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Abstract
We consider schemes for enacting task share changes—a

process called reweighting—on real-time multiprocessor plat-
forms. Our particular focus is reweighting schemes that are
deployed in environments in which tasks may frequently re-
quest significant share changes. Prior work has shown that fair
scheduling algorithms are capable of reweighting tasks with
minimal allocation error and that partitioning-based schedul-
ing algorithms can reweight tasks with better average-caseper-
formance, but greater error. However, preemption and migra-
tion overheads can be high in fair schemes. In this paper,
we consider the question of whether global scheduling tech-
niques can improve the accuracy of reweighting relative to
partitioning-based schemes and provide improved average-case
performance relative to fair-scheduled systems. Our conclusion
is that, for soft real-time systems, global scheduling techniques
provide a good mix of accuracy and average-case performance.

1 Introduction

Real-time systems that areadaptivein nature have received
considerable recent attention [3, 9, 10, 4]. In addition,multipro-
cessorplatforms are of growing importance, due to both hard-
ware trends such as the emergence of multicore technologies
and the prevalence of computationally-intensive applications
for which single-processor designs are not sufficient. In prior
work [3, 4], we considered the use of both fair and partitioning-
based algorithms to schedule highly-adaptive workloads on
(tightly-coupled) multiprocessor platforms, where the proces-
sor shares of tasks change frequently and to a significant extent.
Fair scheduling techniques achieve high accuracy in enacting
share changes, but do so at the expense of potentially frequent
task preemptions and migrations among processors. Partition-
ing algorithms, in contrast, entail less overhead, but provide
poorer (but sometimes acceptable) accuracy. The focus of this
paper is adaptive global scheduling algorithms that avoid the
high preemption and migration costs of fair scheduling tech-
niques, yet have superior accuracy relative to partitioning-based
schemes. The primary drawback of global scheduling algo-
rithms is that, in order to fully utilize a multiprocessor system,
bounded deadline misses must be acceptable. The key issue we
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address is whether the lower migration/preemption overheads
and improved accuracy of such algorithms are sufficient to com-
pensate for their inability to meet all deadlines.

Whisper. To motivate the need for this work, we consider
two example applications under development at the University
of North Carolina. The first of these is the Whisper tracking
system, which performs full-body tracking in virtual environ-
ments [11]. Whisper tracks users via an array of wall- and
ceiling-mounted microphones that detect white noise emitted
from speakers attached to each user’s hands, feet, and head.
Like many tracking systems, Whisper usespredictive tech-
niquesto track objects. The workload on Whisper is intensive
enough to necessitate a multiprocessor design. Furthermore,
adaptation is required because the computational cost of mak-
ing the “next” prediction in tracking an object depends on the
accuracy of the previous one. Thus, the processor shares of the
tasks that are deployed to implement these tracking functions
will vary with time. In fact, the variance can be as much astwo
orders of magnitude. Moreover, adaptations must be enacted
within time scales as short as 10 ms.

ASTA. The second application is the ASTA video-
enhancement system [2]. ASTA is capable of improving
the quality of an underexposed video feed so that objects that
are indistinguishable from the background become clear andin
full color. In ASTA, darker objects require more computation to
correct. Thus, as dark objects move in the video, the processor
shares of the tasks assigned to process different areas of the
video will change. ASTA will eventually be deployed in a
military-grade full-color night vision system, so tasks will need
to change shares as fast as a soldier’s head can turn. In the
planned configuration, a 10-processor multicore platform will
be used.

Dynamic sporadic tasks. In this paper, we are primarily con-
cerned withdynamic sporadic tasks. Each such taskT i releases
a sequence ofjobs, T 1

i , T 2
i ,.... Each task is defined by theex-

ecution costof each of its jobs, denotede(T j
i ), and itsweight

at any timet, denotedwt(T i, t), which specifies the fraction
of a single processor it requires. This differs from the usual
definition of asporadictask, wherein per-job execution costs
and weights do not change. While the terms “share,” “weight,”
and “utilization” are often used interchangeably, we useweight
to denote a task’s desired utilization, andshare to denote its
actual guaranteed utilization. In each scheduling scheme we
consider, a task’s share is determined by its weight; in someof



Scheme Tardiness Drift Overload Migrations Preemptions
PD2-OF 0 2 0 every quantum every quantum

PAS 1 emax(T i) W weight-change events weight-change events& job releases
NP-PAS e(T j

i ) +emax(T i)+1 emax(T i) W weight-change events weight-change events
CNG-EDF κ(m − 1) emax(T i) 0 job releases job releases

NP-CNG-EDF κ(m) emax(T i) 0 only in-between jobs never

Table 1. Summary of worst-case results.

these schemes, the two are always equal, while in others, they
may differ. We refer to the process of enacting task weight/share
changes asreweighting.

Summary of results. In this paper, we consider five
reweighting-capable scheduling algorithms: a previous fair al-
gorithm developed by us called calledPD2-OF [3], which
is a derivative of thePD2 Pfair algorithm [1]; a pre-
vious partitioning-based algorithm developed by us called
the partitioned-adaptive scheduling(PAS) algorithm [4]; the
non-preemptive-partitioned-adaptive-scheduling(NP-PAS) al-
gorithm, which is a non-preemptive variant ofPAS; and
two new algorithms proposed herein, thechangeable-earliest-
deadline-first (CNG-EDF) algorithm, which is a derivative
of the well known global-earliest-deadline-first (EDF) algo-
rithm, and thenon-preemptive-changeable-earliest-deadline-
first (NP-CNG-EDF) algorithm, which is a non-preemptive
variant ofCNG-EDF.

Our results are summarized in Table 1, which lists the accu-
racy, migration cost, and preemption cost of each of the above
schemes. Accuracy is assessed in terms of three quantities,
“drift,” “overload error,” and “tardiness,” which are measured
in terms of the system’s scheduling quantum size.Drift is the
error, in comparison to an ideal allocation, that results due to
a reweighting event [3]. (Under an ideal allocation, tasks are
reweighted instantaneously, which is not possible in practice.)
Overload error, which arises under partitioning-based schemes
(see [4]), is the error that results from a scheduler’s inability to
allocate a task a share equal to its desired weight.Tardinessis
the maximal amount by which any job can miss its deadline.
Of these three types of error, overload error is potentiallythe
most detrimental, since drift is a one-time error assessed per
reweighting event and tardiness is bounded in the schemes we
consider. Overload error, on the other hand, accumulates over
time.

In Table 1,emax(T i) denotes themaximum execution costof
any job of the taskT i, wtmax(T i) denotes themaximal weightof
taskT i at any time, andW denotes the maximal weight of the
(m · ⌊1/X⌋+ 1)st “heaviest” task (by maximal weight), where
m is the number of processors andX is the maximal weight of
the heaviest task. Furthermore,

κ(ℓ) =

∑
T z∈Emax(T , ℓ) emax(T z)

m −
∑

T z∈Xmax(T , m − 1) wtmax(T z)
+ emax(T i),

(1)
whereEmax(T , ℓ) is the set ofℓ tasks inT with the highestmax-
imal execution cost andXmax(T , m − 1) is the set ofm − 1

tasks inT with the heaviestmaximalweight. (This bound is de-
rived from prior work by Devi and Anderson on multiprocessor
EDF scheduling [6].) Table 1 shows that algorithms that allow
more frequent migrations and preemptions, likePD2-OF, pro-
duce little drift, no overload error, and no tardiness; however,
algorithms that restrict the frequency of migrations and preemp-
tions can produce greater drift, overload error, and/or tardiness.

Contributions. Our theoretical contributions include devis-
ing CNG-EDF andNP-CNG-EDF reweighting rules, and es-
tablishing the error bounds forCNG-EDF andNP-CNG-EDF
in Table 1. The question that then remains is: for the five
aforementioned algorithms, how do drift, overload error, and
tardiness compare to any error due to migration and preemp-
tion costs? We attempt to answer this question via extensive
simulation studies of Whisper and ASTA. In these studies, real
migration and preemption costs were assumed based on actual
measured values. These studies confirm the expectation that,
while CNG-EDF andNP-CNG-EDF provide a good compro-
mise of accuracy and average-case performance,there exists no
single “best” algorithm: for each algorithm, application sce-
narios exist for which that algorithm is the best choice.

The rest of this paper is organized as follows. In Secs. 2 and
3, we discuss theCNG-EDF and NP-CNG-EDF algorithms
in greater detail. Then, in Sec. 4, we establish the properties
mentioned above. Our experimental evaluation is presentedin
Sec. 5. We conclude in Sec. 6.

2 System Model and Scheduling

In this section, we define our system model and the
CNG-EDF andNP-CNG-EDF reweighting algorithms.

Sporadic task systems. We denote theith task of a task sys-
temT asT i (where tasks are ordered by some arbitrary method),
and denote thejth job of the taskT i asT j

i (where jobs are or-
dered by the sequence in which they are invoked). Asporadic
taskis defined by anexecution cost, denotede(T i), andweight,
denotedwt(T i), which specifies the fraction of a single pro-
cessor it requires. (It is customary to define a sporadic taskby
its execution cost and the minimum separation time between its
successive jobs—we define the latter in terms of weight and ex-
ecution cost below.) Fig. 1(a) depicts a one-processor system
scheduled viaEDF with four tasks, as defined in the figure’s
caption. (The other insets in the figure are considered later.)
The first job of a task may be invoked orreleasedat any time at
or after time zero. The release time of jobT j

i is denotedr(T j
i ).

Successive job releases of taskT i must be separated by at least
e(T i)/wt(T i) time. For example, in Fig. 1(a),r(T 1

1 ) = 0 and



r(T 2
1 ) = 3. Theabsolute deadline(or justdeadline) of job T j

i ,
denotedd(T j

i ), equalsr(T j
i ) + e(T i)/wt(T i). For example, in

Fig. 1(a),d(T 1
1 ) = 3 andd(T 2

1 ) = 6. We consider a sporadic
taskT i to beactiveat timet if there exists a jobT j

i (calledT i’s
active job) such thatt ∈ [r(T j

i ), d(T j
i )).

Dynamic sporadic task systems. A dynamic sporadic task
systemis an extension of a sporadic task system, where the
weight of each taskT i is a function of timet and its ex-
ecution cost can vary with each jobT j

i . We usewt(T i, t)

and e(T j
i ), respectively, to denote these two quantities. (For

the remainder of the paper, whenever we refer to a “task” we
are referring to a “dynamic sporadic task.”) We usewtmin(T i)
(wtmax(T i)) to denote theminimum(maximum) allowed weight
for T i. As a shorthand, we useT i:[a, b] to denote a taskT i such
that wtmin(T i) = a andwtmax(T i) = b, andT i:a to denote
T i:[a, a]. Furthermore, we useemax(T i) to denote the maximal
execution cost of any job ofT i. Fig. 1(b) gives an example.

For dynamic sporadic tasks, theabsolute deadlineof a job
T j

i equalsr(T j
i ) + e(T j

i )/wt(T i, r(T j
i )). In the absence of

reweighting, consecutive job releases (r(T j
i ) and r(T j+1

i )) of
a taskT i must be separated by at leaste(T j

i )/wt(T i, r(T j
i )).

For example, in Fig. 1(b),r(T 2
1) − r(T 1

1) = 2/(1/3) = 6,
r(T 3

1) − r(T 2
1) = 2/(1/2) = 4, andd(T 3

1) = 10 + 1/(1/2) =
12.

A task T i changes weightor reweights at time t if
wt(T i, t − ǫ) 6= wt(T i, t) whereǫ → 0+. If a taskT i changes
weight at a timetc between the release and the deadline of some
job T j

i , then the following three actionsmayoccur:

• The execution cost ofT j
i maybe reduced to the amount of

time for whichT j
i has executed prior totc.

• r(T j+1

i ) maybe less thanr(T j
i )+ e(T j

i )/wt(T i, r(T j
i )).

• If T j+1

i is released beforer(T j
i ) + e(T j

i )/wt(T i, r(T j
i )),

then sinced(T j
i ) = r(T j

i ) + e(T j
i )/wt(T i, r(T j

i )), jobs
T j

i andT j+1

i will “overlap.” (In the variant of the sporadic
model defined earlier, every job’s deadline is at or before
its successors’s release.) Hence, we say that a jobT j

i is
activeat timet iff t ∈ [r(T j

i ), min(r(T j+1

i ), d(T j
i ))).

The reweighting rules we present in Sec. 3 state under what
conditions the above actions occur and by how much before
r(T j

i ) + e(T j
i )/wt(T i, r(T j

i )) the job T j+1

i can be released.
Since a reweighting event may cause a job’s execution cost to
decrease, we introduce the notion of a jobT j

i ’s actual execu-
tion cost, denotedae(T j

i ), which represents the total amount of
execution time thatT j

i will receive.
When a task reweights, there can be a difference between

when it “initiates” the change and when the change is “enacted.”
The time at which the change isinitiated is a user-defined time;
the time at which the change isenactedis dictated by a set of
conditions discussed shortly. We use thescheduling weight of
a taskT i at time t, denotedswt(T i, t), to represent the “last
enacted weight ofT i”. Formally, swt(T i, t) equalswt(T i, u),

whereu is the last time at or beforet that a weight change was
enacted forT i. It is important to note that,henceforth, we com-
pute task deadlines and releases using scheduling weights.

Scheduling. Under both CNG-EDF and NP-CNG-EDF,
“ready” jobs are prioritized by deadline, with earlier dead-
lines having higher priority. (“Ready” will be formally defined
shortly.) Deadline ties are resolved arbitrarily, but consistently.
UnderCNG-EDF, an arriving job with higher priority preempts
the executing job with the lowest priority if no processor is
available. The preempted job may later resume execution on
a different processor. UnderNP-CNG-EDF, the arriving job
waits until some job completes execution and a processor be-
comes available. Thus, underNP-CNG-EDF, once scheduled,
a job is guaranteed execution until completion without interrup-
tion. Fig. 1(b) depicts aCNG-EDF schedule of the task sys-
temT described above, and Fig. 1(c) depicts aNP-CNG-EDF
schedule of the same system.

For an arbitrary scheduling algorithmA and an arbitrary task
systemT , we letS denote anm-processor scheduleA of T , and
let A(S, T j

i , t1, t2) denote the total time allocated toT j
i in S in

[t1, t2). Similarly, we useA(S, T i, t1, t2) andA(S, T , t1, t2),
respectively, to denote the total time allocated to all jobsof T i

in S and all tasks ofT in S, over the interval[t1, t2). We
say that the value ofA(S, T j

i , 0, t) is the amount thatT j
i has

executed byt. For example in Fig. 1(b),A(S, T 1
1, 0, 6) = 2,

A(S, T 1
1, 0, 12) = 2, andA(S, T 1

1, 3, 12) = 0.

Definition 1 (Halted). As discussed later, if a reweighting event
in scheduleS occurs at timet, then it is possible that some job
T j

i is haltedat t. In this case,ae(T j
i ) is set toA(S, T j

i , 0, t).

Definition 2 (Completed). If S is anm-processorCNG-EDF
or NP-CNG-EDF schedule of the task systemT , then a job
T j

i ∈ T is said to havecompleted by timet in S iff T j
i has

executed fore(T j
i ) by t in S, orT j

i has halted by timet. A task
T i is said to havecompleted at timet in S if at time t every
job of T i that has been released byt has completed. A taskT i

is said to haveentirely completed by timet iff all jobs ofT i in
T have completed. For example, in Fig. 1(b),T 1

1 completes by
time 3,T 1 is complete (butnot entirely complete) at time 3 but
not complete at time 6, andT 4 is entirely complete at time 4.

Definition 3 (Pending and Ready).For an arbitrary scheduling
algorithmA, if S is anm-processor schedule of the task system
T underA, then a jobT j

i is said to bepending at timet in S

if r(T j
i ) ≤ t andT j

i is not complete byt in S. For example, in
Fig. 1(a), the jobT 1

2 is pending over the range[0, 9). Note that
a job can be pending, but not active, if it misses its deadline. A
pending jobT j

i is said to beready at timet in S if all prior jobs
of taskT i have completed byt. For example, in Fig. 1(a), the
job T 1

2 is ready over the range[0, 9). A job T j
i can be pending

but not ready ifT j−1

i has not completed byr(T j
i ).

3 Task Reweighting

We now introduce two new reweighting rules that are
CNG-EDF extensions of thePD2-OF reweighting rules pre-
sented by us previously [3]. As mentioned before, these rules
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Figure 1. A one-processor (sporadic or dynamic sporadic) systemT with four tasks. Inset(a) depicts anEDF scheduleT where the
tasks are defined as follows:T 1 with weight 1/3 ande(T 1) = 1, T 2 with weight 1/4 ande(T 2) = 3, T 3 with weight 1/4 ande(T 3) = 1,
andT 4 with weight 1/6 ande(T 4) = 1. In insets(b) and(c), the tasks are defined as follows:T 1 has an initial weight of 1/3 and increases
to 1/2 at time 6,e(T 1

1) = e(T 2

1) = 2, ande(T 3

1) = 1; T 2 has a constant weight of 1/4 ande(T 1

2) = 3; T 3 has a constant weight of
1/4, e(T 1

3) = 1, ande(T 2

3) = 2; andT 4 has an initial weight of 1/6 and decreases to 0 at time 6 (i.e., T 4 “leaves” the system at 6) and
e(T 1

4) = 1. Inset (b) depicts aCNG-EDF schedule ofT . Inset (c) depicts aNP-CNG-EDF schedule ofT . All ties are broken in favor of
the task with the lower index.

work by modifying future job release times and deadlines. At
the end of this section, we discuss how to adjust these rules for
NP-CNG-EDF.

For simplicity, we assume that the actual execution cost for
any job is equal to its specified execution cost,unlessa task
reweights while a job is active. Thenand only thencan the ac-
tual execution cost of a job be less than its execution cost. (This
assumption can be removed at the expense of more complicated
notation.) In this scenario, the actual execution cost of the job
is determined by the rules we present shortly.

Let T be a task system in which some taskT i initiates a
weight change from weightw to weight v at time tc. Let
S be them-processorCNG-EDF schedule ofT . Let T j

i be
the active job ofT i at tc. If e(T j

i ) − A(S , T j
i , 0, t) > 0,

then let rem(T j
i , tc) = e(T j

i ) − A(S, T j
i , 0, t); otherwise,

rem(T j
i , tc) = e(T j+1

i ). Note thatrem(T j
i , tc) denotes the

actual remaining computation inT i’s current job or the size
of T i’s next job if the current job has completed. Thede-
viance of jobT j

i of taskT i at timet is defined asdev(T j
i , t) =

∫ t

r(T j
i
) swt(T i, u)du−A(S, T j

i , 0, t). The choice of which rule

to apply depends on whether deviance is positive or negative. If
positive, then we say thatT i is positive-changeable at timetc
from weightw to v; otherwiseT i is negative-changeableat time
tc from weightw to v. BecauseT i initiates its weight change at
tc, wt(T i, tc) = v holds; however,T i’s scheduling weight does
not change until the weight change has beenenacted, as speci-
fied in the rules below. Note that iftc occurs between the initi-
ation and enaction of a previous reweighting event ofT i, then
the previous event is skipped,i.e., treated as if it had not oc-
curred. As discussed later, any “error” associated with skipping
a reweighting event like this is accounted for when determining
drift.

Rule P: If T i is positive-changeable at timetc from weight
w to v, then one of two actions is taken:(i) if d(T j

i ) >

rem(T i, tc)/v, thenT j
i is halted, its weight change is en-

acted, and a new job of sizerem(T i, tc) is issued for it
with a release time oftc; (ii) otherwise, its weight change
is enacted at timed(T j

i ), i.e., the scheduling weight does
not change until the end of the current job.

Rule N: If T i is negative-changeable at timetc from weightw
to v, then one of two actions is taken:(i) if v > w, then
T j

i is halted, its weight change is enacted, and a new job of
sizerem(T i, tc) is issued for it with a release time equal
to the timet at whichdev(T j

i , t) = 0 holds;(ii) otherwise,
the weight change is enacted at timed(T j

i ).

Intuitively, Rule P changes a task’s weight by halting its cur-
rent job and issuing a new job of sizerem(T i, tc) with the
new weight if doing so would improve its deadline. A (one-
processor) example of a positive-changeable task is given in
Fig. 2(a). (We discuss the terms “drift,” “ IDEAL allocations,”
and “SW allocations” in Sec. 4.) The depicted example con-
sists of a task systemT with four tasks as defined in the figure’s
caption. Note that, sinceT 2, T 3, andT 4 have the same dead-
line, we have arbitrarily chosenT 4 to have the lowest priority.
In inset (a),T 4 is positive-changeable since at time 2 it has not
yet been scheduled. Note that haltingT 4’s current job and is-
suing a new job of size one improvesT 4’s scheduling priority,
i.e., d(T 1

4) = 6 > 7

2
= d(T 2

4). Notice that the second job of
T 4 is issued 6/4 quanta after time 2. This spacing is in keeping
with a new job of weight 4/6 issued at time 2.

Rule N changes the weight of a task by one of two approaches:
(i) if a task increasesits weight, then Rule N adjusts the re-
lease time of its next job so that it is commensurate with the
new weight; (ii) if a task decreasesits weight, then Rule N
waits until the end of the current job and then issues the next
job with a deadline that is commensurate with the new weight.
A (one-processor) example of a negative-changeable task that
increases its weight is given in Fig. 2(b). The depicted exam-
ple consists of the same tasks as in (a), except that we have
chosenT 4 to have the highest priority. Notice that the sec-
ond job ofT 4 is issued at time 3, which is the time such that
dev(T 4, 3) =

∫ 3

0
swt(T i, u)du − A(S, T 4, 0, 3) = 1 − 1 = 0.

Recall that the deadline (release time) of theith ((i + 1)th )
job of a taskT j is given byr(T j

i ) + e(T j
i )/(swt(T i, r(T j

i ))).
Hence, if a taskT i of weight v were to issue a job of size
y = A(S, T j

i , 0, tc) − dev(T j
i , t) at time tc, then the release

time of its next job would betc + y/v. A (one-processor) ex-
ample of a negative-changeable task that decreases its weight is
given in Fig. 2(c). The depicted example consists of the same
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and changes its weight via Rule N, causing its next job to havea release time of 3 while maintaining a drift of zero.(c) T 1 joins the system
at time 6/4 andT 4 has an initial weight of 4/6 that decreases to 1/6 at time 1. SinceT 4 has negative deviance at time 1, it is changed via
Rule N, causingT 4’s next job to have a deadline of 15/2 andT4 to have a drift of−3/12.

four tasks except thatT 4 has an initial weight of 4/6 and de-
creases its weight at time 1, andT 1 joins the system as soon as
T 4’s weight change is enacted.

Since these rules change the ordering of a task in the prior-
ity queues that determine scheduling, the time complexity for
reweighting one task isO(logN), whereN is the number of
tasks in the system.

Modifications for NP-CNG-EDF. In order to adapt the rules
P and N to work forNP-CNG-EDF, the only modification
we need to make is when these rules are initiated. If a task
reweightsbefore or afterthe active job has been scheduled, then
the rules P and N are initiated as before. (Note that if the active
job has notbeen scheduled, then its deviance is positive, and
if the active jobhasbeen scheduled, its deviance is negative.)
However, if a task changes its weight while the active jobT j

i

is executing, then the initiation of the weight change is delayed
until T j

i has completedor T j
i is no longer active, whichever is

first. Note that when a taskT i changes its weight fromu to v at
time tc in NP-CNG-EDF, thenwt(T i, tc) = v holds, regard-
less of whether the initiation of rule P or N must be delayed.

4 Tardiness and Drift Bounds

In this section, we formally present and prove tardiness
and drift bounds for theCNG-EDF algorithm. Because any
set of reweighting rules will cause the “actual” schedule to
deviate from the “ideal” schedule, the tardiness bounds re-
flect CNG-EDF’s accuracy atschedulingthe job-set created
by CNG-EDF. The drift bounds, on the other-hand, reflect
CNG-EDF’s accuracy at creating a job-set that mimics the
“ideal” task system, where weight changes can always be initi-
ated and enacted instantaneously. To this end, we introducetwo

new theoretical scheduling algorithms: thescheduling-weight
processor-sharing(SW) scheduling algorithm and theideal
processor-sharing(IDEAL) scheduling algorithm. Both algo-
rithms have the ability to preempt and swap tasks at arbitrarily
small intervals. However,SW allocates each task a share equal
to itsscheduling weight; moreover,SW will not allocatecapac-
ity to a task if its active job has received an allocation equal to
its actual execution cost.IDEAL, on the other hand, allocates
each task a share equal to itsweightat each instant; and, unlike
SW, IDEAL will not stop allocatingcapacity to a taskunless
that task has received an allocation equal to the total execution
cost of all of its jobs. (For simplicity, we have assumed that
every job inT is released as early as possible. This assump-
tion can be removed at the cost of more complex notation. If
we did not make this assumption, then the allocation function
for IDEAL would equal zero between active jobs.) We provide
below a more in-depth explanation of these two algorithms.

4.1 Tardiness and Lag

We begin by defining theSW scheduling algorithm.

The SW scheduling algorithm. In order to establish tardi-
ness bounds forCNG-EDF, we compare allocations produced
by CNG-EDF to those produced bySW. UnderSW, at each
instantt, each non-complete job of each taskT i is allocated a
fraction of a processor equal toswt(T i, t). Furthermore, we
considerSW to be “clairvoyant” in the sense thatSW can use
the value ofae(T j

i ) to determine ifT j
i has completed before it

has halted. More specifically, for any scheduleSW underSW
of any task systemT , we say thatT j

i hascompleted by timet in
SW iff T j

i has executed forae(T j
i ) by t.



For example, consider the one-processor task systemT de-
picted in Fig. 3. Inset (a) depicts aCNG-EDF schedule and
insets (b) depictsT ’s SW schedule. Notice that in theSW
scheduleT 1 does not receive any allocations over the interval
[3, 6). This is because at time 3 the total allocation toT 1

1 in
theSW schedule equalsae(T 1

1) = 1, hence,T 1
1 is complete at

time 3. However, at time 6,T 2
1 is released, and thereforeT 1

has an incomplete job with a scheduling weight of 1/2. Hence,
T 1 begins to receive allocations equal to its scheduling weight,
which is now 1/2. Note that we assume that every job release,
deadline, execution cost, and actual execution cost for aSW
schedule to be the same as that inCNG-EDF.

Lag. If S is anm-processor schedule underCNG-EDF of the
task systemT andSW is anm-processor schedule underSW
of the same task systemT , then thelags at timet of a jobT j

i ,
taskT i, and task systemT , resp., are defined by Eqns. (2)–(4).

lag(T j
i , t) = A(SW , T j

i , 0, t) − A(S, T j
i , 0, t) (2)

lag(T i, t) = A(SW , T i, 0, t) − A(S, T i, 0, t) (3)

LAG(T , t) = A(SW , T , 0, t) − A(S, T , 0, t) (4)

Note thatLAG(T , t) =
∑

T i∈T lag(T i, t). The lag of a job
(or task or system) represents by how much a job (or task or
system) is under/over-allocated compared to theSW schedule
at timet. For example, in Fig. 3,lag(T 1

3, 1) = 1/4 − 0 = 1/4,
lag(T 1

3, 2) = 2/4 − 1 = −1/2, lag(T 1
1, 2) = 2/3 − 0 = 2/3,

lag(T 1
1, 3) = 3/3 − 0 = 1, andlag(T 1

1, 6) = 3/3 − 1 = 0.

4.2 Tardiness Proof

In prior work, Devi and Anderson [6] proved that in anym-
processorEDF schedule of asporadictask systemT (where the
total weight of all tasks is at mostm) the tardiness of each job of
any taskT i is at mostκ(m − 1), whereκ(m − 1) is as defined
in (1). Their proof consists primarily of three lemmas/theorems:
(i) if theLAG of T is bounded in them-processorEDF schedule
S of T , then tardiness is bounded;(ii) the LAG of T in S is
bounded;(iii) by (i) and (ii), the tardiness of each job of any
taskT i in T is at mostκ(m − 1).

Since Devi and Anderson were proving tardiness bounds for
a sporadic task system, they were able to utilize the fact that a
job T j

i and its successorT j+1

i do not “overlap,”i.e., d(T j
i ) ≤

r(T j+1

i ) holds for any sporadic taskT i. However, this property
can be weakened without affecting their proof (barring some
minor notational changes), so that their proof can be adapted
to prove tardiness bounds for adynamicsporadic task system.
Specifically, the Devi and Anderson proof can be used to show
that the tardiness ofCNG-EDF is bounded byκ(m − 1). If the
following properties hold.

(W)
∑

T i∈T wt(T i, t) ≤ m for all t.

(V) For any jobT j
i and its successorT j+1

i , if d(T j
i ) > r(T j+1

i ),
thenT j

i , must have completed beforer(T j+1

i ) in both the
CNG-EDF andSW schedules ofT .

Since (W) can be easily satisfied, for the remainder of
this subsection, we show thatCNG-EDF satisfies prop-
erty (V). (Unfortunately, due to space constraints, we are
not able to present the Devi and Anderson proof with
the necessary (minor) adjustments in the body of this pa-
per. Therefore, we have placed this proof in an ap-
pendix to this paper, which can be found athttp://
www.cs.unc.edu/∼anderson/papers.html.) In or-
der to show that property (V) holds, we show that for any job
T j

i in an arbitrary dynamic sporadic task systemT , if d(T j
i ) >

r(T j+1

i ), thenT j
i must have completed beforer(T j+1

i ) in both
theCNG-EDF andSW schedules ofT . To this end, letS be the
m-processorCNG-EDF schedule of some dynamic task system
T , where

∑
T i∈T wt(T i, t) ≤ m for all t, and letSW be the

m-processorSW schedule of the same task system.

Lemma 1. For a taskT i, if r(T j+k
i ) < d(T j

i ), wherej, k ≥ 1,
thenT j

i will have completed byr(T j+k
i ) in S andSW .

Proof. Suppose thatr(T j+k
i ) < d(T j

i ) holds. By the definition
of d(T j

i ), the minimum separation between job releases, and
rules P and N,r(T j+k

i ) < d(T j
i ) holds only ifT i reweighted

and halted whileT j
i was active. Without loss of generality, lettc

be the earliest such time. Then, by the rules P and N,r(T j+k
i ) ≥

tc. Hence,T j
i will have halted and thus completed byr(T j+k

i )
in S.

It remains to be shown thatT j
i will have completed by

r(T j+k
i ) in SW . SinceT j

i is halted attc, it must be the case that
T i changed its weight via case (i) of rule P or N attc. However,
both cases follow easily by the clairvoyant nature ofSW .

Modifications for NP-CNG-EDF. In NP-CNG-EDF, if a
job is released and is ready at timet, and the newly-released
job has a deadline that is earlier than some other job executing
at t, the newly released job cannot preempt the lower-priority
job. If no processor is available att, then this will lead to a
priority inversion. In such a scenario, the waiting ready, higher-
priority job is referred to as ablocked job, and the executing
lower-priority job is referred to as ablocking job. A taskT i is
said to beblockedat t if T i is not executing att and the earliest
pending job (i.e., the ready job) ofT i has a higher priority than
at least one job executing att. For example, in Fig. 1(c),T 2 is
the blocking job over the interval[6, 7), andT 1 is the blocked
job over the same interval.

The major difference between Devi and Anderson’s
tardiness-bound proof forEDF andNP-EDF for sporadic tasks
is that in theirNP-EDF proof they calculate the upper bound
on the length of time for which a task can be blocked. Because
of the blocking factor, the bound they construct forNP-EDF
is κ(m). As before, Devi and Anderson in their proof for
NP-EDF rely on the property of sporadic tasks that consec-
utive jobs do not “overlap.” And, as before, this requirement
can be weakened without affecting their proof, so that their
proof holds for adynamicsporadic task set, so long as con-
ditions (V) and (W) hold. Since the reweighting rules for
NP-CNG-EDF are essentially the same as the reweighting rules
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Figure 3. A one-processor task systemT with four tasks:e(T 1

1) = 5 andT 1 has an initial weight of 1/3 that increases to 1/2 via case (i)
of rule P at time 6 and as a result,ae(T 1

1) = 1, e(T 2

1) = 4, r(T 2

1) = 6 andd(T 2

1) = 14; T 2 has a constant weight of 1/4 and a constant
execution cost of 1;T 3 has a constant weight of 1/4 and a constant execution cost of 1; andT 4 has an initial weight of 1/6 that decreases
to 0 at time 6 ande(T 1

4) = 1. Inset(a) depicts theCNG-EDF schedule ofT . The number in each box denotes which job is scheduled,
e.g., over the range[0, 1), T 1

2 is executing, and over the range[4, 5), T 2

2 is executing. Inset(b) depicts theSW schedule ofT . Note that
sinceae(T 1

1) = 1 at time 3,T 1

1 is complete inSW, i.e., T 1 receives no allocations underSW over the range[3, 6). Inset(c) depicts the
IDEAL schedule ofT . Note that theIDEAL allocation to any taskT i equals

R t2

t1
wt(T i, u)du if T i is active over the range[t1, t2). For

insets (b) and (c), the releases and deadlines of the jobsT 1

1 andT 2

1 are depicted.

for CNG-EDF, by Lem. 1, conditions (V) and (W) hold for any
m-processorNP-CNG-EDF schedule, of any task setT so long
asm ≤

∑
T i∈T wt(T i, t) holds for all t. (As before, due to

space constraints we are forced to present the Devi and Ander-
son proof, with its modification, in its entirety in an appendix
found on the author’s web page.) Hence,NP-CNG-EDF’s tar-
diness bound isκ(m).

4.3 Drift

We now turn our attention to the issue of measuring “drift”
underCNG-EDF. In order to measure the “drift” of a task sys-
temT , we compare theSW schedule ofT to that of an “ideal”
reweighting scheme that enacts reweighting changes instanta-
neously. Under theideal processor sharing(IDEAL) schedul-
ing algorithm, at each instantt, each taskT i in T is allocated
a share equal to its weightwt(T i, t). Hence, ifI is theIDEAL
schedule ofT , then over the interval[t1, t2), the taskT i is al-
locatedA(I, T j

i , t1, t2) =
∫ t2

t1
wt(T i, u)du time. As we men-

tioned earlier,IDEAL is similar toSW, with two major excep-
tions: (i) underIDEAL, each task receives an allocation equal to
its weight, whereas underSW, each task receives an allocation
equal to itsscheduling weight; and(ii) underIDEAL, a task does
not stop receiving allocations unless its total allocationequals
the total execution cost of all of its jobs, whereas underSW, a
task will stop receiving allocations if its active job has received
an allocation equal to its actual execution cost. For example,
consider theIDEAL schedule of the task systemT depicted in
Fig. 3(c). Notice that, over the range[3, 6), the taskT 1 receives
allocations equal to its weight at every instant. Compare this to
theSW schedule (inset (b)), in whichT 1 receivesnoallocations
over the range[3, 6).

For most real-time scheduling algorithms, the difference be-
tween the ideal and actual allocations a task receives lies within
some bounded range centered at zero. For example, under a
uniprocessorEDF (i.e., CNG-EDF without weight changes)
schedule, the difference between the ideal and actual alloca-
tions for a task lies within(−emax(T i), emax(T i)). When a
weight change occurs, the same bounds are maintained except
that they may be centered at a different value. For example, in
Fig. 2(a), the range is originally(−1, 1), but after the reweight-
ing event, it is(−4/6, 8/6). This lost allocation is calleddrift.

Given this loss (barring further reweighting events)T i’s drift
will not change. In general, a task’s drift per reweighting event
will be non-negative (non-positive) if it increases (decreases)
its weight. UnderCNG-EDF, the drift of a taskT i at timet is
defined as

drift(T i, t) = A(I, T j
i , 0, u) − A(SW , T j

i , 0, u), (5)

whereSW is the schedule ofT underSW, I is the schedule of
T underIDEAL, andu is the last time a reweighting event ofT i

was enacted beforet.

Theorem 1. The absolute value of the per-event drift under
CNG-EDF for each taskT i is less thanemax(T i).

Proof Sketch.If a taskT i changes its weight at timetc via rule
P, then when this weight change is enacted at timete (i.e., at tc
under case (i) or atd(T j

i ) under case (ii)), then it is as though
allocation equal toA(I, T j

i , r(T j
i ), te)−A(SW , T j

i , r(T j
i ), te)

is “lost.” For example in Fig. 2(a), the taskT 4 “loses” an al-
location of 2/6. Since this value (per reweighting event) isal-
ways less thanemax(T i), the absolute value of drift is less than
emax(T i).

If a task T i changes its weight at timetc via rule N, and
T i decreases its weight (case (ii)), then the weight change will
be enacted atd(T j

i ). Since the maximum allocationT i can
receive inSW duringT j

i is emax(T i), A(SW , T j
i , tc, d(T j

i ))−

A(I, T j
i , tc, d(T j

i )) ≤ emax(T i). Thus, the absolute value of
the drift incurred is at mostemax(T i). For example, in Fig. 2(c),
the drift incurred byT 4 is −3/12, i.e., drift(T 4, t) = −3/12,
wheret ≥ 3/2. If T i increases its weight (case (i)), then it
incurs zero drift, since itimmediatelyenacts the weight change
(i.e., the scheduling weight changes immediately). Hence, the
absolute value of the drift incurred by this reweighting event is
less thanemax(T i). For example, in Fig. 2(b), the drift incurred
by T 4 is 0, i.e., drift(T 4, t) = 0, wheret ≥ 2.

Modifications for NP-CNG-EDF. Note that delaying the ini-
tiation of a reweighting event does not substantially increase
the drift incurred per reweighting event, since the longesta
reweighting event can be delayed is the execution cost of theac-
tive job. If T j

i is the active job ofT i at tc, and ifT i’s reweight-
ing event is delayed until some timet, then att either (i) T j

i



has a non-positive deviance (i.e., T j
i completes before its dead-

line), or (ii) T j
i is not active att (i.e., T j

i does not complete
before its deadline, and thus is not active att). In either case,
the active job (if it exists) is negative-changeable. Hence, if the
task increases its weight, then the only drift the task will incur
for this reweighting event results from delaying the initiation of
its reweighting event,i.e., at mostemax(T i). If T i decreases
its weight, then delaying the reweighting event will not affect
drift, since the enactment of the reweighting event would occur
at d(T j

i ) regardless of whether the initiation of the reweighting
event was delayed or not.

5 Experimental Results

The results of this paper are part of a longer-term project
on adaptive real-time allocation in which both Whisper and
ASTA described earlier, will be used as test applications. In
this section, we provide extensive simulations of Whisper and
ASTA as scheduled byPD2-OF, PAS, NP-PAS, CNG-EDF,
andNP-CNG-EDF.

Whisper. As noted earlier, Whisper tracks users via speakers
that emit white noise attached to each user’s hands, feet, and
head. Microphones located on the wall or ceiling receive these
signals and a tracking computer calculates each speaker’s posi-
tion by measuring signal delays. Whisper is able to compute the
time-shift between the transmitted and received versions of the
sound by performing acorrelationcalculation on the most re-
cent set of samples. By varying the number of samples, Whisper
can trade measurement accuracy for computation—with more
samples, the more accurate and more computationally intensive
the calculation. As a signal becomes weaker, the number of
samples is increased to maintain the same level of accuracy.
As the distance between a speaker and microphone increases,
the signal strength decreases. This behavior (along with the
use of predictive techniques mentioned in the introduction) can
cause task-share changes of up to two orders of magnitude every
10ms. Since Whisper continuously performs calculations onin-
coming data, at any point in time, it does not have a significant
amount of “useful” data stored in cache. As a result, migra-
tion/preemption costs in Whisper are fairly small (at least, on a
tightly-coupled system, as assumed here, where the main cost
of a migration is a loss of cache affinity). In addition, fairness
and real-time guarantees are important due to the inherent “tight
coupling” among tasks required to accurately perform triangu-
lation calculations.

ASTA system. Before describing ASTA in detail, we review
some basics of videography. All video is a collection of still im-
ages calledframes. Associated with each frame is anexposure
time, which denotes the amount of time the camera’s shutter
was open while taking that frame. Frames with faster exposure
times capture moving objects with more detail, while frames
with slower exposure times are brighter. If a frame isunderex-
posed(i.e., the exposure time is too fast), then the image can
be too dark to discern any object. The ASTA system can cor-
rect underexposed video while maintaining the detail captured

by faster exposure times by combining the information of mul-
tiple frames. To intuitively understand how ASTA achieves this
behavior, consider the following example. If a camera,A, has
an exposure time of1/30th of a second, and a second camera,
B, has an exposure time of1/15th of a second, then for every
two frames shot by cameraA the shutter is open for the same
time as one frame shot byB. ASTA is capable of exploiting this
observation in order to allow cameraA to shoot frames with the
detail of1/30th of a second exposure time but the brightness of
1/15th of a second exposure time. As noted earlier, darker ob-
jects require more computation than lighter objects to correct.
Thus, as dark objects move in the video, the processor shares
of tasks assigned to process different areas of the video will
change. As a result, tasks will need to adjust their weights as
quickly as an object can move across the screen. Since ASTA
continuously performs calculations based on previous frames,
it performs best when a substantial amount of “useful” data is
stored in the cache. As a result, migration/preemption costs in
ASTA are fairly high. In addition, while strong real-time and
fairness guarantees would be desirable in ASTA, they are notas
important here as in Whisper, because tasks can function more
independently in ASTA.

Experimental system set up. Unfortunately, at this point in
time, it is not feasible to produce experiments involving a real
implementation of either Whisper or ASTA, for several reasons.
First, both the existing Whisper and ASTA systems are single-
threaded (and non-adaptive) and consist of several thousands
of lines of code. All of this code has to be re-implemented
as a multi-threaded system, which is a nontrivial task. In-
deed, because of this, it isessentialthat we first understand
the scheduling and resource-allocation trade-offs involved. The
development ofPD2-OF, PAS, NP-PAS, CNG-EDF, and
NP-CNG-EDF can be seen as an attempt to articulate these
tradeoffs. Additionally, the focus of this paper is on scheduling
methods that facilitate adaptation—we havenot addressed the
issue of devising mechanisms for determininghowandwhenthe
system should adapt. Such mechanisms will be based on issues
involving virtual-reality and multimedia systems that arewell
beyond the scope of this paper. For these reasons, we have cho-
sen to evaluate the schemes discussed in this paper via simula-
tions of Whisper and ASTA. While just simulations, most of the
parameters used here were obtained by implementing and tim-
ing the scheduling algorithms discussed in this paper and some
of the signal-processing and video-enhancement code in Whis-
per and ASTA, respectively, on a real multiprocessor testbed.
Thus, the behaviors in these simulations should fairly accurately
reflect what one would see in a real Whisper or ASTA imple-
mentation.

For both Whisper and ASTA, the simulated platform was as-
sumed to be a shared-memory multiprocessor, with four 2.7-
GHz processors and a 1-ms quantum. All simulations were run
61 times. Both systems were simulated for 10 secs. (Note that
longer simulations return similar results.) We implemented and
timed each scheduling scheme considered in our simulationson
an actual testbed that is the same as that assumed in our simula-



tions, and found that all scheduling and reweighting computa-
tions could be completed within 5µs. We considered this value
to be negligible in comparison to a 1-ms quantum and thus did
not consider scheduling overheads in our simulations. For both
Whisper and ASTA, we conducted two types of experiments:
(i) all preemption and migration costs were the same and cor-
responded to a loss of cache affinity; and(ii) the preemption
cost was set to some value and the migration cost was varied.
If a task was preempted and then migrated, we assumed that it
incurred the maximum of the two costs. We ignored the issue
of bus contention, since in prior work, Holman and Anderson
have shown that bus contention can be virtually eliminated in
Pfair-scheduled systems bystaggeringquantum allocations on
different processors [7]. Staggering would be trivial to apply in
PAS andNP-PAS as well, since inPAS, processors run nearly
independently of each other. Furthermore, sinceCNG-EDF
andNP-CNG-EDF are event-based rather than quantum-based,
jobs are unlikely to begin executing simultaneously. Basedon
measurements taken on our testbed system, we estimated Whis-
per’s migration cost as 2µs–10µs, and ASTA’s as 50µs–60µs.
While we believe that these costs may be typical for a wide
range of systems, in our experiments we varied the preemp-
tion/migration cost over a slightly larger range. For all ex-
periments, the maximum execution cost was 7ms forPAS and
NP-PAS and 5ms forCNG-EDF andNP-CNG-EDF. These
values were determined by profiling each system beforehand to
determine the “best” compromise of accuracy and performance.

While the ultimate metric for determining the efficacy of
both systems would be user perception, this metric is not cur-
rently available, for reasons discussed earlier. Therefore, we
compared each of the tested schemes by comparing against al-
locations in theIDEAL algorithm. In particular, we measured
both the “average under-allocation” and “fairness factor”for
each task set at the end of each simulation (i.e., 10 secs.). The
average under-allocation(UA) is the average amount each task
is behind itsIDEAL allocation (this value is defined to be non-
negative,i.e., for a task that is not behind itsIDEAL, this value
is zero). Thefairness factor(FF) of a task set is the largest de-
viance from the allocations inIDEAL between any two tasks
(e.g., if a system has three tasks, one that deviates from its
IDEAL allocation by−10, another by 20, and the third by 50,
then theFF is 50 − (−10) = 60). TheFF is a good indica-
tion of how fairly a scheme allocates processing capacity. A
lower FF means the system is more fair. For applications like
Whisper, where the output generated by multiple tasks is peri-
odically combined, a lowFF is important, since if any one task
is “behind,” then performance of the entire system is impacted;
however, for applications like ASTA, where tasks are more in-
dependent, a highFF does not affect the system performance
nearly as much. These metrics should provide us with a reason-
able impression of how well the tested schemes will perform
when Whisper and ASTA are fully re-implemented.

Whisper experiments. In our Whisper experiments, we sim-
ulated three speakers (one per object) revolving around pole
in a 1m × 1m room with a microphone in each corner, as

shown in Fig. 4. The pole creates potential occlusions. One
task is required for each speaker-microphone pair, for a total
of 12 tasks. In each simulation, the speakers were evenly dis-
tributed around the pole at an equal distance from the pole, and
rotated around the pole at the same speed. The starting posi-
tion for each speaker was set randomly. As mentioned above,
as the distance between a speaker and microphone changes, so
does the amount of computation necessary to correctly trackthe
speaker. This distance is (obviously) impacted by a speaker’s
movement, but is also lengthened when an occlusion is caused
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Figure 4. The simulated Whis-
per system.

by the pole. The range
of weights of each
task was determined
(as a function of a
tracked object’s posi-
tion) by implementing
and timing the basic
computation of the
correlation algorithm
(an accumulate-and-
multiply operation) on
our testbed system.

In the Whisper simulations, we made several simplifying as-
sumptions. First, all objects are moving in only two dimen-
sions. Second, there is no ambient noise in the room. Third,
no speaker can interfere with any other speaker. Fourth, allob-
jects move at a constant rate. Fifth, the weight of each task
changes only once for every 5cm of distance between its asso-
ciated speaker and microphone. Sixth, all speakers and micro-
phones are omnidirectional. Finally, all tasks have a minimum
weight based on measurements from our testbed system and a
maximum weight of 1.0. A task’s current weight at any time lies
between these two extremes and depends on the corresponding
speaker’s current position. Even with theses assumptions,fre-
quent share adaptations are required.

We conducted Whisper experiments in which the tracked ob-
jects were sampled at a rate of 1,000 Hz, the distance of each
object from the room’s center was set at 50cm, the speed of each
object was set at 5 m/sec. (this is within the speed of human
motion), and the maximum execution cost, migration, and pre-
emption cost were varied. However, due to page limitations,the
graphs below are a representative sampling our collected data.

The first set of graphs in Fig. 5 show the result of the Whisper
simulations conducted to comparePD2-OF, PAS, NP-PAS,
CNG-EDF, andNP-CNG-EDF. Insets (a) and (b) depict the
averageUA andFF, respectively, for each scheme, where the
preemption cost is varied from 0 to 100µs and the migration
cost equals the preemption cost. Inset (c) depicts the aver-
age UA for each scheme, where the preemption cost is set
at 10µs (the maximum expected preemption cost for Whis-
per) and the migration cost is varied from 0 to 100µs. There
are five things worth noting here. First, when the preemp-
tion/migration cost is varied over the range 2 to 10µs, the
UA is about the same for all schemes (inset (a)); however,
PD2-OF has the bestFF (inset (b)). Second, whileCNG-EDF
andNP-CNG-EDF do not have the bestUA for the expected
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Figure 5. (a) The average under-allocation (UA) and (b) the fairness factor (FF) for Whisper as a function of preemption/migration
cost, and(c) the averageUA for Whisper as a function of migration cost (preemption costis fixed at 10µs), as scheduled by each tested
algorithm. The key in each graph is in the order that the schemes appear in that graph at 100µs. 98% confidence intervals are shown. Note
that in (b),CNG-EDF andNP-CNG-EDF are indistinguishable from each-other.

preemption/migration costs for Whisper, for higher preemp-
tion/migration costs,i.e., preemption/migration costs larger
than 10µs,CNG-EDF andNP-CNG-EDF both have a substan-
tially betterUA thanPD2-OF and betterFF than eitherPAS
or NP-PAS. Third, as the migration cost (but not preemption
cost) of a task increases, theUA of PAS andNP-PAS increases
slowly (inset (c)). However the performance of the other three
schemes decays quickly. Fourth, the confidence intervals for the
FF for CNG-EDF, NP-CNG-EDF, andPD2-OF are smaller
than forPAS andNP-PAS, sinceCNG-EDF, NP-CNG-EDF,
andPD2-OF have better accuracy. Fifth, in inset (c),PD2-OF
andCNG-EDF’s UA do not appreciably increase until the mi-
gration cost exceeds 10µs. This is because, until the migration
cost is 10µs, PD2-OF andCNG-EDF incur the maximum of
the migration or preemption cost, which is 10µs.

ASTA experiments. In our ASTA experiments, we simu-
lated a640 × 640-pixel video feed where a grey square that
is 160 × 160 pixels moves around in a circle with a radius of
160 pixels on a white background. This is illustrated in Fig. 6.
The grey square makes one complete rotation every ten seconds.
The position of the grey square on the circle is random. Each
frame is divided into sixteen160 × 160-pixel regions; each of
these regions is corrected by a different task. A task’s weight
is determined by whether the grey square covers its region.

64
0 

pi
xe

l

640 pixel

Grey Square

Square’s Path

Figure 6. The simulated
ASTA system.

By analyzing ASTA’s
code, we determined that
the grey square takes
three times more process-
ing time to correct than
the white background.
Hence, if the grey square
completely covers a
task’s region, then its
weight is three times
larger than that of a task
with an all-white region.
The video is shot at a rate
of 25 frames per second, and as a result, each frame has an

exposure time of 40ms.
The second set of graphs, in Fig. 7, show the result of the

ASTA simulations conducted to compare the five scheduling
algorithms. Insets (a) and (b) depict the averageUA andFF,
for each scheme, where the preemption cost is varied from 0
to 100µs and the migration cost equals the preemption cost.
Inset (c) depicts the averageUA for each scheme, where the
preemption cost is set at 60µs (the maximum expected preemp-
tion cost for ASTA) and the migration cost is varied from 0 to
100µs. There are two things worth noting here. First, when the
preemption/migration cost is varied over the range 50 to 60µs,
NP-PAS andPAS have the smallestUA (inset (a)); however,
CNG-EDF andNP-CNG-EDF both have aUA that is compet-
itive with both PAS andNP-PAS (inset (a)) and have asub-
stantiallysmallerFF (inset (b)). Second, in inset (c),PD2-OF
andCNG-EDF’s UA do not appreciably increase until the mi-
gration cost equals 60µs. This occurs for the same reason that
PD2-OF andCNG-EDF did not noticeably increase, until 10µs
in Fig. 5(c).

6 Concluding Remarks

We have presented a two new multiprocessor reweighting
schemes,CNG-EDF andNP-CNG-EDF, which reduce migra-
tion costs and preemptions at the expense of allowing dead-
line misses. We have also presented both analytical and ex-
perimental comparisons of these schemes with a more accurate
but more migration-prone scheme,PD2-OF, and two less ac-
curate partitioning schemes that have lower tardiness,PAS and
NP-PAS. These results suggest that when it is critical that every
task make its deadline and migration/preemption costs are low
(i.e., systems like Whisper), thenPD2-OF is the best choice;
when preemption/migration costs are high (i.e., either Whisper
or ASTA as implemented on a system where the processors are
not as tightly integrated), average case performance is of the ut-
most importance, and fairness and timeless are less important,
then eitherPAS or NP-PAS may be the best choice; and when
preemption/migration costs are high and and a good mix of
average-case performance and fairness factor is beneficial(i.e.,
systems like ASTA), then eitherCNG-EDF or NP-CNG-EDF
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Figure 7. (a) The average under-allocation (UA) and(b) the fairness factor (FF) for ASTA as a function of preemption/migration cost,
and(c) the averageUA for ASTA as a function of migration cost (preemption cost is fixed at 60µs), as scheduled by each tested algorithm.
The key in each graph is in the order that the schemes appear inthat graph at 100µs. 98% confidence intervals are shown. Note that in (b),
CNG-EDF andNP-CNG-EDF are indistinguishable from each-other.

Provides Has Low Provides
Scheme Hard Migration/ Strong

Real-Time Preemption Fairness
Guarantees Costs Guarantees

PD2-OF X X

(NP-)PAS X

(NP-)CNG-EDF X X

Table 2. Summary of algorithm performance.

may be the best choice. Thus,each algorithm is of valueand
will be the best choice in certain application scenarios, assum-
marized in Table 2.

While our focus in this paper has been on scheduling tech-
niques thatfacilitate fine-grained adaptations of weight and
execution cost, techniques for determininghow and when
to adapt are equally important. Such techniques can ei-
ther be application-specific (e.g., adaptation policies unique
to a tracking system like Whisper) or more generic (e.g.,
feedback-control mechanisms incorporated within scheduling
algorithms [9]). Both kinds of techniques warrant further study,
especially in the domain of multiprocessor platforms.
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