
Timing-based Mutual Exclusion with Local Spinning∗

Yong-Jik Kim and James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

Email: {kimy,anderson}@cs.unc.edu

July 2003

Abstract

We consider the time complexity of shared-memory mutual exclusion algorithms based on reads, writes,
and comparison primitives under the remote-memory-reference (RMR) time measure. For asynchronous
systems, a lower bound of Ω(log N/ log log N) RMRs per critical-section entry has been established in
previous work, where N is the number of processes. Also, algorithms with O(log N) time complexity
are known. Thus, for algorithms in this class, logarithmic or near-logarithmic RMR time complexity is
fundamentally required.

In this paper, we show that lower RMR time complexity is attainable in semi-synchronous systems
with delay statements. When assessing the time complexity of delay-based algorithms, the question of
whether delays should be counted arises. We consider both possibilities. Also of relevance is whether
delay durations are upper-bounded. Again, we consider both possibilities. For each of these possibilities,
we present an algorithm with either Θ(1) or Θ(log log N) time complexity. For the cases in which a
Θ(log logN) algorithm is given, we establish matching Ω(log logN) lower bounds. It follows from these
results that semi-synchronous systems allow mutual exclusion algorithms with substantially lower RMR
time complexities than completely asynchronous systems, regardless of how one resolves the issues noted
above.

1 Introduction

Recent work on shared-memory mutual exclusion has focused on the design of algorithms that minimize
interconnect contention through the use of local spinning . In local-spin algorithms, all busy waiting is by
means of read-only loops in which one or more “spin variables” are repeatedly tested. Such variables must be
either locally cacheable or stored in a local memory module that can be accessed without an interconnection
network traversal. The former is possible on cache-coherent (CC) machines, while the latter is possible on
distributed shared-memory (DSM) machines.

In this paper, several results concerning the time complexity of local-spin mutual exclusion algorithms are
given. Time complexity is defined herein using the remote-memory-reference (RMR) measure [12]. Under
this measure, an algorithm’s time complexity is defined as the total number of RMRs required in the worst
case by one process to enter and then exit its critical section. An algorithm may have different RMR time
complexities on CC and DSM machines, because variable locality is dynamically determined on CC machines
and statically on DSM machines. (A detailed discussion of the CC and DSM machine models can be found
in [10].)

In this paper, we consider mutual exclusion algorithms based on reads, writes, and comparison primitives
such as test-and-set and compare-and-swap. A comparison primitive is an atomic operation on a shared
variable v that is expressible using the following pseudo-code.

∗Work supported by NSF grant CCR 0208289.

1

compare and fg(v, old , new)
temp := v;
if v = old then v := f(old , new) fi;
return g(temp, old , new)

For example, compare-and-swap can be specified by defining f(old , new) = new and g(temp, old ,
new) = old . (In this paper, we assume that compare-and-swap returns the accessed variable’s old value.)

In earlier work, Cypher [15] established a time-complexity lower bound of Ω(log log N/ log log log N)
RMRs for any asynchronous N -process mutual exclusion algorithm based on reads, writes, and comparison
primitives. In recent work [6], we presented for this class of algorithms a substantially improved lower bound
of Ω(log N/ log log N) RMRs. This lower bound is within a factor of Θ(log log N) of being optimal, since
algorithms based only on reads and writes with Θ(logN) RMR time complexity are known [27].1 The proofs
of these bounds use the ability to “stall” some processes for arbitrarily long durations, and hence are not
applicable to semi-synchronous systems, in which the time required to execute a statement is upper-bounded.

A number of interesting “timing-based” mutual exclusion algorithms have been devised in recent years in
which such bounds are exploited and processes have the ability to delay their execution [2, 4, 20, 21]. Such
algorithms are the focus of this paper. In this paper, we exclusively consider the known-delay model [4, 20, 21],
in which there is a known upper bound, denoted ∆, on the time required to access (read or write) a shared
variable.2 For simplicity, all process delays are assumed to be implemented via the statement delay(∆).
(Longer delays can be obtained by concatenating such statements; we will use delay(c ·∆) as a shorthand
for c such statements in sequence.)

In prior work on timing-based algorithms, the development of algorithms that are fast in the absence of
contention has been the main focus. In fact, to the best of our knowledge, all timing-based algorithms previ-
ously proposed use non-local busy-waiting. Hence, these algorithms have unbounded RMR time complexity
under contention.

Contributions. In this paper, we present time-complexity bounds for timing-based algorithms under the
known-delay model in which all busy-waiting is by local spinning. (Our results are summarized in Table 1,
which is explained below.) Under this model, the class of algorithms considered in this paper can be restricted
somewhat with no loss of generality. In particular, comparison primitives can be implemented in constant
time from reads and writes by using delays [3, 23]. Thus, it suffices to consider only timing-based algorithms
based on reads and writes. In the rest of the paper, all claims are assumed to apply to this class of algorithms,
unless noted otherwise.

Our specific objective is to determine whether lower RMR time complexity is attainable in semi-synchro-
nous systems with delay statements. Specifically, we wish to determine if timing-based algorithms with
o(log N/ log log N) RMR time complexity exist. Note that, from the lower bound mentioned above [6],
o(logN/ log logN) time is not possible in completely asynchronous systems.

When assessing the RMR time complexity of timing-based algorithms, the question of whether delays
should be counted arises. To see why this is an issue, consider the test-and-set/reset implementation in
Figure 1, which is taken from [23].3 A process p performs a successful test-and-set by reading Z = ⊥ and by
then writing Z := p. Of course, many processes may concurrently find Z = ⊥ and then write Z. The delay
at line 3 causes line 4 to be executed after all such “concurrent” writes have been performed, so only the
last process to update Z returns true at line 4.

This usage of delays is typical of timing-based algorithms: a process performs a delay that is long enough
to ensure that any execution of a certain code fragment by other processes completes before the delay ends.

1In contrast, several Θ(1) algorithms are known that are based on noncomparison primitives (e.g., [9, 13, 16, 22]). A detailed
discussion of such algorithms can be found in [10]. We do not consider such algorithms in this paper.

2Equivalently, statement executions can be considered to take place instantaneously (i.e., atomically), with consecutive
statement executions of the same process occurring at most ∆ time units apart. We adopt this model in our lower bound proof.
The known-delay model differs from the unknown-delay model [2], wherein the upper bound ∆ is unknown a priori, and hence,
cannot be used directly in an algorithm.

3It is assumed here that a process may invoke reset only if it is has previously performed a successful test-and-set, and has
not invoked reset since.

2

shared variable Z: {0..N − 1} ∪ {⊥}
procedure test-and-set()

returns boolean

1 : v := Z;
2 : if v = ⊥ then Z := p fi;
3 : delay(2 ·∆);
4 : return (v = ⊥ ∧ Z = p)

procedure reset()

5 : Z := ⊥

Figure 1: test-and-set and reset.

(Note that if such a code fragment is short, then it may be reasonable to execute it with interrupts disabled,
in which case determining an appropriate delay value is relatively straightforward.) Such a code fragment
will typically contain at least one RMR. Given this, it may make sense to include delays when assessing time
complexity. Accordingly, we define the RMR-∆ time complexity of an algorithm to be the total number of
RMRs and delay(∆) statements required in the worst case by one process to enter and then exit its critical
section. (Note that this measure includes the total delay duration as well as the number of delay statements,
since ∆ is fixed for a given system.)

On the other hand, one might argue that delays should be ignored when assessing time complexity,
just like local memory references. For completeness, we consider this possibility as well by also considering
the standard RMR measure (which ignores delays). One limitation of the RMR measure is that it allows
algorithms with long delays to be categorized as having low time complexity. For this reason, we view the
RMR-∆ measure as the better choice.

As we shall see, the exact semantics assumed of the statement delay(∆) is of relevance as well. It is rea-
sonable to assume that a process is delayed by at least ∆ time units when invoking this statement. However,
it is not clear whether a specific upper bound on the delay duration should be assumed. For completeness,
we once again consider both possibilities. (Note that assuming an upper bound places constraints on the
way processes are scheduled. Such constraints may be problematic in practice if delay durations are long.)

Our results are summarized in Table 1. The headings “Delays Bounded/Unbounded” indicate whether
delay durations are assumed to be upper bounded. The other headings should be self-explanatory. Each
table entry gives a time-complexity figure that is shown to be optimal by giving an algorithm, and for the
Θ(log logN) entries, a lower bound. The main conclusion to be drawn from these results is the following: in
semi-synchronous systems in which delay statements are supported, substantial improvements in RMR time
complexity are possible when devising mutual exclusion algorithms, regardless of how one resolves the issues
of whether to count delays and how to define the semantics of the delay statement.

The results summarized in Table 1 complete a body of work developed by us over the last few years
on time-complexity limits pertaining to mutual exclusion algorithms. Such algorithms can be categorized
according to the assumptions made about the underlying hardware or system. In our prior work, we have
studied algorithms based on atomic reads and writes [5, 7], nonatomic reads and writes [8], and stronger
synchronization primitives (such as compare-and-swap and fetch-and-store) [9]. Most mutual exclusion algo-
rithms presented in the literature fit within one of these categories, with one notable exception: timing-based
algorithms, the topic of this paper.

In the following sections, we establish the results of Table 1. First, we present Algorithms DSM, CC,
and T in Sections 2–4, respectively. We then establish our lower bounds in Sections 5 and 6. We conclude
in Section 7.

2 Θ(1) DSM Algorithm

In this section, we describe Algorithm DSM, which has Θ(1) RMR-∆ time complexity (and hence Θ(1)
RMR time complexity) on DSM machines. Upper bounds on delays are not required. We first consider
an unbounded version, which is illustrated in Figure 2. In this and subsequent figures, we assume that
each labeled sequence of statements is atomic; in each figure, each labeled sequence reads or writes at most
one shared variable. (References to unspecified code fragments, such as in line 11 in Figure 2, should be
interpreted as branches to these code fragments.)

3

RMR Time Complexity RMR-∆ Time Complexity

Arch. Delays Bounded Delays Unbounded Delays Bounded/Unbounded

DSM Θ(1) {Alg. DSM} Θ(1) {Alg. DSM} Θ(1) {Alg. DSM}
CC Θ(1) {Alg. CC} Θ(log logN) {Alg. T, Theorem 5} Θ(log logN) {Alg. T, Theorem 4}

Table 1: Summary of results. Each entry gives a time-complexity figure that is shown to be optimal.

Overview of Algorithm DSM. The basic structure of Algorithm DSM is as follows. A process p tries
to enter its critical section by performing a compare-and-swap operation on the shared variable Lock (line 2
of Figure 2). (Recall that compare-and-swap can be implemented in Θ(1) time using delays [3, 23].) Lock
acts as a basic test-and-set lock, except that compare-and-swap is used instead: if the compare-and-swap
operation succeeds, then p enters its critical section.

In an ordinary test-and-set lock, if the test-and-set operation fails, then p repeats the operation until it
succeeds, resulting in unbounded RMRs. In order to avoid this, Algorithm DSM is constructed as follows:
if p fails to acquire Lock , then it is eventually “promoted” to its critical section by some other process.

To arbitrate between these two possibilities, an additional two-process mutual exclusion algorithm is
used, which can be easily implemented in Θ(1) time [27]. The two-process entry section is invoked with a
process identifier of “0” by processes that successfully acquire Lock (line 11), and a process identifier of “1”
by promoted processes (line 14). To ensure that multiple processes are not concurrently promoted, a shared
variable Promoted is used to hold the identity of a promoted process (if one exists), as described shortly.

We now consider the case that p fails to acquire Lock because another process q has already acquired
it. In that case, p notifies q of its presence by writing a shared variable Waiting [q][p], which is local to q
(line 12). (Recall that variable locality is statically determined in DSM machines.) Since each of Waiting [q]
[0..N−1] is local to q, q may examine these variables in its exit section, and construct a queue LocalQueue[q]
of found processes (i.e., {r:Waiting [q][r] = true}) without executing any RMRs (lines 18–21). q then merges
LocalQueue[q] into a serial waiting queue, named GlobalQueue (line 22). This queue is accessed only within
exit sections. A “barrier” mechanism (lines 6 and 10) is used that ensures that multiple processes do not
execute their exit sections concurrently. Because Wait is effectively part of a critical section, these procedures
can easily be implemented in Θ(1) time, as explained shortly.

Thanks to the barrier mechanism, GlobalQueue can be implemented as a sequential data structure. The
queues GlobalQueue and LocalQueue are accessible by the usual Enqueue and Dequeue operations, plus
a Merge operation (which merges the content of LocalQueue[q] into GlobalQueue), each of which can be
implemented in Θ(1) time. We assume that Dequeue returns ⊥ when applied to an empty queue.

Note that, in order to implement Merge in Θ(1) time, the nodes of LocalQueue[q] must be linked onto
GlobalQueue. (If we instead copy the content of LocalQueue[q] to GlobalQueue, then the copy operation
could incur Θ(N) RMRs, since we cannot in general expect the variables that comprise GlobalQueue to be
local to q.) Thus, LocalQueue[q] must be implemented with shared variables that are local to q.

Process q thus adds processes that have written Waiting [q][. . .] (including p in the case considered here)
to GlobalQueue (lines 19–22). In addition, q (and each process later executing its exit section) checks if
a promoted process currently exists (line 24), and if not, dequeues a process r from GlobalQueue (if it
is nonempty), and “promotes” r to its critical section (lines 25–27). (This is rather similar to helping
mechanisms used in wait-free algorithms [17].)

There are two key additional ideas in this algorithm. First, a process q that has acquired Lock resets
Lock in its exit section (line 16) and delays (line 17), until any process p that read Lock = q has finished
writing Waiting [q][p], i.e., ∆0 is large enough to satisfy following property.

Property 1 A process that reads Lock = q at line 2 executes line 12 in ∆0 time.

Second, even though scanningWaiting [q][. . .] and generating a local queue requires Θ(N) local operations
(accessing Θ(N) variables), these operations do not contribute to RMR-∆ time complexity. Interestingly,
this is only possible in DSM machines, because in CC machines, the first access of each of these variables
causes a cache miss. Thus, the algorithm’s time complexity is Θ(1) in DSM machines, but Θ(N) in CC

4

shared variables
Spin: array[0..N − 1] of boolean;
Lock , Promoted : (⊥, 0..N − 1) initially ⊥;
Waiting : array[0..N − 1][0..N − 1] of boolean initially false;
GlobalQueue: queue of {0..N − 1} initially empty;
LocalQueue: array[0..N − 1] of queue of {0..N − 1}

private variables
lock , next , q: (⊥, 0..N − 1)

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: Spin[p] := false;
2: lock := CAS(&Lock , ⊥, p);

if lock = ⊥ then
3: LockWinnerEntry()

else
4: PromotedEntry()

fi;

5: Critical Section;

6: Wait(); /∗ wait at the barrier ∗/
if lock = ⊥ then

7: LockWinnerExit()
else

8: PromotedExit()
fi

9: TryToPromote();
10: Signal() /∗ open the barrier ∗/
od

procedure LockWinnerEntry()
11: Entry2(0)

procedure PromotedEntry()
12: Waiting [lock][p] := true;
13: await Spin[p];
14: Entry2(1)

procedure LockWinnerExit()
15: Exit2(0);
16: Lock := ⊥
17: delay(∆0);
18: LocalQueue[p] := new copy of an empty queue;

for q := 0 to N − 1
19: if Waiting [p][q] then
20: Enqueue(LocalQueue[p], q);
21: Waiting [p][q] = false

fi
od;

22: Merge(GlobalQueue, LocalQueue[p])

procedure PromotedExit()
23: Exit2(1)

procedure TryToPromote()
/∗ promote a waiting process (if any) ∗/
24: q := Promoted ;

if (q = p) ∨ (q = ⊥) then
25: next := Dequeue(GlobalQueue);
26: Promoted := next ;
27: if next �= ⊥ then Spin[next] := true fi

fi

Figure 2: Algorithm DSM, unbounded space version.

machines. (In contrast to this situation, it is usually the case that designing efficient local-spin algorithms
is easier for CC machines than for DSM machines.)

The barrier mechanism. We now explain how to implement the barrier mechanism. Procedures Wait
and Signal can be implemented by the code fragments on the left and right below, respectively.

a: Waiter := p;
b: Spin ′[p] := false;
c: if CAS(B, closed , waiting) = closed then
d: await Spin ′[p]

fi;
e: B := closed ;
f: Waiter := ⊥

g: if CAS(B, closed , open) = waiting then
h: next :=Waiter ;
i: Spin ′[next] := true

fi

Variable B ranges over open, closed , and waiting , and indicates whether the barrier is open, closed
without a waiting process, or closed with a waiting process. If B equals waiting , then Waiter indicates the
current waiting process. Spin ′[p] is a spin variable used exclusively by process p (and, hence, it can be stored
in memory local to p). Since there can be at most one process that may execute within a–e (respectively,

5

g–i) at any time, it is straightforward to establish the correctness of this implementation.

Correctness Proof. We now formally prove the correctness of Algorithm DSM. We begin by stating
several notational conventions that will be used throughout this paper.

Notational Conventions: We use s.p to denote the statement with label s of process p, and
p.v to represent p’s private variable v. Let S be a subset of the statement labels in process p.
Then, p@S holds if and only if the program counter for process p equals some value in S. (Note
that if s is a statement label, then p@{s} means that statement s of process p is enabled , i.e., p
has not yet executed s.)

As stated earlier, we assume that each labeled sequence of statements is atomic. For example,
consider statement 2.p. If 2.p is executed while Lock = ⊥ holds, then it establishes p@{3}. On
the other hand, if 2.p is executed while Lock �= ⊥ holds, then it establishes p@{4}.
We number statements in this way to reduce the number of cases that must be considered in
the proof. Note that each numbered sequence of statements reads or writes at most one shared
variable. (Because the Entry, Exit, Wait, and Signal routines are assumed to be correct,
we can assume that they execute atomically and do not access any of the shared variables of
Algorithm DSM.) �

We now give the list of invariants needed to prove the correctness of Algorithm DSM. Informally
speaking, invariant (I1) states that at most one process may “hold” Lock at a time. Invariants (I2) and (I3)
state that the identity of a promoted process is indicated by Promoted . (In particular, there exists at most
one promoted process.) Invariant (I4) and (I5) state the mutual exclusion requirement and the correctness
of the barrier, respectively.

invariant (Lock = p) = (p@{3, 11, 5, 6, 15, 16} ∧ p.lock = ⊥) (I1)
invariant p@{13} ∧ Spin[p] = true ⇒ Promoted = p (I2)
invariant p@{14, 5, 6, 8, 23, 9, 24..26} ∧ p.lock �= ⊥ ⇒ Promoted = p (I3)
invariant (Mutual exclusion)

∣∣{p: p@{5, 6}}∣∣ ≤ 1 (I4)
invariant

∣∣{p: p@{7..10, 15..27}}∣∣ ≤ 1 (I5)
invariant If p is contained in any queue (GlobalQueue or LocalQueue[q] for some q), then p@{13} holds.

(I6)

We now prove that each of (I1)–(I6) is an invariant. For each invariant I, we prove that for any pair of
consecutive states t and u, if all invariants hold at t, then I holds at u. (It is easy to see that each invariant
is initially true, so we leave this part of the proof to the reader.)

invariant (Lock = p) = (p@{3, 11, 5, 6, 15, 16} ∧ p.lock = ⊥) (I1)

Proof: The only statement that may establish the left-hand side is 2.p, which also establishes the right-hand
side. The only statement that may falsify the left-hand side is 16.q, where q is any arbitrary process. The
structure of the algorithm implies that, in this case, q@{16} ∧ q.lock = Null holds. Hence, if 16.q is executed
while the left-hand side holds, then (I1) implies q = p, and hence 16.q also falsifies the right-hand side.

The only statements that may establish or falsify the right-hand side are 2.p and 16.p, which preserve
(I1) as shown above. �

invariant p@{13} ∧ Spin[p] = true ⇒ Promoted = p (I2)

Proof: The only statement that may establish p@{13} is 12.p, which may establish the antecedent only
if executed when Spin[p] = true holds. Since p has established Spin[p] = false at line 1, this may happen
only if some other process q has executed line 27 while q.next = p holds. However, this in turn implies that

6

statement 25.q dequeued p from GlobalQueue. By (I6), statement 25.q was executed while p@{13} was true.
However, after p executes line 1, p@{13} is continuously false until 12.p is executed, a contradiction. It
follows that statement 12.p cannot establish the antecedent.

The only statement that may establish Spin[p] = true is 27.q, where q is any arbitrary process. In this
case, q has established the consequent by executing 26.q. Note that Promoted cannot change between the
executions of 26.q and 27.q, thanks to the barrier mechanism (I5).

The only statement that may falsify the consequent is 26.q. However, due to the barrier mechanism, this
may happen only if 24.q is executed while Promoted = p holds, in which case 26.q may be executed only if
q = p. Thus, the antecedent is false before and after the execution of 26.q. �

invariant p@{14, 5, 6, 8, 23, 9, 24..26} ∧ p.lock �= ⊥ ⇒ Promoted = p (I3)

Proof: The only statement that may establish p@{14, 5, 6, 8, 23, 9, 24..26} is 13.p, which may do so only if
Spin[p] = true holds. In this case, (I2) implies the consequent.

The only statement that may falsify the consequent is 26.q, which may do so only if q = p, as shown in
the proof of (I2). Thus, 26.q falsifies the antecedent in this case. �

invariant
∣∣{p: p@{5, 6}}∣∣ ≤ 1 (I4)

Proof: By (I1), there exists at most one non-promoted process that may execute Entry2(0) and Exit2(0).
Similarly, by (I3), there exists at most one promoted process that may execute Entry2(1) and Exit2(1).
Because the Entry and Exit routines are assumed to be correct, we have (I4). �

invariant
∣∣{p: p@{7..10, 15..27}}∣∣ ≤ 1 (I5)

Proof: By (I4), there exists at most one process that may invoke Wait (line 6). Similarly, while (I5) holds,
there exists at most one process that may invoke Signal (line 10). Because the Wait and Signal routines
are assumed to be correct (under this condition), we have (I5). �

invariant If p is contained in any queue (GlobalQueue or LocalQueue[q] for some q), then p@{13} holds.
(I6)

Proof: The antecedent may be established only if some process q finds Waiting [q][p] = true at line 19 and
enqueues p at line 20. However, for this to happen, p must have executed line 12 and established p@{13}.
Moreover, once p@{13} is established, it may be falsified only if Spin[p] = true is established, which may
happen only if some process dequeues q from GlobalQueue at line 25.

Thus, the antecedent is established only if p@{13} is true, and p@{13} continues to hold as long as the
antecedent holds. �

By (I4), we have mutual exclusion. By Property 1, every process that fails to acquire Lock is eventually
enqueued onto LocalQueue[q] (for some q), and hence p is eventually dequeued and promoted by some process
(lines 25–27). Thus, we also have starvation freedom.

A bounded version. We now describe a simple change needed to bound the space complexity of Algo-
rithm DSM. At line 18, LocalQueue[p] is assigned a pointer to a local queue Q that is not concurrently
accessed by any other process. Some processes are then enqueued onto Q at line 20, which is in turn merged
into GlobalQueue at line 22. Note that the length of GlobalQueue is at most N −1 at any given moment. As
a consequence, any process that is represented by a node in Q is dequeued from GlobalQueue after at most
N − 1 subsequent critical-section executions. Therefore, after these N − 1 executions, Q is again “clean.”

It follows that we can keep N copies of local queues (each capable of holding N process identifiers) per
each process, and then use them in a circular order at line 18. With this transformation, the space complexity
of Algorithm DSM becomes Θ(N3). (Each of N processes has N copies of local queues, each of which
incurs Θ(N) space complexity.) From Algorithm DSM, we have the following theorem.

7

shared variables
Spin: array[0..N − 1] of boolean;
Lock , Promoted : (⊥, 0..N − 1) initially ⊥;
GlobalQueue: queue of {0..N − 1} initially empty;
LocalQueue: array[0..N − 1] of queue of {0..N − 1}

private variables
lock , next , q: (⊥, 0..N − 1)

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: Spin[p] := false;
2: LocalQueue[p] := new copy of an empty queue;
3: lock := CAS(&Lock , ⊥, p);

if lock = ⊥ then
4: LockWinnerEntry()

else
5: PromotedEntry()

fi;

6: Critical Section;

7: Wait(); /∗ wait at the barrier ∗/
if lock = ⊥ then

8: LockWinnerExit()
else

9: PromotedExit()
fi

10: TryToPromote();
11: Signal() /∗ open the barrier ∗/
od

procedure LockWinnerEntry()
/∗ execute a queue-lock entry section

(lines 12 and 14) ∗/
12: EnqueueN (p);
13: Lock := ⊥;
14: SpinN (p);
15: Entry2(0)

procedure PromotedEntry()
16: delay(∆−

p ,∆+
p);

17: Enqueue(LocalQueue[lock], p);
18: await Spin[p];
19: Entry2(1)

procedure LockWinnerExit()
20: Exit2(0);
21: delay(∆−

N ,∆+
N);

22: Merge(GlobalQueue, LocalQueue[p]);
23: ExitN (p); /∗ execute a queue-lock exit section ∗/

procedure PromotedExit()
24: Exit2(1)

procedure TryToPromote()
/∗ promote a waiting process (if any) ∗/
25: q := Promoted ;

if (q = p) ∨ (q = ⊥) then
26: next := Dequeue(GlobalQueue);
27: Promoted := next ;
28: if next �= ⊥ then Spin[next] := true fi

fi

Figure 3: Algorithm CC, unbounded space version.

Theorem 1 The mutual exclusion problem can be solved with Θ(1) RMR-∆ time complexity (and hence
Θ(1) RMR time complexity) on DSM machines in the known-delay model. �

3 Θ(1) Bounded-delay Algorithm

We now describe Algorithm CC, which has Θ(1) RMR time complexity on CC machines, provided delays
can be upper bounded. As before, we present a version with unbounded space complexity, which is shown
in Figure 3. (Space can be bounded in the same way as for Algorithm DSM.)

Algorithms DSM and CC share a common structure: if a process p fails to acquire Lock because of
another process q, then p is enqueued onto q’s local waiting queue LocalQueue[q], and q later merges its
local queue with GlobalQueue in its exit section. However, unlike Algorithm DSM, q cannot examine
one variable for every potential waiter, since this would incur Θ(N) RMR time complexity in CC systems.
Instead, the burden of enqueueing p onto q’s local queue is placed on p. In order to enqueue itself, p must
ensure that other processes do not access LocalQueue[q] concurrently. Toward this goal, we use a queue-
based mutual exclusion algorithm as a subroutine, represented by procedures Enqueue, Spin, and Exit, as
explained shortly. The manner in which these queues are accessed is illustrated in Figure 4, and explained

8

Lock

q

p1

p2

^ q ^ . . .

CAS fails.CAS succeeds.

Waits in the GT queue. CS

delay(D-p1
, D+p1

)

delay(D-p2
, D+p2

)

q�s local queue

p1 enqueues
itself.

p2 enqueues
itself.

Waits for promotion.

Waits for promotion.

delay(D
-

N, D
+

N)

Merge the queues.

Updates the GT queue.

d’

Variables

Processes

Time

Figure 4: A possible timeline of Algorithm CC. Time flows from left to right. Black circles (•) represent
successful compare-and-swap operations, crosses (×) represent unsuccessful ones, and white circles (◦) rep-
resent one or more simple write(s). Dotted and dashed lines represent local spinning and delay-statement
executions, respectively.

below.
Since delays are upper-bounded, we can write a delay statement as delay(∆−, ∆+), where ∆− (∆+)

specifies the lower (upper) bound on the duration of the delay. (In general, ∆− and ∆+ are not independent.)
We can then create N + 1 possible delay durations, denoted (∆−

p ,∆+
p) (for 0 ≤ p ≤ N), such that

∆−
p+1 −∆+

p ≥ δ (1)

holds for each p and some δ.
As explained below, the algorithm ensures the following.

Property 1 If a process q acquires Lock (line 3 of Figure 3), then q establishes Lock = ⊥ (line 13) within
δ′ = Θ(∆) time, for some δ′.

Therefore, if multiple processes pi (for some range of i) obtain Lock = q for some q at line 3, then they
must have done so in a duration of length δ′, as shown in Figure 4. Each process pi then executes delay(∆−

pi
,

∆+
pi
) (line 16), and then enqueues itself onto LocalQueue[q] (line 17). Note that, by (1), the actual delay

duration of each pi differs by at least δ. Hence, by Property 1, and by choosing δ large enough, we can
ensure that such processes finish their delay-statement executions at different times, so that accesses of
LocalQueue[q] by these processes never overlap. Thus, each pi may enqueue itself in a sequential operation,
as shown in Figure 4. (Meanwhile, q may execute its critical section.)

In its exit section, process q executes delay(∆−
N ,∆+

N) (line 21), and thus ensures that every pi (as defined
above) has enqueued itself onto LocalQueue[q]. q then merges its queue with the global queue (line 22).

Note that a process cannot simply acquire Lock (by a successful compare-and-swap operation), execute
its critical section, and then release Lock as in Algorithm DSM, because critical-section executions may
take unbounded time and hence Property 1 would be violated. A possible alternative might be to release
Lock before executing the critical section. However, this is clearly problematic, because the critical section
would be unprotected by Lock .

To solve this problem, we use Lock to execute a queue-based mutual exclusion algorithm with Θ(1) RMR
time complexity. Several such algorithms are known [13, 16, 22] that have the following structure.

while true do
Noncritical Section;
EnqueueN (p); /∗ enqueues p onto the waiting queue in Θ(1) steps; may use strong atomic primitives ∗/
SpinN (p); /∗ local spinning ∗/
Critical Section;
ExitN (p)

od

9

For example, Graunke and Thakkar’s algorithm [16] can be implemented as follows, in which the shared
variables Tail and Slots implement a waiting queue, which we will call the “GT queue.”

shared variables
Tail : (0..N − 1)× boolean initially (0, false);
Slots: array[0..N − 1] of boolean initially true

private variables
tail : (⊥, 0..N − 1);
bit : boolean

EnqueueN (p)
a: (tail , bit) := fetch-and-store(Tail , (p, Slots[p]))

SpinN (p)
b: await Slots[tail] �= bit

ExitN (p)
c: bit := Slots[p];
d: Slots[p] := ¬bit

In Algorithm CC, these procedures are invoked by processes that have acquired Lock (lines 12, 14, and
23). Note we allow Enqueue to contain noncomparison primitives (such as fetch-and-store and fetch-and-
add). Since executions of Enqueue (in Algorithm CC) are serialized by means of Lock , these primitives
can be implemented with ordinary reads and writes.

Since q releases Lock at line 13, Property 1 is ensured. As shown in Figure 4, q enqueues itself onto
the GT queue (line 12), waits for its predecessor (in the GT queue) to finish (line 14), and later signals its
successor in the GT queue (line 23).

The two-process mutual exclusion algorithm and the barrier and promotion mechanisms are the same
as in Algorithm DSM. In fact, the barrier mechanism can be considerably simplified in CC machines, as
follows: Wait can be defined as “await Flag ; Flag := false” and Signal as “Flag := true,” where Flag is a
shared boolean variable.

Due to the similarity between Algorithms DSM and CC, we omit a formal correctness proof for
Algorithm CC. From this discussion, we have the following theorem.

Theorem 2 The mutual exclusion problem can be solved with Θ(1) RMR time complexity on CC machines
in the known-delay model, assuming delays can be upper bounded. �

4 A Θ(log log N) Algorithm

In this section, we describe Algorithm T (for “tree”), in which each process executes Θ(log logN) RMRs
and Θ(log logN) delay statements in order to enter and then exit its critical section. Upper bounds on delays
are not required. As a stepping stone toward our final algorithm, we first present a version with unbounded
space, which is given in Figure 5.

Algorithm T is constructed by combining smaller instances of a mutual exclusion algorithm in a
binary arbitration tree. A similar approach has been used in algorithms in which each tree node represents
an instance of a two-process mutual exclusion algorithm [18, 27]. If each node takes Θ(1) time, then Θ(logN)
time is required for a process to enter (and then exit) its critical section.

In order to obtain a faster algorithm, we give the tree an additional structure, as follows. For the sake of
simplicity, we assume that N = 22K

holds for some integer K > 0. (Otherwise, we add “dummy processes”
to the nearest such number. Since log log 22K

= K, such padding increases the algorithm’s time complexity
by only a constant factor.) We say that a binary arbitration tree has order k if it has 2k levels and 22k

leaves, as shown in Figure 6. We do not count leaves when counting the number of levels. (This structure
is somewhat similar to the van Emde Boas tree [26], which implements a Θ(log log u)-time search structure
over a fixed set of integers 1..u.) A tree of order zero is a two-process mutual exclusion algorithm, as shown

10

TreeType = record
order : 0..K;
upper : pointer to TreeType;

lower : array[0..(22
order−1 − 1)] of

pointer to TreeType;
winner , waiter : (⊥, 0..N − 1)

end

shared variables
T0: (a tree with order K);
Spin: array[0..N − 1] of boolean;
Promoted : (⊥, 0..N − 1) initially ⊥;
WaitingQueue: queue of {0..N − 1}

initially empty

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: Spin[p] := false;
2: AccessTree(&T0, p);
3: TryToPromote();
4: Signal() /∗ open the barrier ∗/
od

procedure TryToPromote()
/∗ promote a waiting process (if any) ∗/
5: q := Promoted ;

if (q = p) ∨ (q = ⊥) then
6: next := Dequeue(WaitingQueue);
7: Promoted := next ;
8: if next �= ⊥ then Spin[next] := true fi

fi

procedure ExecuteCS(side: 0, 1)
9: if side = 1 then await Spin[p] fi;
10: Entry2(side);
11: Critical Section;
12: Wait(); /∗ wait at the barrier ∗/
13: Exit2(side)

procedure AccessTree(
ptrT : pointer to TreeType,
pos: 0..N − 1)

14: k := ptrT -> order ;
if k = 0 then /∗ base case ∗/

15: ptrT -> waiter := p;
16: ExecuteCS(1);
17: return

fi;

18: indx := �pos/22k−1�;
ptrL := ptrT -> lower [indx];

19: if CAS(ptrL -> winner , ⊥, p) �= ⊥ then

20: AccessTree(ptrL, pos mod 22
k−1

);
/∗ recurse into the lower component ∗/

21: return
fi;

22: ptrU := ptrT -> upper ;
23: if CAS(ptrU -> winner , ⊥, p) �= ⊥ then
24: AccessTree(ptrU , indx)

/∗ recurse into the upper component ∗/
else

25: if ptrT = &T0 then
26: ExecuteCS(0)

else
27: ptrT -> waiter := p;

/∗ p is now the primary waiter of T ∗/
28: ExecuteCS(1)

fi;

/∗ update the upper component ∗/
29: ptrC := GetCleanTree(k − 1);
30: ptrT -> upper := ptrC ;
31: delay(∆0);
32: Enqueue(WaitingQueue, ptrU -> waiter)

fi;

/∗ update the lower component ∗/
33: ptrC := GetCleanTree(k − 1);
34: ptrT -> lower [indx] := ptrC ;
35: delay(∆0);
36: Enqueue(WaitingQueue, ptrL -> waiter)

Figure 5: Algorithm T, unbounded space version. (Each private variable used in AccessTree is assumed
to be on the call stack.)

in the figure. A tree T of order k > 0 is divided into the top 2k−1 levels and the bottom 2k−1 levels: the top
levels constitute a single tree of order k−1, and the bottom levels, 22k−1

distinct trees of order k−1. We call
these subtrees T ’s components. Thus, T consists of a single upper component and 22k−1

lower components,
where the root node of each lower component corresponds to a leaf node of the upper component. These
components are linked into T dynamically by pointers, so a process can exchange a particular component S
with another tree S′ (of order k − 1) in Θ(1) time.

We also say that tree S is a constituent of tree T if either S is T or S is a component of another constituent
of T . Associated with each tree T is a field called winner , which is accessed by compare-and-swap operations.
A process p attempts to establish T.winner = p by invoking compare-and-swap, in which case it is said to
have acquired T . The structure of an arbitration tree explained thus far is depicted in Figure 7. (The waiter
field is explained later.)

11

order 0 order 1

order 2

Lower
components

Upper component

Figure 6: Structure of arbitration trees used in
Algorithm T. A tree of order k > 0 has an
upper component and 22k−1

lower components,
each of order k − 1.

waiterwinner

lower

upper

. . .

. . .

. . .

waiterwinner

(a) (b)

order
k - 1

order
k - 1

Figure 7: Structure of an arbitration tree of TreeType,
of order k. (a) A “verbose” depiction, showing dynamic
links for its components. (b) A simplified version.

. . .

Processes

Critical section

.

enter 2-process ME
enter the barrier

exit 2-process ME

For each acquired tree T,

 unlink T from its "parent",

 delay,

 enqueue T’s primary waiter

 (if one exists).

T0

regular entry promoted
entry

Dequeue and promote a

waiting process (if any).

open the barrier

waiting queue

Figure 8: Overall structure of Algorithm T. Dashed lines represent information/signal flow.

Arbitration tree and waiting queue. We start with a high-level overview, as illustrated in Figure 8.
A tree T0 of order K and N leaves is used, in which each process is statically assigned to a leaf node.
The algorithm is constructed by recursively combining instances of a mutual exclusion algorithm for each
component of T0. The process that wins the outermost instance of the algorithm (namely, the one associated
with T0) enters its critical section.

Note that, for each process p, its path from its leaf up to the root in T0 is contained in two components,
namely, some lower component Li and the upper component U . To enter its critical section, p attempts to
acquire both components on this path (by invoking compare-and-swap on Li.winner , and then on U.winner).
If p acquires both components, then it may enter its critical section. As explained shortly, p may also be
“promoted” to its critical section after failing to acquire either tree. (In that case, p may have acquired only
Li, or neither Li nor U .) In any case, p later resets any component(s) it has acquired.

The algorithm also uses a serial waiting queue, named WaitingQueue, which is accessed only within exit
sections. As before, a barrier mechanism (lines 4 and 12 in Figure 5) is used that ensures that multiple
processes do not execute their exit sections concurrently. As a result, WaitingQueue can be implemented as
a sequential data structure, in which each operation takes Θ(1) time. The way in which WaitingQueue and
Promoted are used (lines 5–8, 32, and 36) is the same as in previous algorithms.

12

(a) (b)

T0

qs

U

Lj

qs
T0

qs

U

Lj

qs

p

Li

p recurses
into U.

(c)

UU

ULk

U
qs

p

p

p

(d)

T0

qs

C

Lj

p

Li

U

qs p

qs enqueues p.

FreeList[K-1]

Figure 9: An example of recursive execution. The left-side boxes represent the winner field; the right-
side ones, waiter . (a) A process qs acquires both Lj and U and performs a regular (non-promoted) entry.
(b) Process p acquires Li, but fails to acquire U . (c) p recurses into U , acquires its two components ULk and
UU , and becomes U ’s primary waiter. (Note that the tree depicted here is U , not T0.) (d) Process qs, in its
exit section, updates T0.upper to point to a clean tree, C, delays itself, and enqueus p onto WaitingQueue.
In the bounded space version (Figure 10), the old component U is now enqueued onto FreeList [K − 1], so
that it can be reused later.

Recursive execution. We now consider the case that a process p fails to acquire both of its components
of T0. (Until we consider the exit section below, p is assumed to be defined as such.) Assume that p fails to
acquire S (which may be either Li or U), because some other process qs has already acquired it. The case
for S = U is illustrated in Figure 9. In this case, p recurses into S (we say that p “enters” S), and executes
an identical mutual exclusion algorithm, except for one difference: if p acquires both components of S along
its path inside S (which we denote by SLk and SU , respectively), then instead of entering its critical section,
it writes its identity into another field waiter of S (Figure 9(c)). We say that p is the primary waiter of S
in this case. If p still fails to acquire both SLk and SU , then it recurses further into the component it failed
to acquire. Therefore, we have the following.

Property 1 A process p that enters a tree S eventually becomes the primary waiter of some constituent
S′ of S.

Once p becomes a primary waiter, it stops and waits until it is promoted by some other process.
After p enters S, it tries to acquire SLk in Θ(1) steps. If p succeeds, then it tries to acquire SU in Θ(1)

steps. Otherwise, some other process r has already acquired SLk. That process will eventually attempt to
acquire SU in Θ(1) steps, unless it has already done so. Since the first process to attempt to acquire SU
succeeds, we have the following.

Property 2 If some process enters a tree S, then some process becomes S’s primary waiter in Θ(1) steps,
that is, in O(∆) time.

Inside its exit section, process qs (which has acquired S) first delays itself by ∆0 = Θ(∆) time, and
then examines its path in order to discover other waiting processes (Figure 9(d)). In particular, for each
component qs has acquired (including S), qs determines if that component has a primary waiter. Thus,

Property 3 If a process q acquires a tree S, then q enqueues S’s primary waiter (if any) in q’s exit section.

As explained shortly, p may enter S only before qs completes its delay. By Property 2, and because p
has entered S, qs’s delay ensures that qs indeed finds a primary waiter of S.

If p is the primary waiter of S, then qs enqueues p onto the waiting queue; otherwise, qs enqueues the
primary waiter of S, which eventually executes its exit section and examines the components of S it has
acquired. Continuing in this manner, every process that stopped inside S, including p, is eventually enqueued
onto the waiting queue. Thus, p eventually enters its critical section.

Exit-section execution. We now consider the exit section of a process p. As explained before, the
barrier mechanism ensures that exit-section executions are serialized. For each component S of T0 that is

13

acquired by p (which may be Li or U), p updates T0’s pointer for S so that it now points a “clean” tree
C, as shown in Figure 9(d). (The variable FreeList [K − 1] shown in the figure pertains to the bounded
space version, as explained shortly.) In the unbounded version (Figure 5), we assume the existence of a
function GetCleanTree, which returns a pointer to a previously unused tree of a given order. (This results in
unbounded space complexity.) Note that some process may still be executing inside S, which is now unlinked
from T0.

As explained above, after unlinking S, p delays itself by ∆0, and thus ensures that if any process has
entered S (the “old” component), then some process has become its primary waiter. p then checks for the
primary waiter of S, and enqueues the waiter if it exists.

From the discussion so far, it is clear that the mutual exclusion algorithm at each tree T of order k
incurs Θ(1) RMR-∆ time complexity, plus the time required for a recursive invocation at some component
(of order k− 1) of T . (Note that p may recurse into either Li or U , but not both.) Thus, Θ(k) RMR-∆ time
complexity is incurred at T , and Θ(K) = Θ(log logN) at T0.

A bounded version. We now explain how to bound the space complexity of Algorithm T. As explained
above, each process, in its exit section, may need to update a pointer to a component so that it points to a
“clean” tree. (A tree is clean if it is properly initialized and no process is concurrently accessing it.)

In an unbounded version, we may assume that a previously unused tree always exists. However, this is
impossible in the bounded version, illustrated in Figure 10, and hence we must “recycle” trees that have
been used before. However, since trees are accessed in entry sections which execute asynchronously, it is
difficult to ensure that a given tree T is not concurrently accessed by any other process. (Note that, if we
poll every other process to ensure that it does not access T , then such a check would incur Θ(N) RMRs,
which is clearly undesirable.) In order to facilitate this, we use variables InUse and FreeList , which keep
track of trees that are possibly clean.
FreeList [k] is a queue of trees of order k that are not currently linked from T0, and is accessed by the

usual Enqueue and Dequeue operations, plus the MoveToTail operation: if a tree S is in FreeList [k], then
MoveToTail(FreeList [k], &S) moves S to the end of the queue; otherwise, it does nothing. If these queues
are implemented as a doubly-linked list, then each of these operations can be performed in Θ(1) time. We
stress that these operations are invoked only in exit sections, and hence are executed sequentially, due to
the barrier. When a process p accesses a particular tree T (of order k), then p marks T as being “in use”
by establishing InUse[p][s][j] = &T for some j (lines 23 and 28 in Figure 10). Lines 3–5 are executed to
ensure that no tree currently “in use” can propagate to the head of FreeList . In particular, if p is waiting
for promotion while accessing S, then while it is waiting, S will be moved to the end of FreeList [k] by every
N th critical section execution. A variable Check cycles through 0..N − 1 for this purpose. (This mechanism
is taken from [11], and is also used in [5].)

Further details. Having explained the basic structure of the algorithm, we now present a more detailed
overview. (In the rest of this section, all line numbers refer to Figure 10.)

A process p in its entry section first initializes its spin variable (line 1), and enters T0 (line 2). Procedure
AccessTree(&T, pos) executes a mutual exclusion algorithm at tree T , starting from position pos among its
leaf nodes (indexed 0..22k

, where k is the order of T). After returning from AccessTree, p moves “dirty”
trees to the tail of FreeList as explained before (lines 3–5), and promotes a process from WaitingQueue, if
one exists and if no other process is currently promoted (lines 8–11). Finally, it opens the barrier (line 7).

Procedure ExecuteCS is called to execute critical sections. As explained before, processes exiting T0 form
two groups: the promoted processes and the non-promoted processes (i.e., those that successfully acquire
the upper component of T0). To arbitrate between these two groups, an additional two-process mutual
exclusion algorithm is used. Promoted processes invoke ExecuteCS (side) with side = 1, and other processes
with side = 0. Inside ExecuteCS , a process first waits for promotion if side equals 1 (line 12), executes
a two-process entry section (line 13), executes its critical section (line 14), and waits until the barrier is
opened (line 15), so that exit-section executions are serialized. Finally, it executes the two-process exit
section (line 16) and returns.

14

TreeType = record
order : 0..K;
upper : pointer to TreeType;

lower : array[0..(22
order−1 − 1)] of

pointer to TreeType;
winner , waiter : (⊥, 0..N − 1)

end

shared variables
T0: (a tree with order K);
Check : 0..N − 1;
Spin: array[0..N − 1] of boolean;
Promoted : (⊥, 0..N − 1) initially ⊥;
FreeList : array[0..K − 1] of queue of

pointers to TreeType;
InUse: array[0..N − 1][0..K − 1][1, 2] of

pointer to TreeType;
WaitingQueue: queue of {0..N − 1}

initially
WaitingQueue: empty;
FreeList [k]: contains 4N + 1 clean trees
of order k

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: Spin[p] := false;
2: AccessTree(&T0, p);

/∗ move “dirty” trees to tail ∗/
3: ptr := Check ;

for k := 0 to K − 1 do
for j := 1 to 2 do

4: MoveToTail(FreeList [k], InUse[ptr][k][j])
od od;

5: Check := ptr + 1 mod N ;

6: TryToPromote();
7: Signal() /∗ open the barrier ∗/
od

procedure TryToPromote()
/∗ promote a waiting process (if any) ∗/
8: q := Promoted ;

if (q = p) ∨ (q = ⊥) then
9: next := Dequeue(WaitingQueue);
10: Promoted := next ;
11: if next �= ⊥ then Spin[next] := true fi

fi

procedure ExecuteCS(side: 0, 1)
12: if side = 1 then await Spin[p] fi;
13: Entry2(side);
14: Critical Section;
15: Wait(); /∗ wait at the barrier ∗/
16: Exit2(side)

procedure AccessTree(
ptrT : pointer to TreeType,
pos: 0..N − 1)

17: k := ptrT -> order ;
if k = 0 then /∗ base case ∗/

18: ptrT -> waiter := p;
19: ExecuteCS(1);
20: ptrT -> waiter := ⊥;
21: return

fi;

22: indx := �pos/22k−1�;
ptrL := ptrT -> lower [indx];

23: InUse[p][k − 1][1] := ptrL;
24: if CAS(ptrL -> winner , ⊥, p) �= ⊥ then

25: AccessTree(ptrL, pos mod 22
k−1

);
/∗ recurse into the lower component ∗/

26: return
fi;

27: ptrU := ptrT -> upper ;
28: InUse[p][k − 1][2] := ptrU ;
29: if CAS(ptrU -> winner , ⊥, p) �= ⊥ then
30: AccessTree(ptrU , indx)

/∗ recurse into the upper component ∗/
else

31: if ptrT = &T0 then
32: ExecuteCS(0)

else
33: ptrT -> waiter := p;

/∗ p is now the primary waiter of T ∗/
34: ExecuteCS(1)

fi;

/∗ update the upper component ∗/
35: ptrC := Dequeue(FreeList [k − 1]);
36: ptrT -> upper := ptrC ;
37: delay(∆0);
38: Enqueue(WaitingQueue, ptrU -> waiter);
39: ptrU -> winner := ⊥;
40: Enqueue(FreeList [k − 1], ptrU)

fi;

/∗ update the lower component ∗/
41: ptrC := Dequeue(FreeList [k − 1]);
42: ptrT -> lower [indx] := ptrC ;
43: delay(∆0);
44: Enqueue(WaitingQueue, ptrL -> waiter);
45: ptrL -> winner := ⊥;
46: Enqueue(FreeList [k − 1], ptrL)

Figure 10: Algorithm T, bounded space version.

15

We now explain AccessTree(&T, pos) in detail. Lines 18–21 implement the base case in which T has order
zero. In this case, T is a single binary node. Actually, T is simpler than a two-process mutual exclusion,
because p may enter T only if some other process q has already acquired T . Since T may be concurrently
accessed by at most two processes, p is the sole waiter of T .

Thus, p designates itself as the primary waiter of T (line 18), invokes ExecuteCS as a promoted process,
resets ptrT -> waiter (line 20), and returns (line 21).

If k > 0, then p first tries to acquire its lower component L of T (line 24). If p fails, then it recurses into
L (line 25). Otherwise, p tries to acquire the upper component U as well (line 29). If it fails, then it recurses
into U (line 30). Otherwise, there are two cases to consider. If T equals T0, then p invokes ExecuteCS as
a non-promoted process (line 32); otherwise, p designates itself as T ’s primary waiter (line 33), and invokes
ExecuteCS as a promoted process (line 34).

In its exit section, p replaces the components it has acquired with clean trees (lines 35–40 for U , and
lines 41–46 for L). We only explain lines 35–40 here; the other case is similar. (See also Figure 9(d).) First,
p dequeues a clean tree of order k − 1 (line 35), updates T ’s upper pointer (line 36), and delays itself by ∆0

(line 37). ∆0 is chosen to satisfy the following two properties.

Property 4 For each tree S, if a process q establishes q.ptrL := &S at line 22 while S.winner �= ⊥ holds,
then some process r (not necessarily q) becomes the primary waiter of S by executing line 18 or 33 of
AccessTree(&S, . . .) in ∆0 time.

Property 5 For each tree S, if a process q establishes q.ptrU := &S at line 27 while S.winner �= ⊥ holds,
then some process r (not necessarily q) becomes the primary waiter of S by executing line 18 or 33 of
AccessTree(&S, . . .) in ∆0 time.

By Property 2, we have ∆0 = Θ(∆). Therefore, considering again lines 35–40, if a process has entered
U , then p enqueues its primary waiter at line 38. It then resets U.winner (line 39), and enqueues U onto
FreeList so that it may be reused later (line 40).

Correctness Proof. We now formally prove the correctness of Algorithm T. The following is the list
of invariants needed to prove the correctness of Algorithm T. Informally speaking, invariant (I1) implies
that only the winner of the upper component (of a tree T) may exchange the upper component (by executing
line 36). Invariant (I2) implies that the identity of such a winner is indicated by the winner field. Invariant
(I3) states that the identity of a promoted process is indicated by Promoted . (In particular, there exists
at most one promoted process.) Invariant (I4) and (I5) state the mutual exclusion requirement and the
correctness of the barrier, respectively.

invariant p@{12..16, 31..36} ∧ p.ptrT -> order > 0 ⇒ p.ptrU = p.ptrT -> upper (I1)
invariant p@{12..16, 31..39} ∧ p.ptrT -> order > 0 ⇒ p.ptrU -> winner = p (I2)
invariant p@{2..6, 8..10, 12..46} ∧ Spin[p] = true ⇒ Promoted = p (I3)
invariant (Mutual exclusion)

∣∣{p: p@{14..16}}∣∣ ≤ 1 (I4)
invariant

∣∣{p: p@{3..11, 16, 20, 21, 26, 35..46}}∣∣ ≤ 1 (I5)

We now prove that each of (I1)–(I5) is an invariant. As before, for each invariant I, we prove that for
any pair of consecutive states t and u, if all invariants hold at t, then I holds at u. (It is easy to see that
each invariant is initially true, so we leave this part of the proof to the reader.)

invariant p@{12..16, 31..36} ∧ p.ptrT -> order > 0 ⇒ p.ptrU = p.ptrT -> upper (I1)

Proof: The only statement that may establish the antecedent is 29.p, which may do so only if executed
when p.ptrU ->winner = ⊥ holds. Note that p has established the consequent by executing statement 27.p.
Therefore, 29.p may falsify (I1) only if some process q has changed p.ptrT -> upper (by executing 36.q while
q.ptrT = p.ptrT holds). However, for this to happen, q must have established q.ptrU -> winner = q by

16

executing 29.q. Moreover, q.ptrU = q.ptrT -> upper holds. (Otherwise, q would have violated (I1).) It
follows that p reads p.ptrU ->winner = q at line 29 in this case, and hence cannot establish the antecedent.

The only statement that may falsify the consequent is 36.q, where q is any arbitrary process. Statement
36.q may falsify the consequent only if executed when q.ptrT = p.ptrT holds. However, by applying (I1)
and (I2) to q, we have q.ptrT -> upper -> winner = q. Similarly, the antecedent of (I1) implies (by (I2))
p.ptrT -> upper -> winner = p.

It follows that 36.q may falsify (I1) only if q = p holds. However, in this case, 36.q falsifies the antecedent,
and thus preserves (I1). �

invariant p@{12..16, 31..39} ∧ p.ptrT -> order > 0 ⇒ p.ptrU -> winner = p (I2)

Proof: The only statement that may establish the antecedent is 29.p, which establishes the consequent.
The only statements that may falsify the consequent are 39.q and 45.q, where q is any arbitrary process.
However, the structure of the algorithm implies that a tree cannot simultaneously be the upper component
of some tree and the lower component of some tree. Thus, 45.q cannot falsify the consequent.

Statement 39.q may falsify the consequent only if executed when q.ptrU = p.ptrU holds. However, by
applying (I2) to p and q, we have p.ptrU -> winner = p and q.ptrU -> winner = q, and hence p = q holds.
Thus, 39.q falsifies the antecedent in this case. �

invariant p@{2..6, 8..10, 12..46} ∧ Spin[p] = true ⇒ Promoted = p (I3)

Proof: The only statement that may establish p@{2..6, 8..10, 12..46} is 1.p. However, the antecedent is
false after the execution of 1.p. The only statement that may establish Spin[p] = true is 11.q, where q is
any arbitrary process. In this case, q has established the consequent by executing 10.q. Note that Promoted
cannot change between the executions of 10.q and 11.q, due to the barrier mechanism (I5).

The only statement that may falsify the consequent is 10.q. However, due to the barrier mechanism, this
may happen only if 8.q is executed while Promoted = p holds, in which case 10.q may be executed only if
q = p. Thus, 10.q falsifies the antecedent in this case. �

invariant (Mutual exclusion)
∣∣{p: p@{14..16}}∣∣ ≤ 1 (I4)

Proof: A process p may execute Entry2(0) and Exit2(0) only if it executes lines 31 and 32. By (I1) and
(I2), this implies T0 -> upper -> winner = p. Therefore, there exists at most one non-promoted process that
may execute Entry2(0) and Exit2(0). Similarly, by (I3), there exists at most one promoted process that
may execute Entry2(1) and Exit2(1). Because the Entry and Exit routines are assumed to be correct, we
have (I4). �

invariant
∣∣{p: p@{3..11, 16, 20, 21, 26, 35..46}}∣∣ ≤ 1 (I5)

Proof: By (I4), there exists at most one process that may invoke Wait (line 15). Similarly, while (I5) holds,
there exists at most one process that may invoke Signal (line 7). Because the Wait and Signal routines
are assumed to be correct (under this condition), we have (I5). �

By (I4), we have mutual exclusion. As explained before, Property 1 ensures that a process p (unless
it wins the outermost instance of the mutual exclusion algorithm) eventually becomes a primary waiter of
some tree S. By inductively applying Properties 2 and 3 over the order of trees, it easily follows that some
process eventually enqueues p onto WaitingQueue. Thus, p eventually enters its critical section.

The space complexity of Algorithm T is O(N3 log log N) if we take into account adding dummy
processes to ensure N = 22K

. From Algorithm T, we have the following theorem.

Theorem 3 The mutual exclusion problem can be solved with Θ(log log N) RMR-∆ (or RMR) time com-
plexity on CC or DSM machines in the known-delay model. �

17

5 Lower Bound: System Model

In this section, we present the model of a shared-memory system used in our lower-bound proof. Our system
model is similar to that used in [6, 12].

Shared-memory systems. A shared-memory system S = (C, P, V) consists of a set of computations C,
a set of processes P , and a set of variables V . A computation is a finite sequence of timed events. A timed
event is a pair (e, t), where e is an event and t is a nonnegative real value, specifying the time e is executed.
An event e, executed by a process p ∈ P , has the form of [p, Op, . . .]. We call Op the operation of event e,
denoted op(e). Op can be one of the following: read(v), write(v), or delay, where v is a variable in V . For
brevity, we sometimes use ep to denote an event executed by process p. The following assumption formalizes
requirements regarding the atomicity of events.

Atomicity Property: Each event ep is one of the following.

• ep = [p, read(v), α]. In this case, ep reads the value α from v. We call ep a read event.
• ep = [p, write(v), α]. In this case, ep writes the value α to v. We call ep a write event.
• ep = [p, delay]. In this case, ep delays p by a fixed amount ∆, defined so that each event execution finishes
in ∆ time. We call ep a delay event. �

We also say that ep accesses v if it writes or reads v. In a computation, event timings must appear in
nondecreasing order. (When multiple events are executed at the same time, their effect is determined by
the order they appear in a computation.) The value of variable v at the end of computation H, denoted
value(v, H), is the last value written to v in H (or the initial value of v if v is not written in H). The
last event to write to v in H is denoted writer event(v, H),4 and the process that executes the event is
denoted writer(v, H). If v is not written by any event in H, then we let writer(v, H) = ⊥ and writer
event(v, H) = ⊥. The execution time of the last event of H is denoted last(H).

Each variable is local to at most one process and is remote to all other processes. (Note that we allow
variables that are remote to all processes.) An initial value is associated with each variable. An event is
local if it accesses a local variable, and remote if it accesses a remote variable. An event is nonlocal if it is
either a remote event or a delay event.

We use 〈(e, t), . . .〉 to denote a computation that begins with the event e executed at time t, 〈〉 to denote
the empty computation, and H ◦ G to denote the computation obtained by concatenating computations H
and G. For a computation H and a set of processes Y , H | Y denotes the subcomputation of H that contains
all events of processes in Y .5 If G is a subcomputation of H, then H − G is the computation obtained by
removing all events in G from H. Computations H and G are equivalent with respect to Y if and only if
H | Y = G | Y . A computation H is a Y -computation if and only if H = H | Y . For simplicity, we abbreviate
these definitions when applied to a singleton set of processes (e.g., H | p instead of H | {p}).

Mutual exclusion systems. We now define a special kind of shared-memory system, namely mutual
exclusion systems, which are our main interest.

A mutual exclusion system S = (C, P, V) is a shared-memory system that satisfies the following prop-
erties. Each process p ∈ P has an auxiliary variable statp that ranges over {ncs, entry , exit}. The
variable statp is initially ncs and is accessed only by the following events: Enterp = [p, write(statp), entry],
CSp = [p, write(statp), exit], and Exitp = [p, write(statp), ncs]. We call these events transition events. These
events represent the start of p’s entry section, p’s critical-section execution, and the end of p’s exit section,
respectively. The allowable transitions of statp are as follows: for all H ∈ C,

4Although our definition of an event allows multiple instances of the same event, we assume that such instances are dis-
tinguishable from each other. (For simplicity, we do not extend our notion of an event to include an additional identifier for
distinguishability.)

5H | Y and H ◦ G are not necessarily valid computations in a given system S, i.e., elements of C. However, we can always
consider them as computations in a technical sense, i.e., each is a sequence of events.

18

H ◦ 〈(Enterp, ∃t)〉 ∈ C if and only if value(statp, H) = ncs;
H ◦ 〈(CSp, ∃t)〉 ∈ C if value(statp, H) = entry ;
H ◦ 〈(Exitp, ∃t)〉 ∈ C if value(statp, H) = exit .

We also say that a process is active if it is not in its noncritical section:

Definition: For a computation H, we define Act(H), the set of active processes in H, as {p ∈ P :
value(statp, H) is entry or exit}. �

We henceforth assume each computation contains at most one Enterp event for each process p, because
this is sufficient for our proof. The remaining requirements of a mutual exclusion system are as follows.

Exclusion: For all H ∈ C, if both H ◦ 〈(CSp, t)〉 ∈ C and H ◦ 〈(CS q, t
′)〉 ∈ C hold (for some t and t′), then

p = q.
— Informally, At most one process may be enabled to execute CSp after any H ∈ C.

Progress (Livelock freedom): Given H ∈ C, if some process is active after H, then H can be extended
by events of active processes so that some such process p eventually executes either CSp or Exitp.

Cache-coherent systems. On cache-coherent systems, some variable accesses may be handled locally,
without causing interconnect traffic. In order to apply our lower bound to such systems, we do not count
every read/write event, but only critical events, as defined below.

Definition: Let ep be an event in H ∈ C, and let H = F ◦ 〈ep〉 ◦ · · · , where F is a subcomputation of H.
We say that ep is a cache-miss event in H if one of the following conditions holds: (i) it is the first read of
a variable v by p; (ii) it writes a variable v such that writer(v, F) �= p. �

Definition: We say that an event ep is critical if and only if one of the following conditions holds. (i) ep

accesses statp. (In this case, ep is called a transition event.) (ii) ep is a delay event. (iii) ep is a cache-miss
event. �

Transition events are defined as critical because this allows us to combine certain cases in the proofs
that follow. Since a process executes only three transition events per critical-section execution, this has no
asymptotic impact.

Note that a write event of v by p is a cache-miss event if (i) it is the first write of v by p, or (ii) it is the
first write of v by p after some other process has written v.

Also, if p both reads and writes v, then both its first read of v and first write of v are considered critical.
Depending on the system implementation, the latter of these two events might not generate a cache miss.
However, even in such a case, the first such event will always generate a cache miss, and hence at least half
of all such critical reads and writes will actually incur real global traffic. Hence, our lower bound remains
asymptotically unchanged for such systems.

In a write-through cache scheme, writes always generate a cache miss. On the other hand, with a write-
back scheme, a remote write to a variable v may create a cached copy of v, so that subsequent writes to v
do not cause cache misses. In the definition above, if ep is not the first write to v by p, then it is considered
a cache-miss event only if writer(v, F) = q �= p holds, which implies that v is stored in the local cache of
another process q.6 In such a case, ep either invalidates or updates the cached copy of v (depending on the
system), thereby generating global traffic.

As explained later, the definition of cache-miss events given above is too narrow to Theorem 5, a lower
bound that pertains to the RMR measure. Thus, in order to prove Theorem 5, we need to slightly broaden
our definition of a cache-miss event, as shown in Section 6.

6Effectively, we are assuming an idealized cache of infinite size: a cached variable may be updated or invalidated but it is
never replaced by another variable. (Note that writer(v, F) = q implies that q’s cached copy of v has not be invalidated.) Cache
size and associativity limitations can only increase the number of cache misses.

19

Note that the above definition of a cache-miss event depends on the particular computation that contains
the event, specifically the prefix of the computation preceding the event. Therefore, when saying that an
event is (or is not) a cache-miss event or a critical event, the computation containing the event must be
specified.

Properties of computations. The timing requirements of a mutual exclusion system are captured by
requiring the following for each H ∈ C.

T1: For any two timed events (ep, t) and (fq, t
′) in H, if ep precedes fq, then t ≤ t′ holds.

T2: For any timed event (ep, t) in H, if ep �= Exitp and if last(H) > t+∆, then ep is not the last event in
H | p.

T3: For any two consecutive timed events (ep, t) and (fp, t
′) in H | p, the following holds:


t′ = t+∆, if ep is a delay event,
t+∆c ≤ t′ ≤ t+∆, if ep is a cache-miss event,
t ≤ t′ ≤ t+∆, otherwise,

where ∆c is a lower bound (less than ∆) on the duration of a cache-miss event.

Note that T3 allows noncritical events to execute arbitrarily fast. If this were not the case, then a “free”
delay statement that is not counted when assessing time complexity could be implemented by repeatedly
executing noncritical events (e.g., by reading a dummy variable). Thus, in such systems (which has a known
lower bound on the execution time of a noncritical event), the RMR measure and the RMR-∆ measure
become identical.

Note that we allow noncritical events to take zero duration. We could have instead required them to
have durations lower-bounded by an arbitrarily small positive constant, at the expense of more complicated
bookkeeping in our proofs. (As noted earlier in footnote 2, events occur instantaneously in our model;
durations are enforced by properly spacing events apart. Whenever two events occur at the same instant,
their effect is determined by their relative order in the computation under consideration.)

On the other hand, cache-miss events take some duration between ∆c and ∆, and hence our lower bound
applies to systems with both upper and lower bounds on the execution time of such events. All delay events
are assumed to have an exact duration of ∆. Thus, the issue of whether delays are upper bounded does not
arise in our proof.

We say that two computations H and G are congruent, denoted H ∼ G, if they have the same sequence
of events and only the timings differ. (That is, we can write H = 〈(e1, t1), (e2, t2), . . .〉 and G = 〈(e1, u1),
(e2, u2), . . .〉).

The properties below apply to any mutual exclusion system.

P1: If H ∈ C and G is a prefix of H, then G ∈ C.

— Informally, every prefix of a valid computation is also a valid computation.

P2: Assume that H ◦ 〈(ep, t)〉 ∈ C, G ∈ C, G | p ∼ H | p, and the following: either ep is not a read event, or
ep reads v and value(v, G) equals value(v, H). Then, G◦〈(ep, t

′)〉 ∈ C holds, provided that G◦〈(ep, t
′)〉

satisfies T1–T3.

— Informally, if two computations H and G are not distinguishable to process p, if p can execute
event ep after H, and if a variable read by ep (if any), after G, has the same value as after H, then p
can execute ep after G.

P3: If H ◦ 〈(ep, t)〉 ∈ C, G ∈ C, and G | p ∼ H | p, then G ◦ 〈(e′p, t′)〉 ∈ C for some event e′p such that
op(ep) = op(e′p).

— Informally, if two computations H and G are not distinguishable to process p, and if p can execute
event e after H, then p can execute the same kind of operation after G. (Note that the values read or
written might be different.)

20

P4: For any H ∈ C and a read event ep = [p, read(v), α] of v, H ◦ 〈(ep, t)〉 ∈ C implies value(v, H) = α.

— Informally, only the last value written to a variable may be read.

P5: If H ∈ C, H ∼ G, and G satisfies T1–T3, then G ∈ C.

— Informally, we can change a computation’s timing, as long as T1–T3 are satisfied.

6 Lower Bound: Proof Sketch

In the appendix, we show that for any mutual exclusion system S = (C, P, V), there exists a computation
H such that some process p executes Ω(log logN) critical events to enter and exit its critical section, where
N = |P |. In this section, we sketch the key ideas of the proof.

The proof focuses on a special class of computations called “regular” computations. A regular computa-
tion consists of events of two groups of processes, “invisible processes” and “visible processes.” Informally,
only a visible process may be known to other processes. Each invisible process is in its entry section, com-
peting with other (invisible and visible) processes. A visible process may be in its entry, exit, or noncritical
section.

At the end of this section, a detailed overview of the proof is given. Here, we give cursory overview, so
that the definition of a regular computation will make sense. Initially, we start with a regular computation
in which all the processes in P are invisible. The proof proceeds by inductively constructing longer regular
computations, until the desired lower bound is attained. At the mth induction step, we consider a regular
computation Hm with n invisible processes and at most m visible processes. The regularity condition defined
below ensures that no participating process has knowledge of any other process that is invisible. Thus, we can
“erase” any invisible process (i.e., remove its events from the computation) and still get a valid computation.

After Hm, some invisible processes may be “blocked” due to knowledge of visible processes — that is,
they may start repeatedly reading variables read previously, not executing any critical event until visible
processes take further steps. In order to construct a longer computation Hm+1, we need a “sufficient” number
of unblocked processes. As shown later, it is possible to extend Hm to obtain a computation A by letting
visible processes execute some further steps (and by possibly erasing some invisible processes) such that,
after A, enough invisible processes are unblocked.

To construct Hm+1, we append to A one next critical event for each such unblocked process. Since these
next critical events may introduce information flow, some invisible processes may need to be erased to ensure
regularity. Sometimes erasing alone does not leave enough active processes for the next induction step. This
will be the case only if some variable v exists that is written by “many” of the critical events we are trying
to append. In that case, we erase processes accessing other variables and then apply the “covering” strategy:
we add the last process to write to v to the set of visible processes. All subsequent reads of v must read the
value written by this process, and hence information flow from invisible processes is prevented. Thus, the
desired regular computation Hm+1 can be constructed.

The induction continues until the desired lower bound of Ω(log log N) critical events is achieved. This
basic proof strategy of erasing and covering has been used previously to prove several other lower bounds
for concurrent systems [1, 6, 14, 19, 24]. We now define the regularity condition.

A regular computation must meet certain conditions, which are needed for the induction to continue.
These conditions are given as R1–R4 in the following definition. Informally, R1 ensures that active processes
have no knowledge of each other; R2 bounds the number of possible conflicts caused by appending a critical
event; R3 ensures that the active and finished processes behave as explained above; R4 ensures that erasing
an invisible process preserve criticality of events.

Definition: Let S = (C, P, V) be a mutual exclusion system. We say that H ∈ C is regular if and only if
there exist two disjoint sets of processes, Inv(H), the set of invisible processes, and Vis(H), the set of visible
processes, satisfying

Inv(H) ∪Vis(H) = {p ∈ P : H | p �= 〈〉},
such that the following conditions hold.

21

R1: Assume that H can be written as E ◦ 〈(ep, t)〉 ◦ F ◦ 〈(fq, t
′)〉 ◦ G, and consider a variable v ∈ V .

If ep writes v, fq reads v, and F does not contain a write to v (i.e., writer event(v, F) = ⊥), then
p ∈ Vis(H).
— Informally, if a process p writes to a variable v, and if another process q reads that value from v,
then p is visible.

R2: Consider a variable v ∈ V and two different events ep and fq in H. Assume that both p and q are in
Inv(H), p �= q, both ep and fq accesses v, and there exists a write to v in H. Then, writer(v, H) ∈
Vis(H) holds.
— Informally, if a variable v is accessed by more than one process in Inv(H), then the last process in
H to write to v (if any) belongs to Vis(H).

R3: For any process p ∈ Inv(H), value(statp, H) = entry holds.
— Informally, every invisible process is in its entry section.

R4: Assume that H can be written as E ◦ 〈(ep, t)〉 ◦ F ◦ 〈(fp, t
′)〉 ◦G, for some p ∈ Inv(H), in which both

ep and fp accesses a variable v. If a process q �= p writes v in F , then some process r ∈ Vis(H) writes
v in F .
— Informally, if two events ep and fp access a variable v, and if some process writes v in between, then
some visible process writes v in between. This condition is used to show that the property of being a
critical event is preserved after erasing invisible processes. �

Detailed proof overview. Initially, we start with a regular computation H1, where Inv(H1) = P ,
Vis(H1) = {}, and each process has one critical event, executed at time 0. We then inductively show
that other longer computations exist, the last of which establishes our lower bound. Each computation is
obtained by covering some variable and/or erasing some processes.

At the mth induction step, we consider a computation H = Hm in which each process in Inv(H) executes
m critical events, Vis(H) consists of at most m processes, and each active process executes its last event at
the same time t = tm. Furthermore, we assume

log log n = Θ(log logN) and m = O(log logN), (2)

where n = |Inv(H)|. We construct a regular computation G = Hm+1 such that Act(G) consists of Ω(
√

n/
(log log N)2) processes, each of which executes m + 1 critical events in G. (To see why (2) is reasonable,
note that log log n is initially log log N and decreases by Θ(1) at each induction step.) The construction
method is explained below. For now, we assume that all n invisible processes are unblocked. At the end of
this section, we explain how to adjust the argument if this is not the case.

Definition: If H is a regular computation, then a process p ∈ Inv(H) is blocked after H if and only if there
exists no p-computation A such that A contains a critical event (in H ◦A) and H ◦A ∈ C holds. �

Due to the Exclusion property, each unblocked process (except at most one) executes a critical event
before entering its critical section. We call these events “next” critical events, and denote the corresponding
set of processes by Y . We consider three cases, based on the variables accessed by these next critical events.

Case 1: Delay events. If there exist Ω(
√

n) processes that have a next critical event that is a delay
event, then we erase all other invisible processes and append these delay events. Since a delay event does
not cause information flow, the resulting computation is regular. (Such delays may force visible processes to
take steps. We explain how to handle this after Case 3.)

In the remaining two cases, we can assume that Θ(n) next critical events are critical reads or writes.
These cases are depicted in Figs. 11 and 12, respectively.

22

.
.
.

(a) (b)

Y’’ : Subset of Inv(H)

(next critical events
access distinct
variables).

1
2
3
4
5

time t

Events that are in H
(includes m critical
events per process).

Newly appended events
(includes one next critical
event per process).

: processes that are erased

: processes that are saved

: "conflicts" among
 invisible processes

1 2

3 4 5

.
.
.

(c)

Z: Saved
processes
(no conflicts).

1
2
3
4
5

time t

All next critical events are
executed at time t+D.

t+D

Figure 11: Erasing strategy. Here and in later figures, black circles (•) respresent critical events.

Case 2: Erasing strategy. Assume that there exist Ω(
√

n) distinct variables that are accessed by some
next critical events. For each such variable v, we select one process whose next critical event accesses v. Let
Y ′ be the set of selected processes. Since we have at most m visible processes, and since each visible process
executes at most log log N critical events in H (otherwise, our lower bound is achieved), they collectively
access at most m log log N distinct variables. We erase processes in Y ′ that access these variables. By (2),
we have m log logN = o(

√
n), so we still have Ω(

√
n) processes left. Let Y ′′ be the subset of Y ′ that is not

erased (Figure 11(a)). We now eliminate remaining possible conflicts among processes in Y ′′ by constructing
a “conflict graph” G as follows (see Figure 11(b)).

Each process p in Y ′′ is considered a vertex in G. By induction, p has m critical events in H. If such an
event accesses the same variable as the next critical event of some other process q, then introduce the edge
{p, q}.

Since the next critical events of processes in Y ′′ access distinct variables, it is clear that each process
generates at most m edges. By applying Turán’s theorem (Theorem 6 in the appendix), we can find a subset
Z ⊆ Y ′′ with no conflicts such that |Z| = Ω(

√
n/m). By retaining Z and erasing all other invisible processes,

we can eliminate all conflicts (Figure 11(c)) and construct G.

Case 3: Covering strategy. Assume that the next critical events collectively access O(
√

n) distinct
variables. Since there are Θ(n) next critical reads/writes, there exists a variable v that is accessed by the
next critical events of Ω(

√
n) processes. Let Yv be the set of these processes. First, we retain Yv and erase

all other invisible processes. Let the resulting computation be H ′. We then arrange the next critical events
of Yv by placing all writes before all reads at time t + ∆, as shown in Figure 12. In this way, the only
information flow among processes in Yv is that from the “last writer” of v, denoted pLW, to any subsequent
reader (of v). We then add pLW to the set of visible processes, i.e., pLW ∈ Vis(G) holds. Thus, no invisible
process is known to other processes, and we can construct G.

Finally, after any of the three cases, we let each active visible process execute one more event (critical
or noncritical), so that it “keeps pace” with the invisible processes and preserves T2 and T3. Each such
event may cause a conflict with at most one invisible process, so we additionally erase at most m invisible
processes, which is o(

√
n/m), by (2).

From the discussion so far, we have the following lemma.

Lemma 1 Let H be a regular computation satisfying the following: n = |Inv(H)|, each p ∈ Inv(H) has
exactly m critical events in H and is unblocked after H, |Vis(H)| ≤ m, and each active process executes its
last event at time t.
Then, there exists a regular computation G satisfying the following: |Inv(G)| = Ω(

√
n/m), each p ∈

Inv(G) has exactly m + 1 critical events in G, |Vis(G)| ≤ m + 1, and each active process in G executes its
last event at time t+∆. �

23

.
.
.

Yv : Subset of Inv(H)

(every next critical
event accesses v).

1
2
3

4
5

Events that are in H
(includes m critical
events per process).

Newly appended events.

time t t+D

Next critical
events
write v.

Next critical
events
read v.

"Last writer":
becomes visible.

Figure 12: Covering strategy. Here, process 3 becomes pLW and is added to Vis(G). Time instant t +∆ is
shown expanded.

Finding unblocked processes. We now explain how we can find “enough” unblocked invisible processes.
Consider F = H |Vis(H), a computation obtained by erasing all invisible processes. It can be easily shown
that F is a regular computation in C. Let the processes in Vis(H) execute in “lockstep,” i.e., let each
process in Vis(H) execute exactly one event per each interval of length ∆. By extending F in such a way
until all visible processes finish execution, we have an extension F ◦ D, which can be decomposed into
F ◦ D1 ◦ D2 ◦ · · · ◦ Dk′ , where each Dj contains exactly one event by each process in Vis(H), executed at
time t + j∆. Since we allow noncritical events to take zero time, if a segment Dj (where j < k′) consists
of only noncritical events, then we can “merge” it into the next segment and create a segment of length ∆.
Continuing in this way, we can define an extension F ◦ E = F ◦ E1 ◦ E2 ◦ · · · ◦ Ek, such that: (i) D and E
consist of the same sequence of events (only event timings are different); (ii) every event in Ej is executed
at time t + j∆; (iii) every Ej (except perhaps the last one) contains some critical event; (iv) any critical
event in Ej is the last event by that process in Ej .

If E contains more than m log logN critical events, then some visible process executes more than log logN
critical events in E, and hence our lower bound is achieved. Thus, assume otherwise. By (iii), E is decom-
posed into at most m log logN + 1 segments, i.e., k ≤ m log logN + 1.

For each Ej , starting with E1, we do the following to find n′ invisible processes that are unblocked
simultaneously, where n′ = n/(k + 1) − m. We first append the noncritical events of Ej . It can be shown
that noncritical events do not cause information flow. After that, we determine how many invisible processes
are unblocked. If n′ or more processes are unblocked, then we can erase all blocked invisible processes and
construct G by applying Lemma 1. (This situation is depicted in Figure 13.) Otherwise, we erase the
unblocked invisible processes, and let each remaining (blocked) invisible process execute one noncritical
event, in order to keep pace. (See E1, . . . , Ej−1 of Figure 13.) Finally, we append the critical events of Ej .
By (iv), each visible process may execute at most one critical event in Ej . Thus, Ej has at most m critical
events. If some critical event reads a variable written by an invisible process, then we erase that invisible
process to prevent information flow. Thus, we can append the critical events in Ej , erase at most m invisible
processes, and preserve regularity. We then repeat the same procedure for the next segment Ej+1, and so
on.

Note that we erase at most n′ + m = n/(k + 1) invisible processes to append each Ej . It is clear that
either we find n′ invisible unblocked processes (after appending E1 ◦ · · · ◦ Ej , for some 0 ≤ j ≤ k), or we
append all of E. However, in the latter case, we have erased at most kn/(k + 1) invisible processes. Thus,
at least n/(k + 1) invisible processes remain after E. Moreover, since each such process may only know of
visible processes, and since no visible process is active after E (i.e., they are in their noncritical sections),
each remaining invisible process must make progress toward its critical section, i.e., it cannot be blocked.
Hence, in either case, we have at least n/(k + 1) − m = Ω(n/(m log log N)) unblocked invisible processes.
(Note that (2) implies m = o(n/k).) Therefore, by erasing all blocked processes and applying Lemma 1, we
can construct G. Thus, we have the following lemma.

Lemma 2 Let H be a regular computation satisfying the following: n = |Inv(H)|, each p ∈ Inv(H) has

24

time t t+D

Events that are in H (that are not yet erased).

Visible processes.

Invisible processes
(that are not erased so far).

E1

t+2D

E2

t + (j-1)D

Ej-1

t + jD

Ej

. . .

Blocked here.

Unblocked
here.

Blocked: to be erased.

Figure 13: Finding unblocked processes. In this figure, white circles (◦) respresent noncritical events, and
shaded boxes represent computations made of possibly many events.

exactly m critical events in H, |Vis(H)| ≤ m, and each active process executes its last event at time t.
Then, there exists a regular computation G satisfying the following: |Inv(G)| = Ω(

√
n/(log logN)2), each

p ∈ Inv(G) has exactly m+1 critical events in G, |Vis(G)| ≤ m+1, and each active process executes its last
event at time t′, for some t′ > t. �

By applying Lemma 2 inductively, we have the following.

Theorem 4 For any mutual exclusion system S = (C, P, V), there exists a computation in which a process
incurs Ω(log logN) RMR-∆ time complexity in order to enter and then exit its critical section. �

We now explain sketch the key ideas for adapting the preceding system model and proof for the RMR
time complexity measure with unbounded delays. Three changes are required. First, in order to compute
RMR time complexity, we count only non-delay critical events.

Second, consider a regular computation Hm, in which “most” unblocked invisible processes execute
delay events as their next critical events. Since delays do not contribute to the RMR measure, appending
these delay events does not suffice. In this case, we first erase all other invisible processes, and then let
the remaining invisible processes delay until all visible processes finish execution (which is possible since
delays are not bounded). Some invisible processes may have to be erased during the procedure, since visible
processes may execute critical events that cause conflicts.

After all visible processes have finished execution, each of the remaining (delayed) invisible processes has
no knowledge of any other active process, and hence it can be shown that each of them (except at most one)
must execute a non-delay critical event before entering its critical section. By appending these non-delay
critical events, we can construct Hm+1.

Third, consider a regular computation Hm, in which most visible processes are blocked. Since delays do
not contribute to RMR time complexity, visible processes may execute an unbounded number of further delay
events. Consider the extension E of Hm (in the proof of Lemma 6) obtained by making visible processes
execute further events, decomposed into k segments of duration ∆ each. E may contain “noncritical-delay”
segments in which visible processes execute only noncritical and delay events. Since they contain delay
events, they cannot be merged with neighboring segments. Moreover, since they do not contribute to RMR
time complexity, their number is unbounded.

Thus, in the worst case, we may have k = Θ(n). Moreover, noncritical events by visible processes may
“wake up” invisible processes one by one. For example, suppose that invisible processes are indexed as pi,
and assume that each pi is executing a local-spin loop while v �= pi do od. Furthermore, assume that a
visible process q is the only writer of v, and that q has already written to v. In this case, in each segment
Ei, q may execute a noncritical write of v, by writing v := pi, and then execute a delay event. Thus, after
each segment Ei, exactly one invisible process is unblocked, and the induction fails.

The main problem here is that q’s writes of v are considered noncritical (except for the first), even though
they are preceded by reads of v by invisible processes. However, in any realistic CC system, each invisible
process creates a local copy of v by reading it, and hence q must either invalidate or update these cached
copies. Thus, we must slightly broaden the definition of cache-miss events:

25

Definition: Let ep be an event inH ∈ C. Then, we can writeH as F ◦〈ep〉◦· · · , where F is a subcomputation
of H. We say that ep is a cache-miss event in H if one of the following conditions holds: (i) it is the first
read of a variable v by p; (ii) it writes a variable v such that the last process to access v in H (if any) is not
p. �

With this new definition, the scenario described above cannot happen. In particular, if we encounter
a “noncritical-delay” segment Ej during the procedure of Figure 15, then we can ensure that any invisible
process that is blocked before Ej is also blocked after Ej , and hence we can append Ej without erasing any
invisible processes.

In order to allow unbounded delays, Conditions T2 and T3 must be changed as follows.

T2: For any timed event (ep, t) in H, if ep �= Exitp, ep is not a delay event, and last(H) > t+∆, then ep

is not the last event in H | p.
T3: For any two consecutive timed events (ep, t) and (fp, t

′) in H | p, the following holds:



t′ ≥ t+∆, if ep is a delay event,
t+∆c ≤ t′ ≤ t+∆, if ep is a cache-miss event,
t ≤ t′ ≤ t+∆, otherwise,

where ∆c is a lower bound (less than ∆) on the duration of a cache-miss event.

With these changes, we have the following theorem.

Theorem 5 For any mutual exclusion system S = (C, P, V) with unbounded delays, there exists a computa-
tion in which a process incurs Ω(log logN) RMR time complexity in order to enter and then exit its critical
section. �

7 Concluding Remarks

To the best of our knowledge, this paper is the first work on timing-based mutual exclusion algorithms in
which all busy-waiting is by local spinning. Our specific interest has been to determine whether lower RMR
time complexity is possible in semi-synchronous systems with delays. We have shown that this is indeed the
case, regardless of whether delays are assumed to be counted when assessing time complexity, and whether
delay values are assumed to be upper bounded. For each system model and time measure that arises by
resolving these issues, we have presented an algorithm that is asymptotically time-optimal. Interestingly,
under the RMR measure with unbounded delays, DSM machines allow provably lower time complexity than
CC machines. In contrast to this situation, it is usually the case that designing efficient local-spin algorithms
is easier for CC machines than for DSM machines.

References

[1] Y. Afek, P. Boxer, and D. Touitou. Bounds on the shared memory requirements for long-lived and
adaptive objects. In Proceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing, pages 81–89. ACM, July 2000.

[2] R. Alur, H. Attiya, and G. Taubenfeld. Time-adaptive algorithms for synchronization. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, pages 800–809. ACM, May 1994.

[3] R. Alur and G. Taubenfeld. How to share an object: A fast timing-based solution. In Proceedings of
the 5th IEEE Symposium on Parallel and Distributed Processing, pages 470–477. IEEE, 1993.

[4] R. Alur and G. Taubenfeld. Fast timing-based algorithms. Distributed Computing, 10(1):1–10, 1996.

26

[5] J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning. In Proceedings of the 14th
International Symposium on Distributed Computing, pages 29–43, October 2000.

[6] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of mutual exclusion. In
Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing, pages 90–99.
ACM, August 2001.

[7] J. Anderson and Y.-J. Kim. A new fast-path mechanism for mutual exclusion. Distributed Computing,
14(1):17–29, January 2001.

[8] J. Anderson and Y.-J. Kim. Nonatomic mutual exclusion with local spinning. In Proceedings of the 21st
Annual ACM Symposium on Principles of Distributed Computing, pages 3–12. ACM, July 2002.

[9] J. Anderson and Y.-J. Kim. Local-spin mutual exclusion using fetch-and-φ primitives. In Proceedings
of the 23rd IEEE International Conference on Distributed Computing Systems, pages 538–547. IEEE,
May 2003.

[10] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major research trends since
1986. Distributed Computing, 2003 (to appear).

[11] J. Anderson and M. Moir. Universal constructions for multi-object operations. In Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, pages 184–193. ACM, August
1995.

[12] J. Anderson and J.-H. Yang. Time/contention tradeoffs for multiprocessor synchronization. Information
and Computation, 124(1):68–84, January 1996.

[13] T. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 1(1):6–16, January 1990.

[14] J. Burns and N. Lynch. Mutual exclusion using indivisible reads and writes. In Proceedings of the 18th
Annual Allerton Conference on Communication, Control, and Computing, pages 833–842, 1980.

[15] R. Cypher. The communication requirements of mutual exclusion. In Proceedings of the Seventh Annual
Symposium on Parallel Algorithms and Architectures, pages 147–156, June 1995.

[16] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiprocessors. IEEE
Computer, 23:60–69, June 1990.

[17] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124–149, 1991.

[18] J. Kessels. Arbitration without common modifiable variables. Acta Informatica, 17:135–141, 1982.

[19] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. In Proceedings of
the 15th International Symposium on Distributed Computing, October 2001.

[20] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer Systems, 5(1):1–11,
February 1987.

[21] N. Lynch and N. Shavit. Timing based mutual exclusion. In Proceedings of the 13th IEEE Real-Time
Systems Symposium, pages 2–11. IEEE, December 1992.

[22] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-memory multi-
processors. ACM Transactions on Computer Systems, 9(1):21–65, February 1991.

[23] S. Ramamurthy, M. Moir, and J. Anderson. Real-time object sharing with minimal support. In Pro-
ceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing, pages 233–242.
ACM, May 1996.

27

[24] E. Styer and G. Peterson. Tight bounds for shared memory symmetric mutual exclusion. In Proceedings
of the 8th Annual ACM Symposium on Principles of Distributed Computing, pages 177–191. ACM,
August 1989.

[25] P. Turán. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok, 48:436–452, 1941.

[26] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Infor-
mation Processing Letters, 6(3):80–82, June 1977.

[27] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Computing,
9(1):51–60, August 1995.

28

Appendix: Detailed Lower-bound Proofs

In this appendix, we present a detailed proof of Theorem 4, and explain in detail how to adapt the proof
to establish Theorem 5. Throughout the rest of this appendix, we assume the existence of a fixed mutual
exclusion system S = (C, P, V). Moreover, we assume the following.

• For each computation H in C, if H contains at most one Enterp, then p executes at most (log log N)
critical events in H. (3)

We can assume (3) because otherwise our lower bound is already proved. We now establish several lemmas
needed to establish Theorem 4. The first lemma states that we can safely “erase” any active process.

Lemma 3 Consider a regular computation H in C. For any set Y of processes such that Vis(H) ⊆ Y , the
following hold: H | Y ∈ C, H | Y is regular, and Vis(H | Y) = Vis(H). Moreover, for each event ep in H | Y ,
(i) if ep is critical in H | Y , then it is also critical in H, and (ii) if ep is critical in H and if p ∈ Inv(H),
then it is also critical in H | Y .

Proof: By the definition of a critical event, (i) is straightforward. Therefore, if an event ep in H | Y is
noncritical in H, then it is also noncritical in H | Y . It follows that H | Y satisfies T1–T3. Moreover, since H
satisfies R1, if a process p is in Inv(H), then no process other than p reads a value written by p. Therefore,
H | Y ∈ C. The conditions R1–R4 can be individually checked to hold in H | Y , which implies that H | Y is
regular and Vis(H | Y) = Vis(H) holds.

To show (ii), consider an event ep in H | Y , where p ∈ Inv(H). Transition events, critical reads, and delay
events are straightforward, because their definitions depend only on the previous events of the same process,
which are identical in both H and H | Y . For critical writes, the only problematic case is as follows: ep

writes v, fp is the last write of v by p before ep in H, and ep is critical in H because of a write to v between
fp and ep by another process that does not participate in H | Y (and hence does not write to v in H | Y).
However, R4 ensures that in such a case there exists some process in Vis(H) that writes to v between fp

and ep, and hence e is also critical in H | Y . �

The next lemma gives us means for extending a computation by appending noncritical events by invisible
processes.

Lemma 4 Consider a regular computation H in C, and a set of processes Y = {p1, p2, . . . , pk}, where
Y ⊆ Inv(H). Assume that for each pj in Y , last(H | pj) = t (for some fixed t), and there exists a pj-
computation Lpj

, such that H ◦ Lpj
∈ C and Lpj

has no critical events in H ◦ Lpj
. Moreover, assume

t ≤ last(H) ≤ t+∆.
Then, there exists a computation L such that L ∼ Lp1 ◦Lp2 ◦· · ·◦Lpk

, satisfying the following: H ◦L ∈ C,
H ◦L is regular, Vis(H ◦L) = Vis(H), L contains no critical events in H ◦L, and every event in L is executed
at time t+∆.

Proof: Since noncritical events can be executed arbitrarily fast, we can change event timings in L1, L2,
. . . , Lk and construct L such that every event is execute at time t+∆. It can be easily shown that H ◦ L
satisfies T1–T3, provided L contains no critical events in H ◦L. (Regardless of whether the last event by pj

in H is a delay event, a cache-miss event, or a noncritical event, the first event by pj in L is executed late
enough to satisfy T3.)

We now show that each event ep in L (for some p ∈ Y) is noncritical, by induction on the number of
events in L. As in the proof of Lemma 3, it suffices to consider the case in which ep writes v and is critical
in H ◦L because of a write event fq of v (where q �= p) prior to ep in H ◦L. Since ep is noncritical in H ◦Lp,
we have writer(v, H) = p. By induction, either fq is in H, or fq is in L and is noncritical. In the latter case,
by definition, q writes v in H. Therefore, in either case, q writes v in H. However, since writer(v, H) = p,
by applying R2, we have p ∈ Vis(H), a contradiction.

29

Since L contains no critical events, it can be easily shown that events in L do not cause information flow
among processes in Y , and hence H ◦ L is in C. The conditions R1–R4 can be individually checked to hold
in H ◦ L, which implies that H ◦ L is regular and Vis(H ◦ L) = Vis(H) holds. �

The next theorem by Turán [25] will be used in proving Lemma 5.

Theorem 6 (Turán) Let G = (V, E) be an undirected graph, where V is a set of vertices and E is a set
of edges. If the average degree of G is d, then there exists an independent set7 with at least �|V |/(d+ 1)�
vertices. �

The following lemma is a formal version of Lemma 1: it extends a regular computation, provided that it
has enough unblocked invisible processes.

Lemma 5 Let H be a regular computation. Define n = |Inv(H)|, and assume the following.
• for each process p ∈ Inv(H),

− p executes exactly m critical events in H, (4)
− p is unblocked after H, and (5)
− last(H | p) = t, for some fixed t; (6)

• n > (m log logN)2; (7)
• |Vis(H)| ≤ m; (8)
• last(H) ≤ t+∆; (9)
• for each p ∈ Act(H) ∩ Vis(H), either last(H | p) = t, or t ≤ last(H | p) ≤ t+∆ and the last event by p
in H is noncritical. (10)

Then, there exist a regular computation G in C such that

• each process in Inv(G) executes exactly m+ 1 critical events in G. (11)

• |Inv(G)| ≥
√

n−m log logN

2m+ 1
−m; (12)

• |Vis(G)| ≤ m+ 1; (13)
• last(G) = t+∆; (14)
• for each p ∈ Act(G), last(G | p) = t+∆. (15)

Proof: For each p ∈ Inv(H), by (5), there exist a p-computation L and p’s “next critical event” ep such
that

• H ◦ Lp ◦ 〈(ep, tp)〉 ∈ C for some tp, (16)
• Lp contains no critical events in H ◦ Lp, and (17)
• ep is a critical event in H ◦ Lp ◦ 〈ep〉. (18)

Therefore, by (6) and (9), and applying Lemma 4 with ‘Y ’ ← Inv(H), we have a Inv(H)-computation L
satisfying the following.

• for each p ∈ Inv(H), L | p ∼ Lp; (19)
• H ◦ L is a regular computation in C; (20)
• Vis(H ◦ L) = Vis(H); (21)
• L contains no critical events in H ◦ L; (22)
• every event in L is executed at time t+∆. (23)

If ep = CSp holds for some p ∈ Inv(H), then since ep is not a read event, by P2, we have H ◦L◦〈(CSp, t+
∆)〉 ∈ C. Thus, by the Exclusion property, there exists at most one process in Inv(H) that satisfies ep = CSp.
Define Y = Inv(H)− {p} if such a process p exists, and Y = Inv(H) otherwise. Then,

n− 1 ≤ |Y | ≤ n. (24)
7An independent set of a graph G = (V, E) is a subset V ′ ⊆ V such that no edge in E is incident to two vertices in V ′.

30

We now establish the following claim.

Claim 1: There exists a computation G satisfying the following.

• G is a regular computation in C; (25)
• Inv(G) ⊆ Y ; (26)
• |Inv(G)| ≥ (

√
n−m log logN)/(2m+ 1); (27)

• |Vis(G)| ≤ m+ 1; (28)
• each process p ∈ Inv(G) executes exactly m+ 1 critical events in G; (29)
• last(G) = t+∆; (30)
• for each p ∈ Inv(G), last(G | p) = t+∆. (31)

Proof of Claim: We consider three cases, as discussed in Section 6.

Case 1: Delay events. Assume that there exists a subset Y ′ of Y such that |Y ′| ≥ √
n and for

each p ∈ Y ′, ep is a delay event. We apply Lemma 3 with ‘H’ ← H ◦ L and ‘Y ’ ← Vis(H) ∪ Y ′.
The assumptions stated in Lemma 3 follow from (20) and (21). Thus, we obtain a computation
F = (H ◦ L) | (Vis(H) ∪ Y ′), satisfying the following.

• F is a regular computation in C; (32)
• Inv(F) = Y ′; (33)
• Vis(F) = Vis(H); (34)
• for each p ∈ Y ′, an event ep is critical in F if and only if it is also critical in H ◦ L. (35)

By combining (35) with (4) and (22), it follows that

• each process p ∈ Y ′ executes exactly m critical events in F . (36)

We now append to F the next critical events by processes in Y ′. For simplicity, we show how to
append a single event; all other events can be appended similarly. Consider some process p in
Y ′. By Case 1, ep is a delay event. Thus, by applying P2 with ‘H’ ← H ◦ Lp, ‘(ep, t)’ ← (ep, tp)
(as defined in (16)), and ‘G’ ← F , it follows that F ′ = F ◦ 〈(ep, t+∆)〉 ∈ C holds, provided that
F ′ satisfies T1–T3.

To see why F ′ satisfies T1–T3, let fp be the last event by p in F . Then, fp is contained in either
L (and hence, by (19), in Lp) or in H. In the former case, by (22) and (23), fp is a noncritical
event executed at time t+∆, and hence ep may execute at the same time. In the latter case, by
(6), fp is executed at time t, and hence, regardless of what kind of event fp is, ep may execute
at t+∆.

Let G be the computation obtained by appending all next critical (delay) events by processes in
Y ′. By using (32), conditions R1–R4 can be individually checked to hold in G, which implies
the following: G is regular, Inv(G) = Y ′, and Vis(G) = Vis(H). Thus, G satisfies (25). By the
definition of Y ′, and since

√
n ≥ (

√
n − m log log N)/(2m + 1), we have (26) and (27). Since

Vis(G) = Vis(H), by (8), we have (28). By (36), and since we have appended one delay event by
each process in Y ′, we have (29). Finally, since these delay events are all executed at time t+∆,
we also have (30) and (31).

Case 2: Erasing strategy. Assume that there exists a subset Y ′ of Y such that |Y ′| ≥ √
n and

for each p ∈ Y ′, ep accesses a distinct variable. By (3) and (8), processes in Vis(H) collectively
execute at most m log logN critical events in H, and hence, in H ◦L. (Recall that L is an Inv(H)-
computation.) Hence, by the defintion of a cache-miss event, processes in Vis(H) collectively
access at most m log log N distinct variables in H ◦ L. Thus, there exists a subset Y ′′ of Y ′

satisfying the following.

31

• |Y ′′| ≥ √
n−m log logN , and (37)

• for each process p ∈ Y ′′, its next critical event ep accesses a distinct variable that is not
accessed by processes in Vis(H). (38)

Note that, by (7), Y ′′ is nonempty. We now construct a graph G = (Y ′′, EG), where each vertex is
a process in Y ′′. To each process p in Y ′′, we apply the following rule: for each critical event fp by
p in H, if fp accesses a variable v that is accessed by q’s next critical event eq (for some q ∈ Y ′′),
then introduce edge {p, q}. (The construction of the conflict graph is depicted in Figure 11 in
Section 6.)

By (4) and (38), we introduce at most m edges per process. Thus, the average degree of G is at
most 2m. Hence, by Theorem 6, there exists an independent set Z ⊆ Y ′′ such that

|Z| ≥ |Y ′′|/(2m+ 1) ≥
√

n−m log logN

2m+ 1
, (39)

where the latter inequality follows from (37). By applying Lemma 3 with ‘H’ ← H ◦L and ‘Y ’ ←
Vis(H)∪Z, we obtain a computation F = (H ◦L) | (Vis(H)∪Z), satisfying the following.

• F is a regular computation in C; (40)
• Inv(F) = Z; (41)
• Vis(F) = Vis(H); (42)
• each process p ∈ Z executes exactly m critical events in F , (43)

where (43) is derived by applying (4) and (22), as in Case 1. Let G be the computation obtained
by appending to F all next critical events by processes in Z, each executed at time t + ∆. By
using (18), (38), and (40), we can show the following: these events are also critical after F , G is
regular, Inv(G) = Z, and Vis(G) = Vis(H). (In particular, the definition of Z implies that each
critical event ep by some p ∈ Z accesses a variable v that is not accessed by any other critical
events in H, and hence, in H ◦L. By the definition of a critical event, this implies that ep is the
only event that accesses v in G.) Thus, we obtain a computation G satisfying (25)–(31).

Case 3: Covering strategy. Assume that neither Case 1 nor Case 2 is true. Then, by (24),
there exist at least n−√

n processes in Y whose next critical events are not delay events. Among
these processes, at least (n − √

n)/
√

n =
√

n − 1 processes access the same variable v in their
next critical events, for some v. Let Yv be the set of such processes. By applying Lemma 3 with
‘H’ ← H ◦ L and ‘Y ’ ← Vis(H) ∪ Yv, we obtain a computation F = (H ◦ L) | (Vis(H) ∪ Yv),
satisfying the following.

• F is a regular computation in C; (44)
• Inv(F) = Yv; (45)
• Vis(F) = Vis(H); (46)
• each process p ∈ Z executes exactly m critical events in F . (47)

We index processes in Yv from p1 to pk, where k = |Yv|, such that if epi
writes v and epj

reads v,
then i < j (i.e., next critical writes of v precedes next critical reads of v). By (16) and P3, we
can append to F the next critical events by Yv as follows. (This strategy is depicted in Figure 12
in Section 6.)

• G ∈ C, where G = F ◦ 〈(e′p1
, t+∆), (e′p2

, t+∆), . . . , (e′pk
, t+∆)〉;

• for each j, op(e′pj
) = op(epj

).

By (18), it can be shown that each e′pj
is critical in G. Thus, each process in Yv executes m+ 1

critical events in G. Let pLW be the last process to write to v in G (if such a process exists). If
pLW does not exist or if pLW ∈ Inv(H), then it can be shown that G is a regular computation that
satisfies Inv(G) = Yv, Vis(G) = Vis(H), and (25)–(31). On the other hand, if pLW /∈ Vis(H), then

32

we have pLW ∈ Yv. Define pLW as visible (i.e., pLW ∈ Vis(G).) It can be shown that G is a regular
computation that satisfies Inv(G) = Yv − {pLW}, Vis(G) = Vis(H) ∪ {pLW}, and (25)–(31). �

We now extend G to construct a computation G that satisfies (15). Consider each process p ∈ Act(G).
If p ∈ Inv(G), then by (31), we have last(G | p) = t + ∆. On the other hand, if p ∈ Vis(G), then from the
proof of Claim 1, we have either p = pLW ∧ last(G | p) = t + ∆ or p ∈ Vis(H) ∧ last(G | p) = t. In the
former case, p already satisfies (15). In the latter case, since p is active, it may execute some event fp after
G. Thus, we can append (fp, t+∆) to G. If fp reads a variable v such that writer(v, G) = q ∈ Inv(G) holds,
then we erase q by applying Lemma 3 to preserve regularity. By (8), this case happens at most m times,
and hence we erase at most m additional invisible processes during this procedure. Hence, by (27), G also
satisfies (12).

Finally, assertions (11), (13), and (14) follow from (29), (28), and (30), respectively. Thus, G satisfies
Lemma 5. �

The following lemma is a formal version of Lemma 2: it provides the induction step that leads to the
lower bound in Theorem 4.

Lemma 6 Let m be a positive integer, t be a nonnegative real value, and H be a regular computation in C.
Define n = |Inv(H)|. Assume the following.
• each process in Inv(H) executes exactly m critical events in H; (48)
• n > (m log logN + 2)(4m4(log logN)2 +m); (49)
• |Vis(H)| ≤ m; (50)
• last(H) = t; (51)
• for each p ∈ Act(H), last(H | p) = t. (52)

Then, there exist a regular computation G in C and a real value t′ (> t) such that

• each process in Inv(G) executes exactly m+ 1 critical events in G; (53)
• |Vis(G)| ≤ m+ 1; (54)
• |Inv(G)| = Ω(

√
n/(log logN)2); (55)

• last(G) = t′; (56)
• for each p ∈ Act(G), last(G | p) = t′. (57)

Proof: Define F = H | Vis(H), a computation obtained by erasing all invisible processes. By Lemma 3,
F is regular. Let processes in Vis(H) execute in “lockstep,” i.e., let each active process in Vis(H) execute
exactly one event at each time t+ j∆, for j = 1, 2, By the Progress property, eventually every process
p in Vis(H) executes Exitp. Thus, there exists an extension F ◦ D, in which D is decomposed into a finite
number of segments D = D1 ◦D2 ◦ · · · ◦Dk′ , satisfying the following.

• F ◦D ∈ C;
• each Dj contains exactly one event by each process in Act(F ◦D1 ◦ · · ·Dj−1), executed at time t+ j∆.

As described in Section 6, we can “merge” segments so that every segment (except possibly the last
one) contains some critical event. The merge procedure is described in Figure 14. Initially, we let k = k′,
Cj = Ej = Dj , and Mj = 〈〉, for each j. Throughout the merge procedure, we maintain Ej = Mj ◦Cj , where
Mj represents the “merged” segment (without critical events) and Cj represents the possibly “critical”
segment, with at most one event by each process.

Since we allow noncritical events to take zero time, if a segment Ei (where i < k) consists entirely of
noncritical events, then we reduce the execution time of Ei+1 ◦ · · · ◦Ek by ∆. Thus, events in Ei and Ei+1

are now all executed at time t+ i∆, and we merge Ei and Ei+1 as follows: the new merged segment Mnew
i

equals Ei ◦ Mi+1, the new critical segment Cnew
i equals Ci+1, and the new segment Enew

i equals Ei ◦ Ei+1.
By assumption, the new merged segment has no critical events, and hence the loop invariant is preserved.

Continuing in this way, we can define an extension F ◦ E = F ◦ E1 ◦ E2 ◦ · · · ◦ Ek, satisfying the
following.

33

initially k = k′, Ci = Ei = Di, and Mi = 〈〉, for each 1 ≤ i ≤ k′

while true do
Loop invariant:

1. D ∼ E1 ◦ E2 ◦ · · · ◦ Ek;
2. Ei = Mi ◦ Ci;
3. every event in Ei is executed at time t+ i∆;
4. Mi does not contain any critical events;
5. Ci contains at most one event by each process.

if there exist a segment Ei (i < k) without any critical event then
/∗ we now merge Ei and Ei+1; ∗/
for j := i+ 1 to k do

change timings of Ej by −∆, such that every event is executed at time t+ (j − 1)∆
od;
(Mi, Ci, Ei) := (Ei ◦Mi+1, Ci+1, Ei ◦ Ei+1);
for j := i+ 1 to k − 1 do Ej := Ej+1 od;
k := k − 1

else
halt

fi
od

Figure 14: A procedure to merge segments.

• D and E consist of the same sequence of events (only event timings are different); (58)
• every event in Ej is executed at time t+ j∆; (59)
• every Ej (except perhaps the last one) contains some critical event; (60)
• Mj does not contain any critical events; (61)
• Cj contains at most one event by each p ∈ Vis(H). (62)

By (3) and (50), processes in Vis(H) collectively execute at most m log logN critical events in E. Thus,
by (60), E is decomposed into at most m log logN + 1 segments, i.e.,

k ≤ m log logN + 1. (63)

We now want to find “enough” unblocked processes, so that we can construct a computation G that
satisfies (55). Define n′, the number of unblocked processes we want to find, as

n′ = n/(k + 1)−m. (64)

In order to find this many unblocked processes, we apply the procedure shown in Figure 15. (The
procedure is also illustrated in Figure 13 in Section 6.)

At the jth iteration, we have appended all segments E1 ◦E2 ◦ · · · ◦Ej−1, plus the jth merged (noncritical)
segment Mj . Denote the resulting (intermediate) computation as Fj , and let U be the set of unblocked
invisible processes after Fj . First, if |U | ≥ n′, then we erase the blocked invisible processes, and apply
Lemma 5 in order to construct a computation G that satisfies Lemma 6. Note that assumption (7) of
Lemma 5 is satisfied as follows:

n′ = n/(k + 1)−m

>
m log logN + 2

k + 1
· (4m4(log logN)2 +m)−m

≥ 4m4(log logN)2

> (m log logN)2,

where we use (49) and (63) in succession.

34

F0 := H ◦M1;
for j := 0 to k do

Loop invariant:
1. we have appended E1 ◦ E2 ◦ · · · Ej−1 ◦Mj ;
2. Fj is a regular computation in C;
3. each p ∈ Inv(Fj) executes m critical events in Fj ;
4. for each p ∈ Inv(Fj), last(Fj | p) = t+ j∆;
5. Vis(Fj) = Vis(H);
6. |Inv(Fj)| ≥ n− j(n′ +m);
7. for each p ∈ Act(H) ∩ Vis(H), the following holds: either last(H | p) = t + j∆, or last(H | p) =
t+ (j + 1)∆ and the last event by p in H is noncritical.

U := {p ∈ Inv(Fj): p is unblocked};
if |U | ≥ n′ then

apply Lemma 3 with ‘H’ ← Fj and ‘Y ’ ← Vis(H) ∪ U , and erase blocked processes;
apply Lemma 5 with ‘n’ ← n′ and construct a computation with at least (

√
n′−m log logN)/(2m+

1)−m invisible processes;
let the resulting computation by G;
halt

else
apply Lemma 3 with ‘H’ ← Fj and‘Y ’ ← Vis(H) ∪ (Inv(Fj)− U), and erase processes in U ;
append one noncritical event per each remaining invisible process, at time t+ (j + 1)∆;
append events in Cj , and erase at most m invisible processes (in the same manner as in the proof
of Lemma 5);
if j < k then append Mj+1 fi;
let the resulting computation be Fj+1

fi
od

Figure 15: A procedure to find n′ unblocked processes.

Second, if |U | < n′, then we erase processes in U . Note that each remaining invisible process p is in its
entry section (by R3) and is blocked. Therefore, p may execute a noncritical event after Fj . We append
these noncritical events at time t+ (j + 1)∆, and then append the jth critical segment in Cj . By (50) and
(62), Cj may contain at most m critical events, and hence we can erase at most m processes and preserve
regularity. (In particular, if a critical event fp in Cj reads a variable v such that writer(v, Fj) = q ∈ Inv(Fj)
holds, then we erase q by applying Lemma 3 to preserve regularity.) Finally, we append the (j+1)st merged
segment Mj+1, and iterate again. (It can be shown that appending noncritical events by visible processes
preserves regularity.)

It follows that, at each iteration, we erase at most n′ + m invisible processes. Assume the procedure
does not halt prior to the kth iteration. Then, at the kth iteration, we have at least n− k(n′ +m) invisible
processes. Then, by (64),

n− k(n′ +m) = (k + 1)(n′ +m)− k(n′ +m) = n′ +m > n′,

and hence, at the kth iteration, we have
|Inv(Fk)| > n′. (65)

Moreover, since we have appended all of E, visible processes are in their noncritical sections at step k.
Hence, processes in Inv(Fk) cannot be blocked, i.e., we have Inv(Fk) = U . Combining this with (65), it
follows that the procedure of Figure 15 eventually halts, with a computation G that satisfies

|Inv(G)| ≥ (
√

n′ −m log logN)/(2m+ 1)−m, (66)

and (53), (54), (56), and (57). By (49), we also have
√

n

m log logN + 2
−m ≥

√
4m4(log logN)2 +m−m = 2m2 log logN > 2m log logN. (67)

35

Thus,

|Inv(G)| ≥
√

n′ −m log logN

2m+ 1
−m {by (66)}

=

√
n/(k + 1)−m−m log logN

2m+ 1
−m {by (64)}

≥ 1
2m+ 1

(√
n

m log logN + 2
−m−m log logN

)
−m {by (63)}

≥ 1
2(2m+ 1)

√
n

m log logN + 2
−m − m. {by (67)}

By (67), we also have

1
2(2m+ 1)

√
n

m log logN + 2
−m ≥ 2m2 log logN

2(2m+ 1)
= Θ(m log logN).

Thus, the left-hand side dominates m. Combined with (49), it follows that

|Inv(G)| = Ω
(√

n

m · √m log logN

)
.

Finally, by (3), we have m ≤ log logN , and hence we have (55). Thus, G satisfies Lemma 6. �

By inductively applying Lemma 6, we have Theorem 4, as shown below.

Theorem 4 For any mutual exclusion system S = (C, P, V), there exists a computation in which a process
incurs Ω(log logN) RMR-∆ time complexity in order to enter and then exit its critical section.

Proof: Let H1 = 〈(Enter1, 0), (Enter2, 0), . . . , (EnterN , 0)〉, where P = {1, 2, . . . , N}. By the definition
of a mutual exclusion system, H1 ∈ C. It is obvious that H1 is regular and each process in Inv(H) = P has
exactly one critical event in H1. Starting with H1, we repeatedly apply Lemma 6 and construct a sequence
of computations (H1, H2, . . . , Hm), such that each process in Inv(Hj) has j critical events in Hj .

Define nj = |Inv(Hj)|. By applying (55) with ‘H’ ← Hj and ‘G’ ← Hj+1, we have

nj+1 = Ω(
√

nj/(log logN)2),

which also implies
log log nj+1 ≥ log log nj −Θ(1).

Therefore, there exists a number m = Θ(log log N) satisfying log log nm = Ω(log log N), which in turn
implies nm = Ω((m log logN)3). Thus, we can apply Lemma 6 m times and still get a regular computation
that satisfies (49), in which each invisible process executes m = Θ(log logN) critical events. �

We now explain how to adapt the preceding lemmas in order to prove Theorem 5. Throughout the rest
of this appendix, we will assume a modified definition of cache-miss events, given at the end of Section 6.
First, we show that Lemma 3 still holds with the new definition.

Lemma 3 Consider a regular computation H in C. For any set Y of processes such that Vis(H) ⊆ Y , the
following hold: H | Y ∈ C, H | Y is regular, and Vis(H | Y) = Vis(H). Moreover, for each event ep in H | Y ,
(i) if ep is critical in H | Y , then it is also critical in H, and (ii) if ep is critical in H and if p ∈ Inv(H),
then it is also critical in H | Y .

36

Proof: It suffices to prove (ii). (The proof for the rest of the lemma is the same as before.)
To show (ii), consider an event ep in H | Y , where p ∈ Inv(H). It suffices to consider critical writes. (The

other cases are straightforward.) For critical writes, the only problematic case is as follows: ep writes v, fp is
the last write of v by p before ep in H, and ep is critical in H because of an event gq that accesses v between
fp and ep. If q participates in H | Y , then ep is clearly critical.

Therefore, assume that q does not participate in H | Y . If gq writes v, then R4 ensures that there exists
some process in Vis(H) that writes to v between fp and ep, and hence ep is also critical in H | Y . On the
other hand, if gq reads v, then since p is invisible, gq cannot read the value written by fp, by R1. It follows
that there exists a visible process r that writes v between fp and gq (and hence, between fp and ep). Thus,
since Vis(H) ⊆ Y , r also participates in H | Y , making ep critical in H | Y . �

The proof of Lemma 4 remains the same without any change. Lemma 5 remains the same, except that
(5) is changed as follows:

• For each p ∈ Inv(H), there exists a p-computation Lp and p’s “next critical event” ep that satisfy (16)–(18).
Moreover, ep is not a delay event.

Thus, Case 1 (delay events) in the proof of Lemma 5 now does not arise. We now prove a modified
version of Lemma 6.

Lemma 7 Let m be a positive integer, t be a nonnegative real value, and H be a regular computation in C.
Define n = |Inv(H)|. Assume the following.
• each process in Inv(H) executes exactly m non-delay critical events in H; (68)
• n > (m log logN + 2)(4m4(log logN)2 +m); (69)
• |Vis(H)| ≤ m; (70)
• last(H) = t; (71)
• for each p ∈ Act(H), last(H | p) = t. (72)

Then, there exist a regular computation G in C and a real value t′ (> t) such that

• each process in Inv(G) executes exactly m+ 1 non-delay critical events in G; (73)
• |Vis(G)| ≤ m+ 1; (74)
• |Inv(G)| = Ω(

√
n/(log logN)2); (75)

• last(G) = t′; (76)
• for each p ∈ Act(G), last(G | p) = t′. (77)

Proof: Define F = H | Vis(H), a computation obtained by erasing all invisible processes. By Lemma 3,
F is regular. Let processes in Vis(H) execute in “lockstep,” i.e., let each active process in Vis(H) execute
exactly one event at each time t+ j∆, for j = 1, 2, By the Progress property, eventually every process
p in Vis(H) executes Exitp. Thus, there exists an extension F ◦ D, in which D is decomposed into a finite
number of segments D = D1 ◦D2 ◦ · · · ◦Dk′ , satisfying the following.

• F ◦D ∈ C;
• each Dj contains exactly one event by each process in Act(F ◦D1 ◦ · · ·Dj−1), executed at time t+ j∆.

As in Lemma 6, we can construct an extension F ◦E = F ◦E1◦E2◦· · ·◦Ek, satisfying the following.

• D and E consist of the same sequence of events (only event timings are different); (78)
• every event in Ej is executed at time t+ j∆; (79)
• every Ej (except perhaps the last one) contains some critical event; (80)
• Mj does not contain any critical events; (81)
• Cj contains at most one event by each p ∈ Vis(H). (82)

37

By (70), processes in Vis(H) collectively execute at most m log log N non-delay critical events in E.
(Otherwise, our lower bound is proved.) Thus, by (80), at most m log logN + 1 segments in E may contain
a non-delay critical event.

We define a segment Ej of E to be a noncritical-delay segment if it entirely consists of noncritical and
delay events, and a useful segment otherwise. Let k′ be the number of useful segments. Then,

k′ ≤ m log logN + 1. (83)

We now want to find “enough” unblocked processes, so that we can construct a computation G that
satisfies (75). Define n′, the number of unblocked processes we want to find, as

n′ = n/(k′ + 1)−m. (84)

In order to find this many unblocked processes, we apply the procedure shown earlier in Figure 15. Since
we have changed the definition of a cache-miss event, it can be shown that a noncritical-delay segment does
not cause a blocked process to become unblocked. In particular, if a noncritical-delay segment Ej+1 follows
another noncritical-delay segment Ej , then the set of unblocked invisible process do not increase. Since Ej+1

is appended only if the else part of the algorithm is executed, these invisible processes (U in the algorithm)
have already been erased at the jth step.

It follows that, at the (j + 1)st step, there is no unblocked invisible process. (All unblocked invisible
processes have been erased in the previous step, and no blocked processes may become unblocked after
Ej+1.) Thus, appending Ej+1 does not result in erasing any invisible process.

Thus, if the algorithm of Figure 15 does not halt until the last (kth) segment, then we have erased at
most k′(n′ +m) invisible processes, instead of k(n′ +m) (which may be much larger). Since k′ is bounded
by (83), it follows that we still have n′ invisible processes that are not erased (see (65)).

Moreover, since we have appended all of E, visible processes are in their noncritical sections at step k.
Hence, these invisible processes cannot be blocked. The rest of the proof is the same as in Lemma 6: we can
construct G by applying Lemma 4 to these unblocked invisible processes. �

With these changes, we have Theorem 5.

Theorem 5 For any mutual exclusion system S = (C, P, V) with unbounded delays, there exists a computa-
tion in which a process incurs Ω(log logN) RMR time complexity in order to enter and then exit its critical
section. �

38

