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Abstract address is whether the lower migration/preemption ovethea
i’}jld improved accuracy of such algorithms are sufficient to-co

We consider schemes for enacting task share changes e .
pensate for their inability to meet all deadlines.

process called reweighting—on real-time multiprocesdat-p

forms. Our particular focus is reweighting schemes that aryhisper. To motivate the need for this work, we consider
deployed in environments in which tasks may frequently rewo example applications under development at the Unigersi
quest significant share changes. Prior work has shown that faof North Carolina. The first of these is the Whisper tracking
scheduling algorithms are capable of reweighting tasksiwitsystem, which performs full-body tracking in virtual eror
minimal allocation error and that partitioning-baSEd scha- ments [11] Whisper tracks users via an array of wall- and
ing algorithms can reweight tasks with better average-g@se  ceiling-mounted microphones that detect white noise euwhitt
formance, but greater error. However, preemption and migrafrom speakers attached to each user’s hands, feet, and head.
tion overheads can be high in fair schemes. In this paperike many tracking systems, Whisper usesedictive tech-
we consider the question of whether global scheduling techiquesto track objects. The workload on Whisper is intensive
niques can improve the accuracy of reweighting relative t@nough to necessitate a multiprocessor design. Furthermor
partitioning-based schemes and provide improved avet@s®  adaptation is required because the computational cost kf ma
performance relative to fair-scheduled systems. Our awich |ng the “next” prediction in tracking an object depends oa th
is that, for soft real-time systems, global schedulingtéghies  accuracy of the previous one. Thus, the processor sharbs of t
provide a good mix of accuracy and average-case performanag@sks that are deployed to implement these tracking fumstio

will vary with time. In fact, the variance can be as muchws

orders of magnitude Moreover, adaptations must be enacted
1 Introduction within time scales as short as 10 ms.

d ASTA. The second application is the ASTA video-
enhancement system [2]. ASTA is capable of improving
OIt_he quality of an underexposed video feed so that objects tha
indistinguishable from the background become cleairand
color. In ASTA, darker objects require more computatio
correct. Thus, as dark objects move in the video, the process
shares of the tasks assigned to process different area® of th
O\ﬂdeo will change. ASTA will eventually be deployed in a
military-grade full-color night vision system, so taskdlwieed
to change shares as fast as a soldier’s head can turn. In the
planned configuration, a 10-processor multicore platforith w

Real-time systems that aaglaptivein nature have receive
considerable recent attention [3, 9, 10, 4]. In additioaltipro-
cessorplatforms are of growing importance, due to both har
ware trends such as the emergence of multicore technologfe[ﬁ
and the prevalence of computationally-intensive appbost u
for which single-processor designs are not sufficient. forpr
work [3, 4], we considered the use of both fair and partithgni
based algorithms to schedule highly-adaptive workloads
(tightly-coupled) multiprocessor platforms, where theqas-
sor shares of tasks change frequently and to a significagext
Fair scheduling techniques achieve high accuracy in emcti
share changes, but do so at the expense of potentially fmdeune used.

task preemptions and migrations among processors. Battiti pynamic sporadic tasks. In this paper, we are primarily con-
ing algorithms, in contrast, entail less overhead, but W@V cerned withdynamic sporadic task&ach such task; releases
poorer (but sometimes acceptable) accuracy. The focusf th sequence gbbs T, T2,.... Each task is defined by tle-
paper is adaptive global scheduling algorithms that avlé t ecution cospf each of its jobs, denotez{77), and itsweight
high preemption and migration costs of fair scheduling techyt any timet, denotedwt(T;, t), which specifies the fraction
niques, yet have superior accuracy relative to partitigibased  of a single processor it requires. This differs from the lisua
schemes. The primary drawback of global scheduling algefefinition of asporadictask, wherein per-job execution costs
rithms is that, in order to fully utilize a multiprocessoris$§m,  and weights do not change. While the terms “share,” “weight,
bounded deadline misses must be acceptable. The key issuegmg “utilization” are often used interchangeably, we weéght
“Work supported by NSF grants CCR 0204312, CNS 0309825, onto denote a task’s desired utilization, agldareto denote its
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fellowship. consider, a task’s share is determined by its weight; in sofne




Scheme Tardiness Drift Overload Migrations Preemptions
PD?-OF 0 2 0 every quantum every quantum
PAS 1 emax(T's) W weight-change events weight-change eventg job releases
NP-PAS e(T?) +emax(Ti)+1 | emax(T5) w weight-change events weight-change events
CNG-EDF k(m —1) emax(T';) 0 job releases job releases
NP-CNG-EDF K(m) emax(T's) 0 only in-between jobs never

Table 1. Summary of worst-case results.

these schemes, the two are always equal, while in otheng, thasks inT" with the heaviestaximalweight. (This bound is de-
may differ. We refer to the process of enacting task weighats  rived from prior work by Devi and Anderson on multiprocessor
changes aeweighting EDF scheduling [6].) Table 1 shows that algorithms that allow
more frequent migrations and preemptions, @2-OF, pro-
Summary of results. In this paper, we consider five duce little drift, no overload error, and no tardiness; hesve
reweighting-capable scheduling algorithms: a previousdia  algorithms that restrict the frequency of migrations arekpnp-
gorithm developed by us called call®eD?-OF [3], which tions can produce greater drift, overload error, and/afiess.
is a derivative of thePD? Pfair algorithm [1]; a pre-
vious partitioning-based algorithm developed by us callegontributions. Our theoretical contributions include devis-
the partitioned-adaptive schedulingPAS) algorithm [4]; the ing CNG-EDF andNP-CNG-EDF reweighting rules, and es-
non-preemptive-partitioned-adaptive-scheduljNg-PAS) al- tablishing the error bounds f@NG-EDF andNP-CNG-EDF
gorithm, which is a non-preemptive variant &AS; and in Table 1. The question that then remains is: for the five
two new algorithms proposed herein, ttieangeable-earliest- aforementioned algorithms, how do drift, overload errarl a
deadline-first(CNG-EDF) algorithm, which is a derivative tardiness compare to any error due to migration and preemp-
of the well known global-earliest-deadline-firéIF) algo- tion costs? We attempt to answer this question via extensive
rithm, and thenon-preemptive-changeable-earliest-deadlinesimulation studies of Whisper and ASTA. In these studies, re
first (NP-CNG-EDF) algorithm, which is a non-preemptive migration and preemption costs were assumed based on actual
variant of CNG-EDF. measured values. These studies confirm the expectation that
Our results are summarized in Table 1, which lists the accithile CNG-EDF andNP-CNG-EDF provide a good compro-
racy, migration cost, and preemption cost of each of the abotnise of accuracy and average-case performaheeg exists no
schemes. Accuracy is assessed in terms of three quantitig§igle “best” algorithm for each algorithm, application sce-
“drift,” “overload error,” and “tardiness,” which are maagd harios exist for which that algorithm is the best choice.
in terms of the system’s scheduling quantum siReift is the The rest of this paper is organized as follows. In Secs. 2 and
error, in comparison to an ideal allocation, that results thy 3, we discuss th€NG-EDF and NP-CNG-EDF algorithms
a reweighting event [3]. (Under an ideal allocation, tastes ain greater detail. Then, in Sec. 4, we establish the progerti
reweighted instantaneously, which is not possible in pragt Mmentioned above. Our experimental evaluation is presented
Overload errot which arises under partitioning-based scheme8ec. 5. We conclude in Sec. 6.
(see [4]), is the error that results.from qschedgler’s_ iiitabp 2 System Model and Scheduling
allocate a task a share equal to its desired weigatdinesss
the maximal amount by which any job can miss its deadline. In this section, we define our system model and the
Of these three types of error, overload error is potentidlly CNG-EDF andNP-CNG-EDF reweighting algorithms.
most detrimental, since drift is a one-time error assessed g

reweighting event and tardiness is bounded in the schemes oradic task systems. We denote the'" task of a task sys-
'ghting T asT; (where tasks are ordered by some arbitrary method),
consider. Overload error, on the other hand, accumulates ov

i and denote the*” job of the taskrl’; asT-Z (where jobs are or-
|mle.T ble 1 d h : _ ¢ dered by the sequence in which they are invokedgpAradic

n ave emax(T;) denotes thenaximum execution Cost  ,qis defined by amxecution cosdenoted:(T';), andweight
any job of the tasl’;, wtmax (7";) denotes thenaximal weighof

KT . av d h imal weiaht of th denotedwt(T';), which specifies the fraction of a single pro-
taskl’; at any t|rsr1e“, and ?notest € maximal welg tofthe cossor it requires. (Itis customary to define a sporadiclbgsk
(m-|1/X] 4 1)” “heaviest” task (by maximal weight), where

is th ber of s th imal weight of its execution cost and the minimum separation time betwtsen i
m 1S the NUMDET O processors IS the maximal weight o successive jobs—we define the latter in terms of weight and ex
the heaviest task. Furthermore,

ecution cost below.) Fig. 1(a) depicts a one-processoesyst
scheduled vigEDF with four tasks, as defined in the figure’s

ZT Emax(T, £) emax(T'z) . . . ) .

zECmax\4 + emax(T;), ~ Caption. (The other insets in the figure are considered.)ater

M= 32T, e X (T, m — 1) Wemax(T'2) The first job of a task may be invoked @leasedat any time at
(1) or after time zero. The release time of job is denoted(7Y).

wheref,,.x (T, £) is the set of tasks inT” with the highestnax-  Successive job releases of taBkmust be separated by at least

imal execution cost an@y,.. (7, m — 1) is the set ofm — 1 e(T;)/wt(T;) time. For example, in Fig. 1(a)(7}) = 0 and

k(0) =




r(T?) = 3. Theabsolute deadlinéor justdeadling of job Tf whereu is the last time at or beforethat a weight change was
denotedd(77), equals(T7) + e(T;)/wt(T;). For example, in enacted foff’;. It is important to note thahenceforth, we com-
Fig. 1(a),d(T}) = 3 andd(T?) = 6. We consider a sporadic pute task deadlines and releases using scheduling weights.

tas!<TZIto beactiveat timet |;‘_ therejeX|sts ajoly”/ (calledT’;’'s Scheduling. Under both CNG-EDF and NP-CNG-EDF,
active joh such that € [r(T7), d(T7))- “ready” jobs are prioritized by deadline, with earlier dead

Dynamic sporadic task systems. A dynamic sporadic task lines having higher priority. (*Ready” will be formally deied

systemis an extension of a sporadic task system, where tl'ﬁportly') Deadline ties are re;olveq ar.bitrarily,. bL_’t dstesitly.
weight of each task’; is a function of timet and its ex- UnderCNG-EDF, an arriving job with higher priority preempts

ecution cost can vary with each jdﬁg. We usewt(T;, ) the executing job with the lowest priority if no processor is

ande(Tj) respectivelv. to denote these two quantities (Fo?vailable. The preempted job may later resume execution on
i/ P Y, q w1 @ different processor. Und&P-CNG-EDF, the arriving job
the remainder of the paper, whenever we refer to a “task” we

: “ . . ,, waits until some job completes execution and a processor be-

are referring to a “dynamic sporadic task.”) We wsg,,(7';) )
(Wtmax(T';)) to denote theninimum(maximum allowed weight 9> available. Thus, undP-CNG-EDF, once scheduled,
for T;. As a shorthand, we uge;:[a, o] to denote a task’; such a job is guaranteed execution until completion withoutrintp-
thatvzv't W(T)) = a an’dwt (j'ﬂ.)’ ~ b andT:-a to éenote tion. Fig. 1(b) depicts £NG-EDF schedule of the task sys-

oomini e maxA= e ' % . temT described above, and Fig. 1(c) depictd®-CNG-EDF
T;:[a, a]. Furthermore, we usg,.x(7';) to denote the maximal schedule of the same svstem
execution cost of any job &f;. Fig. 1(b) gives an example. . ystem. . .

For dynamic sporadic tasks, tabsolute deadlinef a job For an arbitrary scheduling algorithrhand an arbitrary task
T? equalsr(T?) + e(T?)/wt(T;, r(T7)). In the absence of systerrﬂ“,\j(ve letS denote amn-processor scheduéof T', and
r(;weighting éonsecutii/e iob releasleST@) andr(TJf“)) of let A(S, T-_Z., 7§1, t2) denote the total time allocatedTd in S in
O e o Iemﬂ“i)/wt(T»z () [t1, t2). Similarly, we useA(S, T, t1, t2) andA(S, T, t1, t2),

@ be sep 9 y Nk i I\44 /) respectively, to denote the total time allocated to all job%’;
For example, in Fig. 1(b)(T%) —r(Ty) = 2/(1/3) = 6, in 5 and all tasks off in S, over the intervalt, t.). We
r(T7) —r(T7) = 2/(1/2) = 4, andd(T%) = 10 +1/(1/2) = say that the value 0A(S, T7, 0, t) is the amount thal”} has
12. ) ) ) ) executed by. For example in Fig. 1(b)A(S, T7,0,6) = 2,

A task T; changes weightor reweights at time ¢ if A(S, T, 0,12) = 2, andA(S, T!, 3, 12) = 0.
wWt(T;, t —€) # wt(T;, t) wheree — 0T. If a taskT; changes o ) . o
weight at a time.. between the release and the deadline of sonfeefinition 1 (Halted). As discussed later, if a reweighting event
job 77, then the following three actiomesayoccur: in scheduleS occurs at time, then it is possible that some job

T7 is haltedatt. In this caseae(TY) is set toA(S, T, 0, t).

» The execution cost &f] maybe reduced to the amount of pefinition 2 (Completed). If S is anm-processoCNG-EDF
time for which’; has executed prior t. or NP-CNG-EDF schedule of the task systef, then a job

T} € T is said to haveompleted by time in S iff 7 has

executed foe(7) by ¢t in S, or 77 has halted by time. A task

o If T{—H is released befo_ré\Tg) +_e(T{)/wt(Ti, r(T{)), _Tl-blsfsaldhto Prw]aveizaompletled atotllgm in S if allt tlrge t evSeKry
then sinced(T7) = r(T%) + e(T?) /wt(T;, 1(T%)), jobs 1O OF I thatt has been released bizas completed. A task;
79 and T+ will “ lan” (In th ant of th di is said to haveentirely completed by timeiff all jobs of T'; in
miozgl déf'ng:/:il ez:r\ll'(; as'e(r n'ol;a’svggzgl'ge 'seastpc?rr?)elf(;rT have completed. For example, in Fig. 1(5), completes by
its succeslsors’s rellea’sev I¥|Jence we sla tlhat Tiols fime 3,7, is complete (buhot entirely complete) at time 3 but

; ) ) ) i y i i not complete at time 6, arifly is entirely complete at time 4.

activeat timet iff ¢ € [r(T7), min(r(T77"), d(T7))).

e 1(T7") maybe less than(T7)+ e(T?) /wt(T';, r(T%)).

Definition 3 (Pending and Ready).For an arbitrary scheduling

The reweighting rules we present in Sec. 3 state under whaltjorithm.A, if S is anm-processor schedule of the task system
conditions the above actions occur and by how much befofe under.A, then a jobT* is said to bepending at time in S
((T]) + e(T})/Wt(T;, r(T})) the jobT7™" can be released. if (79) < t andT? is not complete by in S. For example, in
Since a reweighting event may cause a job's execution costgy 1(a), the joll"} is pending over the rande, 9). Note that
decrease, we introduce the notion of a [BPis actual execu- a job can be pending, but not active, if it misses its deadine
tion cost denotedae(T; ), which represents the total amount ofpending jobT™ is said to beeady at timet in S if all prior jobs
execution time thal™ will receive. of taskT’; have completed by. For example, in Fig. 1(a), the

When a task reweights, there can be a difference betwejab T4 is ready over the rangé, 9). A job 77 can be pending
when it “initiates” the change and when the change is “emiitte but not ready iff " has not completed by77).
The time at which the changeiistiated is a user-defined time; s
the time at which the change énacteds dictated by a set of 3 Task Reweighting
conditions discussed shortly. We use seheduling weight of We now introduce two new reweighting rules that are
a taskT'; at timet, denotedswt(T';, t), to represent the “last CNG-EDF extensions of thé®D2-OF reweighting rules pre-
enacted weight of’;”. Formally, swt(7';, t) equalswt(T;, w), sented by us previously [3]. As mentioned before, thesesrule



[ Scheduled| Job Releasg Job Deadline} Job Release/DeadIin%

T1:1/3 I | | T1:[1/3,1/2] I T1:[1/3,1/2] [
Ty:1/4 ] Tp:[1/4] ] To:[1/4]
T3:1/4 — — — T31[1/4] i — TS:[1/4] —
Ty:1/6 ] ] Ty[0,1/6] ] T4:[0,1/6] ]
0123456 7 89 101112 0123456 7 89 101112 0123456 789 1011:
Time Time Time
@ (b) (©)

Figure 1. A one-processor (sporadic or dynamic sporadic) systewith four tasks. Insefa) depicts arEDF schedulel” where the
tasks are defined as follow$’; with weight 1/3 ande(7'1) = 1, T2 with weight 1/4 ande(T'2) = 3, T's with weight 1/4 ande(T'3) = 1,
andT’4 with weight 1/6 ance(T'4) = 1. In insets(b) and(c), the tasks are defined as folloviS; has an initial weight of 1/3 and increases
to 1/2 at time 6e(T1) = e(T%) = 2, ande(T3) = 1; T» has a constant weight of 1/4 aedT;) = 3; T3 has a constant weight of
1/4,e(T3) = 1, ande(T3) = 2; and T4 has an initial weight of 1/6 and decreases to 0 at timee§ ("4 “leaves” the system at 6) and
e(T1) = 1. Inset (b) depicts &NG-EDF schedule off". Inset (c) depicts &IP-CNG-EDF schedule of". All ties are broken in favor of
the task with the lower index.

work by modifying future job release times and deadlines. ARule N: If T'; is negative-changeable at timefrom weightw
the end of this section, we discuss how to adjust these ratesf  to v, then one of two actions is takef) if v > w, then

NP-CNG-EDF. T{ is halted, its weight change is enacted, and a new job of

For simplicity, we assume that the actual execution cost for  sizerem(T;, t.) is issued for it with a release time equal
any job is equal to its specified execution castlessa task to the timet at whichdev(77, ¢) = 0 holds;(ii) otherwise,
reweights while a job is active. Themd only thercan the ac- the weight change is enacted at tid(@{).

tual execution cost of a job be less than its execution cois( N , ) o
assumption can be removed at the expense of more complicalBiitively, Rule P changes a task’s weight by halting its-cu

notation.) In this scenario, the actual execution cost efid €Nt job and issuing a new job of sizem(T;, t.) with the
is determined by the rules we present shortly. new weight if doing so would improve its deadline. A (one-

Let T be a task system in which some ta&k initiates a processor) example of a positive-changeable task i_s given i
weight change from weighty to weight v at time t,. Let Fig. 2(a). (We discuss the termdrift,” “ IDEAL allocations,

S be them-processolCNG-EDF schedule off. Let T’ be and “SW allocations” in Sec. 4.) The depicted example con-
the active job ofT; att.. If e(T?) — A(S T-?" 0,1) >Z 0. Sists of atask systeffi with four tasks as defined in the figure’s

; ; - . caption. Note that, sinc&,, T3, andT', have the same dead-

J = J —_ j " . . . . .
then lit rem(T, tc)ﬁj e(Ti) — AS. T3 'J.O’ t); otherwise, line, we have arbitrarily chosefi, to have the lowest priority.
rem(T75,t.) = e(T;""). Note 'Fha,trem(Ti, tc) denotes the | inset ()7, is positive-changeable since at time 2 it has not
actual remaining computation ifi;’s current job or the size yet been scheduled. Note that haltifig's current job and is-

of T's next job if the current job has completed. Tte- g,ing a new job of size one improvés’s scheduling priority,
viance of jobT"} of taskT'; at timet is defined aslev(77,t) = | o d(T!) =6 > Z = d(T?). Notice that the second job of

; . . 2
frt(Tg) swi(T;, u)du — A(S, T7, 0, t). The choice of whichrule 7, is issued 6/4 quanta after time 2. This spacing is in keeping

to apply depends on whether deviance is positive or negdfive with a new job of weight 4/6 issued at time 2.
positive, then we say th&t; is positive-changeable at timg Rule N changes the weight of a task by one of two approaches:
from weightw to v; otherwiserl’; is negative-changeable at time (i) if a taskincreasesits weight, then Rule N adjusts the re-
t. from weightw to v. Becausd’; initiates its weight change at lease time of its next job so that it is commensurate with the
t., wt(T;, t.) = v holds; howeverT;’s scheduling weight does new weight; (i) if a task decreasests weight, then Rule N
not change until the weight change has beractedas speci- waits until the end of the current job and then issues the next
fied in the rules below. Note that#f occurs between the initi- job with a deadline that is commensurate with the new weight.
ation and enaction of a previous reweighting everil'gfthen A (one-processor) example of a negative-changeable tak th
the previous event is skippede., treated as if it had not oc- increases its weight is given in Fig. 2(b). The depicted exam
curred. As discussed later, any “error” associated withgkig ple consists of the same tasks as in (a), except that we have
a reweighting event like this is accounted for when deteimgin chosenT’, to have the highest priority. Notice that the sec-
drift. ond job ofTy is issued at time 3, which is the time such that
dev(T4, 3) = [ sW(T;, u)du — A(S, T4,0,3) =1 — 1 =0.
Rule P: If T'; is positive-changeable at time from weight Recall that the deadline (release time) of i ((i + 1)™)
w 1o v, then one of two actions is takex) if d(77) >  job of a taskT’; is given byr(77) + e(T7)/(swt(T;, r(T?))).
rem(T;, t.)/v, thenT? is halted, its weight change is en-Hence, if a taskl’; of weightv were to issue a job of size
acted, and a new job of sizem(T’;, t.) is issued forit y = A(S,T7,0,t.) — dev(T7,t) at timet,, then the release
with a release time of;; (ii) otherwise, its weight change time of its next job would bé. + y/v. A (one-processor) ex-
is enacted at timel(T*), i.e., the scheduling weight does ample of a negative-changeable task that decreases ithwigig
not change until the end of the current job. given in Fig. 2(c). The depicted example consists of the same
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Figure 2. A one-processor system consisting of four tagks[0, 1/2], T2:1/6, T'3:1/6, andT'4:[1/6, 4/6], where the execution cost of
every job is one. The dotted lines represent the intervabdpts next deadline, which due to reweighting has been charaethdicated

by the solid arrow). Thdrift, allocations iHDEAL, and allocations irSW for T'4 are labeled as a function of time across the (@)The
CNG-EDF schedule for the scenario wheéfg is in the system initially and leaves at time2, has an initial weight of 1/6 that increases
to 4/6 at time 2, and’4 has the lowest scheduling priority. Sin€g is not scheduled by time 2, it has positive deviance and @ity
weight via Rule P, causin@’; to be haltedT? to be released at 2 with a deadline of 9/2, dngds drift to become 2/6.(b) The same
scenario as in (a) except tHAL has higher priority than botl'; andT's. SinceT s has been scheduled by time 2, it has negative deviance
and changes its weight via Rule N, causing its next job to baetease time of 3 while maintaining a drift of zefo) T'; joins the system

at time 6/4 andl'4 has an initial weight of 4/6 that decreases to 1/6 at time Acedl', has negative deviance at time 1, it is changed via
Rule N, causing’4’s next job to have a deadline of 15/2 afidto have a drift of—3/12.

four tasks except thaf, has an initial weight of 4/6 and de- new theoretical scheduling algorithms: teeheduling-weight
creases its weight at time 1, afig joins the system as soon asprocessor-sharing SW) scheduling algorithm and thigleal
T4's weight change is enacted. processor-sharinglDEAL) scheduling algorithm. Both algo-

Since these rules change the ordering of a task in the prigithms have the ability to preempt and swap tasks at arijtrar
ity queues that determine scheduling, the time complexity f small intervals. Howeve6W allocates each task a share equal
reweighting one task i©(logN), where N is the number of to itsscheduling weightmoreoverSW will not allocatecapac-
tasks in the system. ity to a task if its active job has received an allocation égoia

its actual execution cosiDEAL, on the other hand, allocates

Modifications for NP-CNG-EDF. In order to adapt the rules each task a share equal tostsightat each instant; and, unlike
P and N to work forNP-CNG-EDF, the only modification SW, IDEAL will not stop allocatingcapacity to a taskinless
we need to make is when these rules are initiated. If a taskat task has received an allocation equal to the total execu
reweightdefore or aftetthe active job has been scheduled, thegost of all of its jobs. (For simplicity, we have assumed that
the rules P and N are initiated as before. (Note that if theeact every job inT is released as early as possible. This assump-
job has notbeen scheduled, then its deviance is positive, anibn can be removed at the cost of more complex notation. If
if the active jobhasbeen scheduled, its deviance is negativeye did not make this assumption, then the allocation functio
However, if a task changes its weight while the active Jgb  for IDEAL would equal zero between active jobs.) We provide
is executing, then the initiation of the weight change isagletl  below a more in-depth explanation of these two algorithms.
until 77 has completedr 7" is no longer activewhichever is
first. Note that when a task; changes its weight from to v at
time ¢. in NP-CNG-EDF, thenwt(T;, t.) = v holds, regard-
less of whether the initiation of rule P or N must be delayed.

4.1 Tardiness and Lag

We begin by defining th&W scheduling algorithm.

4 Tardiness and Drift Bounds
The SW scheduling algorithm. In order to establish tardi-

In this section, we formally present and prove tardinesgess bounds fo€ENG-EDF, we compare allocations produced
and drift bounds for th&€ NG-EDF algorithm. Because any by CNG-EDF to those produced b$W. UnderSW, at each
set of reweighting rules will cause the “actual” schedule tdnstantt, each non-complete job of each taBkis allocated a
deviate from the “ideal” schedule, the tardiness bounds réaction of a processor equal 8&wt(7;,t). Furthermore, we
flect CNG-EDF’s accuracy atschedulingthe job-set created considerSW to be “clairvoyant” in the sense th&W can use
by CNG-EDF. The drift bounds, on the other-hand, reflecthe value ofae(T?) to determine i/ has completed before it
CNG-EDF’s accuracy at creating a job-set that mimics théas halted. More specifically, for any scheddl” undersSw
“ideal” task system, where weight changes can always bie iniof any task systerff’, we say thaf”; hascompleted by timein
ated and enacted instantaneously. To this end, we intradce SW iff T has executed faxe(77) by ¢.



For example, consider the one-processor task sy$teta- Since (W) can be easily satisfied, for the remainder of
picted in Fig. 3. Inset (a) depicts @NG-EDF schedule and this subsection, we show tha&ENG-EDF satisfies prop-
insets (b) depictd’s SW schedule. Notice that in thBW erty (V). (Unfortunately, due to space constraints, we are
schedulel’; does not receive any allocations over the intervahot able to present the Devi and Anderson proof with
[3,6). This is because at time 3 the total allocatioriftbin  the necessary (minor) adjustments in the body of this pa-
the SW schedule equalse(T}) = 1, hence T’} is complete at per.  Therefore, we have placed this proof in an ap-
time 3. However, at time 677 is released, and therefofe,  pendix to this paper, which can be found http://
has an incomplete job with a scheduling weight of 1/2. Henceww. cs. unc. edu/ ~ander son/ papers. ht m .) In or-

T begins to receive allocations equal to its scheduling weighder to show that property (V) holds, we show that for any job
which is now 1/2. Note that we assume that every job releasg; in an arbitrary dynamic sporadic task systéiif d(77) >
deadline, execution cost, and actual execution cost f8W\a  r(77*"), thenT’ must have completed beforél? ") in both
schedule to be the same as thaCiNG-EDF. theCNG-EDF andSW schedules of". To this end, letS be the

, m-processoCNG-EDF schedule of some dynamic task system
Lag. IfSis anm-processor schedule undeNG-EDF of the T, WhereZTieT Wi(T;, t) < m for all ¢, and letSW be the
task system¥” andSW is anm-processor schedule undew m-processoBW schedule of the same task system.

of the same task systeffi then thelags at timet of a jobT{, ‘ .
taskT';, and task systeff, resp., are defined by Eqns. (2)—(4). Lemma 1. For a taskT’;, if r(T7 %) < d(T7), wherej, k > 1,
. _ . thenT? will have completed by(77"*) in S andSW.
lag(77,t) = A(SW,T7,0,t)—A(S,T77,0,t) (2)
lag(Ti, t) = A(SW,T;0,t) —A(S,T;,0,t) (3) Proof. Suppose that(T§+k) < d(77) holds. By the definition
LAG(T,t) = A(SW,T,0,t)—A(S,T,0,t) (4) of d(T7), the minilmum separation between job releases, and
rules P and Nr(Tﬁ*k) < d(T7) holds only if T'; reweighted
Note thatLAG(T,t) = ZTZ'GT lag(7';, t). The lag of a job and halted whil@’ was active. Without loss of generality, let
(or task or system) represents by how much a job (or task ge the earliest such time. Then, by the rules P amd'N, ") >
system) is under/over-allocated compared toSNé schedule ; HenceT? will have halted and thus completed Wﬁk)
. . . 1 _ _ Jer =1 7
attimet. For example, in Fig. 3ag(7'3,1) = 1/4-0=1/4, in g
1 1 ) .
lag(T's, 2) =2/4 -1 = —1/2,la9(Ty,2) = 2/3 - 0 = 2/3, It remains to be shown thaf’ will have completed by
lag(T, 3) = 3/3 — 0 =1, andlag(T}, 6) = 3/3 — 1 =0. r(T9T")in SW. SinceT is halted at.., it must be the case that
. T; changed its weight via case (i) of rule P or N atHowever,
4.2 Tardiness Proof both cases follow easily by the clairvoyant natureSé¥. O

In prior work, Devi and Anderson [6] proved that in amy ~ Modifications for NP-CNG-EDF. In NP-CNG-EDF, if a
processoEDF schedule of aporadictask systeni” (where the 10D is released and is ready at timeand the newly-released
total weight of all tasks is at most) the tardiness of each job of /0P has a deadline that is earlier than some other job exeguti
any taskT’; is at mosts(m — 1), wherex(m — 1) is as defined at?, the newly releasgd Job_ cannot preempt thg lower-priority
in (1). Their proof consists primarily of three lemmas/treras:  Job. If no processor is available af then this will lead to a
(i) if the LAG of T'is bounded in thex-processoEDF schedule  Priority inversion In such a scenario, the waiting ready, higher-
S of T, then tardiness is bounde(ii) the LAG of T in S is  Priority job is referred to as &locked job and the executing
boundedjiii) by (i) and (ii), the tardiness of each job of anylower-priority job is referred to as llocking job A taskT'; is
taskT’; in T'is at mosts(m — 1). said t_o b.dolo.ckedatt if T; is not executing gztand th_e garhest

Since Devi and Anderson were proving tardiness bounds f8€nding job (e., the ready job) of’; has a higher priority than
a sporadic task system, they were able to utilize the fattatha 8t 1€ast one job executing atFor example, in Fig. 1(c}/’, is
job T{ and its successd}’{“ do not “overlap,i.e., d(T{) < _the blocking job over the intervéd, 7), andT is the blocked
r(T{“) holds for any sporadic task;. However, this property job overthe_samg interval. _ ,
can be weakened without affecting their proof (barring some '€ major difference between Devi and Anderson’s
minor notational changes), so that their proof can be adaptiérdiness-bound proof f@&DF andNP-EDF for sporadic tasks
to prove tardiness bounds fordgnamicsporadic task system. is that in theirNP-EDF proof they calculate the upper bound

Specifically, the Devi and Anderson proof can be used to shol! the Iength of time for which a task can be blocked. Because
that the tardiness @NG-EDF is bounded by:(m — 1). If the of the blocking factor, the bound they construct foP-EDF
following properties hold is k(m). As before, Devi and Anderson in their proof for

NP-EDF rely on the property of sporadic tasks that consec-
(W) 227, er WH(Ti, t) < m for all t. utive jobs do not “overlap.” And, as before, this requiremen
. ‘ . . can be weakened without affecting their proof, so that their
(V) Foranyjobl” andits success@¥ ™, if d(77) > r(T7*"),  proof holds for adynamicsporadic task set, so long as con-
thenT{, must have completed beforél“{“) in both the ditions (V) and (W) hold. Since the reweighting rules for
CNG-EDF andSW schedules of . NP-CNG-EDF are essentially the same as the reweighting rules
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Figure 3. A one-processor task systefwith four tasks:e(71) = 5 andT’; has an initial weight of 1/3 that increases to 1/2 via case (i)
of rule P at time 6 and as a resug(71) = 1, e(T3) = 4, 1(T3) = 6 andd(T3) = 14; T has a constant weight of 1/4 and a constant
execution cost of 17's has a constant weight of 1/4 and a constant execution costasfdll’4 has an initial weight of 1/6 that decreases
to 0 at time 6 anak(7T;) = 1. Inset(a) depicts theCNG-EDF schedule ofl'. The number in each box denotes which job is scheduled,
e.g, over the rangd0, 1), 7'} is executing, and over the ranfig 5), 73 is executing. Insefb) depicts theSW schedule ofl". Note that
sinceae(T1) = 1 at time 3,T1 is complete inSW, i.e., T receives no allocations undsW over the rangé3, 6). Inset(c) depicts the
IDEAL schedule off". Note that thd DEAL allocation to any tasK’; equalsf)fl2 wt(T';, u)du if T'; is active over the ranggs, t2). For

insets (b) and (c), the releases and deadlines of theljplamdT? are depicted.

for CNG-EDF, by Lem. 1, conditions (V) and (W) hold for any Given this loss (barring further reweighting evenis)s drift

m-processoNP-CNG-EDF schedule, of any task sétso long  will not change. In general, a task’s drift per reweightingmt

asm < ZTieT wt(7';, t) holds for allt. (As before, due to will be non-negative (non-positive) if it increases (dexses)

space constraints we are forced to present the Devi and Andis weight. UndeiICNG-EDF, the drift of a taskl’; at timet is

son proof, with its modification, in its entirety in an append defined as

found on the author’s web page.) Henb#-CNG-EDF's tar- , » »

diness bound |8(m) dr|ft(T7;, t) = A(I, T',Z, 0, ’LL) — A(SW, T',Z, O, U), (5)

4.3 Drift whereSW is the schedule df underSW, 7 is the schedule of
T underlDEAL, andu is the last time a reweighting eventtf

We now turn our attention to the issue of measuring “griftVas enacted before

underCNG-EDF. In order to measure the “drift” of a task sys- Theorem 1. The absolute value of the per-event drift under
temT', we compare th&W schedule off" to that of an “ideal” CNG-EDF for each taskl’; is less tharey..(T;).

reweighting scheme that enacts reweighting changes tasta
neously. Under théeal processor sharind DEAL) schedul-
ing algorithm, at each instant each taskl’; in T' is allocated
a share equal to its weighit(7';, t). Hence, ifZ is theIDEAL
schedule off’, then over the intervdk,, t2), the taskT; is al-

nProof Sketch.If a taskT'; changes its weight at time via rule
P, then when this weight change is enacted at timee., att.
under case (i) or a(7%) under case (ii)), then it is as though
allocation equal t\(Z, T, r(T7), te) — A(SW, T?, r(T?), t.)
j e _ . _ is “lost.” For example in Fig. 2(a), the task, “loses” an al-
loCtedA(Z, T3, t1, t2) = J,, " WA(T', u)du time. As we men location of 2/6. Since this value (per reweighting evenflis

1
tioned earlier]DEAL is similar toSW, with two major excep- g
tions: (i) underlDEAL, each task receives an allocation equal t(‘)’VaY?jL?)ss thamm.«(T';), the absolute value of drift is less than
max )"

. . . . e
its weight whereas unde8W, each task receives an allocation If a taskT; changes its weight at timg via rule N, and

S0 S ecing AP TGEDCAL 006 1, Gocreasesfs weight(cas (1) ten e wogh hande
b 9 be enacted atl(77). Since the maximum allocatiofi; can

the total execution cost of all of its jobs, whereas uriéf, a L durinaT? | i d(T
task will stop receiving allocations if its active job hasewed €CEVE INSW dUring Ty is emax (1), ASW, T3, te, d(T7)) —

an allocation equal to its actual execution cost. For examplA(Z: T3, te, d(T7)) < emax(T3). Thus, the absolute value of
consider thdDEAL schedule of the task systefdepicted in  the driftincurred is at mosgna, (7). For example, in Fig. 2(c),

Fig. 3(c). Notice that, over the ranf 6), the taskl'; receives the driftincurred byT’, is —3/12, i.e, drift(T's, t) = -3/12,
allocations equal to its weight at every instant. Compaisetth Wheret > 3/2. If T} increases its weight (case (i)), then it

theSW schedule (inset (b)), in whicH; receivesioallocations incurs zero drift, since immediatelyenacts the weight change
over the rangés, ). (i.e., the scheduling weight changes immediately). Hence, the

For most real-time scheduling algorithms, the differenee b absolute value of the drift incurred by this reweighting revie

tween the ideal and actual allocations a task receives libgnw €SS tharem, (T';). For example, in Fig. 2(b), the drift incurred
some bounded range centered at zero. For example, unddal 4 1S 0, i.e. drift(T's, t) = 0, wheret > 2. 0
uniprocessorEDF (i.e, CNG-EDF without weight changes)

schedule, the difference between the ideal and actualaallodVodifications for NP-CNG-EDF. Note that delaying the ini-
tions for a task lies within(—emax(7;), emax(T)). When a tiation of a reweighting event does not substantially iasee
weight change occurs, the same bounds are maintained exdést drift incurred per reweighting event, since the longest
that they may be centered at a different value. For example, ieweighting event can be delayed is the execution cost Gfthe
Fig. 2(a), the range is originally-1, 1), but after the reweight- tive job. If T/ is the active job ofl’; att., and ifT';’'s reweight-
ing event, it is(—4/6,8/6). This lost allocation is calledrift.  ing event is delayed until some tinmiethen att either (i) 7"



has a non-positive deviancieg(, T{ completes before its dead- by faster exposure times by combining the information of-mul
line), or (ii) TZ is not active att (i.e., TZ does not complete tiple frames. To intuitively understand how ASTA achieves t
before its deadline, and thus is not active)atin either case, behavior, consider the following example. If a camékahas

the active job (if it exists) is negative-changeable. Heifdee ~ an exposure time of /30" of a second, and a second camera,
task increases its weight, then the only drift the task witiir B, has an exposure time @f 15" of a second, then for every
for this reweighting event results from delaying the irtita of ~ two frames shot by camera the shutter is open for the same
its reweighting eventi.e., at mosten.,(7;). If T; decreases time as one frame shot B. ASTA is capable of exploiting this

its weight, then delaying the reweighting event will noteaff observation in order to allow came#ato shoot frames with the
drift, since the enactment of the reweighting event woulcboc  detail of1/30% of a second exposure time but the brightness of
atd(77) regardless of whether the initiation of the reweighting /15" of a second exposure time. As noted earlier, darker ob-

event was delayed or not. jects require more computation than lighter objects toeazirr
Thus, as dark objects move in the video, the processor shares
5 Experimental Results of tasks assigned to process different areas of the viddo wil

change. As a result, tasks will need to adjust their weights a
The results of this paper are part of a longer-term projecjuickly as an object can move across the screen. Since ASTA
on adaptive real-time allocation in which both Whisper an@ontinuously performs calculations based on previous éam
ASTA described earlier, will be used as test applications. lit performs best when a substantial amount of “useful” data i
this section, we provide extensive simulations of Whispet a stored in the cache. As a result, migration/preemptionscost
ASTA as scheduled bD?-OF, PAS, NP-PAS, CNG-EDF,  ASTA are fairly high. In addition, while strong real-time cin
andNP-CNG-EDF. fairness guarantees would be desirable in ASTA, they arasot

. . : . [ tant h in Whi , b task functioa
Whisper. As noted earlier, Whisper tracks users via speake%rﬁndpeogeir:jeneﬂr;iﬁsAlgTA ISP, becalse fasks can functioa mor

that emit white noise attached to each user’'s hands, fedt, an

head. Microphones located on the wall or ceiling receive¢he . . .
P g Experimental system set up. Unfortunately, at this point in

signals and a tracking computer calculates each spealkasi's p . . . . .
g g P P P time, it is not feasible to produce experiments involvingalr

tion by measuring signal delays. Whisper is able to comfnée t. . . .
time-shift between the transmitted and received versidtiseo implementation of either Whisper or ASTA, for several rgaso

sound by performing &aorrelation calculation on the most re- First, both the existing Whisper and ASTA systems are single

. . threaded (and non-adaptive) and consist of several thdasan
cent set of samples. By varying the number of samples, Whispe, : :
. . of lines of code. All of this code has to be re-implemented
can trade measurement accuracy for computation—with more . S L
. . as a multi-threaded system, which is a nontrivial task. In-
samples, the more accurate and more computationally imtens

. . deed, because of this, it Essentialthat we first understand
the calculation. As a signal becomes weaker, the number . . .
- L the scheduling and resource-allocation trade-offs irmd\ he
samples is increased to maintain the same level of accura

%’velopment ofPD2-OF, PAS, NP-PAS, CNG-EDF, and

As the distance between a speaker and microphone increa’ﬁﬁ’-CNG-EDF can be seen as an attempt to articulate these
the signal strength decreases. This behavior (along wih th

use of predictive technigues mentioned in the introdugtam tradeoffs. Additionally, the focus of this paper is on sl

cause task-share changes of up to two orders of magnitude eV@ethods that facilitate adaptation—we hanat addressed the

10ms. Since Whisper continuously performs calculationsion issue of devising mechanisms for determirfingvandwhenthe

. N 4 ... _system should adapt. Such mechanisms will be based on issues
coming data, at any point in time, it does not have a significai

amount of “useful” data stored in cache. As a result. miar involving virtual-reality and multimedia systems that avell
. . ) . o » Mg abeyond the scope of this paper. For these reasons, we have cho
tion/preemption costs in Whisper are fairly small (at leasta sen to evaluate the schemes discussed in this paper viaasimul
tightly-coupled system, as assumed here, where the main C(f')S . S . )
of a migration is a loss of cache affinity). In addition, faiss 1ons of Whisper and ASTA. While just simulations, most o th

: : | ., parameters used here were obtained by implementing and tim-
and real-time guarantees are important due to the inhetight

L i : ing the scheduling algorithms discussed in this paper améso
coupling” among tasks required to accurately perform tian ; X ) . :
lation calculations. of the signal-processing and video-enhancement code is-\Whi

per and ASTA, respectively, on a real multiprocessor tabstbe
ASTA system. Before describing ASTA in detail, we review Thus, the behaviors in these simulations should fairly sately
some basics of videography. All video is a collection of gt reflect what one would see in a real Whisper or ASTA imple-
ages calledrames Associated with each frame is arposure mentation.
time, which denotes the amount of time the camera’s shutter For both Whisper and ASTA, the simulated platform was as-
was open while taking that frame. Frames with faster exposusumed to be a shared-memory multiprocessor, with four 2.7-
times capture moving objects with more detail, while frame&Hz processors and a 1-ms quantum. All simulations were run
with slower exposure times are brighter. If a frameiglerex- 61 times. Both systems were simulated for 10 secs. (Note that
posed(i.e., the exposure time is too fast), then the image calonger simulations return similar results.) We implemeraad
be too dark to discern any object. The ASTA system can cotimed each scheduling scheme considered in our simuladions
rect underexposed video while maintaining the detail cagtu an actual testbed that is the same as that assumed in ouasimul



tions, and found that all scheduling and reweighting computshown in Fig. 4. The pole creates potential occlusions. One
tions could be completed withins. We considered this value task is required for each speaker-microphone pair, for @ tot
to be negligible in comparison to a 1-ms quantum and thus daf 12 tasks. In each simulation, the speakers were evenly dis
not consider scheduling overheads in our simulations. Btir b tributed around the pole at an equal distance from the pobk, a
Whisper and ASTA, we conducted two types of experimentsotated around the pole at the same speed. The starting posi-
(i) all preemption and migration costs were the same and cdien for each speaker was set randomly. As mentioned above,
responded to a loss of cache affinity; afiij the preemption as the distance between a speaker and microphone changes, so
cost was set to some value and the migration cost was variethes the amount of computation necessary to correctly theck
If a task was preempted and then migrated, we assumed thageaker. This distance is (obviously) impacted by a sp&aker
incurred the maximum of the two costs. We ignored the issuaovement, but is also lengthened when an occlusion is caused
of bus contention, since in prior work, Holman and Andersoby the pole. The range
have shown that bus contention can be virtually eliminated iof weights of each -~ im
Pfair-scheduled systems Isyaggeringquantum allocations on task was determined @ . @
different processors [7]. Staggering would be trivial tplgpn  (as a function of a . T @ Vicromhons
PAS andNP-PAS as well, since irPAS, processors run nearly tracked object's posi- im &Q \ O Occluding Object
e

independently of each other. Furthermore, si@¢G-EDF tion) by implementing o Speaker
andNP-CNG-EDF are event-based rather than quantum-basednd timing the basic
jobs are unlikely to begin executing simultaneously. Based computation of the
measur_eme_nts taken on our testbed system, we estimated Whisrrelation algorithm Figure 4. The simulated Whis-
per’s migration cost as;&-1Qus, and ASTAs as 50s—6Qus. (an accumulate-and-  per system.
While we believe that these costs may be typical for a widmultiply operation) on
range of systems, in our experiments we varied the preempur testbed system.
tion/migration cost over a slightly larger range. For allk ex Inthe Whisper simulations, we made several simplifying as-
periments, the maximum execution cost was 7m$6 and sumptions. First, all objects are moving in only two dimen-
NP-PAS and 5ms forCNG-EDF andNP-CNG-EDF. These sions. Second, there is no ambient noise in the room. Third,
values were determined by profiling each system beforelmndrio speaker can interfere with any other speaker. Fourtbpall
determine the “best” compromise of accuracy and performandects move at a constant rate. Fifth, the weight of each task
While the ultimate metric for determining the efficacy ofchanges only once for every 5cm of distance between its asso-
both systems would be user perception, this metric is not cutiated speaker and microphone. Sixth, all speakers anadmicr
rently available, for reasons discussed earlier. Theeefae phones are omnidirectional. Finally, all tasks have a mimm
compared each of the tested schemes by comparing againstvedight based on measurements from our testbed system and a
locations in thed DEAL algorithm. In particular, we measured maximum weight of 1.0. A task’s currentweight at any timelie
both the “average under-allocation” and “fairness factim” between these two extremes and depends on the corresponding
each task set at the end of each simulatian, (10 secs.). The speaker’s current position. Even with theses assumptfoms,
average under-allocatio(lJA) is the average amount each taskquent share adaptations are required.
is behind itsIDEAL allocation (this value is defined to be non-  We conducted Whisper experiments in which the tracked ob-
negativej.e., for a task that is not behind it®EAL, this value jects were sampled at a rate of 1,000 Hz, the distance of each
is zero). Thdairness factor(FF) of a task set is the largest de- object from the room’s center was set at 50cm, the speed bf eac
viance from the allocations itDEAL between any two tasks object was set at 5 m/sec. (this is within the speed of human
(e.g, if a system has three tasks, one that deviates from itsotion), and the maximum execution cost, migration, and pre
IDEAL allocation by—10, another by 20, and the third by 50, emption cost were varied. However, due to page limitatites,
then theFF is 50 — (—10) = 60). TheFF is a good indica- graphs below are a representative sampling our collectied da
tion of how fairly a scheme allocates processing capacity. A The first set of graphsin Fig. 5 show the result of the Whisper
lower FF means the system is more fair. For applications likgimulations conducted to compaRD?2-OF, PAS, NP-PAS,
Whisper, where the output generated by multiple tasks is peCNG-EDF, andNP-CNG-EDF. Insets (a) and (b) depict the
odically combined, a loviFF is important, since if any one task averageJA andFF, respectively, for each scheme, where the
is “behind,” then performance of the entire system is impdgt preemption cost is varied from 0 to 10€ and the migration
however, for applications like ASTA, where tasks are more incost equals the preemption cost. Inset (c) depicts the aver-
dependent, a higkF does not affect the system performanceage UA for each scheme, where the preemption cost is set
nearly as much. These metrics should provide us with a reaseit 1Qus (the maximum expected preemption cost for Whis-
able impression of how well the tested schemes will perforrper) and the migration cost is varied from 0 to 180 There
when Whisper and ASTA are fully re-implemented. are five things worth noting here. First, when the preemp-
tion/migration cost is varied over the range 2 tou%p the
Whisper experiments. In our Whisper experiments, we sim- UA is about the same for all schemes (inset (a)); however,
ulated three speakers (one per object) revolving around pd?D2-OF has the besEF (inset (b)). Second, whilENG-EDF
in a 1m x 1m room with a microphone in each corner, asand NP-CNG-EDF do not have the bedfA for the expected
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Figure 5. (a) The average under-allocatiobl&) and (b) the fairness factorRF) for Whisper as a function of preemption/migration
cost, and(c) the averagaJA for Whisper as a function of migration cost (preemption éesixed at 1Qis), as scheduled by each tested
algorithm. The key in each graph is in the order that the selsesppear in that graph at 189 98% confidence intervals are shown. Note
that in (b),CNG-EDF andNP-CNG-EDF are indistinguishable from each-other.

preemption/migration costs for Whisper, for higher preempexposure time of 40ms.
tion/migration costs,i.e, preemption/migration costs larger The second set of graphs, in Fig. 7, show the result of the
than 1Q:s, CNG-EDF andNP-CNG-EDF both have a substan- ASTA simulations conducted to compare the five scheduling
tially better UA than PD?-OF and betterf=F than eitherPAS  algorithms. Insets (a) and (b) depict the averbigeand FF,
or NP-PAS. Third, as the migration cost (but not preemptiorfor each scheme, where the preemption cost is varied from 0
cost) of a task increases, thié of PAS andNP-PAS increases to 10Qus and the migration cost equals the preemption cost.
slowly (inset (c)). However the performance of the othee¢hr Inset (c) depicts the averad#A for each scheme, where the
schemes decays quickly. Fourth, the confidence intervateéo preemption cost is set at 68 (the maximum expected preemp-
FF for CNG-EDF, NP-CNG-EDF, andPD?-OF are smaller tion cost for ASTA) and the migration cost is varied from 0 to
than forPAS andNP-PAS, sinceCNG-EDF, NP-CNG-EDF,  10Qus. There are two things worth noting here. First, when the
andPD?-OF have better accuracy. Fifth, in inset (BD?-OF  preemption/migration cost is varied over the range 50 t@s60
andCNG-EDF's UA do not appreciably increase until the mi-NP-PAS andPAS have the smallest/A (inset (a)); however,
gration cost exceeds &8. This is because, until the migration CNG-EDF andNP-CNG-EDF both have aJA that is compet-
cost is 1Qis, PD2-OF and CNG-EDF incur the maximum of itive with both PAS and NP-PAS (inset (a)) and have sub-
the migration or preemption cost, which is 40 stantially smallerFF (inset (b)). Second, in inset (d)D2-OF
andCNG-EDF's UA do not appreciably increase until the mi-

ASTA experiments. In our ASTA experiments, we Simu- gration cost equals 6. This occurs for the same reason that

lated a640 x 640-pixel video feed where a grey square thaFDQ.'OF andCNG-EDF did not noticeably increase, until 18

is 160 x 160 pixels moves around in a circle with a radius of" Fig. 5(c).

160 pixels on a white background. This is illustrated in Fig. 6g Concluding Remarks

The grey square makes one complete rotation every ten second

The position of the grey square on the circle is random. Each We have presented a two new multiprocessor reweighting
frame is divided into sixteefi60 x 160-pixel regions; each of schemesCNG-EDF andNP-CNG-EDF, which reduce migra-
these regions is corrected by a different task. A task’s hteigtion costs and preemptions at the expense of allowing dead-
is determined by whether the grey square covers its regioime misses. We have also presented both analytical and ex-
By analyzing ASTAS perimental comparisons of these schemes with a more aecurat
code, we determined that but more migration-prone schemD?-OF, and two less ac-
the grey square takes curate partitioning schemes that have lower tardineas, and
three times more process- NP-PAS. These results suggest that when it is critical that every

640 pixel

ing time to correct than £ / gggiyafef‘;j: task make its deadline and migration/preemption costscave |
the white background. g > (i.e., systems like Whisper), theRD2-OF is the best choice;
Hence, if the grey square K when preemption/migration costs are higle.( either Whisper

completely covers a or ASTA as implemented on a system where the processors are
task's region, then its not as tightly integrated), average case performance feaft-
weight is three times most importance, and fairness and timeless are less inmporta

larger than that of a task
with an all-white region.

The video is shot at a rate
of 25 frames per second,

Figure 6. The simulated
ASTA system.

then eithePAS or NP-PAS may be the best choice; and when
preemption/migration costs are high and and a good mix of
average-case performance and fairness factor is bendfieial

and as a result, each frame hassystems like ASTA), then eith€ NG-EDF or NP-CNG-EDF
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Figure 7. (a) The average under-allocatiod4) and(b) the fairness factor{F) for ASTA as a function of preemption/migration cost,
and(c) the averag®A for ASTA as a function of migration cost (preemption costxefi at 6:s), as scheduled by each tested algorithm.
The key in each graph is in the order that the schemes appt#watigraph at 10@s. 98% confidence intervals are shown. Note that in (b),
CNG-EDF andNP-CNG-EDF are indistinguishable from each-other.
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may be the best choice. Thusach algorithm is of valuand
will be the best choice in certain application scenariosuas-
marized in Table 2.

While our focus in this paper has been on scheduling tech-
nigues thatfacilitate fine-grained adaptations of weight and

execution cost, techniques for determinihgw and when
to adapt are equally important.

to a tracking system like Whisper) or more genereg(

Such techniques can ei-
ther be application-specifice(g, adaptation policies unique

553. IEEE, May 2004.
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