
A Time Complexity Bound for Adaptive Mutual

Exclusion?

(Extended Abstract)

Yong-Jik Kim and James H. Anderson

Department of Computer Science

University of North Carolina at Chapel Hill

Abstract. We consider the time complexity of adaptive mutual exclu-

sion algorithms, where \time" is measured by counting the number of

remote memory references required per critical-section access. We estab-

lish a lower bound that precludes a deterministic algorithm with O(log k)

time complexity (in fact, any deterministic o(k) algorithm), where k is

\point contention." In contrast, we show that expected O(log k) time is

possible using randomization.

1 Introduction

In this paper, we consider the time complexity of adaptive mutual exclusion

algorithms. A mutual exclusion algorithm is adaptive if its time complexity

is a function of the number of contending processes [3, 6, 8, 10, 11]. Under the

time complexity measure considered in this paper, only remote memory refer-

ences that cause a traversal of the global processor-to-memory interconnect are

counted. Speci�cally, we count the number of such references generated by one

process p in a computation that starts when p becomes active (leaves its non-

critical section) and ends when p once again becomes inactive (returns to its

noncritical section). Unless stated otherwise, we let k denote the \point con-

tention" over such a computation (the point contention over a computation H

is the maximum number of processes that are active at the same state in H [1]).

Throughout this paper, we let N denote the number of processes in the system.

In recent work, we presented an adaptive mutual exclusion algorithm |

henceforth called Algorithm AK | with O(min(k; logN)) time complexity

[3]. Algorithm AK requires only read/write atomicity and is the only such

algorithm known to us that is adaptive under the remote-memory-references

time complexity measure. In other recent work, we established a worst-case

time bound of
(logN= log logN) for mutual exclusion algorithms (adaptive or

not) based on reads, writes, or comparison primitives such as test-and-set and

compare-and-swap [4]. (A comparison primitive conditionally updates a shared

variable after �rst testing that its value meets some condition.) This result shows

? Work supported by NSF grants CCR 9732916, CCR 9972211, CCR 9988327, and

ITR 0082866.

that the O(logN) worst-case time complexity of Algorithm AK is close to op-

timal. In fact, we believe it is optimal: we conjecture that
(logN) is a tight

lower bound for this class of algorithms.

If
(logN) is a tight lower bound, then presumably a lower bound of
(log k)

would follow as well. This suggests two interesting possibilities: in all likelihood,

either
(min(k; logN)) is a tight lower bound (i.e., Algorithm AK is optimal),

or it is possible to design an adaptive algorithm with O(log k) time complexity

(i.e.,
(log k) is tight). Indeed, the problem of designing an O(log k) algorithm

using only reads and writes has been mentioned in two recent papers [3, 6].

In this paper, we show that an O(log k) algorithm in fact does not exist. In

particular, we prove the following: For any k, there exists some N such that, for

any N-process mutual exclusion algorithm based on reads, writes, or comparison

primitives, a computation exists involving �(k) processes in which some process

performs
(k) remote memory references to enter and exit its critical section.

Although this result precludes a deterministic O(log k) algorithm (in fact,

any deterministic o(k) algorithm), we show that a randomized algorithm does

exist with expected O(log k) time complexity. This algorithm is obtained through

a simple modi�cation to Algorithm AK.

The rest of the paper is organized as follows. In Sec. 2, our system model is

de�ned. Our lower bound proof is presented in Secs. 3-4. The radomized algo-

rithm mentioned above is sketched in Sec. 5. We conclude in Sec. 6.

2 De�nitions

Our model of a shared-memory system is based on that used in [4, 5].

Shared-memory systems. A shared-memory system S = (C;P; V) consists of a set

of computations C, a set of processes P , and a set of variables V . A computation

is a �nite sequence of events.

An event e is denoted [R;W; p], where p 2 P . The sets R and W consist of

pairs (v; �), where v 2 V . This notation represents an event of process p that

reads the value � from variable v for each element (v; �) 2 R, and writes the

value � to variable v for each element (v; �) 2 W . Each variable in R (or W)

is assumed to be distinct. We de�ne Rvar(e), the set of variables read by e,

to be fv j (v; �) 2 Rg, and Wvar(e), the set of variables written by e, to be

fv j (v; �) 2Wg. We also de�ne var(e), the set of all variables accessed by e, to

be Rvar(e) [Wvar(e). We say that this event accesses each variable in var (e),

and that process p is the owner of e, denoted owner(e) = p. For brevity, we

sometimes use ep to denote an event owned by process p.

Each variable is local to at most one process and is remote to all other

processes. (Note that we allow variables that are remote to all processes.) An

initial value is associated with each variable. An event is local if it does not

access any remote variable, and is remote otherwise.

We use he; : : :i to denote a computation that begins with the event e, and

hi to denote the empty computation. We use H ÆG to denote the computation

obtained by concatenating computations H and G. The value of variable v at the

end of computation H , denoted value(v;H), is the last value written to v in H

(or the initial value of v if v is not written in H). The last event to write to v in H

is denoted writer event(v;H), and its owner is denoted writer(v;H). (Although

our de�nition of an event allows multiple instances of the same event, we assume

that such instances are distinguishable from each other.) If v is not written by

any event in H , then we let writer(v;H) = ? and writer event(v;H) = ?.
For a computation H and a set of processes Y , H jY denotes the subcom-

putation of H that contains all events in H of processes in Y . Computations

H and G are equivalent with respect to Y i� H jY = G jY . A computation H

is a Y -computation i� H = H jY . For simplicity, we abbreviate the preceding

de�nitions when applied to a singleton set of processes. For example, if Y = fpg,
then we use H j p to mean H j fpg and p-computation to mean fpg-computation.

The following properties apply to any shared-memory system.

(P1) If H 2 C and G is a pre�x of H , then G 2 C.
(P2) If H Æ hepi 2 C; G 2 C; G j p = H j p, and if value(v;G) = value(v;H)

holds for all v 2 Rvar(ep), then G Æ hepi 2 C.
(P3) If H Æ hepi 2 C, G 2 C, G j p = H j p, then G Æ he0

p
i 2 C for some event e0

p

such that Rvar(e0
p
) = Rvar(ep) and Wvar (e0

p
) =Wvar (ep).

(P4) For any H 2 C, H Æ hepi 2 C implies that � = value(v;H) holds, for all

(v; �) 2 R, where ep = [R;W; p].

For notational simplicity, we make the following assumption, which requires

each remote event to be either an atomic read or an atomic write.

Atomicity Assumption: Each event of a process p may either read or write

(but not both) at most one variable that is remote to p. ut
As explained later, this assumption actually can be relaxed to allow compar-

ison primitives.

Mutual exclusion systems. We now de�ne a special kind of shared-memory sys-

tem, namely mutual exclusion systems, which are our main interest.

A mutual exclusion system S = (C;P; V) is a shared-memory system that

satis�es the following properties. Each process p 2 P has a local variable statp
ranging over fncs; entry ; exitg and initially ncs . statp is accessed only by the

events Enterp = [fg; f(statp; entry)g; p], CSp = [fg; f(statp; exit)g; p], and
Exitp = [fg; f(statp;ncs)g; p], and is updated only as follows: for all H 2 C,
H Æ hEnterpi 2 C i� value(statp; H) = ncs;

H Æ hCS pi 2 C only if value(statp; H) = entry ;

H Æ hExitpi 2 C only if value(statp; H) = exit .

(Note that statp transits directly from entry to exit.)

In our proof, we only consider computations in which each process enters

and then exits its critical section at most once. Thus, we henceforth assume that

each computation contains at most one Enterp event for each process p. The

remaining requirements of a mutual exclusion system are as follows.

Exclusion: For all H 2 C, if both H Æ hCSpi 2 C and H Æ hCS qi 2 C hold,

then p = q.

Progress (starvation freedom): For allH 2C, if value(statp; H) 6= ncs, then

there exists an X-computation G such that H ÆGÆhepi 2 C, where X = fq 2
P j value(statq ; H) 6= ncsg and ep is either CSp (if value(statp; H) = entry)

or Exitp (if value(statp; H) = exit). ut

Cache-coherent systems. On cache-coherent shared-memory systems, some re-

mote variable accesses may be handled without causing interconnect traÆc. Our

lower-bound proof applies to such systems without modi�cation. This is because

we do not count every remote event, but only critical events, as de�ned below.

De�nition 1. Let S = (C;P; V) be a mutual exclusion system. Let ep be an

event in H 2 C. Then, we can write H as F Æ hepi Æ G, where F and G are

subcomputations of H. We say that ep is a critical event in H i� one of the

following conditions holds:

State transition event: ep is one of Enterp, CSp, or Exitp.

Critical read: There exists a variable v, remote to p, such that v 2 Rvar(ep)

and F j p does not contain a read from v.

Critical write: There exists a variable v, remote to p, such that v 2Wvar(ep)

and writer (v; F) 6= p. ut

Note that state transition events do not actually cause cache misses; these

events are de�ned as critical events because this allows us to combine certain

cases in the proofs that follow. A process executes only three transition events

per critical-section execution, so this does not a�ect our asymptotic lower bound.

According to De�nition 1, a remote read of v by p is critical if it is the �rst

read of v by p. A remote write of v by p is critical if (i) it is the �rst write of v by
p (which implies that either writer(v; F) = q 6= p holds or writer(v; F) = ? 6= p

holds); or (ii) some other process has written v since p's last write of v (which

also implies that writer (v; F) 6= p holds).

Note that if p both reads and writes v, then both its �rst read of v and �rst

write of v are considered critical. Depending on the system implementation, the

latter of these two events might not generate a cache miss. However, even in such

a case, the �rst such event will always generate a cache miss, and hence at least

half of all such critical reads and writes will actually incur real global traÆc.

Hence, our lower bound remains asymptotically unchanged for such systems.

In a write-through cache scheme, writes always generate a cache miss. With

a write-back scheme, a remote write to a variable v may create a cached copy of

v, so that subsequent writes to v do not cause cache misses. In De�nition 1, if ep
is not the �rst write to v by p, then it is considered critical only if writer(v; F) =

q 6= p holds, which implies that v is stored in the local cache line of another

process q. (E�ectively, we are assuming an idealized cache of in�nite size: a

cached variable may be updated or invalidated but it is never replaced by another

variable. Note that writer (v; F) = q implies that q's cached copy of v has not

been invalidated.) In such a case, ep must either invalidate or update the cached

copy of v (depending on the system), thereby generating global traÆc.

Note that the de�nition of a critical event depends on the particular com-

putation that contains the event, speci�cally the pre�x of the computation pre-

ceding the event. Therefore, when saying that an event is (or is not) critical, the

computation containing the event must be speci�ed.

3 Proof Strategy

In Sec. 4, we show that for any positive k, there exists some N such that, for any

mutual exclusion system S = (C;P; V) with jP j �N , there exists a computation

H such that some process p experiences point contention k and executes at

least k critical events to enter and exit its critical section. The proof focuses

on a special class of computations called \regular" computations. A regular

computation consists of events of two groups of processes, \active processes"

and \�nished processes." Informally, an active process is a process in its entry

section, competing with other active processes; a �nished process is a process

that has executed its critical section once, and is in its noncritical section. (These

properties follow from (R4), given later in this section.)

De�nition 2. Let S = (C;P; V) be a mutual exclusion system, and H be a

computation in C. We de�ne Act(H), the set of active processes in H, and

Fin(H), the set of �nished processes in H, as follows.

Act(H) = fp 2 P j H j p 6= hi and hExitpi is not in Hg
Fin(H) = fp 2 P j H j p 6= hi and hExitpi is in Hg ut

The proof proceeds by inductively constructing longer and longer regular

computations, until the desired lower bound is attained. The regularity condi-

tion de�ned below ensures that no participating process has knowledge of any

other process that is active. This has two consequences: (i) we can \erase" any

active process (i.e., remove its events from the computation) and still get a valid

computation; (ii) \most" active processes have a \next" critical event. In the

de�nition that follows, (R1) ensures that active processes have no knowledge

of each other; (R2) and (R3) bound the number of possible conicts caused by

appending a critical event; (R4) ensures that the active and �nished processes

behave as explained above; (R5) ensures that the property of being a critical

write is conserved when considering certain related computations.

De�nition 3. Let S = (C;P; V) be a mutual exclusion system, and H be a

computation in C. We say that H is regular i� the following conditions hold.

(R1) For any event ep and fq in H, where p 6= q, if p writes to a variable v,

and if another process q reads that value from v, then p 2 Fin(H).

(R2) If a process p accesses a variable that is local to another process q, then

q =2 Act(H).

(R3) For any variable v, if v is accessed by more than one processes in Act(H),

then either writer (v;H) = ? or writer (v;H) 2 Fin(H) holds.

(R4) For any process p that participates in H (H j p 6= hi), value(statp; H) is

entry, if p 2 Act(H), and ncs otherwise (i.e., p 2 Fin(H)). Moreover, if

p 2 Fin(H), then the last event of p in H is Exitp.

(R5) Consider two events ep and fp such that ep precedes fp in H, both ep and

fp write to a variable v, and fp is a critical write to v in H. In this case,

there exists a write to v by some process r in Fin(H) between ep and fp. ut

Proof overview. Initially, we start with a regular computationH1, where Act(H1)

= P , Fin(H1) = fg, and each process has exactly one critical event. We then in-

ductively show that other longer computations exist, the last of which establishes

our lower bound. Each computation is obtained by rolling some process forward

to its noncritical section (NCS) or by erasing some processes | this basic proof

strategy has been used previously to prove several other lower bounds for con-

current systems [2, 4, 7, 12]. We assume that P is large enough to ensure that

enough non-erased processes remain after each induction step for the next step

to be applied. The precise bound on jP j is given in Theorem 2.

At the jth induction step, we consider a computation Hj such that Act(Hj)

consists of n processes that execute j critical events each. We construct a regular

computation Hj+1 such that Act(Hj+1) consists of
(
p
n=k) processes that

execute j + 1 critical events each. The construction method, formally described

in Lemma 4, is explained below. In constructing Hj+1 from Hj , some processes

may be erased and at most one rolled forward. At the end of step k�1, we have
a regular computation Hk in which each active process executes k critical events

and jFin(Hk)j � k�1. Since active processes have no knowledge of each other, a

computation involving at most k processes can be obtained from Hk by erasing

all but one active process; the remaining process performs k critical events.

We now describe how Hj+1 is constructed from Hj . We show in Lemma 3

that, among the n processes in Act(Hj), at least n�1 can execute an additional

critical event prior to its critical section. We call these events \future" critical

events, and denote the corresponding set of processes by Y . We consider two

cases, based on the variables remotely accessed by these future critical events.

Erasing strategy. Assume that
(
p
n) distinct variables are remotely accessed

by the future critical events. For each such variable v, we select one process whose

future critical event accesses v, and erase the rest. Let Y 0 be the set of selected

processes. We now eliminate any information ow among processes in Y
0 by

constructing a \conict graph" G as follows.

Each process p in Y 0 is considered a vertex in G. By induction, process p has

j critical events in Act(Hj) and one future critical event. An edge (p; q), where

p 6= q, is included in G (i) if the future critical event of p remotely accesses a

local variable of process q, or (ii) if one of p's j + 1 critical events accesses the

same variable as the future critical event of process q.

Since each process in Y
0 accesses a distinct remote variable in its future

critical event, it is clear that each process generates at most one edge by rule (i)

and at most j +1 edges by rule (ii). By applying Tur�an's theorem (Theorem 1),

we can �nd a subset Z of Y 0 such that jZj =
(
p
n=j) and their critical events

do not conict with each other. By retaining Z and erasing all other active

processes, we can eliminate all conicts. Thus, we can construct Hj+1.

Roll-forward strategy. Assume that the number of distinct variables that are

remotely accessed by the future critical events is O(
p
n). Since there are �(n)

future critical events, there exists a variable v that is remotely accessed by future

critical events of
(
p
n) processes. Let Yv be the set of these processes. First, we

retain Yv and erase all other active processes. Let the resulting computation be

H
0. We then arrange the future critical events of Yv by placing all writes before

all reads. In this way, the only information ow among processes in Yv is that

from the \last writer" of v to all the subsequent readers (of v). Let pLW be the

last writer. We then roll pLW forward by generating a regular computation G

from H
0 such that Fin(G) = Fin(H 0) [fpLWg.

If pLW executes at least k critical events before reaching its NCS, then the

(k) lower bound easily follows. Therefore, we can assume that pLW performs

fewer than k critical events while being rolled forward. Each critical event of pLW
that is appended to H 0 may generate information ow only if it reads a variable

v that is written by another process in H
0. Condition (R3) guarantees that if

there are multiple processes that write to v, the last writer in H 0 is not active.

Because information ow from an inactive process is allowed, a conict arises

only if there is a single process that writes to v in H 0. Thus, each critical event

of pLW conicts with at most one process in Yv, and hence can erase at most

one process. (Appending a noncritical event to H 0 cannot cause any processes to

be erased. In particular, if a noncritical remote read by pLW is appended, then

pLW must have previously read the same variable. By (R3), if the last writer is

another process, then that process is not active.)

Therefore, the entire roll-forward procedure erases fewer than k processes

from Act(H 0) = Yv . We can assume jP j is suÆciently large to ensure that
p
n >

2k. This ensures that
(
p
n) processes survive after the entire procedure. Thus,

we can construct Hj+1.

4 Lower Bound for Systems with Read/Write Atomicity

In this section, we present our lower-bound theorem for systems satisfying the

Atomicity Assumption. At the end of this section, we explain why the lower

bound also holds for systems with comparison primitives. We begin by stating

several lemmas. Lemma 1 states that we can safely \erase" any active process.

Lemma 2 allows us to extend a computation by noncritical events. Lemma 3 is

used to show that \most" active processes have a \next" critical event.

Lemma 1. Consider a regular computation H in C. For any set Y of pro-

cesses such that Fin(H) � Y , the following hold: H jY 2 C, H jY is regular,

Fin(H jY) = Fin(H), and an event e in H jY is a critical event i� it is also a

critical event in H. ut

Lemma 2. Consider a regular computation H in C, and a set of processes Y =

fp1; p2; : : : ; pmg, where Y �Act(H). Assume that for each pj in Y , there exists

a pj-computation Lpj , such that H Æ Lpj 2 C and Lpj has no critical events in

H ÆLpj . De�ne L to be Lp1 ÆLp2 Æ � � �ÆLpm . Then, the following hold: H ÆL 2 C,
H ÆL is regular, Fin(H ÆL) = Fin(H), and L has no critical events in H ÆL. ut
Lemma 3. Let H be a regular computation in C. De�ne n = jAct(H)j. Then,
there exists a subset Y of Act(H), where n�1� jY j � n, satisfying the following:
for each process p in Y , there exist a p-computation Lp and an event ep of p

such that

� H Æ Lp Æ hepi 2 C;
� Lp contains no critical events in H Æ Lp;
� ep =2 fEnterp;CSp;Exitpg;
� ep is a critical event of p in H Æ Lp Æ hepi;
� H Æ Lp is regular;

� Fin(H Æ Lp) = Fin(H). ut
The next theorem by Tur�an [13] will be used in proving Lemma 4.

Theorem 1 (Tur�an). Let G = (V;E) be an undirected graph, where V is a set

of vertices and E is a set of edges. If the average degree of G is d, then there

exists an independent set
1
with at least djV j=(d+ 1)e vertices. ut

The following lemma provides the induction step of our lower-bound proof.

Lemma 4. Let S = (C;P; V) be a mutual exclusion system, k be a positive

integer, and H be a regular computation in C. De�ne n = jAct(H)j. Assume

that n > 1 and

� each process in Act(H) executes exactly c critical events in H. (1)

Then, one of the following propositions is true.

(Pr1) There exist a process p2Act(H) and a computation F 2C such that

� F Æ hExitpi 2 C;
� F does not contain hExitpi;
� at most m processes participate in F , where m = jFin(H) + 1j;
� p executes at least k critical events in F .

(Pr2) There exists a regular computation G in C such that

� Act(G) � Act(H);

� jFin(G)j � jFin(H) + 1j;
� jAct(G)j � min(

p
n=(2c+ 3);

p
n� k); (2)

� each process in Act(G) executes exactly c+ 1 critical events in G.

Proof. Because H is regular, using Lemma 3, we can construct a subset Y of

Act(H) such that

n� 1 � jY j � n; (3)

and for each p2 Y , there exist a p-computation Lp and an event ep such that

1 An independent set of a graph G = (V;E) is a subset V 0 � V such that no edge in

E is incident to two vertices in V 0.

� H Æ Lp Æ hepi 2 C; (4)

� Lp contains no critical events in H Æ Lp; (5)

� ep =2 fEnterp;CSp;Exitpg; (6)

� ep is a critical event of p in H ÆLp Æ hepi; (7)

� H Æ Lp is regular; (8)

� Fin(H Æ Lp) = Fin(H). (9)

De�ne Vfut as the set of variables remotely accessed by the \future" critical

events:

Vfut = fv 2 V j there exists p 2 Y such that ep remotely accesses vg: (10)

We consider two cases, depending on the size of Vfut.

Case 1: jVfutj �
p
n (erasing strategy) By de�nition, for each variable v in

Vfut, there exists a process p in Y such that ep remotely accesses v. Therefore, we

can arbitrarily select one such process for each variable v in Vfut and construct

a subset Y 0 of Y such that

� if p 2 Y 0, q 2 Y 0 and p 6= q, then ep and eq access di�erent remote variables,

and (11)

� jY 0j = jVfutj �
p
n. (12)

We now construct a graph G = (Y 0
; EG), where each vertex is a process in

Y
0. To each process y in Y 0, we apply the following rules.

(G1) Let v 2 Vfut be the variable remotely accessed by ey. If v is local to a

process z in Y 0, then introduce edge (y; z).
(G2) For each critical event f of y inH , let vf be the variable remotely accessed

by f . If vf 2 Vfut and vf is remotely accessed by event ez for some process

z 6= y in Y 0, then introduce edge (y; z).

Because each variable is local to at most one process, and since an event can

access at most one remote variable, (G1) can introduce at most one edge per

process. Since, by (1), y executes exactly c critical events in H , by (11), (G2)

can introduce at most c edges per process.

Combining (G1) and (G2), at most c + 1 edges are introduced per process.

Thus, the average degree of G is at most 2(c+ 1). Hence, by Theorem 1, there

exists an independent set Z � Y
0 such that

� jZj � jY 0j=(2c+ 3) � pn=(2c+ 3), (13)

where the latter inequality follows from (12).

Next, we construct a computation G, satisfying (Pr2), such that Act(G) =

jZj. Let H 0 = H j (Z [Fin(H)). For each process z 2 Z, (4) implies H ÆLz 2 C.
Hence, by (8) and (9), and applying Lemma 1 with `H ' H Æ Lz and `Y '
Z [Fin(H), we have the following:

� H 0 ÆLz 2 C (which, by (P1), implies H 0 2 C), and
� an event in H 0 Æ Lz is critical i� it is also critical in H Æ Lz. (14)

By (5), the latter also implies that Lz contains no critical events in H
0 ÆLz.

Let m = jZj and index the processes in Z as Z = fz1; z2; : : : ; zmg. De�ne
L = Lz1 Æ Lz2 Æ � � � Æ Lzm . By applying Lemma 2 with `H ' H

0 and `Y ' Z,

we have the following:

� H 0 ÆL 2 C,
� H 0 ÆL is regular, and

� L contains no critical events in H 0 Æ L. (15)

By the de�nition of H 0 and L, we also have

� for each z 2 Z, (H 0 Æ L) j z = (H Æ Lz) j z. (16)

Therefore, by (4) and Property (P3), for each zj 2 Z, there exists an event

e
0

zj
, such that

� G 2 C, where G = H
0 Æ L ÆE and E = he0

z1
; e

0

z2
; : : : ; e

0

zm
i;

� Rvar(e0
zj
)=Rvar(ezj),Wvar (e0

zj
)=Wvar(ezj), and owner (e

0

zj
)= owner(ezj)

= zj .

Conditions (R1){(R5) can be individually checked to hold in G, which implies

that G is a regular computation. Since Z � Y
0 � Y � Act(H), by (1), (14), and

(15), each process in Z executes exactly c critical events in H 0 Æ L.
We now show that every event in E is critical in G. Note that, by (7), ez is

a critical event in H Æ Lz Æ hezi. By (6), ez is not a transition event. By (16),

the events of z are the same in both H Æ Lz and H 0 Æ L. Thus, if ez is a critical

read or a \�rst" critical write in H Æ Lz Æ hezi, then it is also critical in G. The

only remaining case is that ez writes some variable v remotely, and is critical in

H Æ Lz Æ hezi because of a write to v prior to ez by another process not in G.

However, (R5) ensures that in such a case there exists some process in Fin(H)

that writes to v before ez, and hence ez is also critical in G.

Thus, we have constructed a computation G that satis�es the following:

Act(G) = Z � Act(H), Fin(G) = Fin(H 0) = Fin(H) (from the de�nition of H 0,

and since L Æ E does not contain transition events), jAct(G)j � pn=(2c + 3)

(from (13)), and each process in Act(G) executes exactly c+1 critical events in

G (from the preceding paragraph). It follows that G satis�es (Pr2).

Case 2: jVfutj �
p
n (roll-forward strategy) For each variable vj in Vfut, de�ne

Yvj = fp 2 Y j ep remotely accesses vjg. By (3) and (10), jVfutj �
p
n implies

that there exists a variable vj in Vfut such that jYvj j � (n� 1)=
p
n holds. Let v

be one such variable. Then, the following holds:

jYv j � (n� 1)=
p
n >
p
n� 1: (17)

De�ne H 0 = H j (Yv [Fin(H)). Using Yv � Y � Act(H), we also have

Act(H 0) = Yv � Act(H) ^ Fin(H 0) = Fin(H): (18)

Because H is regular, by Lemma 1,

� H 0 2 C, (19)

� H 0 is regular, and (20)

� an event in H 0 is a critical event i� it is also a critical event in H . (21)

We index processes in Yv from y1 to ym, where m = jYv j, such that if eyi
writes to v and eyj reads v, then i < j (i.e., future writes to v precede future

reads from v).

For each y 2 Yv , let Fy = (H Æ Ly) j (Yv [Fin(H)). (4) implies H Æ Ly 2 C.
Hence, by (8), and applying Lemma 1 with `H ' H ÆLy and `Y ' Yv[Fin(H),

we have the following: Fy 2 C, and an event in Fy is critical i� it is also critical

in H Æ Ly. Since y 2 Yv and Ly is a y-computation, by the de�nition of H 0,

Fy = H
0 ÆLy. Hence, by (5), we have

� H 0 ÆLy 2 C, and (22)

� Ly does not have a critical event in H 0 Æ Ly. (23)

De�ne L = Ly1 Æ Ly2 Æ � � � Æ Lym . We now use Lemma 2, with `H ' H
0 and

`Y ' Yv . The antecedent of the lemma follows from (18), (19), (20), (22), and

(23). This gives us the following.

� H 0 ÆL 2 C,
� H 0 ÆL is regular, (24)

� Fin(H 0 Æ L) = Fin(H), and (25)

� L contains no critical events in H 0 Æ L. (26)

By the de�nition of H 0 and L, we also have

� for each y 2 Yv , (H 0 Æ L) j y = (H Æ Ly) j y. (27)

Therefore, by (4) and Property (P3), for each yj 2 Yv, there exists an event

e
0

yj
, such that

� G 2 C, where G = H
0 Æ L ÆE and E = he0

y1
; e

0

y2
; : : : ; e

0

ym
i;

� Rvar(e0
yj
)=Rvar(eyj),Wvar(e0

yj
)=Wvar(eyj), and owner(e

0

yj
)= owner(eyj)

= yj .

From (6) and (26), it follows that L Æ E does not contain any transition

events. Moreover, by the de�nition of L and E, (L Æ E) j p 6= hi implies p 2 Yv ,
for each process p. Combining these assertions with (18), we have

Act(G) = Act(H 0 Æ L) = Act(H 0) = Yv ^
Fin(G) = Fin(H 0 Æ L) = Fin(H 0) = Fin(H): (28)

We now claim that each process in Yv (= Act(G)) executes exactly c + 1

critical events in G. In particular, by (1), (18), (21), and (26), it follows that

each process in Yv executes exactly c critical events in H
0ÆL. On the other hand,

by (7), ey is a critical event in H Æ Ly Æ heyi. By (27), and using an argument

that is similar to that at the end of Case 1, we can prove that each event e0
y
in

E is a critical event in G.

Let pLW be the last process to write to v in G (if such a process exists). If

pLW does not exist or if pLW 2 Fin(G) = Fin(H), conditions (R1){(R5) can be

individually checked to hold in G, which implies that G is a regular computation.

In this case, (17) and (28) imply that G satis�es (Pr2).

Therefore, assume pLW 2 Act(G) = Yv . De�ne HLW = (H 0 Æ L) j (Fin(H) [
fpLWg). By (24), (25), and applying Lemma 1 with `H ' H

0 Æ L and `Y '
Fin(H 0) [fpLWg, we have: HLW 2 C, HLW is regular, and Act(HLW) = fpLWg.

Since pLW is the only active process in HLW, by the Progress property, there

exists a pLW-computation F such that HLW ÆF Æ hExitpLW i 2 C and F contains

exactly one CSpLW and no ExitpLW . If F contains k or more critical events in

HLWÆF , then HLWÆF satis�es (Pr1). Therefore, we can assume that F contains

at most k�1 critical events in HLW ÆL. Let VLW be the set of variables remotely

accessed by these critical events.

If a process q in Yv writes to a variable in VLW in H
0, it might generate

information ow between q and pLW. Therefore, de�ne K, the set of processes

to erase (or \kill"), as K = fp 2 Yv �fpLWg j p = writer(u;H 0) or u is local to p

for some u 2 VLWg. (R2) ensures that each variable in VLW introduces at most

one process into K. Thus, we have jKj � jVLWj � k � 1.

De�ne S, the \survivors," as S = Yv�K, and let HS = (H 0ÆL) j (Fin(H)[S).
By (24), and applying Lemma 1 with `H ' H

0 Æ L and `Y ' Fin(H 0) [S, we
have the following: HS 2 C, HS is regular, and Act(HS) = S. By the de�nition

of L, we also have HS j y = (H 0 Æ L) j y, for each y 2 S. Since every event in E

accesses only local variables and v, by (P2), we have HS ÆE 2 C.
Note that (P2) also implies that the �rst event of F is e0

pLW
. Hence, we can

write F as e0
pLW
Æ F 0. De�ne G = HS Æ E Æ F 0. Note that (HS Æ E) j pLW =

(HLW j pLW) Æ he0
pLW
i, and that events of F 0 cannot read any variable written by

processes in S other than pLW itself. Therefore, by inductively applying (P2)

over the events of F 0, we have G 2 C.
Conditions (R1){(R5) can be individually checked to hold in G, which implies

that G is a regular computation such that Fin(G) = Fin(H)[fpLWg. Moreover,

by (17) and from jKj � k�1, we have jAct(G)j= jSj � (
p
n�1)�(k�1)�pn�k.

Thus, G satis�es (Pr2). ut

Theorem 2. Let N(k) = (2k + 1)2(2
k
�1)

. For any mutual exclusion system

S = (C;P; V) and for any positive number k, if jP j � N(k), then there exists a

computation H such that at most k processes participate in H and some process

p executes at least k critical operations in H to enter and exit its critical section.

Proof. Let H1 = hEnter1; Enter2; : : : ; EnterNi, where P = f1; 2; : : : ; Ng and
N �N(k). By the de�nition of a mutual exclusion system, H1 2 C. It is obvious
that H1 is regular and each process in Act(H) = P has exactly one critical event

in H1. Starting with H1, we repeatedly apply Lemma 4 and construct a sequence

of computations H1; H2; : : : such that each process in Act(Hj) has j critical

events in Hj . We repeat the process until either Hk is constructed or some Hj

satis�es (Pr1) of Lemma 4.

If some Hj (j < k) satis�es (Pr1), then consider the �rst such j. By our

choice of j, each of H1; : : : ; Hj�1 satis�es (Pr2) of Lemma 4. Therefore, since

jFin(H1)j = 0, we have jFin(Hj)j � j � 1 < k. It follows that computation

F Æ hExitpi, generated by applying Lemma 4 to Hj , satis�es Theorem 2.

The remaining possibility is that each of H1; : : : ; Hk�1 satis�es (Pr2). We

claim that, for 1 � j � k, the following holds:

jAct(Hj)j � (2k + 1)2(2
k+1�j

�1)
: (29)

The induction basis (j =1) directly follows from Act(H) = P and jP j �N(k).

In the induction step, assume that (29) holds for some j (1 � j < k), and let

nj = jAct(Hj)j. Note that each active process in Hj executes exactly j critical

events. By (29), we also have nj > 4k2, which implies that
p
nj � k > pnj=2 >p

nj=(2k + 1). Therefore, by (2), we have jAct(Hj+1)j � min(
p
nj=(2j + 3);p

nj � k) � pnj=(2k + 1), from which the induction easily follows.

n

n−1n−1

1

stop

rightleft

(a)

shared variable
X: f?g [f0::N � 1g initially ?;

Y : boolean initially false

private variable
dir: fstop; left ; rightg

1: X := p;

2: if Y then dir := left

else
3: Y := true ;

4: if X = p then dir := stop

5: else dir := right

� �

(b)

Fig. 1. (a) The splitter element and (b) the code fragment that implements it.

Finally, (29) implies jAct(Hk)j � 1, and (Pr2) implies jFin(Hk)j � k � 1.

Hence, select any arbitrary process p from Act(Hk). De�ne G =Hk j (Fin(Hk)[
fpg). Clearly, at most k processes participate in G. By applying Lemma 1 with

`H ' Hk and `Y ' Fin(Hk)[fpg, we have the following: G 2 C, and an event

in G is critical i� it is also critical in Hk. Hence, because p executes k critical

events in Hk, G is a computation that satis�es Theorem 2. ut
Theorem 2 can be easily strengthened to apply to systems in which compari-

son primitives are allowed. The key idea is this: if several comparison primitives

on some shared variable are currently enabled, then they can be applied in an or-

der in which at most one succeeds. A comparison primitive can be treated much

like an ordinary write if successful, and like an ordinary read if unsuccessful.

5 Randomized Algorithm

In this section, we describe the randomized version of Algorithm AK men-

tioned earlier. Due to space constraints, only a high-level description of Algo-

rithm AK is included here. A full description can be found in [3].

At the heart of Algorithm AK is the splitter element from Lamport's fast

mutual exclusion algorithm [9]. The splitter element is de�ned in Fig. 1. Each

process that invokes a splitter either stops or moves left or right (as indicated

by the value assigned to the variable dir). Splitters are useful because of the

following properties: if n processes invoke a splitter, then at most one of them

can stop at that splitter, and at most n� 1 can move left (respectively, right).

In Algorithm AK, splitter elements are used to construct a \renaming

tree." A splitter is located at each node of the tree and corresponds to a \name."

A process acquires a name by moving down through the tree, starting at the

root, until it stops at some splitter. Within the renaming tree is an arbitration

Renaming Tree Overflow Tree

. 2−process
ME algorithm

O(log N)
height

. .

.

process p process q

got name

failed to
get name

(a) (b) (c)

Fig. 2. (a) Renaming tree and overow tree. (b) Process p gets a name in the renaming

tree. (c) Process q fails to get a name and must compete within the overow tree.

tree that forms dynamically as processes acquire names. A process competes

within the arbitration tree by moving up to the root, starting at the node where

it acquired its name. Associated with each node in the tree is a three-process

mutual exclusion algorithm. As a process moves up the tree, it executes the entry

section associated with each node it visits. After completing its critical section,

a process retraces its path, this time executing exit sections. A three-process

mutual exclusion algorithm is needed at each node to accommodate one process

from each of the left- and right-subtrees beneath that node and any process that

may have successfully acquired a name at that node.

In Algorithm AK, the renaming tree's height is de�ned to be blogNc,
which results in a tree with �(N) nodes. With a tree of this height, a process

could \fall o�" the end of the tree without acquiring a name. To handle such

processes, a second arbitration tree, called the \overow tree," is used. The

renaming and overow trees are connected by placing a two-process mutual

exclusion algorithm on top of each tree, as illustrated in Fig. 2.

The time complexity ofAlgorithm AK is determined by the depth to which

a process descends in the renaming tree. If the point contention experienced by

a process p is k, then the depth to which p descends is O(k). This is because, of

the processes that access the same splitter, all but one may move in the same

direction from that splitter. If all the required mutual exclusion algorithms are

implemented using Yang and Anderson's local-spin algorithm [14], then because

the renaming and overow trees are both of height �(logN), overall time com-

plexity is O(min(k; logN)).

Our new randomized algorithm is obtained from Algorithm AK by replac-

ing the original splitter with a probabilistic version, which is obtained by using

\dir := choice(left ; right)" in place of the assignments to dir at lines 2 and 5

in Fig. 1(b), where choice(left ; right) returns left (right) with probability 1/2.

With this change, a process descends to an expected depth of �(log k) in the

renaming tree. Thus, the algorithm has �(log k) expected time complexity.

6 Concluding Remarks

We have established a lower bound that precludes an O(log k) adaptive mutual

exclusion algorithm (in fact, any o(k) algorithm) based on reads, writes, or com-

parison primitives. We have also shown that expected O(log k) time is possible

using randomization.

One may wonder whether a
(min(k; logN= log logN)) lower bound follows

the results of this paper and [4]. Unfortunately, the answer is no. We have shown

that
(k) time complexity is required provided N is suÆciently large. This leaves

open the possibility that an algorithm might have �(k) time complexity for very

\low" levels of contention, but o(k) time complexity for \intermediate" levels of

contention. However, we �nd this highly unlikely.

References

1. Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming

made adaptive. In Proceedings of the 18th Annual ACM Symposium on Principles

of Distributed Computing, pages 91{103. May 1999.
2. Y. Afek, P. Boxer, and D. Touitou. Bounds on the shared memory requirements

for long-lived and adaptive objects. In Proceedings of the 19th Annual ACM Sym-

posium on Principles of Distributed Computing, pages 81{89. July 2000.
3. J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning. In

Proceedings of the 14th International Symposium on Distributed Computing, pages

29{43, October 2000.
4. J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity

of mutual exclusion. To be presented at the 20th Annual ACM Symposium on

Principles of Distributed Computing, August 2001.
5. J. Anderson and J.-H. Yang. Time/contention tradeo�s for multiprocessor syn-

chronization. Information and Computation, 124(1):68{84, January 1996.
6. H. Attiya and V. Bortnikov. Adaptive and eÆcient mutual exclusion. In Proceed-

ings of the 19th Annual ACM Symposium on Principles of Distributed Computing,

pages 91{100. July 2000.
7. J. Burns and N. Lynch. Mutual exclusion using indivisible reads and writes. In

Proceedings of the 18th Annual Allerton Conference on Communication, Control,

and Computing, pages 833{842, 1980.
8. M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem.

Distributed Computing, 8(1):1{17, 1994.
9. L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer

Systems, 5(1):1{11, February 1987.
10. M. Merritt and G. Taubenfeld. Speeding Lamport's fast mutual exclusion algo-

rithm. Information Processing Letters, 45:137{142, 1993.
11. E. Styer. Improving fast mutual exclusion. In Proceedings of the 11th Annual ACM

Symposium on Principles of Distributed Computing, pages 159{168. August 1992.
12. E. Styer and G. Peterson. Tight bounds for shared memory symmetric mutual

exclusion. In Proceedings of the 8th Annual ACM Symposium on Principles of

Distributed Computing, pages 177{191. August 1989.
13. P. Tur�an. On an extremal problem in graph theory (in Hungarian). Mat. Fiz.

Lapok, 48:436{452, 1941.
14. J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Dis-

tributed Computing, 9(1):51{60, August 1995.

