
Adaptive Mutual Exclusion with Local Spinning?

James H. Anderson and Yong-Jik Kim

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract. We present the �rst adaptive algorithm for N -process mutual

exclusion under read/write atomicity in which all busy waiting is by local

spinning. In our algorithm, each process p performs O(min(k; logN))

remote memory references to enter and exit its critical section, where k is

the maximum \point contention" experienced by p. The space complexity

of our algorithm is �(N), which is clearly optimal.

1 Introduction

In this paper, we consider adaptive solutions to the mutual exclusion problem

[7] under read/write atomicity. A mutual exclusion algorithm is adaptive if its

time complexity is a function of the number of contending processes [6, 11, 13].

Two notions of contention have been considered in the literature: \interval con-

tention" and \point contention" [1]. These two notions are de�ned with respect

to a history H . The interval contention over H is the number of processes that

are active in H , i.e., that execute outside of their noncritical sections in H . The

point contention over H is the maximum number of processes that are active at

the same state in H . Note that point contention is always at most interval con-

tention. In this paper, we consider only point contention. Throughout the paper,

we let N denote the number of processes in the system, and we let k denote the

point contention experienced by an arbitrary process over a history that starts

when it becomes active and ends when it once again becomes inactive.

In previous work on adaptive mutual exclusion algorithms, two time com-

plexity measures have been considered: \remote step complexity" and \system

response time." The remote step complexity of an algorithm is the maximum

number of shared-memory operations required by a process to enter and then

exit its critical section, assuming that each \await" statement is counted as one

operation [13]. The system response time is the length of time between critical

section entries, assuming each enabled read or write operation is executed within

some constant time bound [6]. Several read/write mutual exclusion algorithms

have been presented that are adaptive to some degree under these time com-

plexity measures. One of the �rst such algorithms was an algorithm of Styer

that has O(min(N; k logN)) remote step complexity and O(min(N; k logN))

response time [13]. Choy and Singh later improved upon Styer's result by pre-

senting an algorithm with O(N) remote step complexity and O(k) response time

? Work supported by NSF grants CCR 9732916 and CCR 9972211.

[6]. More recently, Attiya and Bortnikov presented an algorithm with O(k) re-

mote step complexity and O(log k) response time [5].

Recent work on scalable local-spin mutual exclusion algorithms has shown

that the most crucial factor in determining an algorithm's performance is the

amount of interconnect traÆc it generates [4, 8, 10, 14]. In light of this, we

de�ne the time complexity of a mutual exclusion algorithm to be the worst-

case number of remote memory references by one process in order to enter and

then exit its critical section. A remote memory reference is a shared variable

access that requires an interconnect traversal. In local-spin algorithms, all busy-

waiting loops are required to be read-only loops in which only locally-accessible

shared variables are accessed that do not require an interconnect traversal. On a

distributed shared-memory multiprocessor, a shared variable is locally accessible

if it is stored in a local memory module. On a cache-coherent multiprocessor, a

shared variable is locally accessible if it is stored in a local cache line.

The �rst local-spin algorithms were algorithms in which read-modify-write

instructions are used to enqueue blocked processes onto the end of a \spin queue"

[4, 8, 10]. Each of these algorithms has O(1) time complexity; thus, adaptivity

is clearly a non-issue if appropriate read-modify-write instructions are avail-

able. Yang and Anderson were the �rst to consider local-spin algorithms under

read/write atomicity [14]. They presented a read/write mutual exclusion algo-

rithm with �(logN) time complexity in which instances of a local-spin mutual

exclusion algorithm for two processes are embedded within a binary arbitration

tree. They also presented a \fast-path" variant of this algorithm that allows the

tree to be bypassed in the absence of contention. Although the contention-free

time complexity of this algorithm is O(1), its time complexity under contention

is �(N) in the worst case, rather than �(logN). In recent work, Anderson

and Kim presented a new fast-path mechanism that results in with O(1) time

complexity in the absence of contention and �(logN) time complexity under

contention, when used with Yang and Anderson's algorithm [3].

All of the previously-cited adaptive algorithms are not local-spin algorithms,

and thus they have unbounded time complexity under the remote-memory-

references time measure. One could argue that for an algorithm to be considered

truly adaptive, it must be adaptive under this measure. After all, the underlying

hardware does not distinguish between remote memory references generated by

await statements and remote memory references generated by other statements.

Surprisingly, while adaptivity and local spinning have been the predominate

themes in recent work on mutual exclusion, the problem of designing an adaptive,

local-spin algorithm under read/write atomicity has remained open. In this pa-

per, we close this problem by presenting an algorithm that has O(min(k; logN))

time complexity under the remote-memory-references measure.

Our algorithm can be seen as an extension of the fast-path algorithm of An-

derson and Kim [3]. This algorithm was devised by thinking about connections

between fast-path mechanisms and long-lived renaming [12]. Long-lived renam-

ing algorithms are used to \shrink" the size of the name space from which process

identi�ers are taken. The problem is to design operations that processes may in-

n

n−1

n−1

1

stop right

down

shared variables X: f?g [f0::N � 1g init ?;
Y : boolean init false

private variable dir : fD;R; Sg =� down, right, stop �=

1: X := p;

2: if Y then dir := R

else

3: Y := true ;

4: if X = p then dir := S

else dir := D

�

�

Fig. 1. The splitter element and the code fragment that implements it.

voke in order to acquire new names from the reduced name space when they

are needed, and to release any previously-acquired name when it is no longer

needed. In Anderson and Kim's algorithm, a particular name is associated with

the fast path; to take the fast path, a process must �rst acquire the fast-path

name. Our adaptive algorithm can be seen as a generalization of Anderson and

Kim's fast-path mechanism in which every name is associated with some \path"

to the critical section. The length of the path taken by a process is determined

by the point contention that it experiences.

2 Adaptive Algorithm

In our adaptive algorithm, code sequences from several other algorithms are

used. In Sec. 2.1, we present a review of these other algorithms and discuss

some of the basic ideas underlying our algorithm. Then, in Sec. 2.2, we present

a detailed description of our algorithm.

2.1 Related Algorithms and Key Ideas

At the heart of our algorithm is the splitter element from the grid-based long-

lived renaming algorithm of Moir and Anderson [12]. This splitter element was

actually �rst used in Lamport's fast mutual exclusion algorithm [9]. The splitter

element is de�ned by the code fragment shown in Fig. 1. (In this and subsequent

�gures, we assume that each labeled sequence of statements is atomic; in each

�gure, each labeled sequence reads or writes at most one shared variable.) Each

process that invokes this code fragment either stops, moves down, or moves right

(the move is de�ned by the value assigned to the variable dir). One of the key

properties of the splitter that makes it so useful is the following: if n processes

invoke a splitter, then at most one of them can stop at that splitter, at most

n� 1 can move right, and at most n� 1 can move down.

1 3 6 10 15

14

4 8 13

7 12

11

5 92

1

2 3

54 6 7

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

(a) (b)

Fig. 2. (a) Renaming grid (depicted for N = 5). (b) Renaming tree.

Because of these properties, it is possible to solve the renaming problem by

interconnecting a collection of splitters in a grid as shown in Fig. 2(a). A name

is associated with each splitter. If the grid has N rows and N columns, then by

induction, every process eventually stops at some splitter. When a process stops

at a splitter, it acquires the name associated with that splitter. In the long-lived

renaming problem [12], processes must have the ability to release the names

they acquire. In the grid algorithm, a process can release its name by resetting

each splitter on the path traversed by it in acquiring its name. A splitter can be

reset by resetting its Y variable to true. For the renaming mechanism to work

correctly, it is important that a splitter be reset only if there are no processes

\downstream" from it (i.e., in the sub-grid \rooted" at that splitter). In Moir

and Anderson's algorithm, it takes O(N) time to determine whether there are

\downstream" processes. This is because each process checks every other process

individually to determine if it is downstream from a splitter. As we shall see, a

more eÆcient reset mechanism is needed for our adaptive algorithm.

The main idea behind our algorithm is to let an arbitration tree form dynam-

ically within a structure similar to the renaming grid. This tree may not remain

balanced, but its height is proportional to contention. The job of integrating the

renaming aspects of the algorithm with the arbitration tree is greatly simpli�ed

if we replace the grid by a binary tree of splitters as shown in Fig. 2(b). (Since

we are now working with a tree, we will henceforth refer to the directions associ-

ated with a splitter as stop, left, and right.) Note that this results in many more

names than before. However, this is not a major concern, because we are really

not interested in minimizing the name space. The arbitration tree is de�ned by

associating a three-process mutual exclusion algorithm with each node in the re-

naming tree. This three-process algorithm can be implemented in constant time

using the local-spin mutual exclusion algorithm of Yang and Anderson [14]. We

Renaming Tree Overflow Tree

. 2−process
ME algorithm

O(log N)
height

. .

.

process p process q

got name

failed to
get name

(a) (b) (c)

Fig. 3. (a) Renaming tree and overow tree. (b) Process p gets a name in the renaming

tree. (c) Process q fails to get a name and must compete within the overow tree.

explain below why a three-process algorithm is needed instead of a two-process

algorithm (as one would expect to have in an arbitration tree).

In our algorithm, a process p performs the following basic steps. (For the

moment, we are ignoring certain complexities that must be dealt with.)

Step 1 p �rst acquires a new name by moving down from the root of the renaming

tree, until it stops at some node. In the steps that follow, we refer to this

node as p's acquired node. p's acquired node determines its starting point in

the arbitration tree.

Step 2 p then competes within the arbitration tree by executing each of the three-

process entry sections on the path from its acquired node to the root. Note

that a node's entry section may be invoked by the process that stopped at

that node, and one process from each of the left and right subtrees beneath

that node. This is why a three-process algorithm is needed.

Step 3 After competing within the arbitration tree, p executes its critical section.

Step 4 Upon completing its critical section, p releases its acquired name by reopen-

ing all of the splitters on the path from its acquired node to the root.

Step 5 After releasing its name, p executes each of the three-process exit sections

on the path from the root to its acquired node.

If we were to use a binary tree of height N , just as we previously had a

grid with N row and N columns, then the total number of nodes in the tree

would be �(2N). We circumvent this problem by de�ning the tree's height to be

blogNc, which results in a tree with �(N) nodes. With this change, a process

could \fall o�" the end of the tree without acquiring a name. However, this can

happen only if contention is
(logN). To handle processes that \fall o� the

end," we introduce a second arbitration tree, which is implemented using Yang

and Anderson's local-spin arbitration-tree algorithm [14]. We refer to the two

trees used in our algorithm as the renaming tree and overow tree, respectively.

These two trees are connected by placing a two-process version of Yang and

Anderson's algorithm on top of each tree, as illustrated in Fig. 3(a). Fig. 3(b)

illustrates the steps that might be taken by a process p in acquiring a new name

if contention is O(logN). Fig. 3(c) illustrates the steps that might be taken by

a process q if contention is
(logN).

A major diÆculty that we have ignored until this point is that of eÆciently

reopening a splitter, as described in Step 4 above. In Moir and Anderson's re-

naming algorithm, it takes O(N) time to reopen a splitter. To see why reopening

a splitter is diÆcult, consider again Fig. 1. If a process does succeed stopping

at a splitter, then that process can reopen the splitter itself by simply assigning

Y := true. On the other hand, if no process succeeds in stopping at a splitter,

then some process that moved left or right from that splitter must reset it. Unfor-

tunately, because processes are asynchronous and communicate only by means

of atomic read and write operations, it can be diÆcult for a left- or right-moving

process to know whether some process has stopped at a splitter.

Anderson and Kim solved this problem in their fast-path mutual exclusion

algorithm by exploiting the fact that much of the reset code can be executed

within a process's critical section [3]. Thus, the job of designing eÆcient reset

code is much easier here than when designing a wait-free long-lived renaming

algorithm. As mentioned earlier, in Anderson and Kim's fast-path algorithm,

a particular name is associated with the fast path; to take the fast path, a

process must �rst acquire the fast-path name. In our adaptive algorithm, we

must eÆciently manage acquisitions and releases for a set of names.

2.2 Detailed Description

Having introduced the major ideas that underlie our algorithm, we now present a

detailed description of the algorithm and its properties. We do this in three steps.

First, we consider a version of the algorithm in which unbounded memory is used

to reset splitters in constant time. Second, we consider a variant of the algorithm

with �(N2) space complexity in which all variables are bounded. Third, we

present another variant that has �(N) space complexity. In explaining these

algorithms, we actually present proof sketches for some of the key properties of

each algorithm. Our intent is to use these proof sketches as a means for intuitively

explaining the basic mechanisms of each algorithm. A formal correctness proof

for the �nal algorithm is presented in the full version of this paper [2].

Algorithm U. The �rst algorithm, which we call Algorithm U (for unbounded),

is shown in Fig. 4. Before describing how this algorithm works, we �rst examine

its basic structure. At the top of Fig. 4, de�nitions of two constants are given:

D, which is the maximum level in the renaming tree (the root is at level 0), and

T , which gives the total number of nodes in the renaming tree. As mentioned

earlier, the renaming tree is comprised of a collection of splitters. These splitters

are indexed from 1 to T . If splitter i is not a leaf, then its left and right children

are splitters 2i and 2i+ 1, respectively.

Each splitter i is de�ned by four shared variables and an in�nite shared array:

X [i], Y [i], Reset [i], Rnd [i] (the array), and Acquired [i]. Variables X [i] and Y [i]

are as in Fig. 1, with the exception that Y [i] now has an additional

const

D = blogNc; =� depth of renaming tree = O(logN) �=
T = 2D+1 � 1 =� size of renaming tree = O(N) �=

type

Ytype = record free: boolean; rnd : 0::1 end; =� stored in one word �=
Dtype = fL; R; Sg; =� splitter moves (left, right, stop) �=
Ptype = record nd : 1::2T + 1; dir : Dtype end =� path information �=

shared variables

X: array[1::T] of 0::1;

Y , Reset : array[1::T] of Ytype init (true ; 0);

Rnd : array[1::T][0::1] of boolean init false;

Acquired : array[1::T] of boolean init false

private variables

nd , n: 1::2T + 1;

lvl , j: 0::D + 1;

y: Ytype ; dir : Dtype ;

path : array[0::D] of Ptype

process p :: = � 0 � p < N � =
while true do

0: Noncritical Section;

1: nd ; lvl := 1; 0;

=� descend renaming tree �=
repeat

2: X[nd]; dir := p; S ;

3: y := Y [nd];

if :y:free then dir := R

else

4: Y [nd] := (false; 0);

5: if X[nd] 6= p _
6: Acquired [nd] then

dir := L

else

7: Rnd [nd][y:rnd] := true;

8: if Reset [nd] 6= y then

9: Rnd [nd][y:rnd]; dir := false;L

� � �;

10: path [lvl] := (nd ; dir);

if dir 6= S then

lvl ; nd := lvl + 1; 2 � nd ;
if dir = R then nd := nd + 1 �

�

until (lvl > D) _ (dir = S);

if lvl � D then =� got a name �=
11: Acquired [nd] := true ;

for j := lvl downto 0 do

12: ENTRY3(path [j]:nd ; path[j]:dir)

od;

13: ENTRY2(0)

else =� didn't get a name �=
14: ENTRYN (p);

15: ENTRY2(1)

�;

16: Critical Section;

=� reset splitters �=
for j := min(lvl ; D) downto 0 do

if path [j]:dir 6= R then

17: n := path [j]:nd ;

18: y := Reset [n];

19: Reset [n] := (false; y:rnd);

20: if j = lvl _
:Rnd [n][y:rnd] then

21: Reset [n] := (true ; y:rnd + 1);

22: Y [n] := (true ; y:rnd + 1)

�

�

od;

=� execute exit sections �=
if lvl � D then

23: EXIT2(0);

for j := 0 to lvl do

24: EXIT3(path [j]:nd ; path[j]:dir)

od;

25: Acquired [nd] := false

else

26: EXIT2(1);

27: EXITN (p)

�

od

Fig. 4. Algorithm U: adaptive algorithm with unbounded memory.

integer rnd �eld. As explained below, Algorithm U works by associating \round

numbers" with the various rounds of competition for the name corresponding to

each splitter. In Algorithm U, these round numbers grow without bound. The

rnd �eld of Y [i] gives the current round number for splitter i. Reset [i] is used

to reinitialize the rnd �eld of Y [i] when name i is released. Rnd [i][r] is used to

identify a potential \winning" process that has succeeded in acquiring name i

in round r. Acquired [i] is set when some process acquires name i.

Each process descends the renaming tree, starting at the root, until it either

acquires a name or \falls o� the end" of the tree, as discussed earlier. A process

determines if it can acquire name i by executing statements 2-10 with nd = i.

Of these, statements 2-5 correspond to the splitter code in Fig. 1. Statements

6-9 are executed as part of a handshaking mechanism that prevents a process

that is releasing a name from adversely interfering with processes attempting to

acquire that name; this mechanism is discussed in detail below. Statement 10

simply prepares for the next iteration of the repeat loop (if there is one).

If a process p succeeds in acquiring a name while descending within the

renaming tree, then it competes within the renaming tree by moving up from

its acquired name to the root, executing the three-process entry sections on this

path (statements 11-12). Each of these three-process entry sections is denoted

\ENTRY3(n; d)," where n is the corresponding tree node, and d is the \identity" of

the invoking process. The \identity" that is used is simply the invoking process's

direction out of node n (S, L, or R) when it descended the renaming tree. After

ascending the renaming tree, p invokes the two-process entry section \on top"

of the renaming and overow trees (as illustrated in Fig. 3(a)) using \0" as a

process identi�er (statement 13). This entry section is denoted \ENTRY2(0)."

If a process p does not succeed in acquiring a name while descending within

the renaming tree, then it competes within the overow tree (statement 14),

which is implemented using Yang and Anderson's N -process arbitration-tree al-

gorithm. The entry section of this algorithm is denoted ENTRYN (p). Note that p

uses its own process identi�er in this algorithm. After competing within the over-

ow tree, p executes the two-process algorithm \on top" of both trees using \1"

as a process identi�er (statement 15). This entry section is denoted \ENTRY2(1)."

After completing the appropriate two-process entry section, process p exe-

cutes its critical section (statement 16). It then resets each of the splitters that it

visited while descending the renaming tree (statements 17-22). This reset mech-

anism is discussed in detail below. Process p then executes the exit sections

corresponding to the entry sections it executed previously (statements 23-27).

The exit sections are speci�ed in a manner that is similar to the entry sections.

We now consider in detail the code fragments that are executed to acquire

(statements 2-10) or reset (statements 18-22) some splitter i. To facilitate this

discussion, we will index these statements by i. For example, when we refer to

the execution of statement 4[i] by process p, we mean the execution of statement

4 by p when its private variable nd equals i. Similarly, 18[i] denotes the execution

of statement 18 with n = i.

As explained above, one of the problems with the splitter code is that it

is diÆcult for a left- or right-moving process at splitter i to know which (if

any) process has acquired name i. In Algorithm U, this problem is solved by

viewing the computation involving each splitter as occurring in a sequence of

rounds. Each round ends when the splitter is reset. During a round, at most one

process succeeds in acquiring the name of the splitter. Note that it is possible

that no process acquires the name during a round. So that processes can know

the current round number at splitter i, an additional rnd �eld has been added

to Y [i]. This �eld will increase without bound over time, so we will never have

to worry about round numbers being reused.

With the added rnd �eld, a left- or right-moving process at splitter i has a

way of identifying a process that has acquired the name at splitter i. To see how

this works, consider what happens during round r at node i. Of the processes

that participate in round r at node i, at least one will read Y [i] = (true; r) at

statement 3[i] and assign Y [i] := (false ; 0) at statement 4[i]. By the correctness

of the original splitter code, of the processes that assign Y [i], at most one will

reach statement 7[i]. A process that reaches statement 7[i] will either stop at

node i or be deected left. This gives us two cases to analyze: of the processes

that read Y [i] = (true; r) at statement 3[i] and assign Y [i] at statement 4[i],

either all are deected left, or one, say p, stops at splitter i.

In the former case, at least one of the left-moving processes �nds Rnd [i][r] to

be false at statement 20[i], and then reopens splitter i by executing statements

21[i] and 22[i], which establish Y [i] = (true; r + 1) ^ Y [i] = Reset [i]. To

see why at least one process executes statements 21[i] and 22[i], note that each

process under consideration reads Y [i] = (true; r) at statement 3[i], and thus its

y:rnd variable equals r while executing within statements 4[i]-9[i]. Note also that

Rnd [i][r] = true is established only by statement 7[i]. Moreover, each process

deected left at statement 9[i] �rst assigns Rnd [i][r] := false . Thus, at least one

of the left-moving processes �nds Rnd [i][r] to be false at statement 20[i].

In the case that there is a winning process p that stops at splitter i during

round r, we must argue that (i) p reopens splitter i upon leaving it, and (ii) no

left- or right-moving process \prematurely" reopens splitter i before p has left it.

Establishing (i) is straightforward. Process p will reopen the splitter by executing

statements 18[i]-22[i] and 25, which establish Y [i] = (true; r+1) ^ Acquired [i] =

false ^ Y [i] = Reset [i]. Note that the assignment to Acquired at statement 25

prevents the reopening of splitter i from actually taking e�ect until after p has

�nished executing its exit section.

To establish (ii), suppose, to the contrary, that some left- or right-moving

process reopens splitter i by executing statement 22[i] while p is executing within

statements 10[i]-13 and 16-25. (Note that, because p stops at splitter i, it doesn't

iterate again within the repeat loop.) Let q be the �rst left- or right-moving

process to execute statement 22[i]. Since we are assuming that the ENTRY and

EXIT calls are correct, q cannot execute statement 22[i] while p is executing

within statements 16-22. Moreover, if p is executing within statements 12-13 or

23-25, then Acquired is true, and hence the splitter is closed. The remaining

possibility is that p is enabled to execute statement 10[i] or 11. (Note that, in

this case, if q were to reopen splitter i then we could end up with two processes

concurrently invoking ENTRY3(i; S) at statement 12, i.e., both processes use S

as a \process identi�er." The ENTRY calls obviously cannot be assumed to work

correctly if such a scenario could happen.)

So, assume that q executes statement 22[i] while p is enabled to execute

statement 10[i] or 11. For this to happen, q must have read Rnd [i][r] = false

at statement 20[i] before p assigned Rnd [i][r] := true at statement 7[i]. (Recall

that all the processes under consideration read Y [i] = (true; r) at statement

2[i]. This is why p writes to Rnd [i][r] instead of some other element of Rnd [i]. q

reads from Rnd [i][r] at statement 20[i] because it is the �rst process to attempt to

reset splitter i, which implies that q reads Reset [i] = (true; r) at statement 18[i].)

Because q executes statement 20[i] before p executes statement 7[i], statement

19[i] is executed by q before statement 8[i] is executed by p. Thus, p must have

found Reset [i] 6= y at statement 7[i], i.e., it was deected left at splitter i, which

is a contradiction. It follows from the explanation given here that splitter i is

eventually reset for round r + 1, i.e., we have the following property.

Property 1: Let S be the set of all processes that read Y [i]:rnd = r at statement

3[i]. If S is nonempty, then Y [i] = (true; r+1) ^ Y [i] = Reset [i] ^ Acquired [i] =

false is eventually established, and at all states after it is �rst established, no

process in set S stops at splitter i. 2

Because the splitters are always reset properly, it follows that the ENTRY and

EXIT routines are always invoked properly. If these routines are implemented

using Yang and Anderson's local-spin algorithm, then since that algorithm is

starvation-free, Algorithm U is as well.

Having dispensed with basic correctness, we now informally argue that Al-

gorithm U is contention sensitive. For a process p to descend to a splitter at

level l in the renaming tree, it must have been deected left or right at each

prior splitter it accessed. Just as with the original grid-based long-lived renam-

ing algorithm [12], this can only happen if the point contention experienced by

p is
(l). Note that the time complexity per level of the renaming tree is con-

stant. Moreover, with the ENTRY and EXIT calls implemented using Yang and

Anderson's algorithm [14], the ENTRY2, EXIT2, ENTRY3, and EXIT3 calls take con-

stant time, and the ENTRYN and ENTRYN calls take �(logN) time. Note that the

ENTRYN and ENTRYN routines are called by a process only if its point contention

is
(logN). Thus, we have the following.

Lemma 1: Algorithm U is a correct, starvation-free mutual exclusion algorithm

with O(min(k; logN)) time complexity and unbounded space complexity. 2

Of course, the problem with Algorithm U is that the rnd �eld of Y [i] that

is used for assigning round numbers grows without bound. We now consider a

variant of Algorithm U in which space is bounded.

Algorithm B. In Algorithm B (for bounded), which is shown in Fig. 5, modulo-N

addition (denoted by �) is used when incrementing Y [i]:rnd . With this change,

the following potential problem arises. A process p may reach statement 8[i]

in Fig. 5 with y:rnd = r and then be delayed. While delayed, other processes

may repeatedly increment Y [i]:rnd (statement 27[i]) until it \cycles back" to

r. Another process q could then reach statement 8[i] with y:rnd = r. This is a

problem because p and q may interfere with each other in updating Rnd [i][r].

Algorithm B prevents such a scenario from happening by preventing Y [i]:rnd

from cycling while a process p that stops at splitter i executes within statements

8[i]-31. Informally, cycling is prevented by requiring process p to erect an \ob-

stacle" that prevents Y [i]:rnd from being incremented beyond the value p. More

precisely, note that before reaching statement 8[i], process p must �rst assign

Obstacle[p] := i at statement 5[i]. Note further that before a process can incre-

ment Y [i]:rnd from r to r � 1 (statement 27[i]), it must �rst read Obstacle [r]

(statement 25[i]) and �nd it to have a value di�erent from i. This check prevents

Y [i]:rnd from being incremented beyond the value p while p executes within

statements 8[i]-31. Note that process p resets Obstacle [p] to 0 at statement 18.

This is done to ensure that p's own obstacle doesn't prevent it from incrementing

a splitter's round number.

To this point, we have explained every di�erence between Algorithms U and

B except one: in Fig. 5, there are added assignments to elements of Y and X

(statements 20 and 21) after the critical section. The reason for these assignments

is as follows. Suppose some process p is about to assign Obstacle [p] := true at

statement 5[i], but gets delayed. (In other words, p is \about to" erect an obstacle

at splitter i.) We must ensure that if p ultimately reaches statement 8[i], then

Y [i]:rnd does not get incremented beyond the value p. Let r be the value read

from Y:rnd by p at statement 3[i]. For Y:rnd to be incremented beyond p, some

other process q that reads Y:rnd = r must attempt to reopen splitter i.

So, suppose that process q reopens splitter i by executing statement 27[i]

while p is delayed at statement 5[i]. If process q executes statement 21[i] after

p executes statement 2[i], then p will �nd X [i] 6= p at statement 6[i] and will

be deected left. So, assume that q executes statement 21[i] before p executes

statement 2[i]. This implies that q establishes Y [i]:free = false by executing

statement 20[i] before p reads Y [i] at statement 3[i]. Note that Y [i]:free = true

is only established within a critical section (statement 27[i]). Also, note that we

have established the following sequence of statement executions (perhaps inter-

leaved with statement executions of other processes): q executes statements 20[i]

and 21[i]; p executes statements 2[i]-5[i]; q executes statement 27[i] (q's execution

of statements 22[i]-26[i] may interleave arbitrarily with p's execution of state-

ments 2[i]-5[i]). Because statements 17[i]-27[i] are executed as a critical section,

this implies that p reads Y [i]:free = false at statement 3[i], and thus does not

reach statement 5[i], which is a contradiction. We conclude from this reasoning

that if p is delayed at statement 5[i], and if p ultimately reaches statement 8[i],

then Y [i]:rnd does not get incremented beyond the value p.

From the discussion above, we have the following property and lemma.

Property 2: If distinct processes p and q have executed statement 7[i] and have

nd = i, then the value of p's private variable y:rnd di�ers from that of q's. 2

=� all variable declarations are as de�ned in Fig. 4 except as noted here �=

type

Ytype = record free: boolean; rnd : 0::N � 1 end =� stored in one word �=

shared variables

X: array[1::T] of 0::N � 1;

Rnd : array[1::T][0::N � 1] of boolean init false;

Obstacle : array[0::N � 1] of 0::T init 0;

Acquired : array[1::T] of boolean init false

process p :: = � 0 � p < N � =
while true do

0: Noncritical Section;

1: nd ; lvl := 1; 0;

=� descend renaming tree �=
repeat

2: X[nd]; dir := p; S ;

3: y := Y [nd];

if :y:free then dir := R

else

4: Y [nd] := (false; 0);

5: Obstacle [p] := nd ;

6: if X[nd] 6= p _
7: Acquired [nd] then

dir := L

else

8: Rnd [nd][y:rnd] := true ;

9: if Reset [nd] 6= y then

10: Rnd [nd][y:rnd]; dir := false; L

� � �;

11: path [lvl] := (nd ; dir);

if dir 6= S then

lvl ; nd := lvl + 1; 2 � nd ;
if dir = R then nd := nd + 1 �

�

until (lvl > D) _ (dir = S);

if lvl � D then =� got a name �=
12: Acquired [nd] := true ;

for j := lvl downto 0 do

13: ENTRY3(path [j]:nd ; path[j]:dir)

od;

14: ENTRY2(0)

else =� didn't get a name �=
15: ENTRYN (p);

16: ENTRY2(1)

�;

17: Critical Section;

18: Obstacle [p] := 0;

=� reset splitters �=
for j := min(lvl ; D) downto 0 do

if path [j]:dir 6= R then

19: n := path [j]:nd ;

20: Y [n] := (false; 0);

21: X[n] := p;

22: y := Reset [n];

23: Reset [n] := (false; y:rnd);

24: if (j = lvl _
:Rnd [n][y:rnd]) ^

25: Obstacle [y:rnd] 6= n then

26: Reset [n] := (true ; y:rnd � 1);

27: Y [n] := (true; y:rnd � 1)

�;

28: if j = lvl then

Rnd [y:rnd] := false

�

�

od;

=� execute exit sections �=
if lvl � D then

29: EXIT2(0);

for j := 0 to lvl do

30: EXIT3(path [j]:nd ; path[j]:dir)

od;

31: Acquired [nd] := false

else

32: EXIT2(1);

33: EXITN(p)

�

od

Fig. 5. Algorithm B: adaptive algorithm with �(N2) space complexity.

Lemma 2: Algorithm B is a correct, starvation-free mutual exclusion algorithm

with O(min(k; logN)) time complexity and �(N2) space complexity. 2

The �(N2) space complexity of Algorithm B is due to the Rnd array. We

now show that this �(N2) array can be replaced by a �(N) linked list.

Algorithm L. In Algorithm L (for linear), which is depicted in Fig. 6, a common

pool of round numbers ranging over f1; : : : ; Ug is used for all splitters in the

renaming tree. As we shall see, O(N) round numbers suÆce. In Algorithm B, our

key requirement for round numbers was that they not be reused \prematurely."

With a common pool of round numbers, a process should not choose r as the next

round number for some splitter if there is a process anywhere in the renaming

tree that \thinks" that r is the current round number of some splitter.

Fortunately, since each process selects new round numbers within its critical

section, it is fairly easy to ensure this requirement. All that is needed are a few

extra data structures that track which round numbers are currently in use. These

data structures replace the Obstacle array of Algorithm B. The main new data

structure is a queue Free of round numbers. In addition, there is a new shared

array Inuse, and a new shared variable Check. We assume that the Free queue

can be manipulated by the usual Enqueue and Dequeue operations, and also by

an operation MoveToTail (Free ; i: 1::U), which moves i to the end of Free, if it

is in Free. If Free is implemented as a doubly-linked list, then these operations

can be performed in constant time. We stress that Free is accessed only within

critical sections, so it is really a sequential data structure.

When comparing Algorithms B and L, the only di�erence before the critical

section is statement 5[i]: instead of updatingObstacle[p], process p nowmarks the

round number r it just read from Y [i] as being \in use" by assigning Inuse[p] :=

r. The only other di�erences are in the code after the critical section (statements

18-33 in Fig. 6). Statements 24-27 are executed to ensure that no round number

currently \in use" can propagate to the head of the Free queue. In particular, if

a process p is delayed after having obtained r as the current round number for

some splitter, then while it is delayed, r will be moved to the end of the Free

queue by everyN th critical section execution. With U = T+2N round numbers,

this is suÆcient to prevent r from reaching the head of the queue while p is

delayed. (T + 2N round numbers are needed because the calls to Dequeue and

MoveToTail can cause a round number to migrate toward the head of the Free

queue by two positions per critical section execution.) Statement 28[i] enqueues

the current round number for splitter i onto the Free queue. (Note that there

may be other processes within the renaming tree that \think" that the just-

enqueued round number is the current round number for splitter i; this is why

we need a mechanism to prevent round numbers from prematurely reaching the

head of the queue.) Statement 29[i] simply dequeues a new round number from

Free. The rest of the algorithm is the same as before.

The space complexity of Algorithm L is clearly �(N), if we ignore the space

required to implement the ENTRY and EXIT routines. (Each process has a�(logN)

path array. These arrays are actually unneeded, as simple calculations can be

=� all variable declarations are as de�ned in Fig. 5 except as noted here �=

const U = T + 2N =� number of possible round numbers = O(N) �=

type Ytype = record free: boolean; rnd : 0::U end =� stored in one word �=

shared variables

Y , Reset : array[1::T] of Ytype;

Rnd : array[1::U] of boolean init false;

Free : queue of integers;

Inuse array[0::N � 1] of 0::U init 0;

Check : 0::N � 1 init 0

initially

(8i : 1 � i � T :: Y [i] = (true; i) ^
Reset [i] = (true ; i)) ^
(Free = (T + 1)! � � � ! U)

private variables

ptr : 0::N � 1; nxtrd : 1::U ; usdrd : 0::U

process p :: = � 0 � p < N � =
while true do

0: Noncritical Section;

1: nd ; lvl := 1; 0;

=� descend renaming tree �=
repeat

2: X[nd]; dir := p; S ;

3: y := Y [nd];

if :y:free then dir := R

else

4: Y [nd] := (false; 0);

5: Inuse[p] := y:rnd ;

6: if X[nd] 6= p _
7: Acquired [nd] then

dir := L

else

8: Rnd [y:rnd] := true ;

9: if Reset [nd] 6= y then

10: Rnd [y:rnd]; dir := false; L

� � �;

11: path [lvl] := (nd ; dir);

if dir 6= S then

lvl ; nd := lvl + 1; 2 � nd ;
if dir = R then nd := nd + 1 �

�

until (lvl > D) _ (dir = S);

if lvl � D then =� got a name �=
12: Acquired [nd] := true ;

for j := lvl downto 0 do

13: ENTRY3(path [j]:nd ; path[j]:dir)

od;

14: ENTRY2(0)

else =� didn't get a name �=
15: ENTRYN (p);

16: ENTRY2(1)

�;

17: Critical Section;

=� reset splitters �=
for j := min(lvl ; D) downto 0 do

if path [j]:dir 6= R then

18: n := path [j]:nd ;

19: Y [n] := (false; 0);

20: X[n] := p;

21: y := Reset [n];

22: Reset [n] := (false; y:rnd);

23: if j = lvl _ :Rnd [y:rnd] then
24: ptr := Check ;

25: usdrd := Inuse [ptr];

26: if usdrd 6= 0 then

MoveToTail(Free ; usdrd)

�;

27: Check := ptr � 1;

28: Enqueue(Free; y:rnd);

29: nxtrd := Dequeue(Free);

30: Reset [n] := (true ; nxtrd);

31: Y [n] := (true ; nxtrd)

�;

if j = lvl then

32: Rnd [y:rnd] := false;

33: Inuse[p] := 0

� �

od;

=� execute exit sections �=
if lvl � D then

34: EXIT2(0);

for j := 0 to lvl do

35: EXIT3(path [j]:nd ; path[j]:dir)

od;

36: Acquired [nd] := false

else

37: EXIT2(1);

38: EXITN (p)

�

od

Fig. 6. Algorithm L: adaptive algorithm with �(N) space complexity.

used to determine the parent and children of a splitter.) If the ENTRY/EXIT

routines are implemented using Yang and Anderson's arbitration-tree algorithm

[14], then the overall space complexity is actually �(N logN). This is because

in Yang and Anderson's algorithm, each process needs a distinct spin location

for each level of the arbitration tree. However, as we will show in the full paper,

it is quite straightforward to modify the arbitration-tree algorithm so that each

process uses the same spin location at each level of the tree. This modi�ed

algorithm has �(N) space complexity. We conclude by stating our main theorem.

Theorem1. N-process mutual exclusion can be implemented under read/write

atomicity with time complexity O(min(k; logN)) and space complexity �(N). 2

Acknowledgement: Gary Peterson recently conjectured to us that adaptivity under

the remote-memory-references time measure must necessitate
(N2) space complexity.

His conjecture led us to develop Algorithm L.

References

1. Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming

made adaptive. In Proceedings of the 18th ACM Symposium on Principles of

Distributed Computing, pages 91{103, 1999.

2. J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning (full

version of this paper). At http://www.cs.unc.edu/�anderson/papers.html.
3. J. Anderson and Y.-J. Kim. Fast and scalable mutual exclusion. In Proceedings

of the 13th International Symposium on Distributed Computing, pages 180{194,

September 1999. Full version to appear in Distributed Computing .

4. T. Anderson. The performance of spin lock alternatives for shared-memory multi-

processors. IEEE Trans. on Parallel and Distributed Sys., 1(1):6{16, 1990.

5. H. Attiya and V. Bortnikov. Adaptive and eÆcient mutual exclusion. To appear in

Proceedings of the 19th ACM Symposium on Principles of Distributed Computing.

6. M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem. Dis-

tributed Computing, 8(1):1{17, 1994.

7. E. Dijkstra. Solution of a problem in concurrent programming control. Commu-

nications of the ACM, 8(9):569, 1965.

8. G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory mul-

tiprocessors. IEEE Computer, 23:60{69, 1990.

9. L. Lamport. A fast mutual exclusion algorithm. ACM Trans. on Computer Sys.,

5(1):1{11, 1987.

10. J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on

shared-memory multiprocessors. ACM Trans. on Computer Sys., 9(1):21{65, 1991.

11. M. Merritt and G. Taubenfeld. Speeding Lamport's fast mutual exclusion algo-

rithm. Information Processing Letters, 45:137{142, 1993.

12. M. Moir and J. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci-

ence of Computer Programming, 25(1):1{39, 1995.

13. E. Styer. Improving fast mutual exclusion. In Proceedings of the 11th ACM Sym-

posium on Principles of Distributed Computing, pages 159{168. 1992.

14. J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Dis-

tributed Computing, 9(1):51{60, 1995.

This article was processed using the LATEX macro package with LLNCS style

