
Composite Registers�

James H. Andersony

Department of Computer Science

The University of Maryland at College Park

College Park, Maryland 20742

July 1989

Revised March 1991, February 1992

Abstract

We introduce a shared data object, called a composite register, that generalizes the notion of an

atomic register. A composite register is an array-like shared data object that is partitioned into a num-

ber of components. An operation of a composite register either writes a value to a single component or

reads the values of all components. A composite register reduces to an ordinary atomic register when

there is only one component. In this paper, we show that multi-reader, single-writer atomic registers

can be used to implement a composite register in which there is only one writer per component. In

a related paper, we show how to use the composite register construction of this paper to implement a

composite register with multiple writers per component. These two constructions show that it is possible

to implement a shared memory that can be read in its entirety in a single snapshot operation, without

using mutual exclusion.

Keywords: atomicity, atomic register, composite register, concurrency, interleaving semantics, lineariz-

ability, shared variable, snapshot

CR Categories: D.4.1, D.4.2, F.3.1

�To appear in Distributed Computing. Preliminary version was presented at the Ninth Annual ACM Symposium on Prin-

ciples of Distributed Computing [2].
yWork supported, in part, at the University of Texas at Austin by O�ce of Naval Research Contract N00014-89-J-1913, and

at the University of Maryland by an award from the University of Maryland General Research Board.

1 Introduction

The wait-free implementation of concurrent shared data objects is a subject that has received much attention

in the concurrent programming literature. A shared data object is a data structure that is shared by a

collection of processes and is accessed by means of a �xed set of operations. An implementation of a shared

data object is wait-free i� the operations of the data object are implemented without any unbounded busy-

waiting loops or idle-waiting primitives. Wait-free shared data objects are inherently resilient to halting

failures: a process that halts while accessing such a data object cannot block the progress of any other

process that also accesses that same data object. Wait-free shared data objects also permit maximum

parallelism: such a data object can be accessed concurrently by any number of the processes that share it

since one access does not have to wait for another to complete.

The notion of an atomic register is of fundamental importance in the study of wait-free shared data

objects [18, 19, 22, 24]. An atomic register is a shared data object that can either be read or written (but

not both) in a single operation. An atomic register can be characterized by the number of processes that

can read or write it, and the number of bits that it stores. The simplest atomic register can be read by one

process, can be written by one process, and can store a one-bit value; the most complicated can be read

or written by several processes and can store any number of bits. It has been shown in a series of papers

that the most complicated atomic register can be implemented without waiting in terms of the simplest

[5, 9, 10, 16, 17, 19, 20, 23, 24, 25, 26, 27, 28]. This work shows that, using only atomic registers of the

simplest kind, the classical readers-writers problem [13] can be solved without requiring either readers or

writers to wait.

In this paper, we go a step further by de�ning a new shared data object, called a composite register , that

generalizes the notion of an atomic register. A composite register is an array-like shared data object that

is partitioned into a number of components. An operation of a composite register either writes a value to a

single component, or reads the values of all components. Note that a composite register di�ers signi�cantly

from an atomic register: a write operation of a composite register only overwrites a portion of the register,

namely the contents of a particular component, while leaving the rest of the register unchanged. By contrast,

a write operation of an atomic register overwrites the previous contents of the entire register. A composite

register reduces to a multi-reader, multi-writer atomic register when there is only one component.

We consider here the important question of whether atomic registers can be used to implement composite

registers without waiting. We use a two-step approach in addressing this question. The results of this paper

constitute the �rst step, and those of [3] the second. In this paper, we show that multi-reader, single-

writer atomic registers can be used to construct a composite register in which there is only one writer per

component (henceforth, called a single-writer composite register). In [3], we use the construction of this

paper to implement a composite register in which several writers per component are allowed (henceforth,

called a multi-writer composite register).

One of the surprising consequences of this result is that atomic registers can be used to implement a

shared memory that can be read in its entirety in a single \snapshot" operation, without using mutual

exclusion. Such a memory can be implemented by a single composite register, with each memory location

corresponding to a component of the register. To write a given memory location, a process writes the

1

corresponding component of the composite register. To read any set of memory locations, a process reads

the entire composite register, and then selects the values of the components corresponding to this set.

The problem of constructing a composite register from atomic registers has also been considered inde-

pendently by Afek et al. [1]. They present two composite register constructions: the �rst implements a

single-writer composite register from multi-reader, single-writer atomic registers, and the second implements

a multi-writer composite register from multi-reader, multi-writer atomic registers. By contrast, our two

constructions (the one in this paper and the one in [3]) together implement a multi-writer composite register

using only single-writer atomic registers. Thus, our constructions also solve the problem of implementing a

multi-writer atomic register (the case in which there is only one component) from single-writer ones.

Composite registers are quite powerful and can be used to implement a number of interesting shared

data objects without waiting. For example, as shown in [6, 7], composite registers can be used to implement

wait-free shared data objects with \pseudo" read-modify-write (PRMW) operations. A PRMW operation

is similar to a \true" read-modify-write (RMW) operation in that it modi�es the value of a shared variable1

based upon the original value of that variable. However, unlike an RMW operation, a PRMW operation does

not return the value of the variable that it modi�es. An operation that increments a shared variable without

returning its value is an example of a PRMW operation. It is shown in [6, 7] that composite registers can be

used to implement any shared data object that can either be read, written, or modi�ed by a commutative

PRMW operation in a wait-free manner. These results stand in sharp contrast to those of [4, 14], where it

is shown that RMW operations cannot, in general, be implemented from atomic registers without waiting.

The rest of the paper is organized as follows. In Section 2, we formally de�ne the problem of constructing

a composite register of one type from a composite register of a simpler type. In Section 3 we present the

\Shrinking Lemma," which gives a su�cient condition for proving that a construction is correct. The proof

of the Shrinking Lemma is given in an appendix. In Section 4, we present our single-writer construction

along with its proof of correctness. Concluding remarks appear in Section 5.

2 Composite Register Construction

In this section, we consider the problem of constructing a composite register of one type from composite

registers of a simpler type, and give the conditions that such a construction must satisfy to be correct. (The

simpler composite register used in such a construction could, for instance, have fewer components, fewer

readers, etc.)

A construction consists of a set of procedures along with a set of variables. Each procedure has the

following form:

procedure name(inputs)

private var : : :

begin

body;

1The term variable is used to denote an arbitrary data item. The term register is used when referring to a particular shared

data object, such as an atomic register or composite register.

2

B bits per component

.

.

.

Reader 0

Reader R � 1

Writer (i; 0)

Writer (i;W � 1)

component i

component 0

component C � 1

.

.

.

Figure 1: C=B=W=R composite register structure.

return(outputs)

end

where name is the name of the procedure, either Reader or Writer , inputs is an optional list of input

parameters, outputs is an optional list of output parameters, and body is a program fragment comprised of

atomic statements. One may think of each procedure as being resident to a particular process. A Reader

procedure is invoked by a process to read the values of all components of the constructed register, and a

Writer procedure is invoked by a process to write a value to a particular component of the register. Each

Reader procedure has one output parameter for each component of the constructed register, and each Writer

procedure has an input parameter indicating the value to be written. We assume that each process invokes

its resident procedures in a serial manner.

For convenience, we designate a composite register construction by a 4-tuple C=B=W=R, where C is the

number of components, B is the number of bits per component, W is the number of Writers per component,

and R is the number of Readers. (Thus, a 1=B=W=R composite register is an ordinary R-reader, W -writer

atomic register.) The structure of a C=B=W=R composite register construction is depicted in Figure 1. Note

that this �gure only depicts the Writer procedures for component i. For an example of a Reader or Writer

procedure, see Figure 3.

Each variable of a construction is either private or shared. A private variable is de�ned only within

the scope of a single procedure, whereas a shared variable is de�ned globally and may be accessed within

more than one procedure. (Each procedure's program counter is considered to be a private variable.) A

construction is required to satisfy the following two restrictions.

� Atomicity Restriction: Each shared variable is required to be of the same type as the simpler composite

register used in the construction. Note that this restriction constrains those statements that access

shared variables.

� Wait-Freedom Restriction: As mentioned in the introduction, each procedure is required to be \wait-

free," i.e., idle-waiting primitives and unbounded busy-waiting loops are not allowed. (A more formal

3

de�nition of wait-freedom is given in [4].)

We now de�ne several concepts that are needed to state the correctness condition for a construction.

These de�nitions apply to a given construction. A state is an assignment of values to all variables (private

and shared) of the construction. One or more states are designated as initial states. An event is an execution

of a statement of a procedure. We use s
e
!t to denote the fact that state t is reached from state s via the

occurrence of event e. A history of the construction is a sequence (either �nite or in�nite) s0
e0
!s1

e1
!� � � where

s0 is an initial state. It is important to note that a given statement may be executed many times in a history;

each such execution corresponds to a distinct event.

Event e precedes another event f in a history i� e occurs before f in the history. The sequence of events

in a history corresponding to some procedure invocation is called an operation. An operation of a Reader

(Writer) procedure is called Read operation (Write operation). (Note that, in order to avoid confusion, we

capitalize the terms \Read" and \Write" when referring to the operations of the constructed register, and

leave them uncapitalized when referring to the variables used in the construction.) A Write operation of

component k of the constructed composite register, where 0 � k < C, is called a k-Write operation. An

operation p precedes another operation q in a history i� each event of p precedes all events of q.

As mentioned above, each Reader procedure has an output parameter for each component of the con-

structed register, which is used to return the value read from that component; the value read by a Read

operation from a component is called the output value of the operation for that component. As also men-

tioned above, each Writer procedure has an input parameter that speci�es the value to be written to the

constructed register; the value written to the constructed register by a Write operation is called the input

value of that operation.

An operation of a procedure P in a history is complete i� the last event of the operation occurs as the

result of executing the return statement of P . A history is well-formed i� each operation in the history is

complete.

Given this terminology, we are now in a position to state the correctness condition for a construction. In

order to avoid special cases in the correctness condition, we make the following assumption concerning the

initial Write operations.

Initial Writes: For each k, where 0 � k < C, there exists a k-Write operation that precedes each other

k-Write operation and all Read operations. 2

The correctness condition is based upon the notion of \linearizability." Linearizability provides the il-

lusion that each operation is executed instantaneously, despite the fact that it is actually executed as a

sequence of events. Intuitively, a history is linearizable if every operation in the history \appears" to take

e�ect at some point between its �rst and last events. It can be shown that the following de�nition is equiv-

alent to the more general de�nition of linearizability given by Herlihy and Wing in [15], when restricted to

the special case of constructing a composite register.

Linearizable Histories: Let h be a well-formed history of a construction. History h is linearizable i� the

4

precedence relation on operations (which is a partial order) can be extended2 to a total order < where for each

Read operation r in h and each k in the range 0 � k < C, the output value of r for component k is the same as

the input value of the k-Write operation v de�ned as follows: v < r ^ :(9w : w is a k-Write : v < w < r). 2

Note that the Write operation v in the de�nition above exists by our assumption concerning the initial

Writes. A construction of a composite register is correct i� it satis�es the Atomicity and Wait-Freedom

restrictions and each of its well-formed histories is linearizable.

3 Shrinking Lemma

The correctness condition given in Section 2, while intuitive, is rather di�cult to use. We now present

a lemma that gives a set of conditions that are su�cient for establishing that a history is linearizable.

Intuitively, a history is linearizable if each operation in the history can be shrunk to a point; that is, there

exists a point between the �rst and last events of each operation at which that operation appears to take

e�ect. For this reason, the following lemma is referred to as the \Shrinking Lemma."

Shrinking Lemma: A well-formed history h is linearizable if for each k, where 0 � k < C, there exists a

function �k that maps every Read operation and k-Write operation in h to some natural number, such that

the following �ve conditions hold.

� Uniqueness: For each pair of distinct k-Write operations v and w in h, �k(v) 6= �k(w). Furthermore,

if v precedes w, then �k(v) < �k(w).

� Integrity : For each Read operation r in h, and for each k in the range 0 � k < C, there exists a k-Write

operation w in h such that �k(r) = �k(w). Furthermore, the output value of r for component k is the

same as the input value of w.

� Proximity : For each Read operation r in h and each k-Write operation w in h, if r precedes w then

�k(r) < �k(w), and if w precedes r then �k(w) � �k(r).

� Read Precedence: For each pair of Read operations r and s in h, if (9k :: �k(r) < �k(s)) or if r precedes

s, then (8k :: �k(r) � �k(s)).

� Write Precedence: For each Read operation r in h, and each j-Write operation v and k-Write operation

w in h, where 0 � j < C and 0 � k < C, if v precedes w and �k(w) � �k(r), then �j(v) � �j(r). 2

Uniqueness totally orders the Write operations on a given component in accordance with the partial

precedence ordering de�ned by h. According to Integrity, the output value of a Read operation for a given

component must equal the input value of some Write operation for that component. This condition prohibits

a Read operation from returning a predetermined value for some component. Proximity ensures that a Read

operation does not return a value from the \future," or one from the \far past" that has subsequently been

2A relation R over a set S extends another relation R0 over S i� for each x and y in S, xR0y) xRy.

5

\overwritten" (i.e., each output value of a Read operation must be the input value of a Write operation in

close proximity). Read Precedence disallows two Read operations from obtaining inconsistent snapshots.

Write Precedence orders Write operations of one component with respect to Write operations of another

component. Conditions similar to Integrity, Proximity, and Read Precedence have been used elsewhere

as a correctness condition for atomic register constructions; see, for example, the Integrity, Safety, and

Precedence conditions in [26], Proposition 3 in [19], and the de�nition of an atomic run and the Shrinking

Function Theorem in [8].

The correctness proof for the Shrinking Lemma is given in an appendix. The proof is somewhat tedious,

but is not hard. First, the precedence relation on operations in history h is augmented by adding pairs of

operations. These added pairs of operations are de�ned based upon the �ve conditions of the lemma. Then,

the resulting relation is shown to be an irreexive partial order. Finally, it is shown that any extension of

this relation to an irreexive total order satis�es the condition given in the de�nition of a linearizable history

in Section 2.

4 C=B=1=R Construction

In this section, we prove that a C=B=1=R composite register can be constructed from multi-reader, single-

writer atomic registers. An informal description of the construction is presented in Section 4.1 and the

correctness proof is given in Section 4.2.

4.1 Informal Description

The architecture of the construction is depicted in Figure 2, and the construction itself is given in Figure 3.

The construction uses R+2 shared variables, Y [0], Y [1::C�1], and Z[0]; : : : ; Z[R�1]. (Note that Y [1::C�1]

is considered to be a single variable. We call the variable written by Writer 0 \Y [0]" in order to avoid special

cases in the proof of correctness. We stress that Y [0] and Y [1::C�1] are two distinct variables.) Notice that

the construction is recursive, since variable Y [1::C � 1] is a (C � 1)-component composite register.

As seen in Figures 2 and 3, each Y [k] is partitioned into a number of �elds. The �elds val and id are

common to every Y [k], while Y [0] has a number of additional �elds. The val �eld of Y [k] is used to record

the input values of successive k-Write operations, and the id �eld of Y [k] is an integer variable used to

uniquely identify these successive input values. The id �elds are auxiliary variables and are used in de�ning

the functions �0; : : : ; �C�1 of the Shrinking Lemma. (To emphasize that they are auxiliary, we have enclosed

them in parentheses in Figure 2.) These auxiliary variables are used only to facilitate the proof of correctness,

and have no bearing on the correctness of the construction (no auxiliary variable's value is ever assigned to

a nonauxiliary variable or tested in any control statement). The term item refers to a (val; id) pair. Fields

seq[0] and seq[1] of Y [0] are arrays and are used to store the \sequence numbers" read from Z[0]; : : : ; Z[R�1]

by a 0-Write operation. Note that each 0-Write operation makes two copies of Z[0]; : : : ; Z[R � 1], one of

which is stored in Y [0]:seq[0] and the other in Y [0]:seq[1]. The ss �eld of Y [0] is an array used to store the

items read from Y [0]; : : : ; Y [C� 1] by a 0-Write operation; ss stands for \snapshot." The wc �eld of Y [0] is

a modulo-3 integer \write counter" and is incremented by each 0-Write operation.

6

(id)val

ss[0]; : : : ; ss[C � 1]seq[0;0]; : : : ; seq[1;R � 1](id)val

.

.

.

Z[R � 1]

Z[0]

Y [0]Writer 0

.

.

.
.

.

.
.

.

.

Y [C � 1]

Y [1]

Writer C � 1

Writer 1 Reader 0

Reader R � 1

Figure 2: C=B=1=R construction architecture.

Before considering the Reader and Writer procedures in depth, several comments concerning notation

are in order. The initialization requirement is de�ned by the initialization sections given with the shared

variable declarations and within each procedure (if any). Each initial state of the construction is required

to satisfy this initialization requirement. (If a given variable is not included in any initialization section,

then its initial value is arbitrary.) To make the construction easier to understand, the keywords read and

write are used to distinguish reads and writes of shared variables from reads and writes of private variables.

We also assume that each private variable of each procedure retains its value between invocations of that

procedure. We use � to denote modulo-3 addition. Each labeled sequence of statements is assumed to be a

single atomic statement. In the discussion that follows, we use the following notation for denoting events: if

i is a label of a statement of some Reader or Writer procedure, and if p is an operation of that procedure,

then p : i denotes the event corresponding to the execution of statement i by p. This notation will also be

used in the proof of correctness given in Section 4.2.

We now explain the intuition behind the construction. We begin by noting the structure of Writer 0.

First, note that Y [0]:val, Y [0]:wc, and Y [0]:seq[0] are modi�ed only by statement 3 of Writer 0, and each

execution of this statement increments the value of Y [0]:wc, modulo-3. Also, note that Y [0]:ss and Y [0]:seq[1]

are modi�ed only by statement 7 of Writer 0. With this in mind, consider an operation r of Reader j. Let

vk denote the value r returns for component k, where 0 � k < C. We show that there exists a state during

the execution of r (i.e., between its �rst and last events) such that (8k : 0 � k < C : Y [k]:val = vk). This

7

type valtype = a B-bit value;

itemtype = record val : valtype; id : integer =� Auxiliary variable �= end;

Y type = record val : valtype; id : integer; =� Auxiliary variable �=

seq : array[0::1][0::R� 1] of 0::2; ss : array[0::C � 1] of itemtype; wc : 0::2 end

var Y [0] : Y type; =� Multi-reader, single-writer atomic register �=

Y [k] : itemtype, for each k, where 1 � k < C; =� (C � 1)-component composite register �=

Z : array[0::R� 1] of 0::2 =� Array of multi-reader, single-writer atomic registers �=

initialization

(8j : 0 � j < C : Y [j]:id = 0)

procedure Reader(j : 0::R� 1) returns array[0::C � 1] of valtype

private var

a; c; e; x : Y type;

b; d : array[1::C � 1] of itemtype;

item : array[0::C � 1] of itemtype;

newseq : 0::2

begin

=� Select new sequence number di�ering from Writer 0's two copies �=

0: read x := Y [0];

1: select newseq such that newseq 6= x:seq[0; j] ^ newseq 6= x:seq[1; j]; =� Can select such a value

2: write Z[j] := newseq; because newseq ranges over 0::2 �=

=� Compute item[0::C � 1] �=

3: read a := Y [0]; =� Read from Writer 0 �=

4: read b := Y [1::C � 1]; =� Take snapshot of Writers other than Writer 0 �=

5: read c := Y [0]; =� Read from Writer 0 �=

6: read d := Y [1::C � 1]; =� Take snapshot of Writers other than Writer 0 �=

7: read e := Y [0]; =� Read from Writer 0 �=

8: if e:seq[1; j] = newseq _ e:wc= a:wc� 2 then

item[0]; : : : ; item[C � 1] := e:ss[0]; : : : ; e:ss[C � 1]

else if a:wc = c:wc then

item[0]; item[1]; : : : ; item[C � 1] := (a:val; a:id); b[1]; : : : ; b[C � 1]

else =� c:wc = e:wc �=

item[0]; item[1]; : : : ; item[C � 1] := (c:val; c:id); d[1]; : : : ; d[C � 1]

�;

9: return(item[0]:val; : : : ; item[C � 1]:val)

end

Figure 3: C=B=1=R construction.

8

procedure Writer0(val : valtype)

private var

seq : array[0::1][0::R� 1] of 0::2;

wc : 0::2;

item : itemtype;

ss : array[0::C � 1] of itemtype;

y : array[1::C � 1] of itemtype;

n : 0::R � 1

initialization

wc = Y [0]:wc ^ item:id = Y [0]:id ^ (8i : 0 � i < R : seq[1; i] = Y [0]:seq[1; i]) ^

(8j : 0 � j < C : ss[j] = Y [0]:ss[j])

begin

=� Compute item, seq[0][0::R� 1], and wc �=

0: wc; item:val; item:id := wc� 1; val; item:id+ 1;

1: for n = 0 to R� 1 do

2:n: read seq[0; n] := Z[n] =� Read from Reader n �=

od;

3: write Y [0] := (item:val; item:id; seq[0::1][0::R� 1]; ss[0::C � 1]; wc);

=� Compute seq[1][0::R� 1] and ss[0::C � 1] �=

4: read y := Y [1::C � 1]; =� Take snapshot of other Writers �=

5: ss[0]; ss[1]; : : : ; ss[C � 1] := item; y[1]; : : : ; y[C � 1];

6: seq[1; 0]; : : : ; seq[1;R� 1] := seq[0; 0]; : : : ; seq[0;R� 1]; =� Note: seq[1] is a copy of seq[0] �=

7: write Y [0] := (item:val; item:id; seq[0::1][0::R� 1]; ss[0::C � 1]; wc);

8: return

end

procedure Writer(i : 1::C � 1; val : valtype)

private var

item : itemtype

initialization

item:id = Y [i]:id

begin

0: item:val; item:id := val; item:id+ 1;

1: write Y [i] := item;

2: return

end

Figure 3: C=B=1=R construction (continued).

9

(b)

w+1w

733

. ..

r

75320

.....

(a)

w+2w+1w

r

75320

7333

.

....

Figure 4: Two example executions.

implies that r can be \shrunk to the point" immediately following this state. We consider three cases,

depending on the number of times Writer 0 executes its statement 3 between events r : 3 and r : 7. Two of the

three cases are illustrated in Figure 4. In this �gure, operations are denoted by line segments, with \time"

running from left to right. An event is denoted by a point along a line segment, labeled by the corresponding

statement number.

First, suppose that Writer 0 executes its statement 3 at least three times in the interval between r : 3 and

r : 7. Then, there exists a 0-Write operation that occurs completely within this interval. Such a scenario is

depicted in Figure 4 (a). In this �gure, w, w+1, and w
+2 are three successive operations of Writer 0. By

examining statement 4 of the procedure for Writer 0, we see that each 0-Write operation takes a snapshot

of the other Writers' values. In the general case under consideration, it is possible to show that r returns

the C values from the snapshot of some \overlapping" Write operation. For the speci�c situation depicted

in Figure 4 (a), we can show that r returns the C values from the snapshot of w+1. To see this, �rst observe

that the value written to Z[j] by r : 2 is copied by w
+1 to Y [0]:seq[1; j] prior to the occurrence of event

r : 7. Because event w+2 : 3 doesn't modify Y [0]:seq[1], this implies that e:seq[1; j] = newseq when r executes

statement 8 of the Reader procedure. Hence, the C return values of r, v0; : : : ; vC�1, equal those read by

r from Y [0]:ss[0]; : : : ; Y [0]:ss[C � 1], respectively, when r : 7 occurs. Because event w+2 : 3 doesn't modify

Y [0]:ss, these C values equal those assigned to Y [0]:ss[0]; : : : ; Y [0]:ss[C � 1] by w
+1 : 7. The values so

assigned are determined when w
+1 takes its snapshot, i.e., when the event w+1 : 4 occurs. This implies that

(8k :: Y [k]:val = vk) at the state immediately prior to the occurrence of event w+1 : 4. By Figure 4 (a), this

state occurs during r.

In the second case we consider, Writer 0 executes its statement 3 exactly twice between r : 3 and r : 7. In

this case, we have a situation such as that depicted in Figure 4 (b). As in the previous case, w and w
+1

are successive operations of Writer 0. The general case in question is similar to that considered above; in

10

particular, it can be shown that r returns the C values from the snapshot of an \overlapping"Write operation.

For the speci�c situation depicted in Figure 4 (b), we can show that r returns the C values from the snapshot

of w. To see this, �rst note that, because statement 3 of Writer 0 is executed twice between r : 3 and r : 7,

e:wc = a:wc � 2 holds when r executes its statement 8. Hence, the C return values of r, v0; : : : ; vC�1,

equal those read by r from Y [0]:ss[0]; : : : ; Y [0]:ss[C � 1], respectively, when r : 7 occurs. Reasoning as in

the previous case, we can show that these values equal those assigned to Y [0]:ss[0]; : : : ; Y [0]:ss[C � 1],

respectively, by w : 7, and that (8k :: Y [0]:ss[k] = vk) holds at the state immediately prior to the occurrence

of the event w : 4. By Figure 4 (b), this state occurs during r.

In the third and �nal case we consider, Writer 0 executes its statement 3 at most once between r : 3 and

r : 7. In this case, there are two possiblities to consider: statement 3 of Writer 0 is not executed between r : 3

and r : 5; or statement 3 of Writer 0 is not executed between r : 5 and r : 7. We consider the former possiblity,

the latter being similar. Because statement 3 of Writer 0 is not executed between r : 3 and r : 5, Y [0]:val and

Y [0]:wc each have same value throughout this interval. This implies that events r : 3 and r : 5 both read the

same value from Y [0]:wc, and hence a:wc = c:wc when r executes statement 8 of the Reader procedure. It

can also be shown in this case that e:a[1; j] 6= newseq ^ e:wc 6= a:wc� 2 when r executes statement 8 (i.e.,

the two cases above do not apply). Hence, the C return values of r, v0; : : : ; vC�1, equal those read by r

from Y [0]:val; Y [1]:val; : : : ; Y [C � 1]:val, respectively, when events r : 3 and r : 4 occur. This implies that

Y [0]:val = v0 holds prior to the occurrence of event r : 3 and that (8k : 1 � k < C : Y [k]:val = vk) holds

prior to the occurrence of event r : 4. Because Y [0]:val has the same value in the interval between r : 3 and

r : 5, this implies that (8k : 0 � k < C : Y [k]:val = vk) holds at the state prior to the occurrence of r : 4. This

state trivially occurs during r.

We now compute the space complexity of our C=B=1=R construction by determining the number of

shared single-reader, singler-writer atomic bits used in the construction. Let S(C;B;W;R) denote the

number of such bits required to construct a C=B=W=R composite register. If we remove the auxiliary id

�elds from our C=B=1=R construction, then the complexity of each of the shared variables is as follows:

Y [0] uses S(1; 4R + CB + B + 2; 1; R) bits; Y [1::C � 1] uses S(C � 1; B; 1; R + 1) bits; and Z[i], where

0 � i < R, uses S(1; 2; 1; 1) bits. Using the construction of [26], S(1; B; 1; R) = O(R2 + BR), and using

the construction of [27], S(1; B; 1; 1) = O(B); both of these constructions are asymptotically optimal. This

yields S(C;B; 1; R) = O(R2 + CBR) + S(C � 1; B; 1; R + 1). By solving this recurrence, we see that

S(C;B; 1; R) = O(CR2 + C
2
BR +C

3
B).

We compute the time complexity of our C=B=1=R construction by determining the number of reads

and writes of shared multi-reader, single-writer atomic registers required for each Read and Write operation

of the constructed register (for simplicity, we do not go down to the level of single-reader, single-writer

atomic bits when computing the time complexity). Let TR(C;B;W;R) and TW (C;B;W;R) denote the

time complexity for Read and Write operations, respectively, of a C=B=W=R composite register. Then, for

our construction, TR(C;B; 1; R) = 5 + 2TR(C � 1; B; 1; R + 1). By solving this recurrence, we see that

TR(C;B; 1; R) = O(2C). For Write operations, we get TW (C;B; 1; R) = R + 2 + TR(C � 1; B; 1; R+ 1).

By solving this recurrence, we get TW (C;B; 1; R) = O(R+ 2C).

11

4.2 Correctness Proof

To prove that the construction is correct, we must show that it satis�es the Atomicity and Wait-Freedom

restrictions and each of its well-formed histories is linearizable. The Atomicity restriction follows by the

architecture of the construction. The Wait-Freedom restriction is satis�ed because no procedure contains

any unbounded loops or idle-waiting primitives. In this section, we prove that each well-formed history is

linearizable. We �rst de�ne functions �0; : : : ; �C�1 for a given well-formed history, and then show that the

de�ned �'s satisfy the �ve conditions of the Shrinking Lemma. First, we present a number of de�nitions and

notational conventions.

In the remainder of this section, we assume that k ranges over f0; : : : ; C � 1g. In order to avoid using

too many parentheses, we de�ne a binding order for the symbols that we use. The following is a list of these

symbols, grouped by binding power; the groups are ordered from highest binding power to lowest.

all subscripts and superscripts

[], ()

:

!

:

+, �, �

=, 6=, <, >, �, �, �

^, _

unless

�

j=

If event e precedes event f , then we write e � f . If x is a private variable of operation p, then p!x denotes

the �nal value of variable x as assigned by p.

If E is an expression that holds at state t, then we write t j= E. Whenever we say that a given assertion

holds without referring to a particular state, we mean that the assertion is an invariant ; i.e., it is true at

each state of every history. Let E and F be two expressions over the variables of a construction. Following

[11], we say that the assertion E unless F holds i� for every pair of consecutive states in any history, if

E ^ :F holds in the �rst state, then E _ F holds in the second state.

We assume that each state in every history is distinct. This assumption is easy to ensure by introducing

an integer auxiliary variable that is incremented with each event. In the history t0
e0
!� � � ti

ei
!ti+1 � � �, ti is the

state prior to the event ei and ti+1 is the state following ei.

Let p be an operation of some Reader or Writer procedure P . We use p
�1 to denote the operation

of P that immediately precedes p, and p
+1 to denote the operation of P that immediately succeeds p.

Similarly, p�2 denotes the operation of P that immediately precedes p�1, p+2 denotes the operation of P

that immediately succeeds p+1, etc.

Let X be a shared variable of the construction, and let p be an operation. The assertion last(X) = p

holds at a state i� the last event to write X before that state is an event of p.

12

As mentioned in Section 4.1, each value of type valtype is tagged with an integer auxiliary variable,

which we call id. These auxiliary variables have been introduced in order to facilitate the de�nition of the

functions �0; : : : ; �C�1.

De�nition of �k: Let r be a Read operation and let w be a k-Write operation. We de�ne the function �k

as follows.

�k(r) � r!item[k]:id

�k(w) � w!item:id 2

The proof of correctness is based upon Lemma 2. The following lemma is used in the proof of Lemma 2.

Lemma 1: Let r be an operation of Reader j, and let v and w be 0-Write operations such that last(Y [0]) = v

at the state prior to r : 3 and last(Y [0]) = w at the state prior to r : 7. If r!e:seq[1; j] 6= r!newseq, then one

of the following is true: w = v, w = v
+1, or w = v

+2.

Proof: Let r, v, and w be as de�ned in the lemma. Assume that r!e:seq[1; j] 6= r!newseq.

By the text of the Reader procedure, r : 3 � r : 7. Therefore, because last(Y [0]) = v at the state prior to

r : 3 and last(Y [0]) = w at the state prior to r : 7 (and because the 0-Write operations are totally ordered)

either v = w or v precedes w. In the former case, our proof obligation is satis�ed; so, in the remainder of

the proof, assume that v precedes w. We show in this case that either w = v
+1 or w = v

+2.

Assume, to the contrary, that w 6= v
+1 and w 6= v

+2. Then, because v precedes w, v+2 precedes w.

Because last(Y [0]) = v at the state prior to r : 3, r : 3 � v
+1 : 3. Because v+1 and v

+2 are successive 0-Write

operations, v+1 : 3 � v
+2 : 0 � v

+2 : 7. Because v+2 precedes w, v+2 : 7 � w : 0. By the text of the procedure

for Writer 0, w : 0 � w : 3. Because last(Y [0]) = w at the state prior to r : 7, w : 3 � r : 7. Therefore,

r : 3� v
+1 : 3 � v

+2 : 0 � v
+2 : 7 � w : 0 � w : 3 � r : 7 :

Observe that v+2 precedes or equals w�1. Hence, by the above precedence assertion, r : 3 � w
�1 : 2:j �

w : 2:j � r : 7. This implies that last(Z[j]) = r at both the state prior to w
�1 : 2:j and the state prior to

w : 2:j. Hence, w�1!seq[0; j] = r!newseq and w!seq[0; j] = r!newseq. By statement 6 of the procedure for

Writer 0, w�1!seq[1; j] = w
�1!seq[0; j] and w!seq[1; j] = w!seq[0; j]. Therefore,

w
�1!seq[1; j] = r!newseq ^ w!seq[1; j] = r!newseq : (1)

Because last(Y [0]) = w at the state prior to r : 7, either w : 7 � r : 7 or w : 3 � r : 7 � w : 7. In the former

case, r!e:seq[1; j] = w!seq[1; j]. In the latter case, because statement 3 of Writer 0 does not alter the value of

Y [0]:seq[1; j], we have r!e:seq[1; j] = w
�1!seq[1; j]. In either case, by (1), we have r!e:seq[1; j] = r!newseq,

which is a contradiction. Thus, either w = v
+1 or w = v

+2. 2

As explained informally in Section 4.1, there exists a state \during" the execution of each Read operation

that corresponds to the \snapshot" taken by that operation. This is established formally in the following

lemma.

13

Lemma 2: Let r be a Read operation. Then, there exists a state between the events r : 0 and r : 9 such that

(8k :: Y [k]:val = r!item[k]:val ^ Y [k]:id = �k(r)).

Proof: Assume that r is an operation of Reader j. We consider four cases, based upon the conditional

statement 8 of Reader j.

Case 1: r!e:seq[1; j] = r!newseq. Let S be the set of 0-Write operations de�ned as follows: p is in S i� p is a

0-Write operation and p : 7 � r : 7. Note that S is nonempty, since by our assumption concerning the initial

Writes, each Read operation is preceded by at least one 0-Write operation. Let w be the Write operation in

S such that for each other Write operation p in S, p : 7 � w : 7. Then, last(Y [0]) equals either w or w+1 at

the state prior to r : 7, and in the latter case, w+1 : 3 � r : 7 � w
+1 : 7. Because statement 3 of Writer 0 does

not alter the value of Y [0]:seq[1; j] or of Y [0]:ss[0::C � 1], this implies that

r!e:seq[1; j] = w!seq[1; j] ^ (8k :: r!e:ss[k] = w!ss[k]) : (2)

By statement 6 of the procedure for Writer 0, w!seq[0; j] = w!seq[1; j]. By assumption, r!e:seq[1; j] =

r!newseq; therefore, by (2),

w!seq[0; j] = r!newseq ^ w!seq[1; j] = r!newseq : (3)

We now show that r : 0 � w : 3. Assume, to the contrary, that w : 3 � r : 0. By the text of the Reader

procedure, r : 0 � r : 7. Therefore, w : 3 � r : 0 � r : 7. Because last(Y [0]) equals either w or w+1 at the state

prior to r : 7, this implies that last(Y [0]) equals either w or w+1 at the state prior to r : 0. In the former case,

we have r!x:seq[0; j] = w!seq[0; j]. By (3), this implies that r!newseq = r!x:seq[0; j]. But, by statement 1 of

the Reader procedure, r!newseq 6= r!x:seq[0; j]; therefore, we have a contradiction.

Now, consider the latter case mentioned above, i.e., last(Y [0]) = w
+1 at the state prior to r : 0. By

the de�nition of w, we have r : 7 � w
+1 : 7. Therefore, w+1 : 3 � r : 0 � w

+1 : 7. Because statement 3 of

Writer 0 does not alter the value of Y [0]:seq[1; j], this implies that r!x:seq[1; j] = w!seq[1; j]. Hence, by

(3), r!newseq = r!x:seq[1; j], which, by statement 1 of the Reader procedure, is a contradiction. Thus, our

assumption that w : 3 � r : 0 is false, i.e., r : 0 � w : 3.

Because r!e:seq[1; j] = r!newseq, by statement 8 of the Reader procedure, (8k :: r!item[k] = r!e:ss[k]).

Therefore, by (2), (8k :: r!item[k] = w!ss[k]). By the de�nition of �k, (8k :: �k(r) = r!item[k]:id). Hence,

(8k :: r!item[k]:val = w!ss[k]:val ^ �k(r) = w!ss[k]:id) : (4)

We now establish the existence of the required state. As shown above, r : 0 � w : 3. By the text of the

procedure for Writer 0, w : 3 � w : 4� w : 7. Because w is in set S, w : 7 � r : 7. Therefore,

r : 0� w : 3 � w : 4 � w : 7 � r : 7 :

Let t denote the state prior to the event w : 4. By the above precedence assertion, t occurs between r : 0

and r : 9. By statement 5 of the procedure for Writer 0, w!ss[0] = w!item. Moreover, t j= Y [0]:val =

w!item:val ^ Y [0]:id = w!item:id. Therefore, t j= Y [0]:val = w!ss[0]:val ^ Y [0]:id = w!ss[0]:id. By (4),

14

this implies that t j= Y [0]:val = r!item[0]:val ^ Y [0]:id= �0(r). By statement 5 of the procedure for Writer

0, (8k : k > 0 : w!ss[k] = w!y[k]). Moreover, t j= (8k : k > 0 : Y [k] = w!y[k]). Therefore, t j= (8k : k > 0 :

Y [k] = w!ss[k]). By (4), this implies that t j= (8k : k > 0 : Y [k]:val = r!item[k]:val ^ Y [k]:id = �k(r)).

Case 2: r!e:seq[1; j] 6= r!newseq ^ r!e:wc = r!a:wc� 2. Assume that last(Y [0]) = v at the state prior to

r : 3 and last(Y [0]) = w at the state prior to r : 7. (v and w exist because, by our assumption concerning the

initial Writes, there exists a 0-Write operation that precedes all Read operations.) Then, by the text of the

procedures for Reader j and Writer 0,

r!a:wc = v!wc ^ r!e:wc = w!wc : (5)

Because r!e:seq[1; j] 6= r!newseq, by Lemma 1, one of the following holds: w = v, w = v
+1, or w = v

+2.

Because r!e:wc = r!a:wc� 2, by (5), w!wc = v!wc� 2. Therefore, w = v
+2.

Because last(Y [0]) = v at the state prior to r : 3, r : 3 � v
+1 : 3. By the text of the procedure for Writer

0, v+1 : 3 � v
+1 : 4 � v

+1 : 7. Because w = v
+2, v+1 : 7 � w : 0. By the text of the procedure for Writer 0,

w : 0 � w : 3. Because last(Y [0]) = w at the state prior to r : 7, w : 3 � r : 7. Therefore,

r : 3� v
+1 : 3 � v

+1 : 4 � v
+1 : 7 � w : 0 � w : 3 � r : 7 : (6)

We now show that r : 7 � w : 7. By (6), we have r : 2 � w : 2:j � r : 7. This implies that last(Z[j]) = r

at the state prior to w : 2:j, and hence w!seq[0; j] = r!newseq. By statement 6 of the procedure for Writer

0, w!seq[1; j] = w!seq[0; j]; hence, by transitivity, w!seq[1; j] = r!newseq. If w : 7 � r : 7, then because

last(Y [0]) = w at the state prior to r : 7, r!e:seq[1; j] = w!seq[1; j]. Therefore, by transitivity, r!e:seq[1; j] =

r!newseq. However, we have assumed in Case 2 that r!e:seq[1; j] 6= r!newseq. Hence, we have r : 7 � w : 7.

By (6), this implies that w : 3 � r : 7 � w : 7. Since statement 3 of Writer 0 does not alter the value of

Y [0]:ss[0::C � 1], and because v
+1 and w are successive operations of the same Writer, this implies that

(8k :: r!e:ss[k] = v
+1!ss[k]). Because r!e:seq[1; j] 6= r!newseq ^ r!e:wc = r!a:wc� 2, by statement 8 of the

Reader procedure, (8k :: r!item[k] = r!e:ss[k]). Therefore, (8k :: r!item[k] = v
+1!ss[k]). By the de�nition of

�k, (8k :: �k(r) = r!item[k]:id). Therefore,

(8k :: r!item[k]:val = v
+1!ss[k]:val ^ �k(r) = v

+1!ss[k]:id) : (7)

We now establish the existence of the required state. Let t be the state prior to v
+1 : 4. By (6), t

occurs between r : 0 and r : 9. By statement 5 of the procedure for Writer 0, v+1!ss[0] = v
+1!item. Moreover,

t j= Y [0]:val = v
+1!item:val ^ Y [0]:id = v

+1!item:id. Therefore, t j= Y [0]:val = v
+1!ss[0]:val ^ Y [0]:id=

v
+1!ss[0]:id. By (7), this implies that t j= Y [0]:val = r!item[0]:val ^ Y [0]:id = �0(r). By statement 5 of the

procedure for Writer 0, (8k : k > 0 : v+1!ss[k] = v
+1!y[k]). Moreover, t j= (8k : k > 0 : Y [k] = v

+1!y[k]).

Therefore, t j= (8k : k > 0 : Y [k] = v
+1!ss[k]). By (7), this implies that t j= (8k : k > 0 : Y [k]:val =

r!item[k]:val ^ Y [k]:id = �k(r)).

Case 3: r!e:seq[1; j] 6= r!newseq ^ r!e:wc 6= r!a:wc�2 ^ r!a:wc = r!c:wc. Let v and w be as de�ned in Case

2, i.e., last(Y [0]) = v at the state prior to r : 3 and last(Y [0]) = w at the state prior to r : 7. Let v0 be the

15

0-Write operation such that last(Y [0]) = v
0 at the state prior to r : 5. Then, by the text of the procedures

for Reader j and Writer 0,

r!a:wc = v!wc ^ r!c:wc = v
0!wc ^ r!e:wc = w!wc : (8)

We �rst show that v = v
0. By the de�nitions of v, v0, and w (and the fact that the 0-Write operations

are totally ordered), v precedes or equals v0 and v
0 precedes or equals w. As in Case 2, Lemma 1 implies

that one of the following holds: w = v, w = v
+1, or w = v

+2. This implies that one of the following holds as

well: v0 = v, v0 = v
+1, or v0 = v

+2. Because r!a:wc = r!c:wc, by (8), we have v!wc = v
0!wc. Thus, because

each 0-Write operation assigns wc := wc � 1, and because � is modulo-3 addition, v0 6= v
+1 and v

0

6= v
+2.

Therefore, v0 = v.

Because r!e:seq[1; j] 6= r!newseq ^ r!e:wc 6= r!a:wc� 2 ^ r!a:wc = r!c:wc, by statement 8 of the Reader

procedure, r!item[0]:val = r!a:val, r!item[0]:id = r!a:id, and (8k : k > 0 : r!item[k] = r!b[k]). By the

de�nition of �k, (8k :: �k(r) = r!item[k]:id). Therefore,

r!item[0]:val = r!a:val ^ �0(r) = r!a:id ^

(8k : k > 0 : r!item[k]:val = r!b[k]:val ^ �k(r) = r!b[k]:id) : (9)

We now establish the existence of the required state. Let t be the state prior to r : 4. Because last(Y [0]) =

v both at the state prior to r : 3 and at the state prior to r : 5 (recall v = v
0), Y [0]:val = r!a:val ^ Y [0]:id=

r!a:id holds at each state between r : 3 and r : 5. Thus, because t occurs in this interval, t j= Y [0]:val =

r!a:val ^ Y [0]:id = r!a:id. Therefore, by (9), t j= Y [0]:val = r!item[0]:val ^ Y [0]:id = �0(r). By

statement 4 of the Reader procedure, t j= (8k : k > 0 : Y [k] = r!b[k]). By (9), this implies that

t j= (8k : k > 0 : Y [k]:val = r!item[k]:val ^ Y [k]:id= �k(r)).

Case 4: r!e:seq[1; j] 6= r!newseq ^ r!e:wc 6= r!a:wc� 2 ^ r!a:wc 6= r!c:wc. Let v, v0, and w be as de�ned

in Case 3, i.e., last(Y [0]) = v at the state prior to r : 3, last(Y [0]) = v
0 at the state prior to r : 5, and

last(Y [0]) = w at the state prior to r : 7.

We �rst show that v0 = w. As in Case 3, v precedes or equals v0, v0 precedes or equals w, and one of the

following holds: w = v, w = v
+1, or w = v

+2. Because r!e:wc 6= r!a:wc�2, by (8), we have w!wc 6= v!wc�2.

Because each 0-Write operation assigns wc := wc� 1, this implies that w 6= v
+2. Because r!a:wc 6= r!c:wc,

by (8), we have v!wc 6= v
0!wc. This implies that v 6= v

0. Therefore, v precedes v0, v0 precedes or equals w,

and either w = v or w = v
+1. This implies that v0 = w.

Because r!e:seq[1; j] 6= r!newseq ^ r!e:wc 6= r!a:wc � 2 ^ r!a:wc 6= r!c:wc, by statement 8 of the

Reader procedure, r!item[0]:val = r!c:val, r!item[0]:id = r!c:id, and (8k : k > 0 : r!item[k] = r!d[k]). By the

de�nition of �k, (8k :: �k(r) = r!item[k]:id). Therefore,

r!item[0]:val = r!c:val ^ �0(r) = r!c:id ^

(8k : k > 0 : r!item[k]:val = r!d[k]:val ^ �k(r) = r!d[k]:id) : (10)

We now establish the existence of the required state. Let t be the state prior to r : 6. Because last(Y [0]) =

w both at the state prior to r : 5 and at the state prior to r : 7 (recall v0 = w), Y [0]:val = r!c:val ^ Y [0]:id=

16

r!c:id holds at each state between r : 5 and r : 7. Thus, because t occurs in this interval, t j= Y [0]:val =

r!c:val ^ Y [0]:id = r!c:id. Therefore, by (10), t j= Y [0]:val = r!item[0]:val ^ Y [0]:id = �0(r). By

statement 6 of the Reader procedure, t j= (8k : k > 0 : Y [k] = r!d[k]). By (10), this implies that

t j= (8k : k > 0 : Y [k]:val = r!item[k]:val ^ Y [k]:id= �k(r)). 2

We now use the preceding lemma to establish the correctness of the construction.

Theorem: Each well-formed history of the construction is linearizable.

Proof: We establish the theorem by proving that the �ve conditions of the Shrinking Lemma are satis�ed.

Uniqueness: Uniqueness is satis�ed because each k-Write operation increments the private variable item:id

of Writer k, and because the k-Write operations are totally ordered. 2

Integrity: Let r be a Read operation. By Lemma 2, there exists a state t that occurs between r : 0 and r : 9

such that

t j= (8k :: Y [k]:val = r!item[k]:val ^ Y [k]:id = �k(r)) : (11)

Let 0 � k < C, and suppose that last(Y [k]) = v at state t. (v exists because, by assumption, there is a

k-Write operation that precedes every Read operation.) Then, by the text of the procedure for Writer k,

t j= Y [k]:val = v!item:val ^ Y [k]:id = v!item:id. Therefore, by (11), v!item:val = r!item[k]:val, and

v!item:id = �k(r); by the de�nition of �k, this implies that �k(v) = �k(r). 2

Proximity: Let r, t, and v be as given in the proof of Integrity. Let w be a k-Write operation. Our proof

obligation is to show that if r precedes w, then �k(r) < �k(w), and if w precedes r, then �k(w) � �k(r).

First, consider the case in which r precedes w. Because last(Y [k]) = v at state t and because state t

occurs between r : 0 and r : 9, r does not precede v. Therefore, because r precedes w and because the Write

operations on a given component are totally ordered, v precedes w. Therefore, by Uniqueness, �k(v) < �k(w).

From the proof of Integrity, �k(r) = �k(v). Therefore, �k(r) < �k(w).

Now, consider the case in which w precedes r. In this case, because t j= last(Y [k]) = v, w precedes or

equals v. Therefore, by Uniqueness, �k(w) � �k(v). Thus, �k(w) � �k(r). 2

Read Precedence: The proof of Read Precedence is based upon the following property:

(8D :: Y [k]:id = D unless Y [k]:id > D) : (12)

This property holds because each k-Write operation increments the private variable item:id of Writer k, and

because the k-Write operations are totally ordered.

Consider two Read operations r and s. By Lemma 2, there exists a state t that occurs between the �rst

and last events of r such that t j= (8k :: Y [k]:id = �k(r)), and a state u that occurs between the �rst and

last events of s such that u j= (8k :: Y [k]:id = �k(s)). If state t equals state u, then (8k :: �k(r) = �k(s)).

If state t occurs before state u, then by (12), (8k :: �k(r) � �k(s)). If state u occurs before state t, then by

17

(12), (8k :: �k(s) � �k(r)). This implies that Read Precedence is satis�ed. 2

Write Precedence: Let r be a Read operation, and let v be an operation of Writer i and w be an

operation of Writer j, where 0 � i < C and 0 � j < C. Assume that v precedes w and �j(w) � �j(r). By

the de�nition of �j, this implies that w!item:id � �j(r). Our proof obligation is to show that �i(v) � �i(r).

By the de�nition of �i, it su�ces to prove that v!item:id � �i(r).

By Lemma 2, there exists a state t between the �rst and last events of r such that

t j= (8k :: Y [k]:id = �k(r)) : (13)

Thus, because w!item:id � �j(r), we have t j= w!item:id � Y [j]:id. Let t0 be the state prior to w : 0. Then,

by the text of the procedure for Writer j, t0 j= Y [j]:id = w!item:id� 1. Therefore, the value of Y [j]:id at

state t0 is less than the value of Y [j]:id at state t. By (12), this implies that state t0 occurs before state t.

De�ne state t
00 as follows: if i = 0, then let t

00 be the state following v : 3; otherwise, let t
00 be the

state following v : 1. Observe that t00 j= Y [i]:id = v!item:id. Because v precedes w, t00 occurs before t
0.

This implies that t00 occurs before t. Thus, by (12), the value of Y [i]:id at state t is at least the value of

Y [i]:id at state t00. Hence, t j= Y [i]:id � v!item:id. By (13), we have t j= Y [i]:id = �i(r). Therefore,

v!item:id � �i(r). This establishes our proof obligation. 2

5 Concluding Remarks

According to our results, if each operation of a concurrent program either writes a single shared variable or

reads several shared variables (but not both), then the operations of that program can be implemented from

atomic registers without waiting. By contrast, operations that either write several shared variables, or that

both read and write shared variables cannot, in general, be implemented from atomic registers in a wait-free

manner [4, 12, 14, 21].

The construction of this paper and the single-writer construction of Afek et al. [1] are both based upon

the following insight: if a Read operation is overlapped by \too many" Write operations, then it returns

the C values as read in a single snapshot by one of these overlapping Writes. In our construction, we have

resorted to recursion to enable a Write operation to take a snapshot of all C components. This has the e�ect

of reducing the general multi-writer case to the two-writer case. Afek et al. do not resort to recursion, and

as a result, their solution is polynomial in both space and time.

The results of [6, 7] show that composite registers are quite powerful and can be used to implement

a variety of other nontrivial shared data objects without waiting. It remains to be seen whether other

interesting applications exist. A complete characterization of the class of shared data objects that can be

implemented from composite registers without waiting remains an important open question.

Acknowledgements: Special thanks go to Mohamed Gouda for his help and encouragement. I am grateful to Fred

Schneider for his comments on this work as it appeared in my Ph.D. dissertation. I would also like to thank Anish

Arora, Ken Calvert, Jacob Kornerup, Jay Misra, Paul Vitanyi, and the referees for their comments on earlier drafts

of this paper.

18

Appendix: Proof of the Shrinking Lemma

Shrinking Lemma: A well-formed history h is linearizable if for each k, where 0 � k < C, there exists a

function �k that maps every Read operation and k-Write operation in h to some natural number, such that

the following �ve conditions hold.

� Uniqueness: For each pair of distinct k-Write operations v and w in h, �k(v) 6= �k(w). Furthermore,

if v precedes w, then �k(v) < �k(w).

� Integrity : For each Read operation r in h, and for each k in the range 0 � k < C, there exists a k-Write

operation w in h such that �k(r) = �k(w). Furthermore, the output value of r for component k is the

same as the input value of w.

� Proximity : For each Read operation r in h and each k-Write operation w in h, if r precedes w then

�k(r) < �k(w), and if w precedes r then �k(w) � �k(r).

� Read Precedence: For each pair of Read operations r and s in h, if (9k :: �k(r) < �k(s)) or if r precedes

s, then (8k :: �k(r) � �k(s)).

� Write Precedence: For each Read operation r in h, and each j-Write operation v and k-Write operation

w in h, where 0 � j < C and 0 � k < C, if v precedes w and �k(w) � �k(r), then �j(v) � �j(r).

Proof: The proof strategy is as follows. We �rst augment the precedence relation on operations in history h

by adding pairs of operations. We then show that the resulting relation is an irreexive partial order, i.e., it

is irreexive and transitive. Finally, we show that any extension of this relation to an irreexive total order

satis�es the conditions in the de�nition of a linearizable history given in Section 2.

In the remainder of the proof, we use r and s to denote Read operations in history h, v and w to denote

Write operations in h, and x, y, and z to denote arbitrary operations in h. We also assume that i, j, and k

each range over f0; : : : ; C�1g. If x precedes y in h, then we write x< y. We let (x� y) � (x = y _ x< y).

We now de�ne six relations A, B, C, D, E, and F ; in these de�nitions, we assume that v and v
0 denote

j-Write operations, and w and w
0 denote k-Write operations.

� A includes all pairs (x; y) such that x < y.

� B includes all pairs (w; r) such that �k(w) � �k(r), and all pairs (r; w) such that �k(r) < �k(w).

� C includes all pairs (r; s) such that (9k :: �k(r) < �k(s)).

� D includes all pairs (v; w) such that (9r :: vBr ^ rBw).

� E includes all pairs (v; w), such that v 6= w and for some v0 and w
0,

�j(v) � �j(v
0) ^ v

0

� w
0

^ �k(w
0) � �k(w) :

� F � A [B [C [D [E

19

Relation A is the precedence relation on operations in history h. Relation F is obviously an extension of

A. We now show that F is irreexive and transitive. To prove that F is irreexive, we are obliged to show

that xFy) x 6= y. If xAy, then because A is an irreexive partial order, x 6= y. If xBy, then one of x and

y is a Read operation and the other is a Write operation, so x 6= y. If xCy, then �k(x) < �k(y) for some k,

which implies that x 6= y. If xDy, then because relation B (which is used to de�ne D) is anti-symmetric, we

have x 6= y. If xEy, then by the de�nition of E, x 6= y. Therefore, we conclude that F is irreexive.

In the proof of transitivity, we use the following three properties.

Property 1: For each pair of Read operations r and s, rFs) (8k :: �k(r) � �k(s)).

Proof of Property 1: Assume that rFs holds. Of the �ve relations that de�ne F , only A and C can relate

two Read operations. Therefore, rAs holds or rCs holds. In the former case (i.e., r precedes s), by Read

Precedence, (8k :: �k(r) � �k(s)). In the latter case, by the de�nition of C, (9k :: �k(r) < �k(s)); hence, by

Read Precedence, (8k :: �k(r) � �k(s)). 2

Property 2: For each Read operation r and k-Write operation w, rFw) �k(r) < �k(w) and wFr)

�k(w) � �k(r).

Proof of Property 2: We prove that rFw) �k(r) < �k(w); the proof that wFr) �k(w) � �k(r)

is similar. Assume that rFw holds. Of the �ve relations that de�ne F , only A and B can relate a Read

operation and a Write operation. Therefore, rAw holds or rBw holds. In the former case (i.e., r precedes

w), by Proximity, �k(r) < �k(w). In the latter case, by the de�nition of B, �k(r) < �k(w). 2

Property 3: For each pair of Write operation v and w, vAw) vEw.

Proof of Property 3: Let v be a j-Write operation and let w be a k-Write operation such that vAw holds.

Because vAw holds (i.e., v precedes w), v and w are distinct. Therefore, letting v0 = v and w
0 = w, we have

v 6= w ^ �j(v) � �j(v
0) ^ v

0

� w
0

^ �k(w
0) � �k(w) :

This implies that vEw. 2

To prove that F is transitive, we are obliged to show that xFy ^ yFz) xFz. We have to consider

eight cases since each of x, y, and z can be either a Read operation or a Write operation.

Case 1: x, y, and z are all Read operations. Of the �ve relations that de�ne F , only A and C can relate two

Read operations. If xAy and yAz, then because A is a partial order, xAz. Now, suppose that xCy holds.

By the de�nition of C, we have �j(x) < �j(y) for some j. By Property 1, (8k :: �k(y) � �k(z)). Therefore,

by transitivity, �j(x) < �j(z), i.e., xCz. Similar reasoning applies if yCz holds.

Case 2: x and y are Read operations and z is a j-Write operation. By Property 1, (8k :: �k(x) � �k(y)).

20

By Property 2, �j(y) < �j(z). Therefore, by transitivity, �j(x) < �j(z), i.e., xBz.

Case 3: x and z are Read operations and y is a j-Write operation. By Property 2, �j(x) < �j(y) and

�j(y) � �j(z). Therefore, by transitivity, �j(x) < �j(z), i.e., xCz.

Case 4: x is a Read operation, y is a j-Write operation, and z is a k-Write operation. Of the �ve relations

that de�ne F , only A, D, and E can relate two Write operations. Thus, by Property 3, yDz holds or yEz

holds. If yDz holds, then by the de�nition of D, there exists a Read operation r such that yBr and rBz.

Because xFy ^ yBr holds, by Case 3, we have xFr. Because xFr ^ rBz holds, by Case 2, we have xFz.

Now, consider the case yEz. By the de�nition of E, there exists a j-Write operation v and a k-Write

operation w such that

�j(y) � �j(v) ^ v � w ^ �k(w) � �k(z) :

By Property 2, �j(x) < �j(y); thus, by transitivity, �j(x) < �j(v). If v = w (which implies that j = k), then

�k(x) < �k(w). If, on the other hand, v< w, then by the contrapositive of Write Precedence, �k(x) < �k(w).

Therefore, by transitivity, �k(x) < �k(z), i.e., xBz.

Case 5: x is a j-Write operation and both y and z are Read operations. By Property 2, �j(x) � �j(y). By

Property 1, (8k :: �k(y) � �k(z)). Therefore, by transitivity, �j(x) � �j(z), i.e., xBz.

Case 6: x is a j-Write operation, y is a Read operation, and z is a k-Write operation. By Property 2,

�j(x) � �j(y) and �k(y) < �k(z). Hence, by the de�nition of B, xBy and yBz. Therefore, by the de�nition

of D, xDz.

Case 7: x is a j-Write operation, y is a k-Write operation, and z is a Read operation. Of the �ve relations

that de�ne F , only A, D, and E can relate two Write operations. Thus, by Property 3, xDy holds or xEy

holds. If xDy holds, then by the de�nition of D, there exists a Read operation r such that xBr and rBy.

Because rBy ^ yFz holds, by Case 3, we have rFz. Because xBr ^ rFz holds, by Case 5, we have xFz.

Now, consider the case xEy. By the de�nition of E, there exists a j-Write operation v and a k-Write

operation w such that

�j(x) � �j(v) ^ v � w ^ �k(w) � �k(y) :

By Property 2, �k(y) � �k(z). Thus, by transitivity, �k(w) � �k(z). If v = w (which implies that j = k),

then �j(v) � �j(z). If, on the other hand, v < w, then by Write Precedence, �j(v) � �j(z). Hence, by

transitivity, �j(x) � �j(z), i.e., xBz.

Case 8: x, y, and z are all Write operations. Of the �ve relations that de�ne F , only A, D, and E can relate

two Write operations. Thus, by Property 3, xDy holds or xEy holds, and yDz holds or yEz holds. If xDy

holds, then there exists a Read operation r such that xBr and rBy. Because rBy ^ yFz holds, by Case 4,

we have rFz. Because xBr ^ rFz holds, by Case 6, we have xFz. The case in which yDz holds is similar.

The remaining possibility is xEy and yEz. Assume that x is an i-Write operation, y is a j-Write

operation, and z is a k-Write operation. By the de�nition of E, there exists an i-Write operation v, j-Write

21

operations w and v
0, and a k-Write operation w

0 such that

x 6= y ^ �i(x) � �i(v) ^ v � w ^ �j(w) � �j(y) (14)

and

y 6= z ^ �j(y) � �j(v
0) ^ v

0

� w
0

^ �k(w
0) � �k(z) : (15)

There are three possibilities to consider: i = j, j = k, and i 6= j ^ j 6= k. First, suppose that i = j.

We show that xEz holds by �rst proving that �j(x) < �j(v
0). By (14), v � w; hence, by Uniqueness,

�j(v) � �j(w). Therefore (because i = j), by (14), �j(x) � �j(y). Because x 6= y, Uniqueness implies that

�j(x) 6= �j(y). Thus, �j(x) < �j(y). Hence, by (15), �j(x) < �j(v
0).

We now show that xEz. If i = j ^ j 6= k, then because x is an i-Write operation and z is a k-Write

operation, x 6= z. If i = j ^ j = k, then by (15) and Uniqueness, �j(v
0) � �j(w

0). Thus, because

�j(x) < �j(v
0), by (15), �j(x) < �j(z). This implies that x 6= z. Therefore, we conclude for the case i = j

that

x 6= z ^ �j(x) < �j(v
0) ^ v

0

� w
0

^ �k(w
0) � �k(z) :

Thus, xEz.

The case in which j = k is similar to the case i = j.

Now suppose that i 6= j and j 6= k. In this case, we prove that xEz by �rst showing that v < w
0.

Because i 6= j and because v is an i-Write operation and w a j-Write operation, we have v 6= w. Similarly,

because j 6= k, we have v
0

6= w
0. Hence, by (14) and (15), we have v < w and v

0

< w
0. Note that

(14) and (15) also imply that �j(w) � �j(v
0). Therefore, by Uniqueness, :(v0 < w). Also, observe that

v < w ^ v
0

< w
0

) v
0

< w _ v < w
0. Thus, v < w

0. Hence, the following expression holds.

�i(x) � �i(v) ^ v < w
0

^ �k(w
0) � �k(z)

If i 6= k, then because x is an i-Write operation and z a k-Write operation, x 6= z. If, on the other hand,

i = k, then by Uniqueness, �i(v) < �i(w
0); hence, �i(x) < �i(z), which implies that x 6= z. Therefore, we

conclude that xEz holds.

Thus, we have established that F is an irreexive partial order. We now show that any extension of

F to an irreexive total order satis�es the conditions given in the de�nition of a linearizable history. The

following property is used in the proof.

Property 4: For each pair of k-Write operations v and w, vFw) �k(v) < �k(w).

Proof of Property 4: Assume that vFw holds. Then, by Property 3, vDw holds or vEw holds. If vDw

holds, then there exists a Read operation r such that vBr ^ rBw. By the de�nition of B, �k(v) � �k(r)

and �k(r) < �k(w). This implies that �k(v) < �k(w). If, on the other hand, vEw holds, then there exists

k-Write operations v0 and w
0 such that

�k(v) � �k(v
0) ^ v

0

� w
0

^ �k(w
0) � �k(w) :

22

By Uniqueness, �k(v
0) � �k(w

0). This implies that �k(v) � �k(w). By the de�nition of E, v 6= w. Therefore,

by Uniqueness, �k(v) < �k(w). 2

Let r be a Read operation. By Integrity, there exists a k-Write operation v such that �k(v) = �k(r) and

the input value of v is the same as the output value of r for component k. By the de�nition of B, vFr.

Moreover, by Properties 2 and 4, :(9w : w is a k-Write : vFw ^ wFr). Observe that, by the de�nition of

B, F totally orders each Read with respect to all Writes. Also, by the de�nition of E and Uniqueness, the

Writes on a given component are totally ordered. Thus, any extension of relation F to an irreexive total

order satis�es the conditions given in the de�nition of a linearizable history. 2

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, \Atomic Snapshots of Shared

Memory," Proceedings of the Ninth Annual Symposium on Principles of Distributed Computing , 1990,

pp. 1-14.

[2] J. Anderson, \Composite Registers," Proceedings of the Ninth Annual Symposium on Principles of

Distributed Computing , 1990, pp. 15-30.

[3] J. Anderson, \Multi-Writer Composite Registers," Technical Report, Department of Computer Science,

The University of Maryland at College Park, 1991. Preliminary version available as Technical Report

TR.89.26, Department of Computer Sciences, University of Texas at Austin, 1989.

[4] J. Anderson and M. Gouda, \The Virtue of Patience: Concurrent Programming With and Without

Waiting," Technical Report TR.90.23, Department of Computer Sciences, The University of Texas at

Austin, 1990.

[5] J. Anderson and M. Gouda, \A Criterion for Atomicity," Formal Aspects of Computing: The Interna-

tional Journal of Formal Methods, Vol. 4, No. 3, May 1992, pp. 273-298.

[6] J. Anderson and B. Gro�selj, \Pseudo Read-Modify-Write Operations: Bounded Wait-Free Implemen-

tations," Proceedings of the Fifth International Workshop on Distributed Algorithms, Lecture Notes

in Computer Science 579, Springer-Verlag, 1991, pp. 52-70. Expanded version to appear in Science of

Computer Programming .

[7] J. Aspnes and M. Herlihy, \Wait-Free Data Structures in the Asynchronous PRAM Model," Proceedings

of the Second Annual ACM Symposium on Parallel Architectures and Algorithms, July, 1990.

[8] B. Awerbuch, L. Kirousis, E. Kranakis, P. Vitanyi, \On Proving Register Atomicity," Report CS-R8707,

Centre for Mathematics and Computer Science, Amsterdam, 1987. A shorter version entitled \A Proof

Technique for Register Atomicity" appeared in Proceedings of the Eighth Conference on Foundations

of Software Techniques and Theoretical Computer Science, Lecture Notes in Computer Science 338,

Springer-Verlag, 1988, pp. 286-303.

23

[9] B. Bloom, \Constructing Two-Writer Atomic Registers," IEEE Transactions on Computers, Vol. 37,

No. 12, December 1988, pp. 1506-1514.

[10] J. Burns and G. Peterson, \Constructing Multi-Reader Atomic Values from Non-Atomic Values," Pro-

ceedings of the Sixth Annual Symposium on Principles of Distributed Computing , 1987, pp. 222-231.

[11] K. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.

[12] B. Chor, A. Israeli, and M. Li, \On Processor Coordination Using Asynchronous Hardware," Principles

of the Sixth Annual Symposium on Principles of Distributed Computing , 1987, pp. 86-97.

[13] P. Courtois, F. Heymans, and D. Parnas, \Concurrent Control with Readers and Writers," Communi-

cations of the ACM , Vol. 14, No. 10, October 1971, pp. 667-668.

[14] M. Herlihy, \Wait-Free Synchronization," ACM Transactions on Programming Languages and Systems,

Vol. 13, No. 1, January 1991, pp. 124-149.

[15] M. Herlihy and J. Wing, \Linearizability: A Correctness Condition for Concurrent Objects," ACM

Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990, pp. 463-492.

[16] A. Israeli and M. Li, \Bounded Time-Stamps,"Proceedings of the 28th IEEE Symposium on Foundations

of Computer Science, 1987, pp. 371-382.

[17] L. Kirousis, E. Kranakis, and P. Vitanyi, \Atomic Multireader Register," Proceedings of the Second

International Workshop on Distributed Computing , Lecture Notes in Computer Science 312, Springer-

Verlag, 1987, pp. 278-296.

[18] L. Lamport, \Concurrent Reading and Writing,"Communications of the ACM , Vol. 20, No. 11, Novem-

ber 1977, pp. 806-811.

[19] L. Lamport, \On Interprocess Communication, Parts I and II," Distributed Computing, Vol. 1, 1986,

pp. 77-101.

[20] M. Li, J. Tromp, and P. Vitanyi, \How to Construct Wait-Free Variables," Proceedings of Interna-

tional Colloquium on Automata, Languages, and Programming , Lecture Notes in Computer Science

372, Springer-Verlag, 1989, pp. 488-505.

[21] M. Loui and H. Abu-Amara, \Memory Requirements for Agreement Among Unreliable Asynchronous

Processes," Advances in Computing Research, JAI Press, 1987, pp. 163-183.

[22] J. Misra, \Axioms for Memory Access in Asynchronous Hardware Systems," ACM Transactions on

Programming Languages and Systems, Vol. 8, No. 1, January 1986, pp. 142-153.

[23] R. Newman-Wolfe, \A Protocol for Wait-Free, Atomic, Multi-Reader Shared Variables," Proceedings of

the Sixth Annual Symposium on Principles of Distributed Computing , 1987, pp. 232-248.

[24] G. Peterson, \Concurrent Reading While Writing," ACM Transactions on Programming Languages and

Systems, Vol. 5, 1983, pp. 46-55.

24

[25] G. Peterson and J. Burns, \Concurrent Reading While Writing II: The Multi-Writer Case," Proceedings

of the 28th Annual Symposium on Foundations of Computer Science, 1987, pp. 383-392.

[26] A. Singh, J. Anderson, and M. Gouda, \The Elusive Atomic Register, Revisited," Proceedings of the

Sixth Annual Symposium on Principles of Distributed Computing , 1987, pp. 206-221.

[27] J. Tromp, \How to Construct an Atomic Variable," Proceedings of the Third International Workshop

on Distributed Algorithms, Lecture Notes in Computer Science 392, Springer-Verlag, 1989, pp. 292-302.

[28] P. Vitanyi and B. Awerbuch, \Atomic Shared Register Access by Asynchronous Hardware," Proceedings

of the 27th IEEE Symposium on the Foundations of Computer Science, 1986, pp. 233-243.

25

