
Fast and Scalable Mutual Exclusion
?

James H.Anderson and Yong-Jik Kim

Department of Computer Science

University of North Carolina at Chapel Hill

Abstract. We present an N -process algorithm for mutual exclusion un-

der read/write atomicity that has O(1) time complexity in the absence

of contention and �(logN) time complexity under contention, where

\time" is measured by counting remote memory references. This is the

�rst such algorithm to achieve these time complexity bounds. Our algo-

rithm is obtained by combining a new \fast-path" mechanism with an

arbitration-tree algorithm presented previously by Yang and Anderson.

1 Introduction

Recent work on mutual exclusion [3] has focused on the design of \scalable" algo-

rithms that minimize the impact of the processor-to-memory bottleneck through

the use of local spinning . A mutual exclusion algorithm is scalable if its perfor-

mance degrades only slightly as the number of contending processes increases.

In local-spin mutual exclusion algorithms, good scalability is achieved by requir-

ing all busy-waiting loops to be read-only loops in which only locally-accessible

shared variables are accessed that do not require a traversal of the processor-

to-memory interconnect. A shared variable is locally accessible on a distributed

shared-memory multiprocessor if it is stored in a local memory module, and on

a cache-coherent multiprocessor if it is stored in a local cache line.

A number of queue-based local-spin mutual exclusion algorithms have been

proposed in which only O(1) remote memory references are required for a pro-

cess to enter and exit its critical section [1, 4, 6]. In each of these algorithms,

waiting processes form a \spin queue". Read-modify-write instructions are used

to enqueue a blocked process on this queue. Performance studies presented in

[1, 4, 6] have shown that these algorithms scale well as contention increases.

In subsequent work, Yang and Anderson showed that performance compara-

ble to that of the queue-lock algorithms cited above could be achieved using only

read and write operations [8]. In particular, they presented a read/write mutual

exclusion algorithm with �(logN ) time complexity and experimentally showed

that this algorithm is only slightly slower than the fastest queue locks. In Yang

and Anderson's algorithm, instances of a local-spin mutual exclusion algorithm

for two processes are embedded within a binary arbitration tree, as depicted in

Fig. 1(a). The entry and exit sections associated with the two links connecting

? Work supported by NSF grant CCR 9732916. The �rst author was also supported

by an Alfred P. Sloan Research Fellowship.



yes

no

contention?

"fast path"

(a) (b)

"slow path"

Fig. 1. Yang and Anderson's arbitration-tree algorithm (inset (a)) and its fast-path

variant (inset (b)).

a given node to its sons constitute a two-process mutual exclusion algorithm.

Initially, all processes start at the leaves of the tree. To enter its critical section,

a process traverses the path from its leaf to the root, executing the entry section

of each link on this path. Upon exiting its critical section, a process traverses

this path in reverse, executing the exit section of each link.

Although Yang and Anderson's algorithm exhibits scalable performance, in

complexity-theoretic terms, there is still a gap between the �(logN ) time com-

plexity of their algorithm and the constant time complexity of algorithms based

on stronger synchronization primitives. This gap is particularly troubling when

considering performance in the absence of contention. Even without contention,

the arbitration-tree algorithm forces each process to perform �(logN ) remote

memory references in order to enter and exit its critical section. To alleviate this

problem, Yang and Anderson presented a variant of their algorithm that includes

a \fast-path" mechanism that allows the arbitration tree to be bypassed in the

absence of contention. This variant is illustrated in Fig. 1(b). This algorithm

has the desirable property that contention-free time complexity is O(1). Unfor-

tunately, it has the undesirable property that time complexity under contention

is �(N ) in the worst case, rather than �(logN ). In Yang and Anderson's fast-

path algorithm, a process checks whether the fast path can be reopened after

a period of contention ends by \polling" each process individually to see if it is

still contending. This polling loop is the reason why the time complexity of their

algorithm is �(N ) in the worst case.

To this day, the problem of designing a read/write mutual exclusion algorithm

with O(1) time complexity in the absence of contention and �(logN ) time com-

plexity under contention has remained open. In this paper, we close this problem

by presenting a fast-path mechanism that achieves these time complexity bounds

when used in conjunction with Yang and Anderson's arbitration-tree algorithm.

Our fast-path mechanism has the novel feature that it can be reopened after a



period of contention without having to poll each process individually to see if it

is still contending.

The rest of this paper is organized as follows. In Sec. 2, we present our fast-

path algorithm. In Sec. 3, we prove that the algorithm is correct. We end the

paper with concluding remarks in Sec. 4.

2 Fast-Path Algorithm

Our fast-path algorithm is shown in Fig. 2. In this section, we explain informally

how the algorithmworks. We begin with a brief overview of the code. We assume

that each labeled sequence of statements in Fig. 2 is atomic; each such sequence

reads or writes at most one shared variable. A process determines if it can

access the fast path by executing statements 1-9. If a process p detects any

other competing process while executing these statements, then p is \deected"

out of the fast path and invokes either SLOW 1 or SLOW 2. SLOW 1 is invoked

if p has not updated any variables that must be reset in order to reopen the fast

path. Otherwise, SLOW 2 is invoked. A detailed explanation of the deection

mechanism is given below. If a process is not deected, then it successfully

acquires the fast path, which consists of statements 10-20. A process that either

acquires the fast path or is deected to SLOW 2 attempts to reopen the fast path

by executing statements 13-20 or 29-37, respectively. A detailed explanation of

how the fast path is reopened is given below.

Before entering its critical section, a fast-path process must perform the en-

try code of the two-process mutual exclusion algorithm on top of the arbitration

tree, as shown in Fig. 1(b). It executes this code using 0 as a virtual process

identi�er. This is denoted as \ENTRY 2(0)" in Fig. 2 (see statement 11). The cor-

responding two-process exit code is denoted \EXIT 2(0)" (statement 19). Each

process p that is deected to SLOW 1 or SLOW 2 must �rst compete within the

N -process arbitration tree (using its own process identi�er). The entry and exit

code for the arbitration tree are denoted \ENTRY N(p)" and \EXIT N(p)", respec-

tively (statements 21, 25, 26, and 39). After competing within the arbitration

tree, a deected process accesses the two-process algorithm on top of the tree us-

ing 1 as a virtual process identi�er. The entry and exit code for this are denoted

\ENTRY 2(1)" and \EXIT 2(1)", respectively (statements 22, 24, 27, and 38).

We now explain our fast-path acquisition mechanism in detail. At the heart

of this mechanism is the following code fragment from Lamport's fast mutual

exclusion algorithm [5].

shared variable X: 0::N � 1; Y : boolean initially true

process p::

Noncritical Section;

X := p;

if :Y then \compete with other processes (slow path)"

else Y := false;

if X 6= p then \compete with other processes (slow path)"

else \take the fast path"



type Ytype = record free: boolean; indx : 0::N � 1 end =� stored in one word �=

shared variable

X: 0::N � 1;
Y , Reset : Ytype initially (true; 0);

Slot, Proc: array[0::N � 1] of boolean initially false;

Infast: boolean initially false

private variable y: Ytype

process p:: =� 0 � p < N �=

while true do

0: Noncritical Section;

1: X := p;

2: y := Y ;
if :y:free then SLOW 1()

else

3: Y := (false; 0);
4: Proc[p] := true;

5: if (X 6= p _

6: Infast) then SLOW 2()
else

7: Slot[y:indx] := true;

8: if Reset 6= y then

9: Slot[y:indx] := false;

SLOW 2()

else

10: Infast := true;

=� fast path �=

11: ENTRY 2(0);
12: Critical Section;

13: Proc[p] := false;

14: Reset := (false; y:indx);
15: if :Proc[y:indx] then

16: Reset :=

(true; y:indx + 1 mod N);

17: Y :=

(true; y:indx + 1 mod N)

�;

18: Slot[y:indx] := false;

19: EXIT 2(0);

20: Infast := false

� � �

od

procedure SLOW 1()
21:ENTRY N(p);

22: ENTRY 2(1);

23: Critical Section;
24: EXIT 2(1);

25:EXIT N(p)

procedure SLOW 2()
26:ENTRY N(p);

27: ENTRY 2(1);

28: Critical Section;

29: Y := (false; 0);

30: X := p;

31: y := Reset;

32: Proc[p] := false;

33: Reset := (false; y:indx);

34: if (:Slot[y:indx] ^

35: :Proc[y:indx]) then

36: Reset :=

(true; y:indx + 1 mod N);
37: Y :=

(true; y:indx + 1 mod N)

�;
38: EXIT 2(1);

39:EXIT N(p)

Fig. 2. Fast-path algorithm.



This code ensures that at most one process will \take the fast path". Moreover,

with the stated initial conditions, if one process executes this code fragment in

isolation, then that process will take the fast path. The problem with using this

code is that, after a period of contention ends, it is di�cult to \reopen" the fast

path so that it can be acquired by other processes. If a process does succeed in

taking the fast path, then that process can reopen the fast path itself by simply

resetting Y to true. On the other hand, if no process succeeds in taking the fast

path, then the fast path ultimately must be reopened by one of the slow-path

processes. Unfortunately, because processes are asynchronous and communicate

only by means of atomic read and write operations, it can be di�cult for a

slow-path process to know whether the fast path has been acquired by some

process.

As a stepping stone towards our algorithm, consider the algorithm shown in

Fig. 3, which uses unbounded memory to solve the problem. In this algorithm,

Y has an additional �eld, which is an identi�er that is used to \rename" any

process that acquires the fast path. This identi�er will increase without bound

over time, so we will never have to worry about the possibility that two processes

are renamed with the same identi�er. With this added �eld, a slow-path process

has a way of identifying a process that has taken the fast path. To see how

this works, consider what happens when, starting from the initial state, some

set of processes execute their entry sections. At least one of these processes will

read Y = (true; 0) at statement 2 and assign Y := (false; 0) at statement 3.

By properties of Lamport's fast-path code, of the processes that assign Y , at

most one will reach statement 6. A process that reaches statement 6 will either

acquire the fast path by reaching statement 9, or will be deected to SLOW 2

at statement 8.

This gives us two cases to analyze: Of the processes that read Y = (true; 0)

and assign Y , either all are deected to SLOW 2, or one, say p, acquires the fast

path. In the former case, at least one of the processes that executes SLOW 2

will increment the indx �eld of Y and set the free �eld of Y to true (statement

28). This has the e�ect of reopening the fast path. In the latter case, we must

argue that (i) the fast-path process p reopens the fast path after leaving it, and

(ii) no SLOW 2 process \prematurely" reopens the fast path before p has left

the fast path. Establishing (i) is straightforward. Process p will reopen the fast

path by incrementing the indx �eld of Y and setting the free �eld of Y to true

(statement 13). Note that the Infast variable prevents the reopening of the fast

path from actually taking e�ect until after p has �nished executing EXIT 2(0). To

establish (ii), suppose, to the contrary, that some SLOW 2 process q reopens the

fast path by executing statement 28 while p is executing within statements 9-15.

For this to happen, q must have read Slot [0] at statement 26 before p assigned

Slot [0] := true at statement 6. This in turn implies that q executed statement 25

before p executed statement 7. Thus, p must have found Reset 6= y at statement

7, i.e., it was deected to SLOW 2, which is a contradiction. It follows from the

explanation given here that after an initial period of contention ends, we must

have Y:free = true and Y:indx > 0. This argument can be applied inductively



type Ytype = record free: boolean; indx : 0::1 end =� stored in one word �=

shared variable =� other variable declarations are as in Fig. 2 �=

Slot: array[0::1] of boolean initially false

process p:: =� 0 � p < N �=

while true do

0: Noncritical Section;
1: X := p;

2: y := Y ;

if :y:free then SLOW 1()
else

3: Y := (false; 0);

4: if (X 6= p _

5: Infast) then SLOW 2()

else

6: Slot[y:indx] := true;
7: if Reset 6= y then

8: Slot[y:indx] := false;

SLOW 2()
else

9: Infast := true;

=� fast path �=
10: ENTRY 2(0);

11: Critical Section;

12: Reset := (true; y:indx + 1);

13: Y := (true; y:indx + 1);

14: EXIT 2(0);

15: Infast := false

� � �

od

procedure SLOW 1()

16:ENTRY N(p);
17: ENTRY 2(1);

18: Critical Section;

19: EXIT 2(1);
20:EXIT N(p)

procedure SLOW 2()

21:ENTRY N(p);
22: ENTRY 2(1);

23: Critical Section;

24: y := Reset;

25: Reset := (false; y:indx);

26: if :Slot[y:indx] then

27: Reset := (true; y:indx + 1);

28: Y := (true; y:indx + 1)

�;

29: EXIT 2(1);
30:EXIT N(p)

Fig. 3. Fast-path algorithm with unbounded memory.

to show that the fast path is properly reopened after each period of contention

ends.

Of course, the problem with this algorithm is that the indx �eld of Y that

is used for renaming will continue to grow without bound. The algorithm of

Fig. 2 solves this problem by requiring Y:indx to be incremented modulo-N .

With Y:indx being updated in this way, the following potential problem arises.

A process p may reach statement 7 in Fig. 2 with y:indx = k and then get

delayed. While delayed, other processes may repeatedly increment Y:indx (in

SLOW 2) until it \cycles back" to k. At this point, another process q may reach

statement 7 with y:indx = k. This is a problem because p and q may interfere

with each other in updating Slot [k]. The algorithm in Fig. 2 prevents such a

scenario from happening by preventing Y:indx from cycling while some process

executes within statements 7-18. To see how this is prevented, note that before

reaching statement 7, a process p must �rst assign Proc[p] := true at statement

4. Note further that before a process can increment Y:indx from n to n+1mod



N (statement 17 or 37), it must �rst check Proc[n] (statement 15 or 35) and �nd

it to be false. This check prevents Y:indx from cycling while p executes within

statements 7-18. As shown in the next section, the correctness of the code that

reopens the fast path (statements 13-18 and 29-37) rests heavily on the fact that

this code is executed within a critical section.

3 Correctness Proof

In this section, we prove that the algorithm in Fig. 2 is correct. Speci�cally,

we prove that the mutual exclusion property (at most one process executes

critical section at any time) holds and that the fast path is always open in the

absence of contention. (The algorithm is easily seen to be starvation-free, given

the correctness of ENTRY and EXIT calls.) The following notational conventions

will be used in the proof.

Notational Conventions:Unless stated otherwise, we assume i, j, and k range

over f0::N�1g. We use n:i to denote the statement with label n of process i, and

i:y to represent i's private variable y. Let S be a subset of the statement labels

in process i. Then, i@fSg holds i� the program counter for process i equals some

value in S. ut

De�nition: We de�ne a process i to be FAST-possible if the condition F (i),

de�ned below, is true.

F (i) � i@f3::8; 10::20g ^
(i@f3::5g ) X = i) ^ (i@f3::8g ) Reset = i:y) ut

Informally, this condition indicates that process i may potentially acquire the

fast path. It does not necessarily mean that i is guaranteed to acquire the fast

path: if F (i) holds, then process i still can be deected to SLOW 1 or SLOW 2.

If a process i is at f3::9g and is not FAST-possible, then we de�ne it to be

FAST-disabled . We will later show that a FAST-disabled process cannot acquire

the fast path. We now turn our attention to the mutual exclusion property.

3.1 Mutual Exclusion

We will establish the mutual exclusion property by proving that the conjunction

of a number of assertions is an invariant. This proves that each of these asser-

tions individually is an invariant. These invariants are numbered (I1) through

(I22) and are stated on the following pages. Informally, invariants (I1) through

(I4) give conditions that must hold if a process is FAST-possible. Invariants (I5)

through (I9) prevent \cycling". These invariants are used to show that if i@f6::9g
holds and process i is FAST-disabled, then Reset :indx must be \trapped" be-

tween i:y:indx and i. Therefore, there is no wayReset can cycle back, erroneously

making process i FAST-enabled again. Invariants (I10) through (I15) show that

certain regions of code are mutually exclusive. Invariants (I16) through (I21) are



all simple invariants that follow almost directly from the code. Invariant (I22) is

the mutual exclusion property, our goal.

In establishing these invariants, statements that might potentially establish

F (i) must be repeatedly considered. The following lemma shows that only one

such statement must be considered.

Lemma 1: If t and u are consecutive states such that F (i) is false at t but true

at u, and if each of (I1) through (I22) holds at t, then u is reached from t via

the execution of statement 2:i.

Proof: The only statements that could potentially establish F (i) are 2:i (which

establishes i@f3::8; 10::20g and may establish Reset = i:y), 5:i (which falsi�es

i@f3::5g), 8:i (which falsi�es i@f3::8g), 1:i (which establishes X = i), and 31:i,

14:j, 16:j, 33:j, and 36:j, where j is any arbitrary process (which may establish

Reset = i:y). We now show that none of these statements other than 2:i can

establish F (i).

Statement 5:i can establish i@f6g, and hence F (i), only if X = i holds at t.

But, by (I5), this implies that Reset = i:y holds at t as well. By the de�nition

of F (i), this implies that F (i) holds at t, a contradiction.

Statement 8:i can establish i@f10g, and hence F (i), only if Reset = i:y holds

at t. But this implies that F (i) holds at t, a contradiction.

Statements 1:i and 31:i establish i@f2; 32g. Thus, they cannot establish F (i).

Statements 14:j and 33:j could establish F (i) only if i@f3::8g ^ Reset 6= i:y

holds at t, and upon executing 14:j or 33:j, Reset = i:y is established. However,

by (I3) and (I16), 14:j and 33:j can change the value of Reset only by changing

the value of Reset :free from true to false. By (I20), if i@f3::8g holds at t, then
i:y:free = true holds as well. Thus, statements 14:j and 33:j cannot possibly

establish Reset = i:y, and hence cannot establish F (i).

Statements 16:j and 36:j likewise can establish F (i) only if i@f3::8g ^
Reset 6= i:y holds at t. We consider two cases, depending on whether i@f3::5g
or i@f6::8g holds at t. If i@f3::5g ^ Reset 6= i:y holds at t, then by (I5), X 6= i

holds at t. This implies that X 6= i holds at u as well, i.e., F (i) is false at u.

Now, suppose that i@f6::8g ^ Reset 6= i:y holds at t. By (I17), statements

16:j and 36:j increment Reset :indx by 1 modulo-N . Therefore, they may estab-

lish F (i) only if Reset :indx = (i:y:indx � 1) mod N holds at t. By (I6), this

implies that i = Reset :indx or i = i:y:indx holds at t. By (I8), the latter implies

that i = Reset :indx holds at t. Hence, in either case, i = Reset :indx holds at t.

Because we have assumed that i@f6::8g ^ j@f16; 36g holds at t, by (I7), we have
a contradiction. Therefore, statements 16:j and 36:j cannot establish F (i). ut

We now prove each invariant listed above. It is easy to see that each invariant

hold initially, so we will not bother to prove this. For each invariant I, we show

that for any pair of consecutive states t and u, if all invariants hold at t, then

I holds at u. In proving this, we do not consider statements that trivially don't

a�ect I.

invariant F (i) ^ i@f4::8; 10::17g ) Y = (false; 0) (I1)



Proof: To prove that (I1) is not falsi�ed, it su�ces to consider only those state-

ments that may establish the antecedent or falsify the consequent. By Lemma 1,

the only statement that can establish F (i) is 2:i. However, 2:i establishes i@f3g
and thus cannot establish the antecedent. The condition i@f4::8; 10::17gmay be

established only by statement 3:i, which also establishes the consequent.

The consequent may be falsi�ed only by statements 17:j or 37:j, where j is

any arbitrary process. If j = i, then both 17:j and 37:j establish i@f18; 38g,
which implies that the antecedent is false.

Suppose that j 6= i. By (I10) and (I11), the antecedent and j@f17g cannot

hold simultaneously (recall that j@f17g implies F (j), by de�nition). Hence,

statement 17:j cannot be executed while the antecedent holds. Similarly, by

(I12), (I13), and (I14), the antecedent and j@f37g cannot both hold. Hence,

statement 37:j also cannot be executed while the antecedent holds. ut

invariant F (i) ^ i@f8; 10::17g ) Slot [i:y:indx ] = true (I2)

Proof: By Lemma 1, the only statement that can establish F (i) is 2:i. However,

2:i establishes i@f3g and hence cannot establish the antecedent. The condition

i@f8; 10::17g may be established only by statement 7:i, which also establishes

the consequent.

The consequent may be falsi�ed only by statements 2:i, 31:i, 9:j, and 18:j,

where j is any arbitrary process. Statements 2:i and 31:i establish i@f3; 21; 32g,
which implies that the antecedent is false. If j = i, then 9:j and 18:j establish

i@f19; 26g, which implies that the antecedent is false.

Suppose that j 6= i. In this case, statement 9:j may falsify the consequent

only if i:y:indx = j:y:indx holds. By (I15) (with i and j exchanged), j@f9g ^
i:y:indx = j:y:indx implies that the antecedent of (I2) is false. Thus, 9:j cannot

falsify (I2). Similarly, by (I11), if j@f18g holds (which implies that F (j) holds),

then the antecedent of (I2) is false. Thus, 18:j also cannot falsify (I2). ut

invariant i@f10::16g ) Reset :indx = i:y:indx (I3)

Proof: The antecedent may be established only by statement 8:i, which does so

only if Reset = i:y holds. Therefore, statement 8:i preserves (I3).

The consequent may be falsi�ed only by statements 2:i, 31:i, 14:j, 16:j, 33:j,

and 36:j, where j is any arbitrary process. The antecedent is false after the

execution of 2:i and 31:i and also after the execution of 16:j, 33:j, and 36:j if

j = i. If j = i, then statement 14:j preserves the consequent.

Consider 14:j, 16:j, 33:j, and 36:j, where j 6= i. By (I11), the antecedent of

(I3) and j@f14; 16g cannot hold simultaneously (recall that i@f10::16g ) F (i)

and j@f14; 16g ) F (j)). Similarly, by (I14), the antecedent and j@f36g cannot
hold simultaneously. Hence, statements 14:j, 16:j, and 36:j can be executed only

when the antecedent is false, and thus do not falsify (I3). By (I16), statement

33:j cannot change Reset :indx . Hence, it does not falsify (I3). ut

invariant i@f11::20g ) Infast = true (I4)



Proof: The antecedent may be established only by statement 10:i, which also

establishes the consequent. The consequent may be falsi�ed only by statement

20:j, where j is any arbitrary process. If j = i, then statement 20:j also falsi�es

the antecedent. If j 6= i, then by (I11), the antecedent and j@f20g cannot both
hold. Hence, the antecedent is false after the execution of statement 20:j. ut

invariant i@f3::5g ^ X = i ) Reset = i:y (I5)

Proof: The antecedent may be established only by statements 1:i (which estab-

lishes X = i) and 2:i (which may establish i@f3::5g). However, 1:i establishes
i@f2g and hence cannot establish the antecedent. Also, by (I19), statement 2:i

establishes the consequent.

The consequent may be falsi�ed only by statements 2:i, 31:i, 14:j, 16:j, 33:j,

and 36:j, where j is any arbitrary process. However, statement 2:i preserves (I5)

as shown above. Furthermore, the antecedent is false after the execution of 31:i

and also after the execution of each of 14:j, 16:j, 33:j, and 36:j if j = i.

Consider 14:j, 16:j, 33:j, and 36:j, where j 6= i. If the antecedent and con-

sequent of (I5) both hold, then F (i) holds by de�nition. If j 6= i, then by (I10)

and (I12), j@f14; 16; 33; 36g cannot hold as well. Hence, these statements cannot

falsify (I5). ut

invariant i@f6::9g ) (i:y:indx � Reset :indx � i) _
(Reset :indx � i � i:y:indx ) _
(i � i:y:indx � Reset :indx ) (I6)

Proof: The antecedent may be established only if 5:i is executed when X = i

holds. In this case, by (I5), Reset = i:y holds, so the consequent is preserved.

The consequent may be falsi�ed only by statements 2:i, 31:i, 14:j, 16:j, 33:j,

and 36:j, where j is any arbitrary process. The antecedent is false after the

execution of 2:i and 31:i and also after the execution of each of 14:j, 16:j, 33:j,

and 36:j if j = i.

Consider statements 16:j and 36:j, where j 6= i. By (I17), these statements

increment Reset :indx by 1 modulo-N . Therefore, these statements may falsify

the consequent only if Reset :indx = i holds before execution. However, in this

case, by (I7), the antecedent of (I6) is false. Thus, statements 16:j and 36:j

cannot falsify (I7).

Finally, consider 14:j and 33:j, where j 6= i. By (I3) and (I16), 14:j and 33:j

don't change Reset :indx . Hence, they can't falsify the consequent. ut

invariant i@f6::9g ^ Reset :indx = i ) :(9j :: j@f16; 36g) (I7)

Proof: The antecedent may be established only by statements 5:i, 14:k, 16:k,

33:k, and 36:k, where k is any arbitrary process. Statement 5:i establishes the

antecedent only if executed when X = i holds. In this case, by (I5), Reset = i:y,

and hence F (i), holds as well. By (I10) and (I12), this implies that :(9j ::

j@f16; 36g) also holds. This implies that statement 5:i cannot falsify (I7).



If k = i, then the antecedent is false after the execution of each of 14:k, 16:k,

33:k, and 36:k. If k 6= i, then by (I22), (8j :: k@f16; 36g ^ j@f16; 36g ) k = j)

holds. Therefore, 16:k and 36:k both establish (8j :: :j@f16; 36g), which is

equivalent to the consequent. Now, consider statements 14:k and 33:k, where

k 6= i. By (I3) and (I16), these statements do not change Reset :indx . It follows

that, although statements 14:k and 33:k may preserve the antecedent, they do

not establish it.

The consequent may be falsi�ed only by statements 15:j and 35:j, which

may do so only if Proc[j:y:indx ] = false. However, if the antecedent of (I7) and

j@f15; 35g both hold, then the following hold: Reset :indx = j:y:indx , by (I17),

Reset :indx = i, by the antecedent, and Proc[i] = true, by (I21). Taken together,

these assertions imply that Proc[j:y:indx ] = true. Therefore, statements 15:j or

35:j cannot falsify the consequent while the antecedent holds. ut

invariant i@f6::9g ^ i:y:indx = i ) Reset :indx = i:y:indx (I8)

Proof: The antecedent may be established only by statements 2:i, 5:i, and 31:i.

However, statements 2:i and 31:i establish i@f3; 32g, which implies that the

antecedent is false. Furthermore, by (I5), statement 5:i preserves the consequent.

The consequent may be falsi�ed only by statements 2:i, 31:i, 14:j, 16:j, 33:j,

and 36:j, where j is any arbitrary process. However, the antecedent is false after

the execution of 2:i and 31:i and also after the execution of each of 16:j, 33:j,

and 36:j if j = i.

Consider statements 14:j, 16:j, 33:j, and 36:j, where j 6= i. By (I3) and

(I16), statements 14:j and 33:j do not change Reset :indx , and hence cannot

falsify the consequent. Note also that, by (I7), the antecedent, the consequent,

and j@f16; 36g cannot all hold simultaneously. Hence, statements 16:j and 36:j

cannot falsify the consequent when the antecedent holds. ut

invariant i@f9g ^ Reset :indx = i:y:indx ) Reset :free = false (I9)

Proof: (I9) may be falsi�ed only by statements 2:i, 8:i, 31:i, 14:j, 16:j, 33:j,

and 36:j, where j is any arbitrary process. Statements 2:i and 31:i establish

i@f3; 32g, which implies that the antecedent is false. Statement 8:i establishes

the antecedent only if executed when Reset 6= i:y ^ Reset :indx = i:y:indx holds,

which implies thatReset :free 6= i:y:free. However, by (I20), i:y:free = true. Thus,

Reset :free = false.

If j = i, then each of 14:j, 16:j, 33:j, and 36:j establishes i@f15; 17; 34; 37g,
which implies that the antecedent is false.

Consider statements 14:j, 16:j, 33:j, and 36:j, where j 6= i. Statements 14:j

and 33:j trivially establish or preserve the consequent. By (I17), statements 16:j

and 36:j increment Reset :indx by 1 modulo-N . Therefore, these statements may

establish the antecedent of (I9) only if executed when i@f9g ^ Reset :indx =

(i:y:indx � 1)mod N holds. In this case, by (I6), i = Reset :indx or i = i:y:indx

holds. By (I8), the latter implies that i = Reset :indx holds. In either case,

i = Reset :indx holds. By (I7), this implies that i@f9g is false. It follows that

statements 16:j and 36:j cannot falsify (I9). ut



invariant F (i) ^ F (j) ^ i 6= j ) :(i@f3::6g ^ j@f3::8; 10::17g) (I10)

Proof: By Lemma 1, the only statement that can establish F (i) is 2:i. There-

fore, the only statements that may falsify (I10) are 2:i and 2:j. Without loss of

generality, it su�ces to consider only statement 2:i.

Statement 2:i may establish F (i) ^ i@f3::6g only if Y:free = true. We

consider two cases. First, suppose that (9j : j 6= i :: F (j) ^ j@f3::5g) holds
before 2:i is executed. In this case, X = j holds by the de�nition of F (j).

Hence, X 6= i, which implies that 2:i does not establish F (i). Second, suppose

that (9j : j 6= i :: F (j) ^ j@f6::8; 10::17g) holds before 2:i is executed. In

this case, by (I1), Y:free = false. In either case, statement 2:i cannot establish

F (i) ^ i@f3::6g. ut

invariant F (i) ^ F (j) ^ i 6= j ) :(i@f7; 8; 10::20g^ j@f7; 8; 10::20g) (I11)

Proof: By Lemma 1, the only statement that can establish F (i) is 2:i. However,

2:i establishes i@f3g and hence cannot falsify (I11). The only other statements

that could potentially falsify (I11) are 6:i and 6:j. Without loss of generality, it

su�ces to consider only statement 6:i.

By Lemma 1, statement 6:i may establish F (i) ^ i@f7; 8; 10::20g only if

F (i) ^ Infast = false holds before execution. We consider two cases. First,

suppose that (9j : j 6= i :: F (j) ^ j@f7; 8; 10::17g) holds before the execution
of 6:i. In this case, by (I10), F (i) ^ i@f6g is false. This implies that 6:i cannot

establish F (i) ^ i@f7; 8; 10::20g. Second, suppose that (9j : j 6= i :: F (j) ^
j@f18::20g) holds before 6:i is executed. In this case, by (I4), Infast = true.

Hence, statement 6:i cannot establish i@f7::20g. ut

invariant F (i) ) :(i@f3::5g ^ j@f31::37g) (I12)

Proof: By Lemma 1, the only statement that can establish F (i) is 2:i. Therefore,

the only statements that may falsify (I12) are 2:i and 30:j.

Statement 2:i may falsify (I12) only if executed when Y:free = true ^
j@f31::37g holds, but this is precluded by (I18). Statement 30:j may falsify

(I12) only if executed when F (i) ^ i@f3::5g ^ i 6= j holds. Because statement

30:j falsi�es X = i, it also falsi�es F (i) ^ i@f3::5g. Thus, it preserves (I12). ut

invariant F (i) ) :(i@f6; 7g ^ j@f34::37g) (I13)

Proof: By Lemma 1, the only statement that can establish F (i) is 2:i. However,

2:i establishes i@f3g and hence cannot falsify (I13). The only other statements

that may potentially falsify (I13) are 5:i and 33:j.

Statement 5:i may falsify (I13) only if executed when F (i) ^ j@f34::37g
holds, but this is precluded by (I12). Statement 33:j may falsify (I13) only if

executed when F (i) ^ i@f6; 7g holds, which, by (I20), implies that i:y:free =

true holds. Because statement 33:j establishes Reset :free = false, Reset 6= i:y

holds after its execution, which implies that F (i) ^ i@f6; 7g is false. Therefore,

statement 33:j preserves (I13). ut



invariant F (i) ) :(i@f8; 10::19g ^ j@f35::37g) (I14)

Proof: By Lemma 1, the only statement that can establish F (i) is 2:i. However,

2:i establishes i@f3g and hence cannot falsify (I14). The only other statements

that could potentially falsify (I14) are 7:i and 34:j. Statement 7:i may falsify

(I14) only if executed when F (i) ^ j@f35::37g holds, but this is precluded by

(I13).

Statement 34:j may falsify (I14) only if executed when F (i) ^ i@f8; 10::19g ^
Slot [j:y:indx ] = false holds. By (I22), i@f17::19g and j@f34g cannot hold si-

multaneously. Thus, 34:j could potentially falsify (I14) only if executed when

F (i) ^ i@f8; 10::16g ^ Slot[j:y:indx ] = false holds. In this case, Slot [i:y:indx ] =

true holds as well, by (I2), as does Reset :indx = i:y:indx , by the de�nition of F (i)

and (I3). In addition, by (I17), j@f34g implies that Reset :indx = j:y:indx holds.

Combining these assertions, we have Slot [j:y:indx ] = false ^ Slot [j:y:indx ] =

true, which is a contradiction. Hence, statement 34:j cannot falsify (I14). ut

invariant i@f6::9g ^ j@f6::17g ^ i 6= j ) i:y:indx 6= j:y:indx (I15)

Proof: The only statements that may falsify the consequent are 2:i, 31:i, 2:j,

and 31:j. However, the antecedent is false after the execution of each of these

statements. The only statements that can establish the antecedent are 5:i and

5:j. We show that 5:i does not falsify (I15); the reasoning for 5:j is similar.

Statement 5:i can establish the antecedent only if executed when X = i holds.

By (I5), this implies that Reset = i:y holds, which in turn implies that F (i) is

true. So, assume that X = i ^ Reset = i:y ^ F (i) holds before 5:i is executed.

We analyze three cases, which are de�ned by considering the value of process j's

program counter.

{ Case 1: j@f6::8g holds before 5:i is executed. In this case, because F (i) is

true, by (I10), F (j) does not hold. Thus, we have j@f6::8g ^ :F (j), which
implies that Reset 6= j:y. Because Reset = i:y, this implies that i:y 6= j:y.

In addition, by (I20), we have i:y:free = true ^ j:y:free = true. Thus, the

consequent of (I15) holds before, and hence after, 5:i is executed.

{ Case 2: j@f9g holds before 5:i is executed. In this case, we show that the

consequent of (I15) holds before, and hence after, 5:i is executed. Assume

to the contrary that i:y:indx = j:y:indx holds before 5:i is executed. Then,

because Reset = i:y holds, we have j:y:indx = Reset :indx . By (I9), this

implies that Reset :free = false. Because Reset = i:y holds, this implies that

i:y:free = false holds. However, by (I20), we have i:y:free = true, which is

a contradiction.

{ Case 3: j@f10::17g holds before 5:i is executed. In this case, by (I10),

F (i) ^ i@f5g is false, which is a contradiction. ut

The following invariants are straightforward and are stated without proof.

invariant i@f32; 33g ) Reset = i:y (I16)

invariant i@f15; 16; 34::36g ) Reset = (false; i:y:indx ) (I17)

invariant i@f30::37g ) Y = (false; 0) (I18)



invariant Y:free = true ) Y = Reset (I19)

invariant i@f3::20g ) i:y:free = true (I20)

invariant (i@f5::13; 26::32g) = (Proc[i] = true) (I21)

invariant (Mutual exclusion) jfi :: i@f12::19; 23; 24; 28::38ggj � 1 (I22)

Proof: From the speci�cation of ENTRY 2/EXIT 2 and ENTRY N/EXIT N, (I22)

may fail to hold only if two processes simultaneously execute within statements

10-20. However, this is precluded by (I11). ut

3.2 Fast Path is Always Open in the Absence of Contention

Having shown that the mutual exclusion property holds, we now prove that

when all processes are within their noncritical sections, the fast path is open.

This property is formally captured by (I26) given below. Before proving (I26),

we �rst present three other invariants; two of these are quite straightforward and

are stated without proof.

invariant Slot [k] = true ) (9i :: i@f8::18g ^ k = i:y:indx ) (I23)

invariant (8i :: i@f0::2; 18::25;38;39g) ) Y:free = true (I24)

Proof: The only statements that can establish the antecedent are 15:i, 17:i, 34:i,

35:i, and 37:i. Both 17:i and 37:i establish the consequent.

Statements 15:i and 35:i can establish the antecedent only if Proc[k] = true,

where k = i:y:indx . By (I21), Proc[k] = true implies that k@f5::13; 26::32g
holds, which implies that the antecedent is false.

Similarly, statement 34:i can establish the antecedent only if Slot [i:y:indx ] =

true. By (I23), this implies that (9j :: j@f8::18g ^ i:y:indx = j:y:indx ) holds. By

(I22), j@f12::18g ^ i@f34g is false. It follows that (9j :: j@f8::11g ^ i:y:indx =

j:y:indx ) holds, which implies that the antecedent is false.

The only statements that can falsify the consequent are 3:i and 29:i. Both

establish i@f4; 30g, which implies that the antecedent is false. ut

invariant Infast = true ) (9i :: i@f11::20g) (I25)

invariant (Fast path is open in the absence of contention)

(8i :: i@f0g) ) Y:free = true ^ Infast = false ^ Y = Reset (I26)

Proof: If (8i :: i@f0g) holds, then Y:free = true holds by (I24), and Infast =

false holds by (I25). By (I19), Y = Reset holds as well. ut

4 Concluding Remarks

In presenting our fast-path algorithm, we have abstracted away from the de-

tails of the underlying algorithms used to implement the ENTRY and EXIT calls.



With the ENTRY 2/EXIT 2 calls in Fig. 2 implemented using Yang and Ander-

son's two-process algorithm, our fast-path algorithm can be simpli�ed slightly.

In particular, the writes to the variable Infast can be removed, and the test of

Infast in statement 6 can be replaced by a test of a similar variable (speci�cally

the variable C[0] | see [8]) used in Yang and Anderson's algorithm.

Results by Cypher have shown that read/write atomicity is too weak for

implementing mutual exclusion with a constant number of remote memory ref-

erences per critical section access [2]. The actual lower bound established by

him is a slow growing function of N . We suspect that 
(logN ) is probably a

tight lower bound for this problem. At the very least, we know from Cypher's

work that time complexity under contention must be a function of N . Thus,

mechanisms for achieving constant time complexity in the absence of contention

should remain of interest even if algorithms with better time complexity under

contention are developed.

The problem of implementing a fast-path mechanism bears some resemblance

to the wait-free long-lived renaming problem [7]. Indeed, thinking about connec-

tions to renaming led us to discover our fast-path algorithm. In principle, a

fast-path mechanism could be implemented by associating a name with the fast

path and by having each process attempt to acquire that name in its entry sec-

tion; a process that successfully acquires the fast-path name would release it

in its exit section. Despite this rather obvious connection, the problem of im-

plementing a fast-path mechanism is actually a much easier problem than the

long-lived renaming problem. In particular, while a renaming algorithmmust be

wait-free, most of the steps involved in releasing a \fast-path name" can be done

within a process's critical section. Our algorithm heavily exploits this fact.

References

1. T. Anderson. The performance of spin lock alternatives for shared-memory multi-

processors. IEEE Trans. on Parallel and Distributed Sys., 1(1):6{16, 1990.

2. R. Cypher. The communication requirements of mutual exclusion. In Proceedings

of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 147{156, 1995.

3. E. Dijkstra. Solution of a problem in concurrent programming control. Communi-

cations of the ACM, 8(9):569, 1965.

4. G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multi-

processors. IEEE Computer, 23:60{69, 1990.

5. L. Lamport. A fast mutual exclusion algorithm. ACM Trans. on Computer Sys.,

5(1):1{11, 1987.

6. J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on

shared-memory multiprocessors. ACM Trans. on Computer Sys., 9(1):21{65, 1991.

7. M. Moir and J. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci-

ence of Computer Programming, 25(1):1{39, 1995.

8. J.-H. Yang and J. Anderson. Fast, scalable synchronization with minimal hard-

ware support. In Proceedings of the 12th Annual ACM Symposium on Principles of

Distributed Computing, pages 171{182. 1993.

This article was processed using the LATEX macro package with LLNCS style


