Adaptive Mutual Exclusion with Local Spinning*

James H. Anderson and Yong-Jik Kim

Department of Computer Science, University of North Carolina at Chapel Hill

Abstract. We present the first adaptive algorithm for N-process mutual
exclusion under read/write atomicity in which all busy waiting is by local
spinning. In our algorithm, each process p performs O(min(k,log N))
remote memory references to enter and exit its critical section, where k is
the maximum “point contention” experienced by p. The space complexity
of our algorithm is @(N), which is clearly optimal.

1 Introduction

In this paper, we consider adaptive solutions to the mutual exclusion problem
[7] under read/write atomicity. A mutual exclusion algorithm is adaptive if its
time complexity is a function of the number of contending processes [6, 11, 13].
Two notions of contention have been considered in the literature: “interval con-
tention” and “point contention” [1]. These two notions are defined with respect
to a history H. The interval contention over H is the number of processes that
are active in H, i.e., that execute outside of their noncritical sections in H. The
point contention over H is the maximum number of processes that are active at
the same state in H. Note that point contention is always at most interval con-
tention. In this paper, we consider only point contention. Throughout the paper,
we let IV denote the number of processes in the system, and we let k denote the
point contention experienced by an arbitrary process over a history that starts
when it becomes active and ends when it once again becomes inactive.

In previous work on adaptive mutual exclusion algorithms, two time com-
plexity measures have been considered: “remote step complexity” and “system
response time.” The remote step complezity of an algorithm is the maximum
number of shared-memory operations required by a process to enter and then
exit its critical section, assuming that each “await” statement is counted as one
operation [13]. The system response time is the length of time between critical
section entries, assuming each enabled read or write operation is executed within
some constant time bound [6]. Several read/write mutual exclusion algorithms
have been presented that are adaptive to some degree under these time com-
plexity measures. One of the first such algorithms was an algorithm of Styer
that has O(min(N, klog N)) remote step complexity and O(min(N,klog N))
response time [13]. Choy and Singh later improved upon Styer’s result by pre-
senting an algorithm with O(NN) remote step complexity and O(k) response time

* Work supported by NSF grants CCR 9732916 and CCR 9972211.

[6]. More recently, Attiya and Bortnikov presented an algorithm with O(k) re-
mote step complexity and O(log k) response time [5].

Recent work on scalable local-spin mutual exclusion algorithms has shown
that the most crucial factor in determining an algorithm’s performance is the
amount of interconnect traffic it generates [4, 8, 10, 14]. In light of this, we
define the time complexity of a mutual exclusion algorithm to be the worst-
case number of remote memory references by one process in order to enter and
then exit its critical section. A remote memory reference is a shared variable
access that requires an interconnect traversal. In local-spin algorithms, all busy-
waiting loops are required to be read-only loops in which only locally-accessible
shared variables are accessed that do not require an interconnect traversal. On a
distributed shared-memory multiprocessor, a shared variable is locally accessible
if it is stored in a local memory module. On a cache-coherent multiprocessor, a
shared variable is locally accessible if it is stored in a local cache line.

The first local-spin algorithms were algorithms in which read-modify-write
instructions are used to enqueue blocked processes onto the end of a “spin queue”
[4, 8, 10]. Each of these algorithms has O(1) time complexity; thus, adaptivity
is clearly a non-issue if appropriate read-modify-write instructions are avail-
able. Yang and Anderson were the first to consider local-spin algorithms under
read/write atomicity [14]. They presented a read/write mutual exclusion algo-
rithm with ©(log N) time complexity in which instances of a local-spin mutual
exclusion algorithm for two processes are embedded within a binary arbitration
tree. They also presented a “fast-path” variant of this algorithm that allows the
tree to be bypassed in the absence of contention. Although the contention-free
time complexity of this algorithm is O(1), its time complexity under contention
is O(N) in the worst case, rather than ©(log N). In recent work, Anderson
and Kim presented a new fast-path mechanism that results in with O(1) time
complexity in the absence of contention and ©(log N) time complexity under
contention, when used with Yang and Anderson’s algorithm [3].

All of the previously-cited adaptive algorithms are not local-spin algorithms,
and thus they have unbounded time complexity under the remote-memory-
references time measure. One could argue that for an algorithm to be considered
truly adaptive, it must be adaptive under this measure. After all, the underlying
hardware does not distinguish between remote memory references generated by
await statements and remote memory references generated by other statements.
Surprisingly, while adaptivity and local spinning have been the predominate
themes in recent work on mutual exclusion, the problem of designing an adaptive,
local-spin algorithm under read/write atomicity has remained open. In this pa-
per, we close this problem by presenting an algorithm that has O(min(k,log N))
time complexity under the remote-memory-references measure.

Our algorithm can be seen as an extension of the fast-path algorithm of An-
derson and Kim [3]. This algorithm was devised by thinking about connections
between fast-path mechanisms and long-lived renaming [12]. Long-lived renam-
ing algorithms are used to “shrink” the size of the name space from which process
identifiers are taken. The problem is to design operations that processes may in-

shared variables X: {1} U {0..N — 1} init L;
Y: boolean init false

private variable dir: {D, R,S} /* down, right, stop =/

n
N =1 1: X =p; .
— 2: if Y then dir := R
stop right else
3: Y = true;
-1 d ’
n own 4: if X =p then dir:= S
else dir := D
fi
fi

Fig. 1. The splitter element and the code fragment that implements it.

voke in order to acquire new names from the reduced name space when they
are needed, and to release any previously-acquired name when it is no longer
needed. In Anderson and Kim’s algorithm, a particular name is associated with
the fast path; to take the fast path, a process must first acquire the fast-path
name. Our adaptive algorithm can be seen as a generalization of Anderson and
Kim’s fast-path mechanism in which every name is associated with some “path”
to the critical section. The length of the path taken by a process is determined
by the point contention that it experiences.

2 Adaptive Algorithm

In our adaptive algorithm, code sequences from several other algorithms are
used. In Sec. 2.1, we present a review of these other algorithms and discuss
some of the basic ideas underlying our algorithm. Then, in Sec. 2.2, we present
a detailed description of our algorithm.

2.1 Related Algorithms and Key Ideas

At the heart of our algorithm is the splitter element from the grid-based long-
lived renaming algorithm of Moir and Anderson [12]. This splitter element was
actually first used in Lamport’s fast mutual exclusion algorithm [9]. The splitter
element is defined by the code fragment shown in Fig. 1. (In this and subsequent
figures, we assume that each labeled sequence of statements is atomic; in each
figure, each labeled sequence reads or writes at most one shared variable.) Each
process that invokes this code fragment either stops, moves down, or moves right
(the move is defined by the value assigned to the variable dir). One of the key
properties of the splitter that makes it so useful is the following: if n processes
invoke a splitter, then at most one of them can stop at that splitter, at most
n — 1 can move right, and at most n — 1 can move down.

4 8 13 4

Z/ \Z . \Z Z/ \Z

6

u @ (b)

Fig. 2. (a) Renaming grid (depicted for N = 5). (b) Renaming tree.

Because of these properties, it is possible to solve the renaming problem by
interconnecting a collection of splitters in a grid as shown in Fig. 2(a). A name
is associated with each splitter. If the grid has NV rows and N columns, then by
induction, every process eventually stops at some splitter. When a process stops
at a splitter, it acquires the name associated with that splitter. In the long-lived
renaming problem [12], processes must have the ability to release the names
they acquire. In the grid algorithm, a process can release its name by resetting
each splitter on the path traversed by it in acquiring its name. A splitter can be
reset by resetting its Y variable to true. For the renaming mechanism to work
correctly, it is important that a splitter be reset only if there are no processes
“downstream” from it (i.e., in the sub-grid “rooted” at that splitter). In Moir
and Anderson’s algorithm, it takes O(N) time to determine whether there are
“downstream” processes. This is because each process checks every other process
individually to determine if it is downstream from a splitter. As we shall see, a
more efficient reset mechanism is needed for our adaptive algorithm.

The main idea behind our algorithm is to let an arbitration tree form dynam-
ically within a structure similar to the renaming grid. This tree may not remain
balanced, but its height is proportional to contention. The job of integrating the
renaming aspects of the algorithm with the arbitration tree is greatly simplified
if we replace the grid by a binary tree of splitters as shown in Fig. 2(b). (Since
we are now working with a tree, we will henceforth refer to the directions associ-
ated with a splitter as stop, left, and right.) Note that this results in many more
names than before. However, this is not a major concern, because we are really
not interested in minimizing the name space. The arbitration tree is defined by
associating a three-process mutual exclusion algorithm with each node in the re-
naming tree. This three-process algorithm can be implemented in constant time
using the local-spin mutual exclusion algorithm of Yang and Anderson [14]. We

2-process
ME dgorithm processp processq

O(logN)
height

got name

Renaming Tree Overflow Tree failed tov
get name

@ (b) ©

Fig. 3. (a) Renaming tree and overflow tree. (b) Process p gets a name in the renaming
tree. (c) Process ¢ fails to get a name and must compete within the overflow tree.

explain below why a three-process algorithm is needed instead of a two-process
algorithm (as one would expect to have in an arbitration tree).

In our algorithm, a process p performs the following basic steps. (For the
moment, we are ignoring certain complexities that must be dealt with.)

Step 1 p first acquires a new name by moving down from the root of the renaming
tree, until it stops at some node. In the steps that follow, we refer to this
node as p’s acquired node. p’s acquired node determines its starting point in
the arbitration tree.

Step 2 p then competes within the arbitration tree by executing each of the three-
process entry sections on the path from its acquired node to the root. Note
that a node’s entry section may be invoked by the process that stopped at
that node, and one process from each of the left and right subtrees beneath
that node. This is why a three-process algorithm is needed.

Step 3 After competing within the arbitration tree, p executes its critical section.

Step 4 Upon completing its critical section, p releases its acquired name by reopen-
ing all of the splitters on the path from its acquired node to the root.

Step 5 After releasing its name, p executes each of the three-process exit sections
on the path from the root to its acquired node.

If we were to use a binary tree of height N, just as we previously had a
grid with N row and N columns, then the total number of nodes in the tree
would be @(2V). We circumvent this problem by defining the tree’s height to be
|log N |, which results in a tree with @(N) nodes. With this change, a process
could “fall off” the end of the tree without acquiring a name. However, this can
happen only if contention is 2(log N). To handle processes that “fall off the
end,” we introduce a second arbitration tree, which is implemented using Yang
and Anderson’s local-spin arbitration-tree algorithm [14]. We refer to the two
trees used in our algorithm as the renaming tree and overflow tree, respectively.
These two trees are connected by placing a two-process version of Yang and
Anderson’s algorithm on top of each tree, as illustrated in Fig. 3(a). Fig. 3(b)

illustrates the steps that might be taken by a process p in acquiring a new name
if contention is O(log N). Fig. 3(c) illustrates the steps that might be taken by
a process ¢ if contention is 2(log N).

A major difficulty that we have ignored until this point is that of efficiently
reopening a splitter, as described in Step 4 above. In Moir and Anderson’s re-
naming algorithm, it takes O(IN) time to reopen a splitter. To see why reopening
a splitter is difficult, consider again Fig. 1. If a process does succeed stopping
at a splitter, then that process can reopen the splitter itself by simply assigning
Y := true. On the other hand, if no process succeeds in stopping at a splitter,
then some process that moved left or right from that splitter must reset it. Unfor-
tunately, because processes are asynchronous and communicate only by means
of atomic read and write operations, it can be difficult for a left- or right-moving
process to know whether some process has stopped at a splitter.

Anderson and Kim solved this problem in their fast-path mutual exclusion
algorithm by exploiting the fact that much of the reset code can be executed
within a process’s critical section [3]. Thus, the job of designing efficient reset
code is much easier here than when designing a wait-free long-lived renaming
algorithm. As mentioned earlier, in Anderson and Kim’s fast-path algorithm,
a particular name is associated with the fast path; to take the fast path, a
process must first acquire the fast-path name. In our adaptive algorithm, we
must efficiently manage acquisitions and releases for a set of names.

2.2 Detailed Description

Having introduced the major ideas that underlie our algorithm, we now present a
detailed description of the algorithm and its properties. We do this in three steps.
First, we consider a version of the algorithm in which unbounded memory is used
to reset splitters in constant time. Second, we consider a variant of the algorithm
with ©(N?) space complexity in which all variables are bounded. Third, we
present another variant that has ©@(N) space complexity. In explaining these
algorithms, we actually present proof sketches for some of the key properties of
each algorithm. Our intent is to use these proof sketches as a means for intuitively
explaining the basic mechanisms of each algorithm. A formal correctness proof
for the final algorithm is presented in the full version of this paper [2].

Algorithm U. The first algorithm, which we call Algorithm U (for unbounded),
is shown in Fig. 4. Before describing how this algorithm works, we first examine
its basic structure. At the top of Fig. 4, definitions of two constants are given:
D, which is the maximum level in the renaming tree (the root is at level 0), and
T, which gives the total number of nodes in the renaming tree. As mentioned
earlier, the renaming tree is comprised of a collection of splitters. These splitters
are indexed from 1 to T'. If splitter ¢ is not a leaf, then its left and right children
are splitters 2¢ and 2i + 1, respectively.

Each splitter i is defined by four shared variables and an infinite shared array:
XTi], Y[i], Reset[i], Rnd[i] (the array), and Acquired[i]. Variables X[i] and Y[i]
are as in Fig. 1, with the exception that YT[i] now has an additional

const

D =|logN|; /* depth of renaming tree = O(log N) */

T=2Pt 1 /* size of renaming tree = O(N) */
type

Ytype = record free: boolean; rnd: 0..co end; /* stored in one word %/

Dtype ={L, R, S}; /* splitter moves (left, right, stop) =/

Ptype = record nd: 1.2T + 1; dir: Dtype end /* path information x/
shared variables private variables

X: array[1..T] of 0..00; nd, n: 1.2T + 1;

Y, Reset: array[1..T] of Yiype init (true, 0); lvl, j: 0..D + 1;

Rnd: array[l1..T][0..00] of boolean init false; y: Ytype; dir: Dtype;

Acquired: array[1..T] of boolean init false path: array[0..D] of Ptype

processp:: /% 0<p<N x*/
while true do 16: Critical Section;
0: Noncritical Section;

* reset splitters
1: nd, l:=1, 0; / P /

for j := min(lvl, D) downto 0 do

/* descend renaming tree */ if path[j].dir # R then
repeat 17: n := path[j].nd;
2: X|[nd], dir :=p, S; 18: y := Reset[n];
3: y:=Y[nd] 19: Reset[n] := (false, y.rnd);
if —y.free then dir :== R 20: if j=klV
else - Rnd[n][y.rnd] then
4: Y[nd] := (false, 0); 21: Reset[n] := (true, y.rnd + 1);
5: if X[nd]#p V 22: Y[n] := (true, y.rnd + 1)
6: Acquired[nd] then fi
dir ==L fi
else od;
T Rnd[nd][y.rnd] := true; /* execute exit sections x/
8: if Reset[nd] # y then if Il < D then
9: Rnd[nd][y.rnd], dir := false, L 93. gxIT, (0);
fifi fi; for j:=0 to lvl do
10: path[ll] := (nd, dir); 24: EXIT3(path[j].nd, path[j].dir)
if dir # S then od;
ll, nd := il +1, 2-nd; 25: Acquired[nd] := false
if dir = R then nd :=nd +1fi else
fi 26: EXIT(1);
until (lvl > D) V (dir = S); 97: EXITy(p)
if vl < D then /x got a name */ fi
11: Acquired[nd] := true; od

for j := lvl downto 0 do
12: ENTRY3(path[j].nd, pathlj].dir)
od;
13: ENTRY»(0)
else /* didn’t get a name %/
14: ENTRYn (p);
15: ENTRY»(1)
fi;

Fig. 4. Algorithm U: adaptive algorithm with unbounded memory.

integer rnd field. As explained below, Algorithm U works by associating “round
numbers” with the various rounds of competition for the name corresponding to
each splitter. In Algorithm U, these round numbers grow without bound. The
rnd field of Y[i] gives the current round number for splitter i. Reset[i] is used
to reinitialize the rnd field of Y[i] when name i is released. Rnd[i][r] is used to
identify a potential “winning” process that has succeeded in acquiring name i
in round r. Acquired[i] is set when some process acquires name i.

Each process descends the renaming tree, starting at the root, until it either
acquires a name or “falls off the end” of the tree, as discussed earlier. A process
determines if it can acquire name i by executing statements 2-10 with nd = i.
Of these, statements 2-5 correspond to the splitter code in Fig. 1. Statements
6-9 are executed as part of a handshaking mechanism that prevents a process
that is releasing a name from adversely interfering with processes attempting to
acquire that name; this mechanism is discussed in detail below. Statement 10
simply prepares for the next iteration of the repeat loop (if there is one).

If a process p succeeds in acquiring a name while descending within the
renaming tree, then it competes within the renaming tree by moving up from
its acquired name to the root, executing the three-process entry sections on this
path (statements 11-12). Each of these three-process entry sections is denoted
“ENTRY3(n,d),” where n is the corresponding tree node, and d is the “identity” of
the invoking process. The “identity” that is used is simply the invoking process’s
direction out of node n (S, L, or R) when it descended the renaming tree. After
ascending the renaming tree, p invokes the two-process entry section “on top”
of the renaming and overflow trees (as illustrated in Fig. 3(a)) using “0” as a
process identifier (statement 13). This entry section is denoted “ENTRY»(0).”

If a process p does not succeed in acquiring a name while descending within
the renaming tree, then it competes within the overflow tree (statement 14),
which is implemented using Yang and Anderson’s N-process arbitration-tree al-
gorithm. The entry section of this algorithm is denoted ENTRYy (p). Note that p
uses its own process identifier in this algorithm. After competing within the over-
flow tree, p executes the two-process algorithm “on top” of both trees using “1”
as a process identifier (statement 15). This entry section is denoted “ENTRY2(1).”

After completing the appropriate two-process entry section, process p exe-
cutes its critical section (statement 16). It then resets each of the splitters that it
visited while descending the renaming tree (statements 17-22). This reset mech-
anism is discussed in detail below. Process p then executes the exit sections
corresponding to the entry sections it executed previously (statements 23-27).
The exit sections are specified in a manner that is similar to the entry sections.

We now consider in detail the code fragments that are executed to acquire
(statements 2-10) or reset (statements 18-22) some splitter i. To facilitate this
discussion, we will index these statements by 4. For example, when we refer to
the execution of statement 4[] by process p, we mean the execution of statement
4 by p when its private variable nd equals i. Similarly, 18[i] denotes the execution
of statement 18 with n = 1.

As explained above, one of the problems with the splitter code is that it

is difficult for a left- or right-moving process at splitter i to know which (if
any) process has acquired name 4. In Algorithm U, this problem is solved by
viewing the computation involving each splitter as occurring in a sequence of
rounds. Each round ends when the splitter is reset. During a round, at most one
process succeeds in acquiring the name of the splitter. Note that it is possible
that no process acquires the name during a round. So that processes can know
the current round number at splitter 7, an additional rnd field has been added
to Y[i]. This field will increase without bound over time, so we will never have
to worry about round numbers being reused.

With the added rnd field, a left- or right-moving process at splitter i has a
way of identifying a process that has acquired the name at splitter i. To see how
this works, consider what happens during round r at node i. Of the processes
that participate in round r at node 4, at least one will read Y[i] = (true,r) at
statement 3[i] and assign Y[i] := (false,0) at statement 4[i]. By the correctness
of the original splitter code, of the processes that assign Y'[i], at most one will
reach statement 7[i]. A process that reaches statement 7[i] will either stop at
node i or be deflected left. This gives us two cases to analyze: of the processes
that read Y[i] = (true,r) at statement 3[i] and assign Y[i] at statement 4[],
either all are deflected left, or one, say p, stops at splitter i.

In the former case, at least one of the left-moving processes finds Rnd[i][r] to
be false at statement 20[i], and then reopens splitter ¢ by executing statements
21[7] and 22[¢], which establish Y[i] = (true, » + 1) A Y[i] = Reset[i]. To
see why at least one process executes statements 21[i] and 22[i], note that each
process under consideration reads Y'[i] = (true,r) at statement 3[i], and thus its
y.rnd variable equals r while executing within statements 4[i]-9[i]. Note also that
Rnd[i][r] = true is established only by statement 7[i]. Moreover, each process
deflected left at statement 9[é] first assigns Rnd[i][r] := false. Thus, at least one
of the left-moving processes finds Rnd[i][r] to be false at statement 20[¢].

In the case that there is a winning process p that stops at splitter ¢ during
round r, we must argue that (i) p reopens splitter ¢ upon leaving it, and (ii) no
left- or right-moving process “prematurely” reopens splitter ¢ before p has left it.
Establishing (i) is straightforward. Process p will reopen the splitter by executing
statements 18[i]-22[i] and 25, which establish Y[i] = (true,r+1) A Acquired[i] =
false A YTi] = Reset[i]. Note that the assignment to Acquired at statement 25
prevents the reopening of splitter ¢ from actually taking effect until after p has
finished executing its exit section.

To establish (ii), suppose, to the contrary, that some left- or right-moving
process reopens splitter i by executing statement 22[i] while p is executing within
statements 10[¢]-13 and 16-25. (Note that, because p stops at splitter ¢, it doesn’t
iterate again within the repeat loop.) Let ¢ be the first left- or right-moving
process to execute statement 22[i]. Since we are assuming that the ENTRY and
EXIT calls are correct, ¢ cannot execute statement 22[i] while p is executing
within statements 16-22. Moreover, if p is executing within statements 12-13 or
23-25, then Acquired is true, and hence the splitter is closed. The remaining
possibility is that p is enabled to execute statement 10[i] or 11. (Note that, in

this case, if ¢ were to reopen splitter ¢ then we could end up with two processes
concurrently invoking ENTRY3(i,S) at statement 12, i.e., both processes use S
as a “process identifier.” The ENTRY calls obviously cannot be assumed to work
correctly if such a scenario could happen.)

So, assume that ¢ executes statement 22[i] while p is enabled to execute
statement 10[¢] or 11. For this to happen, ¢ must have read Rnd[i][r] = false
at statement 20[i] before p assigned Rnd[i][r] := true at statement 7[i]. (Recall
that all the processes under consideration read Y[i] = (true,r) at statement
2[i]. This is why p writes to Rnd[i][r] instead of some other element of Rnd[i]. ¢
reads from Rnd[i][r] at statement 20[i] because it is the first process to attempt to
reset splitter ¢, which implies that g reads Reset[i] = (true,r) at statement 18[i].)
Because ¢ executes statement 20[i] before p executes statement 7[i], statement
19[7] is executed by ¢ before statement 8[i] is executed by p. Thus, p must have
found Reset[i] # y at statement 7[i], i.e., it was deflected left at splitter ¢, which
is a contradiction. It follows from the explanation given here that splitter i is
eventually reset for round r + 1, i.e., we have the following property.

Property 1: Let S be the set of all processes that read Y[i].rnd = r at statement
3[]. If S is nonempty, then Y[i] = (true, r+1) A Y[i] = Reset[i] A Acquired[i] =
false is eventually established, and at all states after it is first established, no
process in set S stops at splitter i. O

Because the splitters are always reset properly, it follows that the ENTRY and
EXIT routines are always invoked properly. If these routines are implemented
using Yang and Anderson’s local-spin algorithm, then since that algorithm is
starvation-free, Algorithm U is as well.

Having dispensed with basic correctness, we now informally argue that Al-
gorithm U is contention sensitive. For a process p to descend to a splitter at
level [in the renaming tree, it must have been deflected left or right at each
prior splitter it accessed. Just as with the original grid-based long-lived renam-
ing algorithm [12], this can only happen if the point contention experienced by
pis £2(1). Note that the time complexity per level of the renaming tree is con-
stant. Moreover, with the ENTRY and EXIT calls implemented using Yang and
Anderson’s algorithm [14], the ENTRY,, EXIT2, ENTRY3, and EXIT; calls take con-
stant time, and the ENTRY y and ENTRYy calls take ©(log V) time. Note that the
ENTRYn and ENTRYy routines are called by a process only if its point contention
is 2(log N). Thus, we have the following.

Lemma 1: Algorithm U is a correct, starvation-free mutual exclusion algorithm
with O(min(k,log N)) time complexity and unbounded space complexity. a

Of course, the problem with Algorithm U is that the rnd field of Y[i] that
is used for assigning round numbers grows without bound. We now consider a
variant of Algorithm U in which space is bounded.

Algorithm B. In Algorithm B (for bounded), which is shown in Fig. 5, modulo-N
addition (denoted by @) is used when incrementing Y'[i].rnd. With this change,

the following potential problem arises. A process p may reach statement 8[i]
in Fig. 5 with y.rnd = r and then be delayed. While delayed, other processes
may repeatedly increment Y[i].rnd (statement 27[i]) until it “cycles back” to
r. Another process ¢ could then reach statement 8[i] with y.rnd = r. This is a
problem because p and ¢ may interfere with each other in updating Rnd[i][r].

Algorithm B prevents such a scenario from happening by preventing Y[i].rnd
from cycling while a process p that stops at splitter ¢ executes within statements
8[i]-31. Informally, cycling is prevented by requiring process p to erect an “ob-
stacle” that prevents Y[i].rnd from being incremented beyond the value p. More
precisely, note that before reaching statement 8]i], process p must first assign
Obstacle[p] := i at statement 5[i]. Note further that before a process can incre-
ment Y[i].rnd from r to r @ 1 (statement 27[é]), it must first read Obstacle[r]
(statement 25[i]) and find it to have a value different from . This check prevents
Y[i].rnd from being incremented beyond the value p while p executes within
statements 8[i]-31. Note that process p resets Obstacle[p] to 0 at statement 18.
This is done to ensure that p’s own obstacle doesn’t prevent it from incrementing
a splitter’s round number.

To this point, we have explained every difference between Algorithms U and
B except one: in Fig. 5, there are added assignments to elements of Y and X
(statements 20 and 21) after the critical section. The reason for these assignments
is as follows. Suppose some process p is about to assign Obstacle[p] := true at
statement 5[i], but gets delayed. (In other words, p is “about to” erect an obstacle
at splitter ¢.) We must ensure that if p ultimately reaches statement 8[¢], then
Y'[i].rnd does not get incremented beyond the value p. Let r be the value read
from Y.rnd by p at statement 3[i]. For Y.rnd to be incremented beyond p, some
other process ¢ that reads Y.rnd = r must attempt to reopen splitter .

So, suppose that process ¢ reopens splitter ¢ by executing statement 27]i]
while p is delayed at statement 5[i]. If process ¢ executes statement 21[i] after
p executes statement 2[i], then p will find X[i] # p at statement 6[i] and will
be deflected left. So, assume that g executes statement 21[i] before p executes
statement 2[7]. This implies that ¢ establishes Y[i].free = false by executing
statement 20[i] before p reads Y[i] at statement 3[i]. Note that Y[i].free = true
is only established within a critical section (statement 27[i]). Also, note that we
have established the following sequence of statement executions (perhaps inter-
leaved with statement executions of other processes): ¢ executes statements 20[4]
and 21[i]; p executes statements 2[i]-5[i]; ¢ executes statement 27[i] (¢’s execution
of statements 22[i]-26[i] may interleave arbitrarily with p’s execution of state-
ments 2[i]-5[¢]). Because statements 17[i]-27[i] are executed as a critical section,
this implies that p reads Y[i].free = false at statement 3[i], and thus does not
reach statement 5[i], which is a contradiction. We conclude from this reasoning
that if p is delayed at statement 5[i], and if p ultimately reaches statement 8[i],
then Y[i].rnd does not get incremented beyond the value p.

From the discussion above, we have the following property and lemma.

Property 2: If distinct processes p and ¢ have executed statement 7[i] and have
nd = i, then the value of p’s private variable y.rnd differs from that of ¢’s. O

/* all variable declarations are as defined in Fig. 4 except as noted here */

type

Ytype = record free: boolean; rnd: 0..N — 1 end

shared variables

X: array[1..T] of 0..N — 1;

/#* stored in one word */

Rnd: array[1..T'][0..N — 1] of boolean init false;

Obstacle: array[0..N — 1] of 0..T init 0;

Acquired: array[l..T] of boolean init false

process p ::
while true do
0: Noncritical Section;
1: nd, wl:=1, 0;

/* descend renaming tree */

/* 0<p<N %/

repeat
2: X[nd], dir :==p, S;
3: y:=Y][nd];
if —y.free then dir := R
else
4; Y [nd] := (false, 0);
5: Obstacle[p] := nd;
6: if X[nd]l#p Vv
7 Acquired[nd] then
dir ==L
else
8: Rnd[nd][y.rnd] := true;
9: if Reset[nd] # y then
10: Rnd[nd][y.rnd], dir := false, L
fi fi fi;

11: path[ll] := (nd, dir);
if dir # S then
wl, nd =MWl +1, 2-nd;
if dir = R then nd :=nd+1fi
fi
until (lvl > D) V (dir = S);
if vl <D then /+ got a name */
12: Acquired[nd] := true;
for j := lvl downto 0 do
13: ENTRY3(path[j].nd, path[j].dir)

od;
14: ENTRY2(0)
else /x didn’t get a name */

15: ENTRYn (p);
16: ENTRY»(1)
fi;

17: Critical Section;
18: Obstacle[p] := 0;

/* reset splitters x/
for j := min(lvl, D) downto 0 do
if path[j].dir # R then
19: n := path[j].nd;
20: Y[n] := (false, 0);
21: X[n] :=p;
22: y := Reset[n];
23: Reset[n] := (false, y.rnd);
2 if (j=WlV
= Rnd[n][y.rnd]) A

25: Obstacle[y.rnd] # n then
26: Reset[n] := (true, y.rnd & 1);
27 Y[n] := (true, y.rnd ® 1)

ﬁ.

28: if j = lvl then
Rnd[y.rnd] := false
fi
fi
od;
/* execute exit sections */
if vl < D then
29: EXIT»(0);
for j :=0 to lvl do
30: EXITs(path[j].nd, path[j].dir)
od;
31: Acquired[nd] := false
else
32: EXITy(1);
33: EXITwn(p)
fi
od

Fig. 5. Algorithm B: adaptive algorithm with @(IN?) space complexity.

Lemma 2: Algorithm B is a correct, starvation-free mutual exclusion algorithm
with O(min(k,log N)) time complexity and @(N?) space complexity. i

The @(N?) space complexity of Algorithm B is due to the Rnd array. We
now show that this ©(N?) array can be replaced by a ©(N) linked list.

Algorithm L. In Algorithm L (for linear), which is depicted in Fig. 6, a common
pool of round numbers ranging over {1,...,U} is used for all splitters in the
renaming tree. As we shall see, O(N) round numbers suffice. In Algorithm B, our
key requirement for round numbers was that they not be reused “prematurely.”
With a common pool of round numbers, a process should not choose r as the next
round number for some splitter if there is a process anywhere in the renaming
tree that “thinks” that r is the current round number of some splitter.

Fortunately, since each process selects new round numbers within its critical
section, it is fairly easy to ensure this requirement. All that is needed are a few
extra data structures that track which round numbers are currently in use. These
data structures replace the Obstacle array of Algorithm B. The main new data
structure is a queue Free of round numbers. In addition, there is a new shared
array Inuse, and a new shared variable Check. We assume that the Free queue
can be manipulated by the usual Enqueue and Dequeue operations, and also by
an operation MoveToTail(Free, i: 1..U), which moves i to the end of Free, if it
is in Free. If Free is implemented as a doubly-linked list, then these operations
can be performed in constant time. We stress that Free is accessed only within
critical sections, so it is really a sequential data structure.

When comparing Algorithms B and L, the only difference before the critical
section is statement 5[i]: instead of updating Obstacle[p], process p now marks the
round number r it just read from Y[i] as being “in use” by assigning Inuse[p] :=
r. The only other differences are in the code after the critical section (statements
18-33 in Fig. 6). Statements 24-27 are executed to ensure that no round number
currently “in use” can propagate to the head of the Free queue. In particular, if
a process p is delayed after having obtained r as the current round number for
some splitter, then while it is delayed, r will be moved to the end of the Free
queue by every N* critical section execution. With U = T'+2N round numbers,
this is sufficient to prevent r from reaching the head of the queue while p is
delayed. (T' + 2N round numbers are needed because the calls to Dequeue and
MoveToTail can cause a round number to migrate toward the head of the Free
queue by two positions per critical section execution.) Statement 28[i] enqueues
the current round number for splitter ¢ onto the Free queue. (Note that there
may be other processes within the renaming tree that “think” that the just-
enqueued round number is the current round number for splitter 4; this is why
we need a mechanism to prevent round numbers from prematurely reaching the
head of the queue.) Statement 29[i] simply dequeues a new round number from
Free. The rest of the algorithm is the same as before.

The space complexity of Algorithm L is clearly @(N), if we ignore the space
required to implement the ENTRY and EXIT routines. (Each process has a ©(log N)
path array. These arrays are actually unneeded, as simple calculations can be

/* all variable declarations are as defined in Fig. 5 except as noted here */

const U=T+2N

/* number of possible round numbers = O(N) */

type Yiype =record free: boolean; rnd: 0.U end [/ stored in one word */

shared variables
Y, Reset: array[1..T] of Yiype;

Rnd: array[l1..U] of boolean init false;

Free: queue of integers;
Inuse array[0..N — 1] of 0..U init 0;
Check: 0..N — 1 init 0

processp:: /% 0<p<N x/
while true do
0: Noncritical Section;

1: nd, l:=1, 0;

/* descend renaming tree */

repeat

2: Xlnd], dir :==p, S;
3: y:=Y][nd]

if —y.free then dir :== R

else
4: Y [nd] := (false, 0);
5: Inuse[p] := y.rnd;
6: if X[nd]#p V
T Acquired[nd] then

dir ==L
else

8: Rnd[y.rnd] := true;
9: if Reset[nd] # y then
10: Rnd[y.rnd], dir := false, L

fi fi fi;
11: path[Wl] := (nd, dir);
if dir # S then
l, nd =Wl +1, 2 nd,;
if dir = R then nd :=nd +1 fi
fi
until (lvl > D) V (dir = 5);

if vl < D then /x got a name %/
12: Acquired[nd] := true;
for j := lvl downto 0 do
13: ENTRY3(path[j].nd, path[j].dir)
od;
14: ENTRY»(0)
else /x didn’t get a name */
15: ENTRYn (p);
16: ENTRY»(1)
ﬁ.

)

initially
(Vi:1<i<T:=Y[i] = (true, i) A
Reset[i] = (true, 7)) A
(Free=(T+1)—---—>U)
private variables

ptr: 0..N — 1; nztrd: 1..U; usdrd: 0.U

17: Critical Section;

/* reset splitters */
for j := min(lvl, D) downto 0 do
if path[j].dir # R then
18: n = path[j].nd;
19: Y[n] := (false, 0);
20: X|[n] :=p;
21: y := Reset[n];
22: Reset[n] := (false, y.rnd);
23: if j = lwl V =Rnd[y.rnd] then

24: ptr := Check;
25: usdrd := Inuse[ptr);
26: if usdrd # 0 then
MoveToTail(Free, usdrd)
fi;

27: Check = ptr & 1;
28: Enqueue(Free, y.rnd);
29: nztrd := Dequeue(Free);
30: Reset[n] := (true, naztrd);
31: Y[n] := (true, nzird)

fi;

if j = lvl then
32: Rnd[y.rnd] := false;
33: Inuse[p] := 0

fifi
od;

/* execute exit sections */
if vl < D then
34: EXIT»(0);
for j := 0 to lvl do
35: EXIT3(path[j].nd, path[j].dir)
od,;
36: Acquired[nd] := false
else
37: EXIT,(1);
38: EXITwn(p)
fi
od

Fig. 6. Algorithm L: adaptive algorithm with @(N) space complexity.

used to determine the parent and children of a splitter.) If the ENTRY/EXIT
routines are implemented using Yang and Anderson’s arbitration-tree algorithm
[14], then the overall space complexity is actually @(N log N). This is because
in Yang and Anderson’s algorithm, each process needs a distinct spin location
for each level of the arbitration tree. However, as we will show in the full paper,
it is quite straightforward to modify the arbitration-tree algorithm so that each
process uses the same spin location at each level of the tree. This modified
algorithm has @ (V) space complexity. We conclude by stating our main theorem.

Theorem 1. N-process mutual exclusion can be implemented under read/write
atomicity with time complexity O(min(k,log N)) and space complexity ©(N). O

Acknowledgement: Gary Peterson recently conjectured to us that adaptivity under
the remote-memory-references time measure must necessitate 2(N?) space complexity.
His conjecture led us to develop Algorithm L.

References

1. Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming
made adaptive. In Proceedings of the 18th ACM Symposium on Principles of
Distributed Computing, pages 91-103, 1999.

2. J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning (full
version of this paper). At http://www.cs.unc.edu/~anderson/papers.html.

3. J. Anderson and Y.-J. Kim. Fast and scalable mutual exclusion. In Proceedings
of the 13th International Symposium on Distributed Computing, pages 180-194,
September 1999. Full version to appear in Distributed Computing.

4. T. Anderson. The performance of spin lock alternatives for shared-memory multi-
processors. IEEE Trans. on Parallel and Distributed Sys., 1(1):6-16, 1990.

5. H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusion. To appear in
Proceedings of the 19th ACM Symposium on Principles of Distributed Computing.

6. M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem. Dis-
tributed Computing, 8(1):1-17, 1994.

7. E. Dijkstra. Solution of a problem in concurrent programming control. Commu-
nications of the ACM, 8(9):569, 1965.

8. G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory mul-
tiprocessors. IEEE Computer, 23:60-69, 1990.

9. L. Lamport. A fast mutual exclusion algorithm. ACM Trans. on Computer Sys.,
5(1):1-11, 1987.

10. J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. on Computer Sys., 9(1):21-65, 1991.

11. M. Merritt and G. Taubenfeld. Speeding Lamport’s fast mutual exclusion algo-
rithm. Information Processing Letters, 45:137-142, 1993.

12. M. Moir and J. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci-
ence of Computer Programming, 25(1):1-39, 1995.

13. E. Styer. Improving fast mutual exclusion. In Proceedings of the 11th ACM Sym-
posium on Principles of Distributed Computing, pages 159-168. 1992.

14. J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Dis-
tributed Computing, 9(1):51-60, 1995.

This article was processed using the ITEX macro package with LLNCS style

