
Efficient Synchronization under Global EDF Scheduling on
Multiprocessors ∗

UmaMaheswari C. Devi, Hennadiy Leontyev, and James H. Anderson
Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract
We consider coordinating accesses to shared data structures in
multiprocessor real-time systems scheduled under preemptive
global EDF. To our knowledge, prior work on globalEDF has
focused only on systems of independent tasks. We take an initial
step here towards a generic resource-sharing framework by con-
sidering simple shared objects, such as queues, stacks, andlinked
lists. In many applications, the predominate use of synchroniza-
tion constructs is for sharing such simple objects. We analyze two
synchronization methods for such objects, one based on queue-
based spin locks and a second based on lock-free algorithms.

1 Introduction
In work on real-time systems, multiprocessor platforms (SMPs)
are of growing importance. This is due to both hardware trends
such as the emergence of multicore technologies and the preva-
lence of computationally-intensive applications for which single-
processor designs are not sufficient.

In work on real-time multiprocessor systems, three basic
scheduling approaches have been considered:partitioning, Pfair-
based global scheduling, andnon-Pfair-based global scheduling.
Under partitioning, tasks are statically assigned to processors,
and a uniprocessor scheduling algorithm is used on each pro-
cessor to schedule its assigned tasks. In contrast, under global
scheduling, a task may execute on any processor and may mi-
grate across processors. Pfair scheduling [3] is currentlythe only
known way ofoptimallyscheduling recurrent real-time task sys-
tems on a multiprocessor. However, Pfair algorithms schedule
tasks one quantum at a time, and as a result, jobs may be pre-
empted and migrate across processors frequently. Such over-
heads can lower the amount of useful work accomplished.

Non-Pfair scheduling algorithms require restrictions on total
utilization that can approach roughly 50% of the available pro-
cessing capacity if every deadline is to be met [5]. However,re-
cent work has shown that if bounded deadline tardiness is accept-
able, then such restrictions can be lifted for globalEDF [6, 18].
These results suggest that globalEDF (henceforth referred to as
justEDF) holds great promise as an effective scheduling method
for real-time multiprocessor applications: if bounded tardiness
is tolerable, thenEDF enables applications to be deployed with-
out the utilization restrictions and rigidity of partitioning schemes
and without the potentially high implementation overheadsof

∗Work supported by NSF grants CNS 0309825, CNS 0408996, and CCF
0541056. The first author was also supported by an IBM Ph.D. fellowship.

Pfair schemes. However, all prior work onEDF has pertained
only to systems of independent tasks,i.e., tasks that do not have
synchronization constraints. Clearly, to be really useful, the cur-
rent theory ofEDF scheduling must be extended to properly
address synchronization requirements. In this paper, we make
an initial attempt to deal with such requirements by considering
techniques for coordinating accesses to shared data structures.

Our particular focus in this paper is thecommon case, which
we take to be non-nested accesses to simple shared objects. Re-
search studies have been conducted that support the belief that
simple objects are the predominate form of data sharing in many
applications. For example, Tsigas and Zhang [16, 17] ana-
lyzed shared-memory applications from the SPLASH-2 bench-
mark suite [19] and Spark98 kernels suite [13] and found that
almost all synchronization in these applications is for simple data
structures such as buffers, queues, or stacks. Our conclusion that
this is the common case is also supported anecdotally by discus-
sions that the third author has had on this issue with many re-
searchers over the years. Hence, we believe that it is appropriate
to first consider supporting short, non-nested object accesses (or
object calls) before enabling support for more complex objects,
which will require more expensive approaches and extensiveker-
nel support, such as priority inheritances and ceilings [14]. Two
simple object-sharing approaches are therefore considered in this
paper: queue-based spin locks and lock-free shared-objectalgo-
rithms. Each is considered in turn below.

Queue locks. In the first approach we consider, shared object
calls are implemented as critical sections accessed via queue-
based spin locks (or,queue locks, for short) invoked within non-
preemptive regions. In queue-lock algorithms, a task waitsby
busy-waiting, or spinning, on a “spin variable”(i.e., continuously
testing its status), and waiting tasks are ordered within a “spin
queue” [12]. When a task attempts to acquire a lock, it appends
its lock request onto the end of the spin queue and spins on a
spin variable, which is exclusive to it. The task at the head of the
queue may access the critical section, after which, it updates the
spin variable for the next task in the queue so that it stops spin-
ning. Queue locks have two interesting properties. First, busy-
waiting is accomplished vialocal spinning: in other words, each
task’s spin variable is chosen such that it can be locally cached.
This strategy ensures that waiting tasks do not generate exces-
sive bus traffic. Second, lock requests are granted in FIFO order,
and hence, bounds on waiting times can be easily determined.
In particular, because we allow such locks to be invoked only
within non-preemptive regions, if an object with an access cost

1

of at moste time units is shared byc tasks executing on anm-
processor system, then a waiting task (that is, a task that has al-
ready initiated its request) can block for at most(min(m, c)−1)·e
time units before its critical section commences execution. In
the common case under consideration, such waiting times will be
short (as thee term here will be small). Note that if a task could
be preempted within a critical section, then the waiting times for
any tasks that it blocks could lengthen enormously. This is the
case even with critical sections that are short in duration.

Though a FIFO lock-granting order may delay higher-priority
jobs, the alternative, provided by a priority-based queue lock, has
a higher time complexity and requires a more complicated imple-
mentation. Moreover, underEDF, introducing priorities within
queue locks does not alter worst-case analysis. Similarly,dis-
abling preemptions for tasks that are spinning may seem waste-
ful. However, the rationale behind spinning is that for short criti-
cal sections, waiting times would typically be much less than the
overhead involved in blocking (as with semaphores) and later re-
suming a process. The solution proposed is in line with viewsex-
pressed by others. For instance, in [20], the founder of RTLinux
recommends accessing simple critical sections non-preemptively.

To enable the functionality discussed above underEDF, prior
work on hard and soft real-time analysis underEDF must be ex-
tended to allow tasks to be comprised of preemptive and non-
preemptive regions. An important contribution of this paper is
to derive a tardiness bound under such a mixed preemptive/non-
preemptive task model. The analysis used in doing this is based
on that used previously by Devi and Anderson [6] in their work
on EDF and non-preemptiveEDF. In fact, the prior bounds pre-
sented by them are special cases of the bound presented here.
Given these results, the impact of queue-lock overheads on tar-
diness can be easily assessed. Though our main focus in this
paper is soft real-time systems, we also show how to account for
queue-lock overheads underEDF in hard real-time systems. Fi-
nally, it is worth noting that unlike in the case of uniprocessors,
a fully non-preemptive solution would not be effective in elimi-
nating contention to shared resources on multiprocessors.Thus,
a simpler solution than queue locks, with comparable lossesdue
to synchronization, seems unlikely.

Lock-free synchronization. Because disabling preemptions
requires kernel support, the approach discussed above may not
be suitable in all contexts. As an alternative, we suggest using
lock-free shared-object algorithms, which work particularly well
for the kinds of simple objects considered in this paper. In such
algorithms, operations on shared data structures are implemented
using “retry loops”: operations are optimistically attempted and
retried until successful. (See [1] for an in-depth discussion of
lock-free synchronization.) Retries are needed in the event that
concurrent operations by different tasksinterferewith each other.
No kernel support is required. For lock-free objects to be usable
in real-time systems, it is important that bounds on interferences
(and hence, retries) be determined.

While the viability of the lock-free approach foruniprocessor-
based real-time systems is well-known [1], onmultiprocessors,
lock-free sharing is often considered impractical, because of dif-
ficulties in computing reasonable retry bounds. Nevertheless, this

approach may be a reasonable option in the absence of kernel
support. Hence, as a second contribution, we show how to bound
the number of interferences in hard and soft real-time systems
scheduled underEDF.

Performance evaluation. As a third contribution, we present
an evaluation of the two approaches discussed above using
randomly-generated task systems. In this evaluation, we deter-
mined the loss in total system utilization and the increase to tar-
diness bounds for tasks. Execution times for operations on shared
objects when generating random tasks were chosen based on ex-
perimental data collected from a real test bed. We found that,
for simple objects, access times are very short, usually in the 1-
5µs range. By extrapolating from these results, we concluded
that retry costs in lock-free implementations would also besmall.
When considering randomly-generated tasks, such short access
times were seen to have only a low impact when the number
of shared-object invocations per task is at most three. We be-
lieve this to be a reasonable upper bound on the degree of con-
tention in many applications. This is supported by Lamport [10],
who noted that contention for critical sections is rare in a well-
designed system. Hence, our overall conclusion is that, in the
common case, object-sharing support can be provided underEDF
without complicated techniques and with little overhead.

Related work. As mentioned earlier, to our knowledge, task
synchronization under globalEDF has not been considered in
any prior work. The problem has been addressed in some other
multiprocessor scheduling approaches, though. In [14], anex-
tension of thepriority-ceiling protocol, which is for use with
semaphores, has been presented for partitioned rate-monotonic
scheduling. Semaphore-based approaches and the lock-freeap-
proach have been considered for Pfair-scheduled systems in[8]
and [9], respectively. For use in multiprocessor-based real-time
kernels, an approach based on spin locks has been proposed
in [15]. However, this work is mainly concerned with lowering
interrupt latencies, and not with the schedulability of a real-time
workload, and the evaluation is entirely empirical.

The rest of this paper is organized as follows. Our system
model is described in Sec. 2. A tardiness bound for tasks with
non-preemptive code segments is derived in Sec. 3. An analysis
of EDF with the two proposed synchronization approaches for
both hard and soft real-time systems is presented in Sec. 4. Sec. 5
presents the above-mentioned experimental evaluation, and fi-
nally, Sec. 6 concludes.

2 System Model and Notation
Towards determining a tardiness bound for tasks synchronized
using queue locks, we consider the scheduling of asporadic task
systemτ comprised ofn ≥ 2 sporadic tasksdenotedT1, . . . , Tn

on m ≥ 2 identical processors. Each sporadic taskTi is charac-
terized by a tuple(ei, pi), wherepi is theminimum inter-arrival
time between two consecutive jobs ofTi (also known as itspe-
riod) andei is theworst-case execution costof each job ofTi.
The kth job of Ti is denotedTi,k. The release time ofTi,k is
denotedri,k. pi is also therelative deadlineof each job ofTi.

2

Theabsolute deadline(or just, deadline) ofTi,k is denoteddi,k

(= ri,k + pi).
Each job of each taskTi may be comprised of zero or more

non-preemptable code segments. The maximum execution cost
of any such segment of any task is denotedbmax.1 (As noted
earlier, it is our intention to invoke queue-lock algorithms within
such segments. In this case,bmax will depend on spinning times.
We consider this issue later in Sec. 4.) Theutilization of Ti is
given by ui = ei/pi. The total utilization of τ is defined as
Usum(τ) =

∑n
i=1 ui. The minimum execution cost of any task

is denotedemin(τ).
A sporadic task systemτ isconcreteif the release time of every

job of each of its tasks is specified, andnon-concrete, otherwise.
The type of the task system is specified only when necessary. The
results in this paper are for non-concrete task systems, andhence
hold for every concrete task system.

In soft real-time systems, jobs may miss their deadlines.
The tardiness of a jobTi,j in a scheduleS is defined as
tardiness(Ti,j ,S) = max(0, t − di,j), wheret is the time at
which Ti,j completes executing inS. If κ is the maximum tar-
diness of any job of any task of any feasible task system under
scheduling algorithmA, thenA is said toensure a tardiness
bound ofκ. We assume thatdeadline misses do not delay fu-
ture job releases. That is, even if a job misses its deadline, the
release time of the next job of that task remains unaltered.

We will refer to the EDF algorithm that is cognizant of
the non-preemptive sections of a task and executes them non-
preemptively asEDF-hybrid. (In a real implementation, special
system calls will be required to inform the scheduler when a non-
preemptive section is entered and exited.) At any time, higher
priority is accorded to jobs with earlier deadlines, subject to not
preempting a job that is executing in a non-preemptive section.
Ties are resolved arbitrarily. A job executing in a preemptive
section may be preempted by an arriving higher-priority joband
may later resume execution on a different processor. Note that
fully-preemptive and non-preemptiveEDF are special cases of
EDF-hybrid.

The tardiness bound we derive is expressed in terms of the
highest task execution costs and utilizations, and the total sys-
tem utilization. To express the bound easily, we letεi (resp.,
µi) denote theith execution cost (resp., task utilization) in non-
increasing order.2 Λ is defined as follows.

Λ =

�
Usum(τ) − 1, Usum(τ) is integral
bUsum(τ)c, otherwise

(1)

3 A Tardiness Bound forEDF-hybrid
In this section, we derive a tardiness bound forEDF-hybrid.
Our approach is the same as that used in [6] in deriving tardi-
ness bounds under fully-preemptive and non-preemptiveEDF.
Our contribution here is in integrating the two derivationsand in
deriving a bound that is dependent on not just the individualtask
parameters but also on total system utilization.

1In fact, tasks with the shortest relative deadline can be excluded in determin-
ing bmax, since such tasks cannot block any task underEDF.

2εi andµi may not correspond toTi and may not represent the parameters of
the same task.

The derivation involves comparing the allocations to a concrete
task systemτ in a processor sharing (PS) schedule and anEDF-
hybrid schedule, and quantifying the difference between the two.
In a PS schedule, each job ofTi is allocated a fractionui of a
processor at each instant in the interval between its release time
and deadline. BecauseUsum ≤ m holds and relative deadlines
equal periods, the total demand at any instant will not exceed m
in a PS schedule, and every job will complete executing exactly
at its deadline.

3.1 Definitions
The system start time is assumed to be zero. For any timet > 0,
t− denotes the timet − ε in the limit ε → 0+.

Definition 1 (active tasks and active jobs): A taskTi is said
to beactiveat timet if there exists a jobTi,j (calledTi’s active
job at t) such thatri,j ≤ t < di,j . By our task model, every task
can have at most one active job at any time.

Definition 2 (pending jobs): Ti,j is said to bependingat t in
a scheduleS if ri,j ≤ t andTi,j has not completed execution
by t in S. Note that a job with a deadline at or beforet is not
considered to be active att even if it is pending att.

Definition 3 (ready jobs): A pending jobTi,j is said to be
readyat t in a scheduleS if t ≥ ri,j and all prior jobs ofTi

have completed execution byt in S.
Let A(S, Ti, t1, t2) denote the total time allocated toTi in an

arbitrary scheduleS for τ in [t1, t2). Then, since inPSτ (thePS
schedule forτ), Ti is allocated a fractionui at each instant it is
active in[t1, t2), we haveA(PSτ , Ti, t1, t2) ≤ (t2 − t1)ui. The
total allocation toτ in the same interval inPSτ is

A(PSτ , τ, t1, t2) ≤ �
Ti∈τ

(t2 − t1)ui = Usum(τ) · (t2 − t1). (2)

The difference between the total allocations toTi up to timet in
PSτ and an arbitrary scheduleS is defined as thelag of taskTi

at timet in scheduleS, and is given by

lag(Ti, t,S) = A(PSτ , Ti, 0, t) − A(S , Ti, 0, t). (3)

The total lag of a task systemτ at t, denotedLAG(τ, t,S), is
given by

LAG(τ, t,S) = �
Ti∈τ

lag(Ti, t,S)

= A(PSτ , τ, 0, t) − A(S , τ, 0, t). (4)

Note thatLAG(τ, 0,S) and lag(Ti, 0,S) are both zero, and that
by (3) and (4), we have the following fort2 > t1.

lag(Ti, t2,S) = lag(Ti, t1,S) +

A(PSτ , Ti, t1, t2) − A(S , Ti, t1, t2)

LAG(τ, t2,S) = LAG(τ, t1,S) +

A(PSτ , τ, t1, t2) − A(S , τ, t1, t2) (5)

Lag for jobs. The notion of lag defined above for tasks and
task sets can be applied to jobs and job sets in an obvious man-
ner. Let τ denote a concrete task system, andΨ a subset of
jobs in τ . Let A(PSτ , Ti,j , t1, t2) andA(S, Ti,j , t1, t2) denote
the allocations toTi,j in [t1, t2) in PSτ and S, respectively.
Then, lag(Ti,j , t,S) = A(PSτ , Ti,j , ri,j , t) − A(S, Ti,j , ri,j , t),

3

andLAG(Ψ, t,S) =
∑

Ti,j∈Ψ lag(Ti,j , t,S). The total allocation

in [0, t), wheret > 0, to a job that is neither pending att− in S
nor is active att− is the same in bothS andPSτ , and hence, its
lag at t is zero. Therefore, fort > 0, we have

LAG(Ψ, t,S) = �
{Ti,j is in Ψ, and is pending
or active att−}

lag(Ti,j , t,S).

The above can be rewritten using tasklags as follows (since no
job can be scheduled before its release time).

LAG(Ψ, t,S) ≤ �
{Ti ∈ τ : Ti,j is in Ψ, and is
pending or active att−}

lag(Ti, t,S) (6)

The total utilization ofΨ at timet is defined as the sum of the
utilizations of tasks with an active job att in Ψ:

Usum(Ψ, t) = �
{Ti ∈ τ : Ti,j is in Ψ and is ac-
tive att}

ui ≤ Usum(τ). (7)

The counterparts of (2) and (5) for job sets are as follows.

A(PSτ , Ψ, t1, t2) = � t2

t1

Usum(Ψ, t)dt ≤ (t2 − t1) · Usum(τ)

(8)

LAG(Ψ, t2,S) = LAG(Ψ, t1,S) +

A(PSτ , Ψ, t1, t2) − A(S, Ψ, t1, t2) (9)

Definition 4 (busy and non-busy intervals): A time interval
[t1, t2), wheret2 > t1, is said to bebusyfor Ψ if all m processors
are executing some job inΨ at each instant in the interval,i.e., no
processor is ever idle in the interval or executes a job not inΨ.
An interval [t1, t2) that is not busy forΨ is said to benon-busy
for Ψ, and ismaximally non-busyif every time instant in[t1, t2)
is non-busy, and eithert1 = 0 or t−1 is busy.

If at leastUsum(Ψ, t) tasks are executing their jobs inΨ at any
instantt in [t1, t2) in a scheduleS, then the total allocation in
S to jobs inΨ is at least the allocation thatΨ receives in aPS
schedule. Therefore, by (9), theLAG of Ψ at t2 cannot exceed
that att1, and we have the following lemma.

Lemma 1 If LAG(Ψ, t + δ,S) > LAG(Ψ, t,S), whereδ > 0
andS is a schedule forτ , then[t, t+ δ) is a non-busy interval for
Ψ. Furthermore, there exists at least one instantt′ in [t, t + δ)
at which fewer thanUsum(Ψ, t′) tasks are executing their jobs in
Ψ.

3.2 Deriving a Tardiness Bound
Given an arbitrary non-concrete task systemτN , we are inter-
ested in determining the maximum tardiness of any job of any
task in any concrete instantiation ofτN . Let τ be a concrete in-
stantiation ofτN , T`,j a job inτ , td = d`,j , andS anEDF-hybrid
schedule forτ with the following property.

(P) The tardiness of every job of every taskTk in τ with deadline
less thantd is at mostx + ek in S, wherex ≥ 0.

Then, determining the smallestx, independent of the parameters
of T`, such that the tardiness ofT`,j remains at mostx+e` would
by induction imply a tardiness of at mostx + ek for all jobs of
every taskTk in τ . Becauseτ is arbitrary, the tardiness bound
will hold for every concrete instance ofτN .

Our objective is easily met ifT`,j completes by its deadline,
td, so assume otherwise. The completion time ofT`,j depends on
the amount of work that can compete withT`,j after td. Hence,
we follow the steps below to determinex.

(S1) Compute an upper bound (UB) on the work (including that
due toT`,j) that can compete withT`,j aftertd.

(S2) Determine a lower bound (LB) on the amount of such work
required for the tardiness ofT`,j to exceedx + e`.

(S3) Determine the smallestx such that the tardiness ofT`,j is at
mostx + e` usingUB andLB.

Let Ψ andΨ be defined as follows.

Ψ
def
= set of all jobs with deadlines at mosttd of tasks inτ

Ψ
def
= set of all jobs ofτ that are not inΨ

(i.e., jobs with deadlines later thantd)

UnderEDF-hybrid, competing work forT`,j at td is given by
(i) the amount of work pending attd for jobs in Ψ plus (ii) the
amount of work demanded aftertd by non-preemptive sections
of jobs that are not inΨ but that commenced execution before
td. Because the deadline of every job inΨ is at mosttd, the first
component is given byLAG(Ψ, td,S). To facilitate computing
the second component, which will be denotedB(τ, Ψ, td,S), we
define the following.

Definition 5 (priority inversions, blocking jobs, and blocked
jobs): UnderEDF-hybrid, a priority inversionoccurs when a
ready, higher-priority job waits while one or more lower-priority
jobs execute in non-preemptive sections. Under such scenarios,
the waiting higher-priority jobs are said to beblockedjobs, while
executing lower-priority jobs are said to beblocking jobs. Note
that a pending, higher-priority job is not considered blocked un-
less it is ready (i.e., no prior job of the same task is pending).

Recall that in a non-busy interval forΨ, fewer thanm jobs
from Ψ execute. In anEDF-hybrid schedule, such a non-busy
interval for Ψ can be classified into two types depending on
whether a job inΨ is executing while a ready job fromΨ is wait-
ing. We will refer to the two types asblockingandnon-blocking
non-busy intervals. Ablocking, non-busy intervalis one in which
a job in Ψ is executing while a ready job fromΨ is waiting,
whereas anon-blocking, non-busy intervalis one in which fewer
thanm jobs fromΨ are executing, but there does not exist a ready
job in Ψ that is waiting. Definitions of maximal versions of these
intervals are analogous to that of a maximally non-busy interval
given in Def. 4.

Definition 6 (pending blocking jobs (B) and work (B)): The
set of all jobs inΨ that commence executing a non-preemptive
section beforet and may continue to execute the same non-
preemptive section att in S is denotedB(τ, Ψ, t,S) and the total

4

amount of work pending att for such non-preemptive sections is
denotedB(τ, Ψ, t,S).

We now determine an upper bound on the sum of the
two components of the competing work described above,i.e.,
LAG(Ψ, td,S) + B(τ, Ψ, td,S) (step (S1)).

3.2.1 Upper Bound onLAG(Ψ, td, S) + B(τ, Ψ, td, S)

By Lemma 1, theLAG of Ψ can increase only across a non-
busy interval forΨ. Similarly, note that ifB(τ, Ψ, td,S) is non-
zero, then one or more jobs inΨ should be executing in non-
preemptive sections att−d , that is,t−d should be a non-busy in-
stant. Hence, to determine an upper bound on the value that
we are seeking, it suffices to consider only non-busy intervals in
[0, td). By reasoning about the number of tasks that can execute
in and just before a non-busy interval and their lags, the following
lemma (proved in an appendix) can be shown to hold.

Lemma 2 LAG(Ψ, td,S) + B(τ, Ψ, td,S) ≤ (
∑Λ

i=1(x · µi +
max(εi, bmax))) + (m − Λ) · bmax.

3.2.2 Lower Bound onLAG + B (Step (S2))

Lemma 3 If LAG(Ψ, td,S) + B(τ, Ψ, td,S) ≤ mx + e`, then,
tardiness(T`,j ,S) is at mostx + e`.

Proof: To prove the lemma, we show thatT`,j completes execut-
ing by td + x + e`. If j > 1, thend`,j−1 ≤ td − p` holds, and
hence by (P), we have the following.

(R) T`,j−1 completes executing bytd + x + e` − p`, for j > 1.

Let δ` < e` denote the amount of time thatT`,j has executed
for before timetd. Then, the amount of work pending forT`,j

at td is e` − δ`. Recall that the total amount of work pending
at td for jobs inΨ and the non-preemptive sections of jobs inΨ
that commenced execution beforetd is given byLAG(Ψ, td,S)+
B(τ, Ψ, td,S), which, by the statement of the lemma, is at most
mx + e`. Let y = x + δ`/m. At the risk of abusing terms, let a
time interval aftertd in which each processor is busy executing a
job ofΨ or that non-preemptive part of a job inB(τ, Ψ, td,S) that
commenced execution beforetd be referred to as a busy interval.
We consider the following two cases.

Case 1:[td, td + y) is busy. In this case, the amount of work
completed in[td, td + y) is exactlymy = mx + δ`, and hence,
the amount of work pending attd + y for jobs inΨ and the non-
preemptive sections of jobs inΨ that commenced execution be-
foretd is at mostmx + e` − (mx + δ`) = e` − δ`. Hence, ifT`,j

does not execute in[td, td + y), then this pending work corre-
sponds to that ofT`,j. Note thatT`,j cannot be preempted once it
commences execution aftertd. Thus, the latest time thatT`,j re-
sumes (or begins, ifδ` = 0) execution aftertd is td+y, and hence,
T`,j completes execution at or beforetd+y+e`−δ` ≤ td+x+e`.

Case 2: [td, td + y) is not busy. Let t′ denote the first non-
busy instant in[td, td + y). By the definition of a busy interval
used in this lemma, this implies the following.

(J) In [td, t
′), no job inΨ executes in a non-preemptive section

that did not commence beforetd or in a preemptive section,
and at mostm − 1 tasks have jobs inΨ or non-preemptive
sections that commenced beforetd pending at or aftert′.

Hence, no job ofΨ can be blocked by a job inΨ at or aftert′.
Therefore, ifT`,j has not completed executing beforetd +y, then
eitherT`,j or a prior job ofT` should be executing att′. If T`,j is
executing att′, then becauset′ < td +y holds,T`,j will complete
executing beforetd + y + e` − δ` ≤ td + x + e`. The remaining
possibility is thatj > 1 holds, and that a job ofT` that is prior to
T`,j is executing att′. In this case,T`,j could not have executed
beforetd, and henceδ` = 0 andy = x holds. Thus,t′ < td+y =
td + x holds. Lettc denote the time at whichT`,j−1 completes
executing. Then, by (R),tc ≤ td −p` +x+ e` ≤ td +x holds. If
tc ≥ t′ holds, then by (J),T`,j can commence execution attc ≤
td + x (on the same processor as that on whichT`,j−1 executed),
and hence, can complete executing bytd + x + e`. On the other
hand, iftc < t′ holds, then becauseT`,j−1 completes execution
at tc, T`,j is ready att′. Therefore, by (J),T`,j cannot be blocked
at t′. Hence,T`,j commences execution att′ < td + y = td + x
and completes executing bytd + x + e`. �

3.2.3 Finishing Up (Step (S3))

Solving for x using the upper bound onLAG + B given by
Lemma 2 and the lower bound on the same quantity, as given
by Lemma 3, required for tardiness ofT`,j to exceedx + e`, i.e.,
solving forx in (

∑Λ
i=1(x·µi+max(εi, bmax)))+(m−Λ)·bmax ≤

mx + e` yields

x ≥
(�Λ

i=1 max(εi, bmax)) + (m − Λ) · bmax − e`

m −�Λ
i=1 µi

. (10)

Hence, ifx equals the right-hand side of the above inequality,
then the tardiness ofT`,j would not exceedx + e`. A value ofx
that is independent of the parameters ofT` is obtained by replac-
ing e` by emin in (10). By inducting over the jobs ofτ in deadline
order, we have the following theorem.

Theorem 1 Let τ be as defined earlier. LetUsum(τ) ≤ m and
let bmax be the maximum length of any non-preemptive section of
any task inτ . Then,EDF-hybrid ensures a tardiness of at most
x + ek to every taskTk in τ , where

x =
(
∑Λ

i=1 max(εi, bmax)) + (m − Λ) · bmax − emin

m −
∑Λ

i=1 µi

.

4 Analysis with Synchronization
We now show how to extend the analysis ofEDF to synchroniza-
tion with the queue-lock and lock-free approaches.

4.1 Analysis with Queue Locks
Under queue-lock-based synchronization, a job may be subject
to blocking under two scenarios:(i) the job is executing and re-
quires access to a resource for which one or more jobs have al-
ready enqueued their requests onto the spin queue, or(ii) the job

5

becomes ready when one or more lower-priority jobs (with later
deadlines) are in their non-preemptive sections, either spinning
or executing a critical section, and no processor is available. The
former lengthens the amount of time a job spins on a lock. Hence,
to account for its effect, the execution cost of each critical section
has to be increased by the maximum amount of time for which
entry into the critical section can be delayed after requestfor the
lock is initiated. As explained in the introduction, computing this
is straightforward. Also, the worst-case execution cost ofeachTi

has to be increased by the cumulative increase in the execution
costs of all its critical sections. We denote the inflated execution
cost ofTi ase

(s)
i . The overhead of non-preemptivity during spin-

ning and in critical-section execution is accounted for by using
the inflated critical-section execution costs in schedulability tests
and tardiness-bound computations, as explained below.

Analysis for soft real-time. A tardiness bound forτ with
shared resources is obtained by usinge

(s)
i instead ofei and

u
(s)
i = e

(s)
i /pi instead ofui, for all i, and the maximum inflated

execution cost of any critical section of any task forbmax in The-
orem 1. Note that bounded tardiness onm processors can be
guaranteed only ife(s)

i ≤ pi holds for alli and
∑n

i=1 u
(s)
i ≤ m.

Analysis for hard real-time. Under EDF, and hence under
EDF-hybrid, a task with a longer relative deadline cannot be
blocked by a task with a shorter or equal relative deadline [11].
Thus, if bi denotes the maximum execution cost of any non-
preemptable segment ofTi, and tasks are ordered in the non-
decreasing order of their relative deadlines, then each jobof Ti

can be blocked for at mostBi = maxi+1≤j≤n bj time units. Fur-
thermore, since jobs may not miss deadlines and relative dead-
lines equal periods, no job can execute after the next job of the
same task is released. Hence, each jobJ can be blocked, by
a lower-priority job executing in its non-preemptive section, as
soon asJ is released only (i.e., only at the beginning of its pe-
riod). Therefore, guaranteeing that, under preemptiveEDF, each
job of each taskTk can be allocatedek units of time in the inter-
val [a+Bk, a+pk), wherea is the arrival time of the job andBk

is as defined above, is sufficient to ensure that all deadlineswill
be met whenτ is scheduled underEDF-hybrid. Hence, a sim-
ple sufficient schedulability test forEDF-hybrid is given by the
following. For eachτ , comprised of tasks with non-preemptable

code segments, letτ ′ be defined as follows.τ ′ def
= {T ′

1, · · · , T
′
n},

whereT ′
i

def
= (ei, pi − Bi). If pi − Bi ≥ ei, for all Ti, and

τ ′ is schedulable underEDF, thenτ is schedulable underEDF-
hybrid. Schedulability underEDF can be determined using tests
provided in [7, 2, 4]. When analyzing with queue locks, as with
soft real-time analysis above,e

(s)
i should be used instead ofei.

4.2 Analysis with Lock-Free Synchronization
With lock-free synchronization, a bound on the number of inter-
ferences that can lead to failed retry loop iterations in a given in-
terval of time needs to be determined. However, note that, unlike
in the case of queue locks, under the lock-free approach, tasks do
not block and there are no non-preemptive segments. To aid in
stating results, we first define the following.

rmax
def
= maximum execution cost of a single iteration of any

retry loop of any task

γi
def
= set of all tasks that share one or more objects withTi

βi,k
def
= number of retry loops ofTk that access the same

object as accessed by some retry loop ofTi

δi
def
= a tardiness bound forTi in the absence of interferences

to any retry loop of any task

δ
I
i

def
= a tardiness bound forTi in the presence of interferences

A bound on the number of interferences to any job ofTi in a
given interval of time is given by the following.

Claim 1 For any taskTi, the total number of times that all retry
loops combined of any of its jobs can fail in an interval[t, t+∆)

is at most
∑

Tk∈γi
(d

∆+δI
k

pk
e + 1) · βi,k.

Proof: The number of interferences toTi due toTk in an inter-
val of length∆ depends on the number of jobs ofTk that can
potentially execute in such an interval. The deadline of theear-
liest job ofTk that can execute in[t, t + ∆) is aftert − δI

k (be-
cause tardiness forTk is at mostδI

k), and hence, its release is after

t − (pk + δI
k). At mostdpk+δI

k+∆
pk

e jobs ofTk can be released

in [t − pk − δI
k, t + ∆). Hence, ifTk shares an object withTi,

then the number of interferences, and hence, failures, due to Tk

in [t, t+∆) is bounded from above by (number of jobs ofTk that
can potentially execute in the interval)× (the number of retry
loops ofTk that share an object withTk). Summing over all the
tasks that share objects withTi, the claim follows. �

Analysis for hard real-time. In a hard real-time system, every
job J of Ti needs to complete executing within an interval of
lengthpi. Hence, the length∆ of the interval in whichJ can
be interfered with is at mostpi. Also, δk = 0 holds for every
Tk. Thus, by Claim 1, the inflated execution cost ofTi due to
interferences in retry loops, and hence, failed object accesses, is

e
(s)
i ≤ ei + �

Tk∈γi

(�pi

pk �+ 1) · βi,k · rmax. (11)

An EDF schedulability test in whiche(s)
i is used instead ofei will

serve as a sufficient schedulability test for lock-free synchroniza-
tion underEDF. (Recall that there is no blocking with lock-free.)

Analysis for soft real-time. In the absence of interferences,
every job ofTi would complete executing within an interval of
lengthpi + δi. However, accounting for interferences can lead
to higher execution costs for the tasks, which in turn can lead
to a higher tardiness bound. An increase in the tardiness bound
amounts to an increase in the duration∆ of the interval in which
each job can be interfered. Further,δI

k is unknown to begin with.
Thus, bounding the number of interferences, and hence, tardiness
for tasks in soft real-time systems is a bit complicated and has to
be done iteratively. One set of iterative formulas is given below.
(A superscript ofj indicates that the value is computed in thejth

iteration.) The computation ofδj
i is by Theorem 1 and that of

ej+1
i is by Claim 1. ∆j

i is an upper bound in iterationj to the
length of the interval in which each job ofTi can be interfered.

6

e
1
i = ei, u

j
i =

e
j
i

pi

δ
j
i =

�Λj

i=1 max(εj
i , rmax) − e

j
min

m −�Λj−1
i=1 µ

j
i

+ e
j
i

∆j
i = pi + δ

j
i

e
j+1
i = ei + �

Tk∈γi

(�∆j
i + δ

j
k

pk �+ 1) · βi,k · rmax

In iterationj, we assume thatδI
k is at mostδj

k and continue iter-
ating until either(i) ej+1

i = ej
i for all i, i.e., when the tardiness

bound converges for all the tasks, or(ii)
∑n

i=1 uj
i > m, in which

case bounded tardiness cannot be guaranteed onm processors.

5 Performance Evaluation
In this section, we present an evaluation of the two approaches.

As a first step, we determined typical execution times for com-
mon operations (such as insert, delete, lookup) on simple data
structures guarded using queue locks. The execution times were
measured on an SMP system with four 2.7 GHz Pentium 4 pro-
cessors, 2 GB memory, 8 KB L1 data cache, and 512 KB unified
L2 cache running Linux 2.6. The data structures considered were
an eight-word buffer, a stack, a queue, a doubly-linked list, and a
binary heap. (The list and heap were initialized with 50 nodes and
grew to up to 1,000 and 30,000 nodes, respectively.) The maxi-
mum time required for any operation, including the time required
to queue a lock request to the spin queue, but excluding the spin-
ning time, was in the 1–5µs range. Though lock-free implemen-
tations of the same operations using retry loops differ fromtheir
queue-lock based counterparts, by extrapolating from the above
measurements, we concluded that execution costs of retry loops
would also fall in the same range. Hence, in our simulations,
we varied contention-free costs for object operations uniformly
in the 1.3–6.5 µs range for both the approaches.

Next, sample data was generated as follows. Simulations were
conducted form = 4 and m = 8 processors. To reasonably
constrain the experiments, task parameters were restricted as fol-
lows. The maximum number of tasks,N , in each task set was
restricted to 20 whenm = 4, and to 40 whenm = 8. The max-
imum utilization of any task,umax, was systematically chosen
from the set{0.1, 0.2, 0.3, 0.5}. Tasks were added to each task
set until either the limit on the number of tasks or on the total
system utilization was reached. The utilization of each task was
uniformly distributed in the range(0.0, umax].

For each task set, the maximum number of object operations
per task,k, was chosen randomly between 1 and 10 and the total
number of shared objects was fixed atN ·k

m/2 . Thus, on an average,
each object was shared amongm/2 tasks. The actual number of
object operations per task was uniformly distributed between 1
andk, where the cost of each operation in the absence of con-
tention was chosen as specified above. Finally, the execution cost
of each task, excluding that due to operations on shared objects,
was uniformly distributed in the range[50.0, 500.0] µs. There is
not much guidance on how to assign execution costs. Our choice

is based on the measured object-access costs reported aboveand
the fact that the size of a quantum is typically at least 1ms on
modern systems. Note that the higher the total execution cost,
the lower the synchronization overhead would be.

For each task set generated, the inflation to task utilizations and
the total system utilization were computed as described in Sec. 4
for both the queue-lock and lock-free approaches. Results are
plotted in Fig. 1. The number of samples for each data point inthe
graphs was around 2,000 (except insets (e) and (f), and the curve
for m = 8 andumax = 0.5 in inset (c), for which, as explained
below, a large percentage of the samples was discarded). Forhard
real-time systems, overhead is reported in terms of the increase
to total utilization, while for soft real-time systems, percentage
increase to the tardiness bound is reported, in addition. For the
comparison of tardiness bounds with and without synchroniza-
tion to be meaningful, task sets whose total utilizations exceeded
m upon inflation were discarded in computing increases to tardi-
ness. Similarly, any task set with at least a task whose utilization
exceeded 1.0 upon inflation was excluded in determining boththe
increase to utilization and tardiness.

Synchronization overheads for queue locks is shown in insets
(a)–(c) of Fig. 1. Referring to insets (a) and (b), whenm = 4,
the increase to the total utilization with queue locks is at most
0.25 (6.25% of 4) for k ≤ 3 and is at most 0.5 (12.5% of 4)
for k ≤ 6. For m = 8, the required inflation is at most 1.0
(12.5% of 8) whenk ≤ 2. In inset (a), the utilization loss for
umax = 0.5 is lower than that forumax = 0.2 due to a decrease
in the number of tasks. The trend in inset (b) is different due
to a higher total utilization for the soft real-time case. Here the
curves forumax = 0.3 andumax = 0.5 coincide. No task set was
discarded with queue locks for the hard case, and whenk ≤ 2
or umax < 0.3 for the soft case. However, for the soft case,
around 2% of the task sets were discarded forumax ≥ 0.3 and
k = 2. Inset (c) shows that for the task systems generated, the
increase to tardiness is around 10% whenm = 4 (resp.,m = 8)
and k ≤ 3 (resp.,k ≤ 2), which are also reasonable. Also,
the percentage of task sets discarded for these cases is minimal.
Thus, when the number of object operations per task is at most
two or three,i.e., when the degree of sharing is reasonable (which
we believe is the common case), queue locks provide an efficient
synchronization solution. On the other hand, we believe that at
higher degrees of sharing, even more complex synchronization
approaches may not be capable of performing much better. This
is because, as sharing increases, opportunities for concurrently
executing the tasks decreases, leading to wasted processortime,
to the point where execution is reduced to an almost sequential
one at extreme degrees of sharing.

Insets (d) and (e) depict the inflation in utilization with the
lock-free approach, for the hard and soft cases, respectively. As
expected, the performance of this approach is poorer than queue
locks. Though the plots in inset (e) seem comparable to, and in
some cases better than, those in inset (d), in computing the over-
heads in inset (e), a high percentage of task sets had to be dis-
carded as the inflated utilizations of tasks exceeded 1.0. For hard
task systems, no task set was discarded and the inflation is rea-
sonable form = 4, if k ≤ 3, and form = 8, if k is at most one.

7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

In
cr

ea
se

 in
 to

ta
l u

til
.

Max. no. of critical sections per task

Util. overhead vs. No. of critical sections

Umax=0.30 m=8
Umax=0.20 m=8
Umax=0.50 m=8
Umax=0.10 m=8
Umax=0.30 m=4
Umax=0.20 m=4
Umax=0.50 m=4
Umax=0.10 m=4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

In
cr

ea
se

 in
 to

ta
l u

til
.

Max. no. of critical sections per task

Util. overhead vs. No. of critical sections

Umax=0.5 m=8
Umax=0.3 m=8
Umax=0.2 m=8
Umax=0.1 m=8
Umax=0.5 m=4
Umax=0.3 m=4
Umax=0.2 m=4
Umax=0.1 m=4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
in

cr
ea

se
 in

 ta
rd

in
es

s

Max. no. of critical sections per task

Increase in tardiness vs. No. of critical sections

Umax=0.5 m=8
Umax=0.3 m=8
Umax=0.2 m=8
Umax=0.1 m=8
Umax=0.5 m=4
Umax=0.3 m=4
Umax=0.2 m=4
Umax=0.1 m=4

(a) (b) (c)

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10

In
cr

ea
se

 in
 to

ta
l u

til
.

Max. no. of critical sections per task

Util. overhead vs. No. of critical sections

Umax=0.3 m=8
Umax=0.2 m=8
Umax=0.1 m=8
Umax=0.3 m=4
Umax=0.2 m=4
Umax=0.1 m=4

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10

In
cr

ea
se

 in
 to

ta
l u

til
.

Max. no. of critical sections per task

Util. overhead vs. No. of critical sections

Umax=0.3 m=8
Umax=0.2 m=8
Umax=0.1 m=8
Umax=0.3 m=4
Umax=0.2 m=4
Umax=0.1 m=4

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
in

cr
ea

se
 in

 ta
rd

in
es

s

Max. no. of critical sections per task

Increase in tardiness vs. No. of critical sections

Umax=0.3 m=8
Umax=0.2 m=8
Umax=0.1 m=8
Umax=0.3 m=4
Umax=0.2 m=4
Umax=0.1 m=4

(d) (e) (f)
Figure 1:Synchronization overheads for queue locks and the lock-free approach. Inflation in total utilization for hard tasks with (a) queue locks and(d) lock-free,
and for soft tasks with(b) queue locks and(e) lock-free. Relative increase in tardiness for(c) queue locks and(f) lock-free. (The order of the legends and curves
coincide in all insets except in (e) and (f). Discrepancies here are due to the increase in the % of discarded task sets withincreasing total utilization.)

However, for the soft case, the performance (especially, the per-
centage of undiscarded task sets) is poor except ifm = 4, k ≤ 2,
andumax ≤ 0.2. Even here, the increase in tardiness (refer inset
(f)) is close to a 100%, which may not be acceptable. One rea-
son for the poor performance may be the presence of tasks with
extremely low utilizations. For instance, several task sets contain
a few tasks with utilizations as low asumax/100. The number
of interferences to such low-utilization tasks could potentially be
in the hundreds, leading to high retry costs. We believe thatthe
results would be much better if the ratio of the maximum to min-
imum utilization is restricted to at most 10.0. Another reason for
the poor results is the pessimism in the analysis. However, im-
proving the analysis does not seem to be simple, either. Finally,
the disparity in the hard and soft real-time performance is partly
due to the higher uninflated total utilization for the latter.

6 Conclusion

We have taken an initial step towards developing a generic
resource-sharing framework for sporadic real-time tasks sched-
uled on a multiprocessor under globalEDF. Based on evidence
that suggests that a predominate use of synchronization con-
structs is for coordinating accesses to simple objects suchas
queues, stacks, and linked lists, we have proposed and evalu-
ated two approaches for sharing such simple objects: one based
on queue-based spin locks, and a second based on lock-free al-
gorithms. Results of performance-evaluation studies showthat
queue locks impose very little overhead and may be very appro-
priate for both hard and soft real-time systems when the number
of shared-object operations per task is small. Though such locks
may not be appropriate for nested critical sections, in general,

their use may be sufficient if the nesting is not deep and objects
are acquired in order. The overhead of the lock-free approach is
higher than that of queue locks; nevertheless, this approach may
be reasonable in the absence of kernel support when the number
of processors and the number of object calls are both low.

References
[1] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing

with lock-free shared objects.ACM Transactions on Computer
Systems, 15(2):134–165, May 1997.

[2] T. P. Baker. Multiprocessor EDF and deadline monotonic schedula-
bility analysis. InProceedings of the 24th IEEE Real-Time Systems
Symposium, pages 120–129, December 2003.

[3] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate
progress: A notion of fairness in resource allocation.Algorithmica,
15(6):600–625, June 1996.

[4] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability
analysis of EDF on multiprocessor platforms. InProceedings of
the 17th Euromicro Conference on Real-Time Systems, pages 209–
218, July 2005.

[5] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In Joseph Y. Leung, editor,Handbook on
Scheduling Algorithms, Methods, and Models, pages 30.1–30.19.
Chapman Hall/CRC, Boca Raton, Florida, 2004.

[6] U. Devi and J. Anderson. Tardiness bounds under global EDF
scheduling on a multiprocessor. InProceedings of the 26th IEEE
Real-Time Systems Symposium, pages 330–341, December 2005.

[7] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling
of periodic task systems on multiprocessors.Real-Time Systems,
25(2-3):187–205, 2003.

8

[8] P. Holman and J. Anderson. Locking in Pfair-scheduled multi-
processor systems. InProceedings of the 23rd IEEE Real-Time
Systems Symposium, pages 149–158, December 2002.

[9] P. Holman and J. Anderson. Object sharing in Pfair-scheduled mul-
tiprocessor systems. InProceedings of the 14th Euromicro Confer-
ence on Real-Time Systems, pages 111–120, June 2002.

[10] L. Lamport. A fast mutual exclusion algorithm.ACM Transactions
on Computer Systems, 5(1):1–11, February 1987.

[11] J.W.S. Liu.Real-Time Systems. Prentice Hall, 2000.

[12] J. Mellor-Crummey and M. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors.ACM Transac-
tions on Computer Systems, 9(1):21–65, February 1991.

[13] D. O’Hallaron. Spark98: Sparse matrix kernels for shared memory
and message passing systems. Technical Report CMU-CS-97-178,
Carnegie Mellon University, Oct. 1997.

[14] R. Rajkumar. Real-time synchronization protocols forshared
memory multiprocessors. InProceedings of the International Con-
ference on Distributed Computing Systems, pages 116–123, 1990.

[15] H. Takada and K. Sakamura. A novel approach to multipro-
grammed multiprocessor synchronization for real-time kernels.
In Proceedings of the 18th IEEE Real-Time Systems Symposium,
pages 134–143, 1997.

[16] P. Tsigas and Y. Zhang. Evaluating the performance of non-
blocking synchronization on shared-memory multiprocessors. In
Proceedings of the 2001 ACM SIGMETRICS Int’l Conference on
Measurement and Modeling of Computer Systems, pages 320–321.
ACM Press, 2001.

[17] P. Tsigas and Y. Zhang. Integrating non-blocking synchronisation
in parallel applications: performance advantages and methodolo-
gies. InProceedings of the Third Int’l Workshop on Software and
Performance, pages 55–67. ACM Press, 2002.

[18] P. Valente and G. Lipari. An upper bound to the lateness of soft
real-time tasks scheduled by EDF on multiprocessors. InProceed-
ings of the 26th IEEE Real-Time Systems Symposium, pages 311–
320, December 2005.

[19] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The splash-2
programs: Characterization and methodological considerations. In
Proceedings of the 22nd Int’l Symposium on Computer Architec-
tures, pages 24–36, 1995.

[20] V. Yadaiken. Against priority inheritance. Technicalreport, Finite
State Machine Labs, June 2002.

Appendix: Proof of Lemma 2

In this appendix, we give a proof of Lemma 2. For conciseness,
we omit specifying the scheduleS (the final argument) in func-
tionsLAG andB.

In [6], we showed that if a task does not execute continuously
within a non-busy interval in anEDF schedule, then itslag at the
end of the interval is at most zero. This property holds for a non-
blocking, non-busy interval of anEDF-hybrid schedule also and
is stated formally below.

Lemma 4 (from [6]) Let [t, t′) be a maximally non-blocking,
non-busy interval in[0, td) in S and letTk be a task inτ with
a job inΨ that is active or pending att′−. If Tk does not execute
continuously in[t, t′), thenlag(Tk, t′) ≤ 0.

To see why this lemma holds, note that, because[t, t′) is maxi-
mally non-busy and is non-blocking, at every instant in thisinter-
val, at least one processor is idle or a job inΨ is executing while
no job inΨ is waiting. The absolute deadline of a job inΨ is after
td. Hence, ifTk is not executing att′−, then it has no pending
work att′−, and hence, itslag at t′ is at most zero. On the other
hand, ifTk is executing att′−, but was not executing some time
earlier in[t, t′), then it must have had no pending work when its
most-recent job was released and must have executed continu-
ously since then. In this case too, its lag cannot exceed zero.

The lemma that follows bounds thelag of a task at any arbitrary
time at or beforetd.

Lemma 5 lag(Tk, t,S) ≤ x ·uk + ek holds for every taskTk for
any time instantt ≤ td.

Proof: If no job of Tk is pending att, thenTk’s lag at t is at
most zero and the lemma holds trivially. Hence, assume that one
or more jobs ofTk are pending att and letTk,q be the earliest
pending job. Letδk,q < ek be the amount of time thatTk,q ex-
ecuted for beforet. We prove the lemma for the casedk,q < t,
leaving the casedk,q ≥ t to the reader. The amount of work
pending forTk,q at t is ek − δk,q. Tk is allocated at mostuk

time at every instant afterdk,q in PSτ . Therefore,lag(Tk, t,S) ≤
(t − dk,q) · uk + ek − δk,q holds. By (P), the tardiness ofTk,q

is at mostx + ek. Therefore,t + ek − δk,q ≤ dk,q + x + ek,
i.e., t − dk,q ≤ x + δk,q holds. Substituting fort − dk,q in the
expression forlag, we arrive at the lemma. �

We next make the following three claims, which will be used
in proving later lemmas.

Claim 2 Let [t, t′) be a maximally blocking, non-busy interval in
[0, td) in S. Then, the following hold.(i) t > 0. (ii) Any job that
is in Ψ and is executing at̂t, wheret ≤ t̂ < t′, executes a single
non-preemptive section continuously in[t−, t̂].

Proof: Since every job ofΨ has an earlier deadline than a job in
Ψ, a job inΨ cannot be blocked at time 0 by a job inΨ. Therefore
t > 0 holds. By the definition of[t, t′), no job ofΨ (including
jobs that are blocked att) is blocked by a job inΨ att−. Hence, it
cannot be the case that a job inΨ is blocked att due to a job inΨ
commencing executing a non-preemptive section att. Rather, the
blocking non-preemptive section should have commenced execu-
tion beforet and the blocked job becomes ready att (because it is
either released or preempted by a higher-priority job that is inΨ
at t). Similarly, since every instant in[t, t′) is a blocking instant
at which one or more ready jobs ofΨ are waiting, no job inΨ can
be executing in a preemptive section and no non-preemptive sec-
tion of a job inΨ can commence execution in(t, t′). The claim
follows from these facts. �

Claim 3 Let [t, t′) be a maximally blocking, non-busy interval in
[0, td) in S such thatLAG(Ψ, t′) > LAG(Ψ, t). Then, att and
t−, at mostΛ tasks have their jobs inΨ executing.(Note: The
tasks executing att andt− need not be the same.)

Proof: BecauseLAG(Ψ, t′) > LAG(Ψ, t) holds, by Lemma 1
and (1), there exists at least one time instantt̂, wheret ≤ t̂ < t,

9

such that at mostΛ tasks have executing jobs inΨ at t̂. Letk ≤ Λ
denote the number of such tasks. Then, since[t, t′) is a blocking,
non-busy interval, no processor is idle in the interval. Hence,
exactlym− k jobs fromΨ are executing at̂t. By Claim 2,t > 0
and each of them − k jobs is executing continuously in[t−, t̂].
Hence, att− andt, at mostk ≤ Λ tasks may have executing jobs
in Ψ. �

Claim 4 For anyk ≤ Λ, (
∑k

i=1 x · µi + εi) + (m− k) · bmax ≤

(
∑Λ

i=1 x · µi + max(εi, bmax)) + (m − Λ) · bmax.

Proof: The claim trivially holds fork = Λ. Below, we prove for
k < Λ.

(
k�

i=1

x · µi + εi) + (m − k) · bmax

= (

k�
i=1

x · µi + εi) + (m − Λ) · bmax + (Λ − k) · bmax

≤ (
k�

i=1

x · µi + max(εi, bmax)) + (m − Λ) · bmax

+
Λ�

i=k+1

max(εi, bmax)

≤ (
Λ�

i=1

x · µi + max(εi, bmax)) + (m − Λ) · bmax

�

The next two lemmas show how to boundLAG at the end of a
non-blocking, non-busy interval and a blocking, non-busy inter-
val.

Lemma 6 Let [t, t′) be a maximally non-blocking, non-busy in-
terval in [0, td) in S such that eitherLAG(Ψ, t′) > LAG(Ψ, t)
or at mostΛ tasks are executing att′−. Let k denote the num-
ber of tasks that are executing jobs inΨ continuously in[t, t′).
Then,(i) k ≤ Λ, (ii) LAG(Ψ, t′) ≤

∑Λ
i=1(x · µi + εi), and(iii)

LAG(Ψ, t′)+B(Ψ, t′) ≤ (
∑Λ

i=1 x ·µi +max(εi, bmax))+ (m−
Λ) · bmax.

Proof: Let α denote the subset of all tasks inτ that are executing
jobs inΨ continuously in[t, t′). Then,|α| = k holds. If at most
Λ tasks are executing att′−, then clearlyk ≤ Λ holds. On the
other hand, ifLAG(Ψ, t′) > LAG(Ψ, t) holds, then, by Lemma 1,

|α| = k < max
t≤t̂<t′

{Usum(Ψ, t̂)} ≤ Usum(τ). (12)

Becausek is an integer, by (12) and (1), we havek ≤ Λ, which
establishes Part (i).

By (6), theLAG of Ψ at t′ is at most the sum of thelags att′

of all tasks inτ with at least one job inΨ that is active or pend-
ing at t′−. By Lemma 4, the lag of such a task that does not
execute continuously in[t, t′) is at most zero. Hence, to deter-
mine an upper bound onLAG at t′, it is sufficient to determine an
upper bound on the sum oflags of such tasks that are executing
continuously in[t, t′), i.e., tasks inα . Thus,

LAG(Ψ, t′) ≤ �
Ti∈α

lag(Ti, t
′,S)

≤ �
Ti∈α

(x · ui + ei) {by Lemma 5}

≤
k�

i=1

(x · µi + εi). (13)

{by (12) and the definintions ofµi andεi}

Hence, Part (ii) follows, becausek ≤ Λ (from Part (i)). Finally,
since at leastk jobs inΨ are executing att′−, at mostm− k jobs
of Ψ can be executing att′−. The maximum time that all such
jobs inΨ can execute for aftert in non-preemptive sections that
commenced beforet, i.e., B(τ, Ψ, t′) is at most(m − k) · bmax.
Hence, by (13),LAG(Ψ, t′) + B(τ, Ψ, t′) ≤

∑k
i=1(x ·µi + εi) +

(m−k) ·bmax ≤
∑Λ

i=1(x ·µi +max(εi, bmax))+(m−Λ) ·bmax,
where the last inequality follows from Claim 4. �

Lemma 7 Let [t, t′) be a maximally blocking, non-busy interval
in [0, td) in S such thatk ≤ Λ tasks have their jobs inΨ ex-
ecuting att. Then, we have the following.(i) LAG(Ψ, t′) ≤

(
∑Λ

i=1 x · µi + εi) + bmax, and(ii) LAG(Ψ, t′) + B(τ, Ψ, t′) <

(
∑Λ

i=1 x · µi + max(εi, bmax)) + (m − Λ) · bmax.

Proof: Let J denote the set of all jobs ofΨ that are executing att,
and hence are blocking one or more jobs ofΨ. Let b = |J|.Since
k jobs fromΨ are executing att and[t, t′) is a blocking, non-busy
interval (hence, no processor is idle), we have

|J| = b = m − k. (14)

By our definition oft and Claim 2, it follows thatt− is a non-
blocking, non-busy instant. By (14) and Claim 2 again, it follows
that at leastm − k jobs ofΨ are executing att−. Therefore, at
mostk jobs fromΨ can be executing att−. Since no job ofΨ
that is not executing at a non-blocking, non-busy instant can be
pending (and hence no such job may have a positivelag at t), by
(6), we have the following.

LAG(Ψ, t)

≤ �
{Ti ∈ τ : Ti,j is in Ψ, and is
executing att−}

lag(Ti, t,S)

≤ �
{Ti ∈ τ : Ti,j is in Ψ, and is
executing att−}

x · ui + ei {by Lemma 5}

≤

k�
i=1

(x · µi + εi) {because, as discussed above, at mostk

tasks with jobs inΨ are executing att−} (15)

By (8), inPSτ , the total allocation toΨ in [t, t′) cannot exceed
(t′− t) ·Usum(τ). By (14) and Part (ii) of Claim 2, at mostm−k
jobs ofΨ execute at any instant in[t, t′). Hence, because[t, t′) is
a maximally blocking interval, at leastk jobs fromΨ execute at
each instant in[t, t′) in S. Therefore, the total allocation toΨ in
S is at leastk · (t′ − t). Hence, by (9), we have

LAG(Ψ, t′)

≤ (t′ − t)(Usum(τ) − k) + LAG(Ψ, t)

10

≤ (t′ − t)(Λ + 1 − k) +
k�

i=1

(x · µi + εi) {by (1) and (15)}

≤ bmax · (Λ + 1 − k) +

k�
i=1

(x · µi + εi)

{because, by Claim 2, every job ofJ executes a single non-

preemptive section in[t, t′), and hence,t′ − t < bmax}

= bmax · (Λ − k) + bmax +
k�

i=1

(x · µi + εi)

≤ bmax · (Λ − k) + bmax

+

Λ�
i=1

x · µi +

k�
i=1

εi {becausek ≤ Λ}

≤
Λ�

i=1

(x · µi + max(εi, bmax)) + bmax. {becausek ≤ Λ}

That establishes Part (i). Next, we determine an upper bound
on the sum ofLAG(Ψ, t′) and B(τ, Ψ, t′). For this, we first
determine an upper bound onB(τ, Ψ, t). By Claim 2, every
job of Ψ that is executing anywhere in[t, t′) is in J. Further-
more, every such job executes a single non-preemptive section
in [t−, t′). Hence, for any timeu in [t, t′), B(τ, Ψ, u) is given
by the amount of work pending atu for the non-preemptive sec-
tions executing att of jobs inJ. Let J be a job inJ. Then, the
amount of work that can be pending for its non-preemptive sec-
tion executing att is at mostbmax. Therefore, by (14), we have
B(τ, Ψ, t) ≤ (m − k) · bmax, and hence, by (15), we have

LAG(Ψ, t) + B(τ, Ψ, t)

< (

k�
i=1

x · µi + εi) + (m − k) · bmax

≤ (
Λ�

i=1

x · µi + max(εi, bmax)) + (m − Λ) · bmax, (16)

where the last inequality follows from Claim 4.
Finally, we are left with determining an upper bound on the

sum ofLAG andB at t′. Let X ≤ B(τ, Ψ, t) denote the total
amount of time that jobs inJ execute on allm processors in[t, t′).
(For example, if there are two jobs inJ, with one job executing
for the entire interval and the second executing for the firsthalf of
the interval, thenX = 3(t′ − t)/2.) Because[t, t′) is maximally
blocking, no processor is idle in[t, t′). Hence, the total time
allocated to jobs inΨ in [t, t′), A(S, Ψ, t, t′), is equal tom · (t′ −
t) − X . In PSτ , jobs inΨ could execute for at mostUsum(τ) ·
(t′−t) time, i.e., A(PSτ , Ψ, t, t′) ≤ Usum(τ)·(t′−t). Therefore,
LAG(Ψ, t′) = LAG(Ψ, t) + A(PSτ , Ψ, t, t′) − A(S , Ψ, t, t′) ≤
LAG(Ψ, t) + (Usum(τ) − m) · (t′ − t) + X ≤ LAG(Ψ, t) +
X . However, since jobs inJ execute for a total time ofX in
[t, t′), the pending work for non-preemptive sections of jobs in
J, and hence, those inB(τ, Ψ, t′) at t′, i.e., B(τ, Ψ, t′), is at most
B(τ, Ψ, t) − X . Thus,LAG(Ψ, t′) + B(τ, Ψ, t′) ≤ LAG(Ψ, t) +
B(τ, Ψ, t), which by (16), establishes Part (ii) of the lemma.�

Finally, Lemmas 6 and 7 can be used to establish the follow-
ing.
Lemma 2 LAG(Ψ, td) + B(τ, Ψ, td) ≤

∑Λ
i=1(x · µi +

max(εi, bmax)) + (m − Λ) · bmax.

Proof: We consider the following three cases based on the nature
of t−d .

Case 1:t−

d
is a busy instant. In this case, becauset−d is busy,

by definition,B(τ, Ψ, td) = 0. By Lemma 1, theLAG of Ψ can
increase only across a non-busy interval. Therefore,LAG at td
is at most that at the end of the latest non-busy instant before
td. If no non-busy interval exists in[0, td), thenLAG(Ψ, td) ≤
LAG(Ψ, 0) = 0. Otherwise, by Part (ii) of Lemma 6 and Part (i)
of Lemma 7 is at most

∑Λ
i=1(x ·µi +max(εi, bmax))+ bmax. By

(1),m − Λ ≥ 1, and hence, the lemma follows.

Case 2:t−

d
is a blocking, non-busy instant. Let t < td be the

earliest instant beforetd such that[t, td) is a maximally blocking,
non-busy interval. Letk denote the number of tasks whose jobs
in Ψ are executing att. We consider the following two subcases.

Subcase 2(a):LAG(Ψ, td) > LAG(Ψ, t) or k ≤ Λ. If
LAG(Ψ, td) > LAG(Ψ, t) holds, then by Claim 3,k ≤ Λ holds.
Therefore, for this subcase, the lemma follows from Part (ii) of
Lemma 7.

Subcase 2(b):k > Λ and LAG(Ψ, td) ≤ LAG(Ψ, t). By
the conditions of this subcase, it follows thatLAG attd is bounded
from above by theLAG at the end of the latest non-blocking or
blocking non-busy interval beforet across whichLAG increases.
If no such interval exists, thenLAG(τ, td) ≤ LAG(τ, 0) = 0.
Otherwise, by Part (ii) of Lemma 6 and Part (i) of Lemma 7, we
have

LAG(Ψ, td) ≤ (
Λ�

i=1

x · µi + εi) + bmax. (17)

Sincek > Λ holds, at mostm − Λ − 1 jobs fromΨ can be
executing att and by Claim 2, at mostm − Λ − 1 such jobs can
be executing att−d as well. The amount of time such jobs can
execute pasttd in non-preemptive sections is at mostbmax. Thus,
B(τ, Ψ, td) ≤ (m − Λ − 1) · bmax holds. Therefore, by (17),
LAG(Ψ, td) + B(τ, Ψ, td) < (

∑Λ
i=1 x · µi + max(εi, bmax)) +

(m − Λ) · bmax holds.

Case 3: t
−

d
is a non-blocking, non-busy instant. The argu-

ments for this case are somewhat similar to that used in Case 2.
Let t denote the earliest time instant beforetd such that[t, td) is
a maximally non-blocking, non-busy interval. If either at mostΛ
tasks execute their jobs inΨ at t−d or LAG(Ψ, td) > LAG(Ψ, t),
then the lemma holds for this case by Part (iii) of Lemma 6.
The remaining possibility is that at leastΛ + 1 tasks execute
their jobs inΨ at t−d andLAG(Ψ, td) ≤ LAG(Ψ, t) holds. In
this case,LAG at td is given by theLAG at the end of the lat-
est non-busy interval beforet across whichLAG increases. If no
such interval exists, thenLAG(Ψ, td) ≤ LAG(Ψ, 0) = 0. Oth-
erwise, by Part (ii) of Lemma 6, and Claim 3 and Part (i) of
Lemma 7, theLAG at the end of the latest non-busy interval be-
fore t across whichLAG increases, and hence,LAG(Ψ, td), is at

11

most(
∑Λ

i=1 x ·µi + εi) + bmax. Because at leastΛ + 1 tasks ex-
ecute their jobs inΨ at t−d at mostm−Λ− 1 jobs fromΨ can be
executing att−d . The amount of time each such job can execute
pasttd in a non-preemptive section that commenced beforetd is
at mostbmax. Thus,B(τ, Ψ, td) ≤ (m−Λ−1) ·bmax, and hence,
LAG(Ψ, td) + B(τ, Ψ, td) ≤ (

∑Λ
i=1 x · µi + max(εi, bmax)) +

(m − Λ) · bmax holds. �

12

