Act(H1) = P , Fin(H1) = {}, and each process has one

critical event, namely, Enterp. We then inductively show that other longer computations exist, the last of which

establishes our lower bound. Each computation is obtained by rolling forward or erasing some processes. The

induction is complete when we obtain Hk; throughout the rest of this section, k represents a given fixed number.

We assume that P is large enough to ensure that enough non-erased processes remain after each induction step

for the next step to be applied. The precise bound on |P |, as a function of k, is given in Theorem 2.

At the jth induction step, we consider a regular computation Hj such that Act(Hj) consists of n processes

that execute j critical events each (in Hj). We construct a regular computation Hj+1 such that

• Act(Hj+1) consists of Ω(
√
n/k) processes, and (1)

• each active process in Act(Hj+1) executes j + 1 critical events in Hj+1.

The construction method, formally described in Lemma 7, is explained below. In constructingHj+1 fromHj ,

we may erase some processes and roll at most two processes forward (thereby making them finished processes).

After executing steps 1, . . . , (k− 1), we have a regular computation Hk in which each active process executes k

critical events and |Fin(Hk)| ≤ 2(k − 1). Since active processes have no knowledge of each other, we may erase

all but one active process from Hk and obtain a valid computation. This computation has exactly one active

process and at most 2(k − 1) finished processes. Thus, its contention is at most 2k − 1. Moreover, the single

remaining active process performs k critical events, proving the desired lower bound.

We now describe how Hj+1 is constructed from Hj . Let n = |Act(Hj)|. Since Hj is regular, no active

process has knowledge of other active processes. Therefore, we can “erase” any active process and still get a

valid computation (Lemma 1). Moreover, if we choose an active process p and erase all other active processes,

then by the Progress property, p eventually executes CS p. We claim that every process p in Act(Hj), except at

most one, executes at least one additional critical event before it executes CS p. This claim is formally stated

and proved in Lemma 5; here we give an informal explanation.

Assume, for the sake of contradiction, that we have two distinct active processes, p and q, each of which

may execute its CS event, if executed alone, by first executing only noncritical events. That is, we have two

valid computations Hj ◦ Lp ◦ 〈CS p〉 and Hj ◦ Lq ◦ 〈CS q〉, where Lp and Lq consist solely of noncritical events.

It can be shown that noncritical events of invisible processes cannot cause any information flow among these

processes (Lemma 4). Hence, we can append both Lp and Lq after Hj and still obtain a valid computation, as

shown below.

Claim 1: Hj ◦ Lp ◦ Lq is a valid computation.

Proof of Claim: It suffices to prove that q cannot distinguish between Hj and Hj ◦ Lp. (From

this, it follows that, if q can execute Lq after Hj , then it can do so after Hj ◦ Lp.)

Consider each event eq in Lq (in Hj ◦Lp◦Lq). Event eq may distinguish between Hj and Hj ◦Lp only

if it reads a variable (say, v) that is written by some event in Lp. Since events in Lp are noncritical,

15

.
.
.

Y' : subset of Act(Hj)

1
2
3
4
5

Events that are in Hj

(includes j critical

events per process)
Newly appended events

(includes one next critical event

per process, each accessing

a distinct variable, and perhaps

some noncritical events)

.
.
.

Z: saved

processes

1
2
3
4
5

No conflicts among active processes:

ready for the next induction step

: processes that are erased

: processes that are saved

: "conflicts"

1

2

3

4 5

"conflict graph"

Figure 4: Erasing strategy. For simplicity, processes in Fin(Hj) are not shown.

either v is local to p or there exists a critical event fp in Hj that writes v. Similarly, since eq is

noncritical (in Hj ◦ Lq), either v is local to q or there exists a critical event gq in Hj that reads v.

If v is local to p, then by applying RF2 to Hj (with ‘RFS ’ ← Fin(Hj), ‘p’ ← q, ‘q’ ← p, and

‘ep’← gq),
13 and using {p, q} ⊆ Act(Hj), we have a contradiction. If v is local to q, then similarly

applying RF2, we again have a contradiction. The only remaining possibility is that v is remote to

both p and q, and that Hj contains events fp (which writes v) and gq (which reads v). Then, by

RF3, we have writer (v, Hj) ∈ Fin(Hj). In particular, writer(v, Hj) is not q. However, this implies

that the first event (either eq or some earlier event) to read v in Lq (as a subcomputation of Hj ◦Lq)

is critical, by definition. Hence, we have reached a contradiction. �

Since CS p is a “dummy” event that does not read any variable, it cannot distinguish between Hj ◦ Lp and

Hj ◦Lp ◦Lq. (Similar reasoning applies to CS q.) It follows that Hj ◦Lp ◦Lq may be followed by both CS p and

CS q, clearly violating the Exclusion property.

Thus, among the n processes in Act(Hj), at least n− 1 processes execute an additional critical event before

entering their critical sections. We call these events “next” critical events, and denote the corresponding set of

processes by Y . We consider two cases, based on the variables remotely accessed by these next critical events.

Erasing strategy. Assume that there are at least
√
n distinct variables that are remotely accessed by some

next critical events. For each such variable v, we select one process whose next critical event accesses v. Let Y ′

be the set of selected processes. This situation is depicted in Figure 4. We now eliminate remaining possible

conflicts among processes in Y ′ by constructing a “conflict graph” G as follows. (Two processes conflict if the

addition of new events by both processes creates information flow or violates one of RF1–RF5.)

Each process p in Y ′ is considered a vertex in G. By induction, process p has j critical events in Act(Hj)

and one next critical event. For each of the j + 1 critical events of p, (i) if the event accesses the same variable

as the next critical event of some other process q, introduce edge (p, q). In addition, (ii) if the next critical

event of p remotely accesses a local variable of q, also introduce edge (p, q).

Since each process in Y ′ accesses a distinct remote variable in its next critical event, it is clear that each

process generates at most j+1 edges by rule (i) and at most one edge by rule (ii). By applying Turán’s theorem

13In the rest of this section, Conditions RF1–RF5 are applied to Hj with ‘RFS ’← Fin(Hj), unless specified otherwise.

16

(Theorem 1, given later in Section 4), we can find a subset Z of Y ′ such that |Z| = Ω(
√
n/j) and their critical

events do not conflict with each other. (Since Hj is regular, any conflict among critical events that are in Hj

must be already resolved. Thus, we can be sure that there are no remaining conflicts.) By retaining Z and

erasing all other active processes, we can eliminate all conflicts. We define the resulting computation as Hj+1,

the desired computation.

To complete the proof, we still have to show that Hj+1 is a regular computation (satisfying RF1–RF5) and

that each active process in Hj+1 (that is, each process in Z) executes j + 1 critical events in Hj+1. Since a

rigorous proof (given in Section 4) is mainly technical in nature and rather tedious to follow, here we only give

a very cursory overview. Interested readers are referred to the proof of Lemma 7.

Lemmas 1 and 4 show that it is safe (i.e., both regularity and the “criticality” of each event are preserved)

to erase active processes and append noncritical events, respectively. Hence, it suffices to consider only each

next critical event (say, ep) to be appended. Assume that ep accesses a variable v remotely.14

Condition RF1 (with ‘ep’← fq and ‘fq’← ep) can be violated only if ep reads from v a value written by fq,

where q is another active process. In this case, by rule (ii) (in defining edges), v is remote to q. (Otherwise, q

is already erased.) Hence, there exists some critical event by q that writes v in Hj . But then G contains edge

(p, q) by rule (i), a contradiction.

Rule (ii) ensures ep cannot violate RF2.

Rule (i) ensures that v is different from every variable remotely accessed by any active process other than

p. (Recall that the first access to each remote variable is critical. Hence, a process cannot access a remote

variable u at all if it does not access it critically.) Also, rule (ii) ensures that v is not local to any active process.

It follows that ep and v cannot meet the antecedent of RF3, and hence appending ep vacuously preserves RF3.

Since every next critical event is a non-transition event, RF4 is clearly preserved.

In order to show that RF5 is preserved and that p executes j + 1 critical events in Hj+1, it suffices to show

that ep remains critical in both Hj+1 and Hj+1 | ({p} ∪RFS). If ep is critical because it is the first event by p

to write/read v, then ep is clearly critical regardless of other processes’ computations. Hence, assume that ep is

critical after Hj because some earlier event fp writes v in Hj and some other process q writes v in Hj , after fp.

In this case, by RF3, the last process to write v (say, r) in Hj is a finished process, and hence cannot be erased.

Therefore, in Hj+1, ep still reads/overwrites a value written by r, and remains critical. Moreover, ep remains

critical even if we erase all active processes except p from Hj+1, thus satisfying RF5. (Formally, this reasoning

is given by Lemma 2.)

Roll-forward strategy. Assume that the number of distinct variables that are remotely accessed by some

next critical events is less than
√
n. This situation is depicted in Figure 5. Since there are at least n − 1 next

critical events, there exists a variable v that is remotely accessed by next critical events of at least (n− 1)/
√
n

(= Θ(
√
n)) processes. Let Yv be the set of these processes. (In the following discussion, we consider v as

fixed.) First, we retain Yv and erase all other active processes. Let the resulting computation be H ′. (Formally,

H ′ = H | (Yv ∪ Fin(H)), as defined in (113); other equations referred to below can also be found in the proof

of Lemma 7.) Note that, if executed in arbitrary order, processes in Yv may gather knowledge of each other by

accessing the same variable v. Hence, the crux of our strategy lies in limiting such information flow.

We achieve this by arranging the next critical events of Yv by placing write, comparison, and read events in

14In fact, as shown in the proof of Lemma 7, we append e′p, an event that is congruent to ep. (See (96) and (97).) This is because

ep (after Hj) may read from v a value written by another active process q; in this case, q is erased, and p may now read a different

value from v, executing the same statement but generating a different event. This detail is ignored here in order to simplify the

proof overview.

17

. .
 .

Yv: subset of Act(Hj)

Events that are in Hj
(includes j critical
events per process) Newly appended events

(includes one next critical event
per process, each accessing
variable v, and perhaps
some noncritical events)

Arrange the next critical events in order of
writes / comparison primitives / reads:

writes comparisons reads

�Last Writer� LW(v) �Successful Comparison� SC(v)

information flow

Figure 5: Roll-forward strategy. For simplicity, processes in Fin(Hj) are not shown.

that order. In this way, all “next” write events (of v), except for the last one, are overwritten by subsequent

writes, and hence cannot create any information flow. (That is, when some other process later reads v, it

cannot gather any information of these “next” writers, except for the last one.) Furthermore, we can arrange

comparison events such that at most one of them succeeds, as follows.

Let α be the value of v after all the next write events are executed. We first append all comparison events

that compare v to any value different from α, i.e., with an operation that can be written as compare(v, β) such

that β 6= α. These comparison events must fail. We then append the remaining comparison events, namely,

events with operation compare(v, α). If there are such events, the first comparison event is successful (changes

the value of v) and all subsequent comparison events must fail.

Thus, among the next events (that are not erased so far), the only information flow that arises is from the

“last writer” event LW (v) and from the “successful comparison” event SC (v) to all other next comparison and

read events of v. We use pLW and pSC to denote the processes that execute LW (v) and SC (v), respectively.

(Depending on the computation, we may have only one of them, or neither.)

As a concrete example, assume that Yv consists of eight active processes p1–p8 that are about to execute (as

their next critical events) statements s1–s8, shown below. Also assume that v equals 0 before the execution of

these statements.

/∗ Note: statements may be executed in any order. ∗/
statement s1: v := 1;
statement s2: if v := 1 then v := 2 fi;
statement s3: k3 := v; /∗ k3 is private to p3. ∗/
statement s4: v := 4;
statement s5: if v := 4 then v := 5 fi;
statement s6: if v := 8 then v := 6 fi;
statement s7: if v := 4 then v := 7 fi;
statement s8: k8 := v /∗ k8 is private to p8. ∗/

In this case, we may schedule these statements in the following order: s1, s4 (“last writer”), s2, s6, s5 (the

only successful comparison), s7, s3, and s8. (This situation is depicted in the right side of Figure 5.) It is easy

to see that the only information flow is from p4 (= pLW) and p5 (= pSC), that is, only p4 and p5 become visible.

We have thus constructed a non-regular computation, as pLW and pSC are active yet visible. (That is,

Fin(H ′) ∪ {pLW, pSC} is a valid roll-forward set.) We then roll pLW and pSC forward15 (i.e., allow them to

execute their remaining entry/critical/exit sections, while stalling other active processes), thus generating a

18

regular computation G such that Fin(G) = Fin(H ′)∪ {pLW, pSC}. Toward this goal, we inductively construct a

series of non-regular computations G0, G1, . . . , Gl (= G) such that exactly one of pLW and pSC executes one

more critical event in Gh+1 than Gh. This additional critical event may cause pLW or pSC to read from a variable

written by another active process, in which case we erase that single active process to prevent information flow.

(See the induction following (155)–(161) for details.) The induction stops (at some step l) when both pLW and

pSC transit to their noncritical sections, at which point we have erased at most l active processes. The resulting

computation Gl is regular again, and this is the desired computation, Hj+1.

Having explained the crucial steps, we now give a more detailed explanation. Each process p in Yv may

execute some noncritical events before critically accessing v. That is, we have a valid computation H ◦Lp ◦ 〈ep〉,
where Lp consists entirely of noncritical events by p, and ep accesses v critically. (See (59)–(64).) By definition,

we can erase any subset of invisible processes and still obtain a valid computation. In particular, H ′ ◦Lp ◦ 〈ep〉
is a valid computation (where H ′ = H | (Yv ∪ Fin(H)) and we have erased Act(H)− Yv).

Lemma 4 shows that noncritical events of invisible processes cannot cause information flow. (We proved

this for two processes in Claim 1; the argument can be easily generalized to an arbitrary number of processes.)

Hence, H ′ ◦ L is a valid computation, where L is obtained by concatenating computations Lp for each p ∈ Yv.

By Property P3, each process p in Yv must execute, after H ′ ◦ L, some event congruent to ep. Thus we can

obtain a computation G = H ′ ◦ L ◦ E (see (134)), where E contains all “next critical events” by processes in

Yv, arranged such that the only information flow is from pLW and pSC, as explained above. We denote events

in E by e′p for each p ∈ Yv. (Either or both of pLW and pSC may be missing, e.g., if all next critical events are

reads from v and v was never written before. For simplicity, here we assume that they both exist.)

It can be shown that every e′p in E is critical. (See Claim 4 in the proof of Lemma 7.) Informally, this

follows because ep is critical in H ′ ◦ Lp ◦ 〈ep〉, and because inserting more events executed by other processes

cannot cause a critical event to become noncritical.

We now expand our “roll-forward set” to include pLW and pSC, i.e., we define RFS(G) = Fin(H)∪{pLW, pSC}.
(In the rest of this section, all stated conditions are with respect to this RFS(G), so we will omit the operand

and simply use RFS to denote RFS(G).) Before rolling pLW and pSC forward, we must first show that RFS is a

valid roll-forward set of G. As noted after the definition of RF1–RF5, we can always expand a valid RF-set, and

hence RFS is a valid RF-set of H . Also, as explained in the description of erasing strategy, it is safe to erase

active processes and append noncritical events. It follows that RFS is a valid RF-set of H ′ ◦L. Hence, we only

need to show that the addition of the “next critical events” (i.e., those in E), when applied to a computation

that satisfies RF1–RF5, preserves these conditions.

Claim 2: RFS is a valid RF-set of G = H ′ ◦ L ◦ E.

Proof of Claim: We consider each condition separately.

• RF1: Condition RF1 easily follows from our construction, since the only information flow is

from pLW and pSC, which are included in RFS .

• RF2: Since each active process (say, p) is in Yv, p accesses v remotely (in E) by definition,

and hence v cannot be local to any active process. Hence, RF2 is preserved. (Note that

Act(G) = Yv.)

• RF3: Consider two different events fp and gq in H , such that p 6= q, both p and q are in

Act(G), there exists a variable u accessed by both fp and gq, and there exists a write to u in

15In some cases, LW (v) may be an event in Hj , if all next critical events by processes in Yv are comparison or read events. In

such a case, we still define pLW as the process that execute LW (v), and roll it forward if it is an active process.

19

G. Our proof obligation is to show writer(u, G) ∈ RFS .

If both fp and gq are inside H ′ ◦L, then we have the desired condition, because RFS is a valid

RF-set of H ′ ◦ L. So, without loss of generality, assume that gq is an event in E, i.e., gq = e′q.

If u = v, then writer(u,G) is either pSC or (if pSC does not exist) pLW, both of which are in RFS .

We now show that u 6= v is in fact impossible: assume u 6= v, for the sake of contradiction. Since

gq (= e′q) remotely accesses v, by the Atomicity property, u is local to q. Thus, fp accesses

u remotely, and hence fp cannot be an event in E (because v is the only variable remotely

accessed in E). It follows that fp is an event in H ′ ◦L. By applying RF2 with ‘RFS ’← Fin(H)

to fp in H ′ ◦ L, we have q /∈ Act(H ′ ◦ L), which contradicts our assumption that q ∈ Act(G).

• RF4: Since every next critical event is a non-transition event, RF4 is clearly preserved.

• RF5: We need to show that each e′p in E remains critical when all other processes in Yv are

erased. Here, we only consider the case when e′p is a critical unsuccessful comparison; other

cases are similar. (For a formal proof, see the proof of Lemma 2 in [4], and Claim 4 in the proof

of Lemma 7.)

If e′p is the first unsuccessful comparison event on v by p, then it clearly remains critical

regardless of other processes’ events. Otherwise, let fq be the last event to write v before e′p.

Then q 6= p, and e′p does not execute an unsuccessful comparison event on v after fq. Since e′p
is not the first unsuccessful comparison event by p on v, p does execute one (or more) before

fq. Let gp be one such unsuccessful comparison event on v.

We claim that q /∈ Yv, i.e., fq is not erased by erasing Yv −{p}. (Then it clearly follows that e′p
remains critical.) Assume otherwise, and let G = F1 ◦ 〈e′p〉 ◦ F2. Then, RFS is a valid RF-set

of F1 by induction, and q ∈ Yv = Act(F1). Applying RF3 to F1 with ‘ep’← gp and ‘fq’← fq,

we have q = writer(v, F1) ∈ RFS , a contradiction. �

We have thus established that RFS is a valid RF-set of G. We now “roll forward” the two processes pLW

and pSC: that is, we inductively construct a series of computations G0 (= G), G1, . . . , Gl (= G), each satifying

the following:

(i) either pLW or pSC (but not both) executes one more critical event in Gh+1 than Gh;

(ii) RFS is a valid RF-set of each Gh;

(iii) pLW and pSC have no knowledge of other active processes, except possibly for each other.

At each step, we start with Gh, constructed in the previous step. If both pLW and pSC has reached their

noncritical section in Gh, then we let l = h and the induction terminates. Otherwise, either pLW or pSC is in

its entry or exit section. By the Progress property, we can append to Gh noncritical events by pLW and/or pSC

until at least one executes some critical event.

Let fp be the appended critical event (where p is either pSC or pLW). fp may pose a problem if either it

reads some variable (say, u) that was last written by some process q ∈ Inv(Gh), or if it remotely accesses some

variable u that is local to some process q ∈ Inv(Gh). (The former creates information flow and breaks RF1;

the latter breaks RF2.) In either case, we erase q from Gh; the resulting computation is Gh+1, which clearly

satisfies (i).

We now show that Gh+1 satisfies (ii). As in other similar cases, appending noncritical events to Gh cannot

falsify any of RF1–RF5. (Since such a case involves a rather mechanical proof, we refer the reader to the

proof of Lemma 6 in [4].) Thus, we only have to show that appending fp does not falsify RF1–RF5. We write

Gh+1 = Ĝ ◦ L̂ ◦ 〈fp〉, where Ĝ is the result of erasing q from Gh and L̂ consists of noncritical events by pSC

and/or pLW.

20

• RF1: For the sake of contradiction, assume that RF1 is violated. That is, there exists a variable w that is

last written by some process r /∈ RFS and then subsequently read by fp. Because r was not erased when

we added fp, there must be another process q = writer(w, Gh) that was erased instead, where q ∈ Inv(Gh).

However, since both q and r write w in Gh, by applying RF3 to Gh, we have writer (w, Gh) ∈ RFS , a

contradiction.

• RF2: If fp accesses a variable w that is local to another process q, then as explained above, either q ∈ RFS

or q was already erased. Hence, RF2 is preserved.

• RF3: Assume the antecedent of RF3 with ‘H ’ ← Gh+1, ‘v’ ← w (for some variable w), ‘ep’ ← fp, and

‘fq’ ← gr (for some event gr). If fp writes w, then writer(w, Gh+1) = p ∈ RFS , so RF3 is preserved.

Thus, assume that fp reads (but does not write) w. If Ĝ ◦ L̂ contains multiple active processes accessing

w, then by applying RF3 to Ĝ ◦ L̂, we have writer (w, Gh+1) = writer (w, Ĝ ◦ L̂) ∈ RFS . On the other

hand, if Ĝ ◦ L̂ contains only one active process writing w (and no other active process reading w), then

that process is already erased, as explained above.

• RF4 and RF5: It is clear that RF4 is preserved. The proof for RF5 is similar to the proof of Claim 2.

(In particular, the fact that RF3 holds for Ĝ ◦ L̂ plays a crucial role here.)

The roll-forward induction finishes at Gl when both pSC and pLW reach their noncritical sections, at which

point we have Fin(Gl) = RFS , and hence Gl is regular and we can define Hj+1 = Gl.

Finally, we have to show that Hj+1 satisfies (1), that is, it has Ω(
√
n/k) active processes. Since we erase at

most one active process to obtain Gh+1 from each Gh, we have |Act(Hj+1)| ≥ |Act(G)| − l. But Act(G) = Yv

and Yv contains Ω(
√
n) processes by our assumption.

If l ≥ 2k, then either pLW or pSC executes k or more critical events in Gl, in which case our Ω(k) lower bound

easily follows without any further induction. Therefore, we may assume l < 2k, in which case (1) follows by

assuming that k ≪ n, which can be guaranteed by starting with a sufficiently large number of active processes

in H1. (That is, we require the total number of processes in our system (= N) to be so large that we have ω(k)

processes at each induction step j for 1 ≤ j ≤ k. The precise bound is given by Theorem 2.)

4 Detailed Lower Bound Proof

In this section, we establish our lower-bound theorem. Throughout this section, we assume the existence

of a fixed mutual exclusion system S = (C, P, V). We begin by stating six lemmas concerning mutual ex-

clusion systems as defined here that were proved previously (in particular, in the paper that establishes the

Ω(logN/ log logN) lower bound mentioned earlier) [4]. These lemmas are also numbered as Lemmas 1–6 in [4].

According to Lemma 1, stated next, any invisible process can be safely “erased.”

Lemma 1 Consider a computation H and two sets of processes RFS and Y . Assume the following:

• H ∈ C; (2)

• RFS is a valid RF-set of H; (3)

• RFS ⊆ Y . (4)

Then, the following hold: H | Y ∈ C; RFS is a valid RF-set of H | Y ; an event e in H | Y is a critical event

if and only if it is also a critical event in H.

21

The next lemma shows that the property of being a critical event is conserved across “similar” computations.

Informally, if process p cannot distinguish two computations H and H ′, and if p may execute a critical event

ep after H , then it can also execute a critical event e′p after H ′ ◦ G, where G is a computation that does not

contain any events by p. Moreover, if G satisfies certain conditions, then H ′ ◦G ◦ 〈e′p〉 satisfies RF5, preserving
the “criticalness” of e′p across related computations.

Lemma 2 Consider three computations H, H ′, and G, a set of processes RFS, and two events ep and e′p of a

process p. Assume the following:

• H ◦ 〈ep〉 ∈ C; (5)

• H ′ ◦G ◦ 〈e′p〉 ∈ C; (6)

• RFS is a valid RF-set of H; (7)

• RFS is a valid RF-set of H ′; (8)

• ep ∼ e′p; (9)

• p ∈ Act(H); (10)

• H | ({p} ∪ RFS) = H ′ | ({p} ∪RFS); (11)

• G | p = 〈〉; (12)

• no events in G write any of p’s local variables; (13)

• ep is critical in H ◦ 〈ep〉. (14)

Then, e′p is critical in H ′ ◦G ◦ 〈e′p〉. Moreover, if the following conditions are true,

(A) H ′ ◦G satisfies RF5;

(B) if ep is a comparison event on a variable v, and if G contains a write to v, then G |RFS also contains a

write to v.

then H ′ ◦G ◦ 〈e′p〉 also satisfies RF5.

The next lemma provides means of appending an event ep of an active process, while maintaining RF1 and

RF2. This lemma is used inductively in order to extend a computation with a valid RF-set. Specifically, (21)

guarantees that RF2 is satisfied, and (22) forces any information flow to originate from a process in RFS , thus

satisfying RF1. (Note that, if q = ⊥, q = p, or vrem /∈ Rvar(ep) holds, then no information flow occurs.)

Lemma 3 Consider two computations H and G, a set of processes RFS, and an event ep of a process p.

Assume the following:

• H ◦G ◦ 〈ep〉 ∈ C; (15)

• RFS is a valid RF-set of H; (16)

• p ∈ Act(H); (17)

• H ◦G satisfies RF1 and RF2; (18)

• G is an Act(H)-computation; (19)

• G | p = 〈〉; (20)

• if ep remotely accesses a variable vrem, then the following hold:

− if vrem is local to a process q, then either q /∈ Act(H) or {p, q} ⊆ RFS, and (21)

− if q = writer(vrem, H◦G), then one of the following hold: q = ⊥, q = p, q ∈ RFS, or vrem /∈ Rvar(ep). (22)

Then, H ◦G ◦ 〈ep〉 satisfies RF1 and RF2. �

The next lemma gives us means for extending a computation by appending noncritical events.

22

Lemma 4 Consider a computation H, a set of processes RFS, and another set of processes Y = {p1, p2, . . . ,

pm}. Assume the following:

• H ∈ C; (23)

• RFS is a valid RF-set of H; (24)

• Y ⊆ InvRFS (H); (25)

• for each pj in Y , there exists a computation Lpj
, satisfying the following:

− Lpj
is a pj-computation; (26)

− H ◦ Lpj
∈ C; (27)

− Lpj
has no critical events in H ◦ Lpj

, that is, no event in Lpj
is a critical event in H ◦ Lpj

. (28)

Define L to be Lp1
◦ Lp2

◦ · · · ◦ Lpm
. Then, the following hold: H ◦ L ∈ C, RFS is a valid RF-set of H ◦ L,

and L contains no critical events in H ◦ L.

The next lemma states that if n active processes are competing for entry into their critical sections, then at

least n− 1 of them execute at least one more critical event before entering their critical sections.

Lemma 5 Let H be a computation. Assume the following:

• H ∈ C, and (29)

• H is regular (i.e., Fin(H) is a valid RF-set of H). (30)

Define n = |Act(H)|. Then, there exists a subset Y of Act(H), where n − 1 ≤ |Y | ≤ n, satisfying the

following: for each process p in Y , there exist a p-computation Lp and an event ep by p such that

• H ◦ Lp ◦ 〈ep〉 ∈ C; (31)

• Lp contains no critical events in H ◦ Lp; (32)

• ep /∈ {Enterp, CS p, Exitp}; (33)

• Fin(H) is a valid RF-set of H ◦ Lp; (34)

• ep is a critical event by p in H ◦ Lp ◦ 〈ep〉. (35)

The following lemma is used to roll processes forward. It states that as long as there exist promoted processes,

we can extend the computation with one more critical event of some promoted process, and at most one invisible

process must be erased due to the resulting information flow.

Lemma 6 Consider a computation H and set of processes RFS. Assume the following:

• H ∈ C; (36)

• RFS is a valid RF-set of H; (37)

• Fin(H) (RFS (i.e., Fin(H) is a proper subset of RFS). (38)

Then, there exists a computation G satisfying the following.

• G ∈ C; (39)

• RFS is a valid RF-set of G; (40)

• G can be written as H | (Y ∪RFS)◦L◦〈ep〉, for some choice of Y , L, and ep, satisfying the following:

− Y is a subset of Inv(H) such that |Inv(H)| − 1 ≤ |Y | ≤ |Inv(H)|, (41)

− Inv(G) = Y , (42)

− L is a Pmt(H)-computation, (43)

− L has no critical events in G, (44)

− p ∈ Pmt(H), and (45)

23

− ep is critical in G; (46)

• Pmt(G) ⊆ Pmt(H); (47)

• An event in H | (Y ∪ RFS) is critical if and only if it is also critical in H. (48)

The following theorem is due to Turán [38].

Theorem 1 (Turán) Let G = (V, E) be an undirected graph, with vertex set V and edge set E. If the average

degree of G is d, then an independent set16 exists with at least ⌈|V |/(d+ 1)⌉ vertices. �

The remaining lemma is unique to the lower bound established here and thus is presented with a full proof.

This lemma provides the induction step that leads to the lower bound in Theorem 2.

Lemma 7 Let k be a positive integer, and H be a computation. Assume the following:

• H ∈ C, and (49)

• H is regular (i.e., Fin(H) is a valid RF-set of H). (50)

Define n = |Act(H)|. Also assume that

• n > 1, and (51)

• each process in Act(H) executes exactly c critical events in H. (52)

Then, one of the following propositions is true.

Pr1: There exist a process p in Act(H) and a computation F in C such that

• F ◦ 〈Exitp〉 ∈ C;

• F does not contain 〈Exitp〉;
• at most |Fin(H) + 2| processes participate in F ;

• p executes at least k critical events in F .

Pr2: There exists a regular computation G in C such that

• Act(G) ⊆ Act(H); (53)

• |Fin(G)| ≤ |Fin(H) + 2|; (54)

• |Act(G)| ≥ min(
√
n/(2c+ 3),

√
n− 2k − 3); (55)

• each process in Act(G) executes exactly (c+ 1) critical events in G. (56)

Proof: We first apply Lemma 5. Assumptions (29) and (30) stated in Lemma 5 follow from (49) and (50),

respectively. It follows that there exists a set of processes Y such that

• Y ⊆ Act(H), and (57)

• n− 1 ≤ |Y | ≤ n, (58)

and for each process p ∈ Y , there exist a computation Lp and an event ep by p, such that

• H ◦ Lp ◦ 〈ep〉 ∈ C; (59)

• Lp is a p-computation; (60)

• Lp contains no critical events in H ◦ Lp; (61)

• ep /∈ {Enterp, CS p, Exitp}; (62)

• Fin(H) is a valid RF-set of H ◦ Lp; (63)

16An independent set of a graph G = (V, E) is a subset V ′ ⊆ V such that no edge in E is incident to two vertices in V ′.

24

• ep is a critical event by p in H ◦ Lp ◦ 〈ep〉. (64)

For each p ∈ Y , by (60), (61), and p ∈ Y ⊆ Act(H), we have

Act(H ◦ Lp) = Act(H) ∧ Fin(H ◦ Lp) = Fin(H). (65)

By (51) and (58), Y is nonempty.

If Proposition Pr1 is satisfied by any process in Y , then the theorem is clearly true. Thus, we will assume,

throughout the remainder of the proof, that there is no process in Y that satisfies Pr1. Define EH as the set of

critical events in H of processes in Y .

EH = {fq in H | fq is critical in H and q ∈ Y }. (66)

Define E = EH ∪ {ep | p ∈ Y }, i.e., the set of all “past” and “next” critical events of processes in Y . From

(52), (57), and (58), it follows that

|E| = (c+ 1)|Y | ≤ (c+ 1)n. (67)

Define Vnext as the set of variables remotely accessed by some “next” critical events:

Vnext = {v ∈ V | there exists p ∈ Y such that ep remotely accesses v}. (68)

We consider two cases, depending on the size of Vnext.

Case 1: |Vnext| ≥
√
n (erasing strategy)

— In this case, we construct a subset Y ′ of Y by selecting one process for each variable in Vnext. Clearly, |Y ′| = |Vnext|.
We then construct a “conflict graph” G, where each vertex is a process in Y ′. By applying Theorem 1, we can find

a subset Z of Y ′ such that their critical events do not conflict with each other. By applying Lemma 1 to H and

Z ∪ Fin(H), and extending the resulting computation H ′ with next critical events, we construct a computation G that

satisfies Proposition Pr2.

By definition, for each variable v in Vnext, there exists a process p in Y such that ep remotely accesses v.

Therefore, we can arbitrarily select one such process for each variable v in Vnext and construct a set Y ′ of

processes such that

• Y ′ ⊆ Y , (69)

• if p ∈ Y ′, q ∈ Y ′ and p 6= q, then ep and eq access different remote variables, and (70)

• |Y ′| = |Vnext| ≥
√
n. (71)

We now construct an undirected graph G = (Y ′, EG), where each vertex is a process in Y ′. To each process

y in Y ′ and each variable v ∈ var(ey) that is remote to y, we apply the following rules.

• R1: If v is local to a process z in Y ′, then introduce edge {y, z}.
• R2: If there exists an event fp ∈ E that remotely accesses v, and if p ∈ Y ′, then introduce edge {y, p}.

Because each variable is local to at most one process, and since (by the Atomicity property) an event can

access at most one remote variable, Rule R1 can introduce at most one edge per process. Since, by (52), y

executes exactly c critical events in H , by (70), Rule R2 can introduce at most c edges per process.

Combining Rules R1 and R2, at most c + 1 edges are introduced per process. Since each edge is counted

twice (for each of its endpoints), the average degree of G is at most 2(c+1). Hence, by Theorem 1, there exists

an independent set Z such that

Z ⊆ Y ′, and (72)

25

|Z| ≥ |Y ′|/(2c+ 3) ≥
√
n/(2c+ 3), (73)

where the latter inequality follows from (71).

Next, we construct a computation G, satisfying Proposition Pr2, such that Act(G) = |Z|.
Define H ′ as

H ′ = H | (Z ∪ Fin(H)). (74)

By (57), (69), and (72), we have

Z ⊆ Y ′ ⊆ Y ⊆ Act(H), (75)

and hence,

Act(H ′) = Z ⊆ Act(H) ∧ Fin(H ′) = Fin(H). (76)

We now apply Lemma 1, with ‘RFS ’← Fin(H) and ‘Y ’← Z ∪ Fin(H). Among the assumptions stated in

Lemma 1, (2) and (3) follow from (49) and (50), respectively; (4) is trivial. It follows that

• H ′ ∈ C, (77)

• Fin(H) is a valid RF-set of H ′, and (78)

• an event in H ′ is critical if and only if it is also critical in H . (79)

Our goal now is to show that H ′ can be extended so that each process in Z has one more critical event. By

(76), (78), and by the definition of a finished process,

InvFin(H)(H
′) = Act(H ′) = Z. (80)

For each z ∈ Z, define Fz as

Fz = (H ◦ Lz) | (Z ∪ Fin(H)). (81)

By (75), we have z ∈ Y . Thus, applying (59), (60), (61), and (63) with ‘p’← z, it follows that

• H ◦ Lz ◦ 〈ez〉 ∈ C; (82)

• Lz is a z-computation; (83)

• Lz contains no critical events in H ◦ Lz; (84)

• Fin(H) is a valid RF-set of H ◦ Lz. (85)

By P1 (given in Section 2.1), (82) implies

H ◦ Lz ∈ C. (86)

We now apply Lemma 1, with ‘H ’ ← H ◦ Lz, ‘RFS ’ ← Fin(H), and ‘Y ’ ← Z ∪ Fin(H). Among the

assumptions stated in Lemma 1, (2) and (3) follow from (86) and (85), respectively; (4) is trivial. It follows

that

• Fz ∈ C, and (87)

• an event in Fz is critical if and only if it is also critical in H ◦ Lz. (88)

Since z ∈ Z, by (74), (81), and (83), we have

Fz = H ′ ◦ Lz.

Hence, by (84) and (88),

• Lz contains no critical events in Fz = H ′ ◦ Lz. (89)

26

Let m = |Z| and index the processes in Z as Z = {z1, z2, . . . , zm}. Define L = Lz1 ◦ Lz2 ◦ · · · ◦ Lzm . We

now use Lemma 4, with ‘H ’ ← H ′, ‘RFS ’ ← Fin(H), ‘Y ’ ← Z, and ‘pj ’ ← zj for each j = 1, . . . , m. Among

the assumptions stated in Lemma 4, (23)–(25) follow from (77), (78), and (80), respectively; (26)–(28) follow

from (83), (87), and (89), respectively, with ‘z’← zj for each j = 1, . . . , m. This gives us the following.

• H ′ ◦ L ∈ C; (90)

• Fin(H) is a valid RF-set of H ′ ◦ L; (91)

• L contains no critical events in H ′ ◦ L. (92)

To this point, we have successfully appended a (possibly empty) sequence of noncritical events for each

process in Z. It remains to append a “next” critical event for each such process. Note that, by (83) and the

definition of L,

• L is a Z-computation. (93)

Thus, by (76) and (92), we have

Act(H ′ ◦ L) = Act(H ′) = Z ∧ Fin(H ′ ◦ L) = Fin(H ′) = Fin(H). (94)

By (74) and the definition of L, it follows that

• for each z ∈ Z, (H ◦ Lz) | ({z} ∪ Fin(H)) = (H ′ ◦ L) | ({z} ∪ Fin(H)). (95)

In particular, we have (H ◦ Lz) | z = (H ′ ◦ L) | z. Therefore, by (82), (90), and repeatedly applying P3, it

follows that, for each zj ∈ Z, there exists an event e′zj , such that

• G ∈ C, where G = H ′ ◦ L ◦ E and E = 〈e′z1 , e′z2 , . . . , e′zm〉; (96)

• e′zj ∼ ezj . (97)

By the definition of E,

• E is a Z-computation. (98)

By (62), (94), and (97), we have

Act(G) = Act(H ′ ◦ L) = Z ∧ Fin(G) = Fin(H ′ ◦ L) = Fin(H). (99)

By (62), (64), and (97), it follows that for each zj ∈ Z, both ezj and e′zj access a common remote variable,

say, vj . Since Z is an independent set of G, by Rules R1 and R2, we have the following:

• for each zj ∈ Z, vj is not local to any process in Z; (100)

• vj 6= vk, if j 6= k.

Combining these two facts, we also have:

• for each zj ∈ Z, no event in E other than e′zj accesses vj (either locally or remotely). (101)

We now establish two claims.

Claim 1: For each zj ∈ Z, if we let q = writer (vj , H
′ ◦ L), then one of the following holds: q = ⊥,

q = zj, or q ∈ Fin(H).

Proof of Claim: It suffices to consider the case when q 6= ⊥ and q 6= zj hold, in which case there

exists an event fq by q in H ′ ◦ L that writes to vj . By (74) and (93), we have q ∈ Z ∪ Fin(H). We

claim that q ∈ Fin(H) holds in this case. Assume, to the contrary,

q ∈ Z. (102)

27

We consider two cases. First, if fq is a critical event in H ′ ◦ L, then by (92), fq is an event of H ′,

and hence, by (79), fq is also a critical event in H . By (75) and (102), we have q ∈ Y . Thus, by

(66), we have fq ∈ EH , and hence fq ∈ E holds by definition. By (100) and (102), vj is remote to q.

Thus, fq remotely writes vj . By (102) and zj ∈ Z, we have

{q, zj} ⊆ Z, (103)

which implies {q, zj} ⊆ Y ′ by (72). From this, our assumption of q 6= zj, and by applying Rule R2

with ‘y’ ← zj and ‘fp’ ← fq, it follows that edge {q, zj} exists in G. However, (103) then implies

that Z is not an independent set of G, a contradiction.

Second, assume that fq is a noncritical event in H ′ ◦L. Note that, by (100) and (102), vj is remote

to q. Hence, by the definition of a critical event, there exists a critical event f̄q by q in H ′ ◦ L that

remotely writes to vj . However, this leads to contradiction as shown above. �

Claim 2: Every event in E is critical in G. Also, G satisfies RF5 with ‘RFS ’← Fin(H).

Proof of Claim: Define E0 = 〈〉; for each positive j, define Ej to be 〈e′z1 , e′z2 , . . . , e′zj〉, a prefix of

E. We prove the claim by induction on j, applying Lemma 2 at each step. Note that, by (96) and

P1, we have the following:

H ′ ◦ L ◦ Ej ◦ 〈e′zj+1
〉 = H ′ ◦ L ◦ Ej+1 ∈ C, for each j. (104)

Also, by the definition of Ej , we have

Ej | zj+1 = 〈〉, for each j. (105)

At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF5 with ‘RFS ’← Fin(H). (106)

The induction base (j = 0) follows easily from (91), since E0 = 〈〉.
Assume that (106) holds for a particular value of j. Since zj+1 ∈ Z, by (75), we have

zj+1 ∈ Y, (107)

and zj+1 ∈ Act(H). By applying (65) with ‘p’← zj+1, and using (107), we also have Act(H◦Lzj+1
) =

Act(H), and hence

zj+1 ∈ Act(H ◦ Lzj+1
). (108)

By (105), if any event e′zk in Ej accesses a local variable v of zj+1, then e′zk accesses v remotely, and

hence v = vk by definition. However, by (100), vk cannot be local to zj+1. It follows that

• no events in Ej access any of zj+1’s local variables. (109)

We now apply Lemma 2, with ‘H ’← H ◦ Lzj+1
, ‘H ′’← H ′ ◦ L, ‘G’← Ej , ‘RFS ’← Fin(H), ‘ep’←

ezj+1
, and ‘e′p’ ← e′zj+1

. Among the assumptions stated in Lemma 2, (6), (8), (10), (12), and (13)

follow from (104), (91), (108), (105), and (109), respectively; (9) follows by applying (97) with

‘zj ’ ← zj+1; (7) and (11) follow by applying (85) and (95), respectively, with ‘z’ ← zj+1; and (5)

and (14) follow by applying (59) and (64), respectively, with ‘p’← zj+1, and using (107). Moreover,

28

Assumption (A) follows from (106), and Assumption (B) is satisfied vacuously (with ‘v’← vj+1) by

(101).

It follows that e′zj+1
is critical in H ′ ◦L ◦Ej ◦ 〈e′zj+1

〉 = H ′ ◦L ◦Ej+1, and that H ′ ◦L ◦Ej+1 satisfies

RF5 with ‘RFS ’← Fin(H). �

We now claim that Fin(H) is a valid RF-set of G. Condition RF5 was already proved in Claim 2.

• RF1 and RF2: Define Ej as in Claim 2. We establish RF1 and RF2 by induction on j, applying Lemma 3

at each step. At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF1 and RF2 with ‘RFS ’← Fin(H). (110)

The induction base (j = 0) follows easily from (91), since E0 = 〈〉.
Assume that (110) holds for a particular value of j. Note that, by (101), we have writer (vj+1, H

′◦L◦Ej) =

writer(vj+1, H
′ ◦ L). Thus, by (94) and Claim 1,

• if we let q = writer(vj+1, H
′◦L◦Ej), then one of the following holds: q = ⊥, q = zj+1, or q ∈ Fin(H) =

Fin(H ′ ◦ L). (111)

We now apply Lemma 3, with ‘H ’← H ′ ◦L, ‘G’← Ej , ‘RFS ’← Fin(H), ‘ep’← e′zj+1
, and ‘vrem’← vj+1.

Among the assumptions stated in Lemma 3, (15), (16), (18), (20), and (22) follow from (104), (91), (110),

(105), and (111), respectively; (17) follows from (94) and zj+1 ∈ Z; (19) follows from (94) and (98); (21)

follows from (100) and (94). It follows that H ′ ◦ L ◦ Ej+1 satisfies RF1 and RF2 with ‘RFS ’← Fin(H).

• RF3: Consider a variable v ∈ V and two different events fq and gr in G. Assume that both q and r are

in Act(G), q 6= r, and that there exists a variable v such that v ∈ var (fq) ∩ var(gr). (Note that, by (99),

{q, r} ⊆ Z.) We claim that these conditions can actually never arise simultaneously, which implies that

G vacuously satisfies RF3.

Since v is remote to at least one of q or r, without loss of generality, assume that v is remote to q. We

claim that there exists an event f̄q in E that accesses the same variable v. If fq is an event of E, we have

fq = e′zj for some zj ∈ Z, and ezj ∈ E holds by definition; define f̄q = ezj in this case. If fq is a noncritical

event in H ′ ◦ L, then by the definition of a critical event, there exists a critical event f̄q in H ′ ◦ L that

remotely accesses v. If fq is a critical event in H ′ ◦ L, then define f̄q = fq. (Note that, if f̄q is a critical

event in H ′ ◦L, then by (79) and (92), f̄q is also a critical event in H , and hence, by q ∈ Z, (75), and the

definition of E , we have f̄q ∈ E .)
It follows that, in each case, there exists an event f̄q ∈ E that remotely accesses v. If v is local to r, then

by Rule R1, G contains the edge {q, r}. On the other hand, if v is remote to r, then we can choose an

event ḡr ∈ E that remotely accesses v, in the same way as shown above. Hence, by Rule R2, G contains

the edge {q, r}. Thus, in either case, p and q cannot simultaneously belong to Z, a contradiction.

• RF4: By (91) and (99), it easily follows that G satisfies RF4 with respect to Fin(H).

Finally, we claim that G satisfies Proposition Pr2. By (99), which implies Act(G) = Z ⊆ Act(H), G satisfies

(53) and (54). By (73), we have (55). By (52), (79), and (92), each process in Z executes exactly c critical

events in H ′ ◦ L. Thus, by Claim 2, G satisfies (56).

Case 2: |Vnext| ≤
√
n (roll-forward strategy)

— In this case, there exists a variable v that is remotely accessed by next critical events of at least
√
n−1 processes. Let

29

Yv be the set of these processes. We retain Yv and erase all other active processes. Let the resulting computation be H ′.

We then roll forward processes pLW and pSC of Yv to generate a regular computation G. If either pLW or pSC executes

k or more critical events before finishing its execution, the resulting computation satisfies Proposition Pr1. Otherwise,

fewer than 2k processes are erased during the procedure, which makes G satisfy Proposition Pr2, with at least
√
n− 2k

active processes.

For each variable vj in Vnext, define Yvj = {p ∈ Y | ep remotely accesses vj}. By (58) and (68), |Vnext| ≤
√
n

implies that there exists a variable v in Vnext such that |Yv| ≥ (n − 1)/
√
n holds. (In the rest of Case 2, we

consider v to be a fixed variable.) Then, the following holds:

|Yv| ≥ (n− 1)/
√
n >
√
n− 1. (112)

Define

H ′ = H | (Yv ∪ Fin(H)). (113)

Using Yv ⊆ Y ⊆ Act(H), we also have

Act(H ′) = Yv ⊆ Act(H) ∧ Fin(H ′) = Fin(H). (114)

We now apply Lemma 1, with ‘RFS ’← Fin(H) and ‘Y ’← Yv ∪ Fin(H). Among the assumptions stated in

Lemma 1, (2) and (3) follow from (49) and (50), respectively; (4) is trivial. It follows that

• H ′ ∈ C, (115)

• Fin(H) is a valid RF-set of H ′, and (116)

• an event in H ′ is critical if and only if it is also critical in H . (117)

Our goal now is to show that H ′ can be extended to a computation G (defined later), so that each process

in Yv has one more critical event. By (114), (116), and by the definition of a finished process,

InvFin(H)(H
′) = Act(H ′) = Yv. (118)

For each s ∈ Yv, define Fs as

Fs = (H ◦ Ls) | (Yv ∪ Fin(H)). (119)

Since Yv ⊆ Y , we have s ∈ Y . Thus, applying (59), (60), (61), and (63) with ‘p’← s, it follows that

• H ◦ Ls ◦ 〈es〉 ∈ C; (120)

• Ls is an s-computation; (121)

• Ls contains no critical events in H ◦ Ls; (122)

• Fin(H) is a valid RF-set of H ◦ Ls. (123)

By P1, (120) implies

H ◦ Ls ∈ C. (124)

We now apply Lemma 1, with ‘H ’ ← H ◦ Ls, ‘RFS ’ ← Fin(H), and ‘Y ’ ← Yv ∪ Fin(H). Among the

assumptions stated in Lemma 1, (2) and (3) follow from (124) and (123), respectively; (4) is trivial. It follows

that

• Fs ∈ C, and (125)

• an event in Fs is critical if and only if it is also critical in H ◦ Ls. (126)

Since s ∈ Yv, by (113), (119), (121), and (125), we have

30

• Fs = H ′ ◦ Ls ∈ C. (127)

Hence, by (122) and (126),

• Ls contains no critical events in Fs = H ′ ◦ Ls. (128)

We now show that the events in {Ls | s ∈ Yv} can be “merged” by applying Lemma 4. We arbitrarily

index Yv as {s1, s2, . . . , sm}, where m = |Yv|. (Later, we construct a specific indexing of Yv to reduce

information flow.) Let L = Ls1 ◦Ls2 ◦ · · · ◦Lsm . Apply Lemma 4, with ‘H ’← H ′, ‘RFS ’← Fin(H), ‘Y ’← Yv,

and ‘pj ’← sj for each j = 1, . . . , m. Among the assumptions stated in Lemma 4, (23)–(25) follow from (115),

(116), and (118), respectively; (26)–(28) follow from (121), (127), and (128), respectively, with ‘s’← sj for each

j = 1, . . . , m. This gives us the following.

• H ′ ◦ L ∈ C; (129)

• Fin(H) is a valid RF-set of H ′ ◦ L; (130)

• L contains no critical events in H ′ ◦ L. (131)

By (113) and the definition of L, we also have,

• for each s ∈ Yv, (H ◦ Ls) | ({s} ∪ Fin(H)) = (H ′ ◦ L) | ({s} ∪ Fin(H)); (132)

• for each s ∈ Yv, (H
′ ◦ L) | s = (H ◦ Ls) | s. (133)

We now re-index the processes in Yv so that information flow among them is minimized. We place next

critical events of Yv by placing write, comparison, and read events in that order. Furthermore, we can arrange

comparison events such that at most one of them succeeds, as explained in Section 3. Let (s1, s2, . . . , sm) be

the indexing of Yv thus constructed, and E be the appended computation that consists of next critical events

by processes in Y . Then, we have the following:

• G ∈ C, where G = H ′ ◦ L ◦ E and E = 〈e′s1 , e′s2 , . . . , e′sm〉; (134)

• e′
sj
∼ esj . (135)

By the definition of E,

• E is an Yv-computation. (136)

By (62), (131), and (135), L ◦ E does not contain any transition events. Moreover, by the definition of L

and E, (L ◦ E) | p 6= 〈〉 implies p ∈ Yv, for each process p. Combining these assertions with (114), we have

Act(G) = Act(H ′ ◦ L) = Act(H ′) = Yv ∧
Fin(G) = Fin(H ′ ◦ L) = Fin(H ′) = Fin(H).

(137)

We now state and prove two claims regarding G. Claim 3 follows easily from the re-indexing of Yv and

construction of E, described above.

Claim 3: Events in E appear in the following order, where α is a fixed value in the range of v and

W (v), C1(v), C2(v), and R(v) are sets of events.

• events in W (v): each event e′s in W (v) satisfies op(e′s) = write(v);

• events in C1(v): each event e′s in C1(v) satisfies op(e
′
s) = compare(v, βs) for some βs 6= α;

• events in C2(v): each event e′s in C2(v) satisfies op(e
′
s) = compare(v, α);

• events in R(v): each event e′s in R(v) satisfies op(e′s) = read(v).

Moreover, in the computation G, after all events in W (v) are executed, and before any event in C2(v)

is executed, v has the value α. All events in C1(v) (if any) are unsuccessful comparisons. At most one

31

event in C2(v) is a successful comparison. (Note that a successful comparison event writes a value

other than α, by definition. Thus, if there is a successful comparison, then all subsequent comparison

events must fail.) Define LW (v), the “last write,” and SC (v), the “successful comparison,” as follows:

LW (v) =

{

the last event in W (v), if W (v) 6= {},
writer event(v, H ′ ◦ L), if W (v) = {};

SC (v) =

{

the successful comparison in C2(v), if C2(v) contains one,

⊥, otherwise.

Then, the last process to write to v (if any) is either SC (v) (if SC (v) is defined) or LW (v) (other-

wise). �

Before establishing our next claim, Claim 4, we define pLW and pSC as the processes that execute LW (v)

and SC (v), respectively. If LW (v) (respectively, SC (v)) equals ⊥, then pLW (respectively, pSC) also equals ⊥.
We also define RFS as

RFS = Fin(H) ∪ {p | p ∈ {pLW, pSC} and p 6= ⊥}. (138)

By the definition of Yv, for each p ∈ Yv, ep remotely accesses v. In particular,

• for each p ∈ Yv, v is remote to p. (139)

Note that “expanding” a valid RF-set does not falsify any of RF1–RF5. Therefore, using (130), (137), and

Fin(H) ⊆ RFS ⊆ Fin(H) ∪ Yv, it follows that

• RFS is a valid RF-set of H ′ ◦ L. (140)

We now establish Claim 4, stated below.

Claim 4: Every event in E is critical in G. Also, G satisfies RF5.

Proof of Claim: Define E0 = 〈〉; for each positive j, define Ej to be 〈e′
s1
, e′

s2
, . . . , e′

sj
〉, a prefix

of E. We prove the claim by induction on j, applying Lemma 2 at each step. Note that, by (134)

and P1, we have the following:

H ′ ◦ L ◦ Ej ◦ 〈e′sj+1〉 = H ′ ◦ L ◦ Ej+1 ∈ C, for each j. (141)

Also, by the definition of Ej , we have

Ej | sj+1 = 〈〉, for each j. (142)

At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF5. (143)

The induction base (j = 0) follows easily from (140), since E0 = 〈〉.
Assume that (143) holds for a particular value of j. Since sj+1 ∈ Yv ⊆ Y , we have

sj+1 ∈ Y, (144)

and sj+1 ∈ Act(H). By applying (65) with ‘p’← sj+1, and using (144), we also have Act(H◦Lsj+1) =

Act(H), and hence

sj+1 ∈ Act(H ◦ Lsj+1). (145)

Also, by (139),

32

• no events in Ej access any of sj+1’s local variables. (146)

We use Lemma 2 twice in sequence in order to prove Claim 4. First, by P3, and applying (120),

(129), and (133) with ‘s’← sj+1, it follows that there exists an event e′′
sj+1 , such that

• H ′ ◦ L ◦ 〈e′′
sj+1〉 ∈ C, and (147)

• e′′
sj+1 ∼ esj+1 . (148)

We now apply Lemma 2, with ‘H ’← H ◦ Lsj+1 , ‘H ′’← H ′ ◦ L, ‘G’← 〈〉, ‘RFS ’ ← Fin(H), ‘ep’←
esj+1 , and ‘e′p’ ← e′′

sj+1 . Among the assumptions stated in Lemma 2, (6) and (8)–(10) follow from

(147), (130), (148), and (145), respectively; (12) and (13) hold vacuously by ‘G’ ← 〈〉; (5), (7),

and (11) follow by applying (120), (123), and (132), respectively, with ‘s’ ← sj+1; (14) follows by

applying (64) with ‘p’← sj+1, and using (144). It follows that

• e′′
sj+1 is critical in H ′ ◦ L ◦ 〈e′′

sj+1〉. (149)

Before applying Lemma 2 again, we establish the following preliminary assertions. Since Fin(H) ⊆
RFS , by applying (123) with ‘s’← sj+1, it follows that

• RFS is a valid RF-set of H ◦ Lsj+1 . (150)

We now establish a simple claim.

Claim 4-1: If esj+1 is a comparison event on v, and if Ej contains a write to v, then

Ej | RFS also contains a write to v.

Proof of Claim: By (135) and Claim 3, we have e′
sj+1 ∈ C1(v) ∪ C2(v). Hence, by

Claim 3, if an event e′
sk

(for some k ≤ j) in Ej writes to v, then we have either e′
sk
∈ W (v)

or e′
sk

= SC (v). If e′
sk

= SC (v), then since sk ∈ RFS holds by (138), Claim 4-1 is satisfied.

On the other hand, if e′
sk
∈ W (v), then W (v) is nonempty. Moreover, since all events in

W (v) are indexed before any events in C1(v) ∪ C2(v), Ej contains all events in W (v).

Thus, by (138), both Ej and Ej |RFS contain LW (v), an event that writes to v. �

We now apply Lemma 2 again, with ‘H ’ ← H ′ ◦ L, ‘H ′’ ← H ′ ◦ L, ‘G’ ← Ej , ‘ep’ ← e′′
sj+1 , and

‘e′p’← e′
sj+1 . Among the assumptions stated in Lemma 2, (5)–(8) and (12)–(14) follow from (147),

(141), (140), (140), (142), (146), and (149), respectively; (11) is trivial; (9) follows from (148) and by

applying (135) with ‘sj ’← sj+1; (10) follows from (137) and sj+1 ∈ Yv. Moreover, Assumption (A)

follows from (143), and Assumption (B) follows from Claim 4-1.

It follows that e′
sj+1 is critical in H ′ ◦L ◦Ej ◦ 〈e′sj+1〉 = H ′ ◦L ◦Ej+1, and that H ′ ◦L ◦Ej+1 satisfies

RF5. �

We now show that RFS is a valid RF-set of G. Condition RF5 was already proved in Claim 4.

• RF1 and RF2: Define Ej as in Claim 4. We establish RF1 and RF2 by induction on j, applying Lemma 3

at each step. At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF1 and RF2. (151)

The induction base (j = 0) follows easily from (140), since E0 = 〈〉.
Assume that (151) holds for a particular value of j. By Claim 3, if e′

sj+1 reads v, then the following holds:

e′
sj+1 ∈ C1(v)∪C2(v)∪R(v); every event in W (v) is contained in Ej ; writer (v, H

′ ◦L◦Ej) is one of LW (v)

or SC (v) or ⊥. Therefore, by (138), we have the following:

33

• if e′
sj+1 remotely reads v, and if we let q = writer(v, H ′ ◦ L ◦ Ej), then either q = ⊥ or q ∈ RFS

holds. (152)

We now apply Lemma 3, with ‘H ’ ← H ′ ◦ L, ‘G’ ← Ej , ‘ep’ ← e′
sj+1 , and ‘vrem’ ← v. Among the

assumptions stated in Lemma 3, (15), (16), (18), (20), and (22) follow from (141), (140), (151), (142), and

(152), respectively; (17) follows from (137) and sj+1 ∈ Yv; (19) follows from (137) and (136); (21) follows

from (137) and (139). It follows that H ′ ◦ L ◦ Ej+1 satisfies RF1 and RF2.

• RF3: Consider a variable u ∈ V and two different events fp and gq in G. Assume that both p and q are

in Act(G), p 6= q, that there exists a variable u such that u ∈ var(fp) ∪ var (gq), and that there exists a

write to u in G. Define r = writer(u, G). Our proof obligation is to show that r ∈ RFS .

By (137), we have {p, q} ⊆ Yv. If u = v, then by Claim 3, writer event(u,G) is either SC (u) (if SC (u) 6= ⊥)
or LW (u) (otherwise). (Since we assumed that there exists a write to u, they both cannot be ⊥.) Thus,

by (138), we have r ∈ RFS .

On the other hand, assume u 6= v. We now consider three cases.

– Consider the case in which both fp and gq are in H ′ ◦ L.
If there exists an event e′s in E such that u ∈Wvar (e′s), then since u 6= v, u is local to s. Since at

least one of p or q is different from s, without loss of generality, assume p 6= s. Since p ∈ Yv and

Yv ⊆ Act(H), we have p /∈ Fin(H). Thus, by (130) and by applying RF2 with ‘RFS ’← Fin(H) to fp

in H ′ ◦ L, we have s /∈ Act(H ′ ◦ L). However, by (137), Act(H ′ ◦ L) = Yv, which contradicts s ∈ Yv

(which follows from (136), since e′s is an event of E).

It follows that there exists no event e′s in E such that u ∈ Wvar (e′s) holds. Thus, we have r =

writer(u, H ′ ◦L). By (130) and applying RF3 with ‘RFS ’← Fin(H) to fp and gq in H ′ ◦L, we have

writer(u, H ′ ◦ L) ∈ Fin(H) ⊆ RFS .

– Consider the case in which fp is in H ′◦L and gq = e′
sk
, for some sk ∈ Yv. By (137) and our assumption

that p and q are both in Act(G), we have p ∈ Act(H ′ ◦ L) and q ∈ Act(H ′ ◦ L). Since u 6= v, u is

local to q. However, by (130), and by applying RF2 with ‘RFS ’← Fin(H) to fp in H ′ ◦ L, we have

q /∈ Act(H ′ ◦ L), a contradiction.

– Consider the case in which fp = e′
sj

and gq = e′
sk
, for some sj and sk in Yv. Since u is remote to at

least one of sj or sk, we have u = v, a contradiction.

• RF4: By (62), (130), and (137), it easily follows that G satisfies RF4 with respect to RFS .

Therefore, we have established that

• RFS is a valid RF-set of G. (153)

By (137) and (138), we have

PmtRFS (G) = {p | p ∈ {pLW, pSC} and p 6= ⊥}.

In particular,

|PmtRFS (G)| ≤ 2. (154)

We now let the processes in Pmt(G) finish their execution by inductively appending critical events of processes

in Pmt(G), thus generating a sequence of computations G0, G1, . . . , Gl (where G0 = G), satisfying the

following:

34

• Gj ∈ C; (155)

• RFS is a valid RF-set of Gj ; (156)

• Pmt(Gj) ⊆ Pmt(G); (157)

• each process in Inv(Gj) executes exactly c+ 1 critical events in Gj ; (158)

• the processes in Pmt(G) collectively execute exactly |Pmt(G)| · (c+ 1) + j critical events in Gj ; (159)

• Inv(Gj+1) ⊆ Inv(Gj) and |Inv(Gj+1)| ≥ |Inv(Gj)| − 1 if j < l; (160)

• Fin(Gj) (RFS if j < l, and Fin(Gj) = RFS if j = l. (161)

At each induction step, we apply Lemma 6 to Gj in order to construct Gj+1, until Fin(Gj) = RFS is

established, at which point the induction is completed. The induction is explained in detail below.

Induction base (j = 0): Since G0 = G, (155) and (156) follow from (134) and (153), respectively.

Condition (157) is trivial.

By (52), (117), and (131), each process in Yv executes exactly c critical events in H ′ ◦ L. Thus,

by Claim 4, it follows that each process in Yv executes exactly c + 1 critical events in G. Since

Inv(G) ⊆ Yv, G satisfies (158). Since Pmt(G) ⊆ Yv, G satisfies (159).

Induction step: At each step, we assume (155)–(159). If Fin(Gj) = RFS , then (161) is satisfied

and we finish the induction, by letting l = j.

Assume otherwise. We apply Lemma 6 with ‘H ’← Gj . Assumptions (36)–(38) stated in Lemma 6

follow from (155), (156), and Fin(Gj) 6= RFS . The lemma implies that a computation Gj+1 exists

satisfying (155)–(161), as shown below.

Condition (155) and (156) follow from (39) and (40), respectively. Since Gj satisfies (157), by (47),

Gj+1 also satisfies (157). Since Inv(Gj+1) ⊆ Inv(Gj) by (41) and (42), by (44) and (48), and applying

(158) to Gj , it follows that Gj+1 satisfies (158). By (44)–(48), and applying (157) and (159) to Gj ,

it follows that Gj+1 satisfies (159). Condition (160) follows from (41) and (42). Thus, the induction

is established. �

We now show that l < 2k. Assume otherwise. By (154), and by applying (159) to Gl, it follows that there

exists a process p ∈ Pmt(G) (i.e., p is either pLW or pSC) such that p executes at least c+ 1 + k critical events

in Gl. From (161) and p ∈ Pmt(G) ⊆ RFS , we get p ∈ Fin(Gl). Let F = Gl |RFS . By Lemma 1, and applying

(155) and (156), we have the following:

• F ∈ C;

• RFS is a valid RF-set of F ;

• p executes at least c+ 1 + k critical events in F .

Since p ∈ Fin(Gl), by applying RF4 to p in Gl, it follows that the last event of Gl | p is Exitp. Since

Gl | p = F | p, F can be written as F ◦ 〈Exitp〉 ◦ · · · , where F is a prefix of F such that p executes at least c+ k

critical events in F . However, p and F then satisfy Proposition Pr1, a contradiction.

35

Finally, we show that Gl satisfies Proposition Pr2. The following derivation establishes (55).

|Act(Gl)| = |InvRFS (Gl)| {by (161), RFS = Fin(Gl), thus Act(Gl) = InvRFS (Gl)}

≥ |InvRFS (G0)| − l {by repeatedly applying (160)}

= |Act(G)− RFS | − l {by the definition of “Inv”; note that G = G0}

= |Yv − RFS | − l {by (137)}

= |Yv − (Pmt(G) ∪ Fin(H))| − l {because RFS = Pmt(G) ∪ Fin(G), and

Fin(G) = Fin(H) by (137)}

= |Yv − Pmt(G)| − l {because Yv ∩ Fin(H) = {} by (137)}

> |Yv| − 2− 2k {by (154) and l < 2k}

>
√
n− 2k − 3. {by (112)}

Moreover, by (156) and (161), we have Act(Gl) = Inv(Gl). Thus, by (137) and (160), we have Act(Gl) ⊆
Inv(G) ⊆ Act(G) = Yv ⊆ Act(H), which implies (53). By (138) and (161), we have (54). Finally, (158) implies

(56). Therefore, Gl satisfies Proposition Pr2. �

Theorem 2 Let N̄(k) = (2k + 4)2(2
k
−1). For any mutual exclusion system S = (C, P, V) and for any positive

number k, if |P | ≥ N̄(k), then there exists a computation H such that at most 2k − 1 processes participate in

H and some process p executes at least k critical operations in H to enter and exit its critical section.

Proof: Let H1 = 〈Enter1, Enter2, . . . , EnterN 〉, where P = {1, 2, . . . , N} and N ≥ N̄(k). By the definition

of a mutual exclusion system, H1 ∈ C. It is obvious that H1 is regular and each process in Act(H) = P has

exactly one critical event in H1. Starting with H1, we repeatedly apply Lemma 7 and construct a sequence

of computations (H1, H2, . . .), such that each process in Act(Hj) has j critical events in Hj . We repeat the

process until either Hk is constructed or some Hj satisfies Proposition Pr1 of Lemma 7.

If some Hj (j ≤ k − 1) satisfies Proposition Pr1, then consider the first such j. By our choice of j, each of

H1, . . . , Hj − 1 satisfies Proposition Pr2 of Lemma 7. Therefore, since |Fin(H1)| = 0, we have |Fin(Hj)| ≤
2(j − 1) ≤ 2k − 4. It follows that computation F ◦ 〈Exitp〉, generated by applying Lemma 7 to Hj , satisfies

Theorem 2.

The remaining possibility is that each of H1, . . . , Hk−1 satisfies Proposition Pr2. We claim that, for

1 ≤ j ≤ k, the following holds:

|Act(Hj)| ≥ (2k + 4)2(2
k+1−j

−1). (162)

The induction basis (j = 1) directly follows from Act(H) = P and |P | ≥ N̄(k). In the induction step,

assume that (162) holds for some j (1 ≤ j < k), and let nj = |Act(Hj)|. Note that each active process in

Hj executes exactly j critical events. By (162), we also have nj > (2k + 4)2, which in turn implies that
√
nj − 2k − 3 >

√
nj/(2k + 4). Therefore, by (55), we have

|Act(Hj+1)| ≥ min(
√
nj/(2j + 3),

√
nj − 2k − 3) ≥ √nj/(2k + 4),

from which the induction easily follows.

Finally, (162) implies |Act(Hk)| ≥ 1, and Proposition Pr2 implies |Fin(Hk)| ≤ 2(k − 1). Therefore, select

any arbitrary process p from Act(Hk). Define G = Hk | (Fin(Hk) ∪ {p}). Clearly, at most 2k − 1 processes

participate in G. By applying Lemma 1 with ‘H ’← Hk and ‘Y ’← Fin(Hk)∪{p}, we have the following: G ∈ C,

and an event in G is critical if and only if it is also critical in Hk. Hence, because p executes k critical events

in Hk, G is a computation that satisfies Theorem 2. �

36

5 Concluding Remarks

We have established a lower bound that eliminates the possibility of an adaptive mutual exclusion algorithm

based on reads, writes, or comparison primitives with O(log k) RMR time complexity, where k is the highest

point (or interval) contention experienced by some active process.

We believe that Ω(min(k, log N)) is probably a tight lower bound for the class of algorithms considered in

this paper (which would imply that the algorithm in [31] is optimal). One relevant question is whether the

results of this paper can be combined with those of [4] or [9] to come close to an Ω(min(k, logN)) bound, i.e.,

can we conclude that Ω(min(k, logN/ log logN)) (for write-update-CC machines) or Ω(min(k, logN)) (for DSM

and write-invalidate CC machines) is a lower bound? Unfortunately, the answer is no. We have shown that

Ω(k) RMR time complexity is required provided N is sufficiently large. To be specific, for any k ≤ O(log logN),

there exists a computation with contention O(k) in which some process performs Ω(k) RMRs. This leaves open

the possibility that an algorithm might have Θ(k) RMR time complexity for very “low” levels of contention,

but o(k) RMR time complexity for “intermediate” levels of contention. Although our lower bound does not

preclude such a possibility, we find it highly unlikely.

It is worth noting that our result pertains to deterministic bounds; one can achieve better expected time

complexity with randomized algorithms. For example, Hendler and Woelfel [25] showed that O(log k/ log log k)

expected amortized RMR time complexity is possible for both DSM and CC machines.

Acknowledgements. We thank Hagit Attiya and the anonymous reviewers for their helpful suggestions

throughout the review process.

References

[1] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming made adaptive. In

Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing, pages 91–103.

ACM, May 1999.

[2] Y. Afek, P. Boxer, and D. Touitou. Bounds on the shared memory requirements for long-lived and adaptive

objects. In Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, pages

81–89. ACM, July 2000.

[3] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive splitter and applications. Distributed Computing,

15(2):67–86, 2002.

[4] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of mutual exclusion.

Distributed Computing, 15(4):221–253, December 2003.

[5] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major research trends since

1986. Distributed Computing, 16:75–110, 2003.

[6] J. Anderson and J.-H. Yang. Time/contention tradeoffs for multiprocessor synchronization. Information

and Computation, 124(1):68–84, January 1996.

[7] H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusion. Distributed Computing, 15:177–189,

2002.

37

[8] H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-free implementa-

tions. Journal of the ACM, 56:24:1–24:33, July 2009.

[9] H. Attiya, D. Hendler, and P. Woelfel. Tight RMR lower bounds for mutual exclusion and other problems.

In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 217–226. ACM, May

2008.

[10] V. Bhatt and C.-C. Huang. Group mutual exclusion in O(log n) RMR. In Proceeding of the 29th ACM

SIGACT-SIGOPS symposium on Principles of distributed computing, PODC ’10, pages 45–54. ACM, 2010.

[11] V. Bhatt and P. Jayanti. Constant RMR solutions to reader writer synchronization. In Proceeding of the

29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC ’10, pages 468–477.

ACM, 2010.

[12] V. Bhatt and P. Jayanti. Specification and constant RMR algorithm for phase-fair reader-writer lock. In

Distributed Computing and Networking, volume 6522 of Lecture Notes in Computer Science, pages 119–130.

Springer Berlin / Heidelberg, 2011.

[13] J. Burns and N. Lynch. Mutual exclusion using indivisible reads and writes. In Proceedings of the 18th

Annual Allerton Conference on Communication, Control, and Computing, pages 833–842, 1980.

[14] J. Burns and N. Lynch. Bounds on shared memory for mutual exclusion. Information and Computation,

107(2):171–184, December 1993.

[15] M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem. Distributed Computing,

8(1):1–17, 1994.

[16] R. Cypher. The communication requirements of mutual exclusion. In Proceedings of the Seventh Annual

ACM Symposium on Parallel Algorithms and Architectures, pages 147–156. ACM, June 1995.

[17] R. Danek. The k-bakery: local-spin k-exclusion using non-atomic reads and writes. In Proceeding of the

29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC ’10, pages 36–44.

ACM, 2010.

[18] R. Danek and W. Golab. Closing the complexity gap between FCFS mutual exclusion and mutual exclusion.

Distributed Computing, 23:87–111, 2010.

[19] R. Danek and V. Hadzilacos. Local-spin group mutual exclusion algorithms. In Proceedings of the 18th

International Symposium on Distributed Computing, volume 3274 of Lecture Notes in Computer Science,

pages 71–85. Springer Berlin / Heidelberg, 2004.

[20] R. Fan and N. Lynch. An Ω(n log n) lower bound on the cost of mutual exclusion. In Proceedings of the

twenty-fifth annual ACM symposium on Principles of distributed computing, PODC ’06, pages 275–284.

ACM, 2006.

[21] W. Golab. A complexity separation between the cache-coherent and distributed shared memory models. In

Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing,

PODC ’11, pages 109–118. ACM, 2011.

[22] W. Golab, V. Hadzilacos, D. Hendler, and P. Woelfel. Constant-RMR implementations of CAS and other

synchronization primitives using read and write operations. In Proceedings of the 26th annual ACM sym-

posium on Principles of distributed computing, PODC ’07, pages 3–12. ACM, 2007.

38

[23] W. Golab, D. Hendler, and P. Woelfel. An O(1) RMRs leader election algorithm. SIAM Journal on

Computing, 39(7):2726–2760, 2010.

[24] D. Hendler and P. Woelfel. Randomized mutual exclusion with sub-logarithmic RMR-complexity. To

appear in Distribute Computing; currently available online (a preliminary version appeared in Proceedings

of the 28th ACM symposium on Principles of distributed computing, 2009).

[25] D. Hendler and P. Woelfel. Adaptive randomized mutual exclusion in sub-logarithmic expected time. In

Proceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing, PODC

’10, pages 141–150. ACM, 2010.

[26] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: double-ended queues as an

example. In Proceedings of the 23rd IEEE International Conference on Distributed Computing Systems,

pages 522 – 529, may 2003.

[27] P. Jayanti. f -arrays: implementation and applications. In Proceedings of the twenty-first annual symposium

on Principles of distributed computing, PODC ’02, pages 270–279. ACM, 2002.

[28] P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proceedings of the 22nd Annual ACM

Symposium on Principles of Distributed Computing, pages 295–304. ACM, 2003.

[29] P. Keane and M. Moir. A simple, local-spin group mutual exclusion algorithm. In Proceedings of the 18th

Annual ACM Symposium on Principles of Distributed Computing, pages 23–32. ACM, May 1999.

[30] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. In Proceedings of the

15th International Symposium on Distributed Computing, pages 1–15. Lecture Notes in Computer Science

2180, Springer-Verlag, October 2001.

[31] Y.-J. Kim and J. Anderson. Adaptive mutual exclusion with local spinning. Distributed Computing,

19(3):197–236, January 2007.

[32] H. Lee. Transformations of mutual exclusion algorithms from the cache-coherent model to the distributed

shared memory model. In Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE

International Conference on, pages 261 –270, june 2005.

[33] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memory multiproces-

sors. ACM Transactions on Computer Systems, 9(1):21–65, February 1991.

[34] M. Merritt and G. Taubenfeld. Speeding Lamport’s fast mutual exclusion algorithm. Information Processing

Letters, 45:137–142, 1993.

[35] E. Styer. Improving fast mutual exclusion. In Proceedings of the 11th Annual ACM Symposium on Principles

of Distributed Computing, pages 159–168. ACM, August 1992.

[36] E. Styer and G. Peterson. Tight bounds for shared memory symmetric mutual exclusion. In Proceedings

of the 8th Annual ACM Symposium on Principles of Distributed Computing, pages 177–191. ACM, August

1989.

[37] G. Taubenfeld. The black-white bakery algorithm and related bounded-space, adaptive, local-spinning and

FIFO algorithms. In Proceedings of the 18th International Symposium on Distributed Computing, volume

3274 of Lecture Notes in Computer Science, pages 56–70. Springer Berlin / Heidelberg, 2004.

39

[38] P. Turán. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok, 48:436–452, 1941.

[39] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Computing, 9(1):51–

60, August 1995.

40

