Task Reweighting under Global Scheduling on Multiprocessis

Aaron Block, James H. Anderson, and UmaMaheswari C. Devi
Department of Computer Science, University of North Cawakt Chapel Hill

Abstract tached to each user’s hands, feet, and head. Like many nigacki

We consider schemes for enacting task share changes—aproStems, Whisper usesedictive technique track objects. The
calledreweighting—on real-time multiprocessor platforms. oOurWorkload on Whisper is intensive enough to necessitate a mul
particular focus is reweighting schemes that are deplayedyi- tiProcessor design. Furthermore, ada‘!otatlc’)’n is requiesdse
ronments in which tasks mdgequentlyrequessignificantshare (e computational cost of making the “next” prediction iadk-
changes. Prior work has shown that fair scheduling algmstare N9 @n object depends on the accuracy of the previous ones, Thu
capable of reweighting tasks with minimal allocation eramd the processpr shargs of the tasks t_hat_are deployed to, iraptem
that partitioning-based scheduling algorithms can retueiasks these tracking functions will vary with time. In fact, therizmce
with better average-case performance, but greater eraweker, Can b€ as much @so orders of magnitudeMoreover, adapta-
preemption and migration overheads can be high in fair selsem ti0NS must be enacted withiime scales as short as 10 ms.

In this paper, we consider the question of whether globadah
ing techniques can improve the accuracy of reweightingivela
to partitioning-based schemes and provide improved aeecage
performance relative to fair scheduled systems. Our caianius
that, for soft real-time systems, global scheduling teghes pro-
vide a good mix of accuracy and average-case performance.

ASTA. The second applicationis the ASTA video-enhancement
system [2]. ASTA is capable of improving the quality of an un-
derexposed video feed so that objects that are indistihghle
from the background become clear and in full color. In ASTA,
darker objects require more computation to correct. Thudaak
objects move in the video, the processor shares of the tasks a
. signed to process different areas of the video will chand&TA
1 Introduction will eventually be deployed in a military-grade full-colaight
Real-time systems that aaelaptivein nature have received con- vision system, so tasks will need to change shares as fastds a
siderable recent attention [3, 9, 10, 4]. In additionultiprocessor dier’s head can turn. In the planned configuration, a 10-gssar
platforms are of growing importance, due to both hardwameds multicore platform will be used.
such as the emergence of multicore technologies and the{prev
lence of computationally-intensive applications for whaingle- Dynamic sporadic tasks. In this paper, we are primarily con-
processor designs are not sufficient. In prior work [3, 4],0oa- cerned withdynamic sporadic task€Each such tasit’; releases
sidered the use of both fair and partitioning-based algoritto a sequence gbbs T}, T%,... Each task is defined by tlesecu-
schedule highly-adaptive workloads on (tightly-couplea)iti- tion costof each of its jobs, denoteg(7"), and itsweightat any
processor platforms, where the processor shares of taskgeh time ¢, denotedwt(T';, t), which specifies the fraction of a sin-
frequently and to a significant extent. Fair schedulingmégies gle processor it requires. This differs from the usual dédiniof
achieve high accuracy in enacting share changes, but datlse ata sporadictask, wherein per-job execution costs and weights do
expense of potentially frequent task preemptions and nidgra. not change. While the terms “share,” “weight,” and “utilia”
among processors. Partitioning algorithms, in contradgibless are often used interchangeably, we ussghtto denote a task’s
overhead, but provide poorer (but sometimes acceptabte) ac desired utilization, andhareto denote its actual guaranteed uti-
racy. The focus of this paper is adaptive global schedullng dization. In each scheduling scheme we consider, a taskgesh
gorithms that avoid the high preemption and migration co$ts is determined by its weight; in some of these schemes, the two
fair scheduling techniques, yet have superior accuragtivel are always equal, while in others, they may differ. We redehe
to partitioning-based schemes. The primary drawback diajlo process of enacting task weight/share changesvesighting
scheduling algorithms is that, in order to fully utilize a itippro-
cessor system, bounded deadline misses must be accefitable. Summary of results. In this paper, we consider five
key issue we address is whether the lower migration/preempt reweighting-capable scheduling algorithms: a previous dh
overheads and improved accuracy of such algorithms are sufforithm developed by us called call&D>-OF [3], which is a
cient to compensate for their inability to meet all deadiine derivative of the?D? Pfair algorithm [1]; a previous partitioning-
based algorithm developed by us called pagtitioned-adaptive
Whisper. To motivate the need for this work, we consider twoscheduling PAS) algorithm [4]; thenon-preemptive-partitioned-
example applications under development at the University adaptive-schedulingNP-PAS) algorithm, which is a non-
North Carolina. The first of these is the Whisper trackingesys preemptive variant oPAS; and two new algorithms proposed
which performs full-body tracking in virtual environmerjfisl]. herein, thechangeable-earliest-deadline-fir€CNG-EDF) al-
Whisper tracks users via an array of wall- and ceiling-mednt gorithm, which is a derivative of the well known global-
microphones that detect white noise emitted from spealters aarliest-deadline-firsEDF) algorithm, and theon-preemptive-

Scheme Tardiness Drift Overload Migrations Preemptions
PD?-OF 0 2 0 every quantum every quantum
PAS 1 emax(T's) W weight-change events weight-change eventg job releases
NP-PAS e(T?) +emax(Ti)+1 | emax(T5) w weight-change events weight-change events
CNG-EDF k(m —1) emax(T's) 0 job releases job releases
NP-CNG-EDF K(m) emax(T's) 0 only in-between jobs never

Table 1:Summary of worst-case results.

changeable-earliest-deadline-firgNP-CNG-EDF) algorithm, for each algorithm, application scenarios exist for whicattal-
which is a non-preemptive variant GNG-EDF. gorithm is the best choice.

Our results are summarized in Table 1, which lists the acgura The rest of this paper is organized as follows. In Secs. 2 and
migration cost, and preemption cost of each of the abovensebe 3, we discuss th€NG-EDF and NP-CNG-EDF algorithms in
Accuracy is assessed in terms of three quantities, “dfifiyer- greater detail. Then, in Sec. 4, we establish the propartas
load error,” and “tardiness,” which are measured in termghef tioned above. Our experimental evaluation is presente@éin o
system’s scheduling quantum siz&rift is the error, in com- We conclude in Sec. 6.
parison to an ideal allocation, that results due to a rewwigh .
event [3]. (Under an ideal allocation, tasks are reweiglited 2 System Model and Schedullng

stantaneously, which is not possible in practi€@erload error |, this section, we define our system model and@NG-EDF

which arises under partitioning-based schemes (see Blpé 4ndNP-CNG-EDF reweighting algorithms.
error that results from a scheduler’s inability to allocat¢éask i h
a share equal to its desired weightardinessis the maximal SPoradic task systems. We denote the™ task of a task sys-

amount by which any job can miss its deadline. Of these thré@M7 asZ’i (where tasks are ordered by some arbitrary method),

. }l . y .
types of error, overload error is potentially the most deental, and denote thg™ job of the taskT; asT; (where jobs are or-
since drift is a one-time error assessed per reweightingtarel dered by the sequence in which they are invoked)sparadic

tardiness is bounded in the schemes we consider. Overloari ert@skis defined by arexecution costdenotede(7’;), andweight
on the other hand, accumulates over time. denotedwnt(T’;), which specifies the fraction of a single processor

In Table 1,ems(T;) denotes thenaximum execution cosf it requires. (It is customary to define a sporadic task by»ts- e
any job of the task;, wtmax(T';) denotes thenaximal weighof cution cost and the minimum separation time between itsesicc
task7; at any timel’andr;[ixdelnotes the maximal weight of the sive jobs—we define the latter in terms of weight and exeautio
(m-|1/X] + 1)st “heaviest” task (by maximal weight), where cost below.) Fig. 1(a) depicts a one-processor system atgubd

m is the number of processors afdis the maximal weight of via EDF with four tasks, as defined in the figure’s caption. (The
the heaviest task. Furthermore other insets in the figure are considered later.) The firsojod

task may be invoked aeleasedat any time at or after time zero.

ST e (T, 0) Emax(T2) _ The release time of jo#” is denoted(7”). Successive job re-
K(0) = — > Zome G +e(T7), (1) leases oftask’; must be separated by at lea¢T’;) /wt(T’;) time.
T eXmax(T, m — 1) Timaxis 2 For example, in Fig. 1(a)(7}) = 0 andr(T) = 3. Theabso-

lute deadling(or justdeadling of job 77/, denotedj(T-Z), equals
r(T7) + e(T;)/wt(T;). For example, in Fig. 1(a)(T}) = 3

andd(7T?) = 6. We consider a sporadic tagk to beactiveat

time ¢ if there exists a jol™ (called7’;’s active job such that
t € [r(17), d(T7)).

whereéax (T, £) is the set of tasks inT with the highesmaxi-
mal execution cost andy,,.x (T, m — 1) is the set ofn — 1 tasks
in T with the heaviesmaximalweight. (This bound is derived
from prior work by Devi and Anderson on multiproces&ipF
scheduling [6].) Table 1 shows that algorithms that alloweno
frequent migrations and preemptions, liR®?2-OF, produce lit-
tle drift, no overload error, and no tardiness; howevemnalgms
that restrict the frequency of migrations and preempti@msgro-
duce greater drift, overload error, and/or tardiness.

Dynamic sporadic task systems. A dynamic sporadic task sys-
temis an extension of a sporadic task system, where the weight
of each taskr’; is a function of timel and its execution cost can
vary with each jol™. We usewt(7';, t) ande(T?), respectively,
Contributions. Our theoretical contributions include devising!® denote these two quantities. (For the remainder of thempap
CNG-EDF andNP-CNG-EDF reweighting rules, and establish-Wh?never we refer to a “task” we are referring to a “dynam_m:—sp
ing the error bounds foENG-EDF andNP-CNG-EDF in Ta- "adic task.”) We usevtmin(T';) (Wtmax(7';)) to denote themin-
ble 1. The question that then remains is: for the five aforemefMUM (maximum allowed weight forT’;. As a shorthand, we
tioned algorithms, how do drift, overload error, and taegiscom- USe7'i:[a,] to denote a task’; such thatwtmin(T;) = a and
pare to any error due to migration and preemption costs? Wémax(Ti) = b, andT’;a to denoteT’;:[a, a]. Furthermore, we
attempt to answer this question via extensive simulatiodies US€max(7’;) to denote the maximal execution cost of any job of
of Whisper and ASTA. In these studies, real migration and pré i+ Fig- 1(b) gives an example. . . .
emption costs were assumed based on actual measured value§0r dynamic sporadic tasks, taesolute deadlinef a job7’;
These studies confirm the expectation that, wBiNG-EDF and equals(77) +e(T7)/wt(T;, r(T7})). In the absence of reweight-
NP-CNG-EDF provide a good compromise of accuracy and aving, consecutive job releasegT?) andr(T7™")) of a taskT;
erage case performandhere exists no single “best” algorithm must be separated by at lea$t™) /wt(T';, r(T)). For example,

in Fig. 1(b),1(T%) — r(T}) = 2/(1/3) = 6, 1(T3) — 1(T?) =
2/(1/2) =4, andd(T%) =10+ 1/(1/2) = 12.

A task T; changes weightor reweights at time ¢ if
wt(T;, t —€) # wt(T;, t) wheree — 0T. If a taskT’; changes

Definition 1 (Halted). As discussed later, if a reweighting event
in scheduleS occurs at time, then it is possible that some job
TY is haltedatt. In this caseae(TY) is set toA(S, T7, 0, t).

weight at a timef,. between the release and the deadline of sonfeefinition 2 (Completed). If S'is anm-processoCNG-EDF or

job TZ then the following three actiomaayoccur:

e The execution cost df maybe reduced to the amount of

time for WhichT{ has executed prior tq..
o 1(T7") maybe less than(T7)+ e(T7) /wt(T;, r(T%)).

o If /™" is released before(T?) + e(T?)/wt(T;, r(T7)),
then sinced(77) r(77) + e(T?)/wt(T;,r(T7)), jobs
T7 andT? ™" will “overlap.” (In the variant of the sporadic

model defined earlier, every job’s deadline is at or befare it

successors’s release.) Hence, we say that Tfois active
attimet iff ¢ € [r(T?), min(r(T?™), d(T7))).

NP-CNG-EDF schedule of the task system then ajobT{ erT

is said to haveeompleted by time in S iff T{ has executed for
e(T’) by t in S, or T7 has halted by time. A taskT; is said

to havecompleted at time in S if at time ¢ every job ofT’; that
has been released byhas completed. A task; is said to have
entirely completed by timdff all jobs of T'; in T have completed.
For example, in Fig. 1(b)7; has completed by time 3, is
complete (buhotentirely complete) at time 3 but not complete at
time 6, andl'4 is entirely complete at time 4.

Definition 3 (Pending and Ready).For an arbitrary scheduling
algorithm A, if S is anm-processor schedule of the task system
T underA, then a job7” is said to bepending at time in S if

The reweighting rules we present in Sec. 3 state under what/) < t and 77 is not complete by in S. For example, in
conditions the above actions occur and by how much befopgg. 1(a), the jolI'} is pending over the rande, 9). Note that
((T9)+e(T?) /wt(T;, r(T?)) the jobT? ™" can be released. Since 4 job can be pending, but not active, if it misses its deadlihe

a reweighting event may cause a job’s execution cost to deere
we introduce the notion of a jo?’s actual execution costle-

pending jobT-Z is said to beeady at timet in S if all prior jobs
of taskT'; have completed by, For example, in Fig. 1(a), the job

notedae(7”), which represents the total amount of executionT’} is ready over the rang@, 9). A job 77 can be pending but

time that7” will receive.

not ready if77 " has not completed by T7).

When a task reweights, there can be a difference between when

it “initiates” the change and when the change is “enactetié T
time at which the change isitiated is a user-defined time; the
time at which the change enacteds dictated by a set of condi-
tions discussed shortly. We use $aheduling weight of a task;

3 Task Reweighting

We now introduce two new reweighting rules that @G-EDF
extensions of th@D2-OF reweighting rules presented by us pre-

attimet, denotedswt(T;, t), to represent the “last enacted weightviously [3]. As mentioned before, these rules work by moidify

of T;”. Formally, swt(T';, t) equalswt(T';, u), whereu is the last
time at or before that a weight change was enacted 1gr It

future job release times and deadlines. At the end of thisosec
we discuss how to adjust these rulesit-CNG-EDF.

is important to note thahenceforth, we compute task deadlines For simplicity, we assume that the actual execution cosarigr

and releases using scheduling weights.

Scheduling. Under both CNG-EDF and NP-CNG-EDF,

jobis equal to its specified execution castjessa task reweights
while a job is active. Theand only thercan the actual execution
cost of a job be less than its execution cost. (This assumptia

‘ready” jobs are prioritized by deadline, with earlier deadye removed at the expense of more complicated notationtjidn t

lines having higher priority. (“Ready” will be formally deféd
shortly.) Deadline ties are resolved arbitrarily, but detently.

UnderCNG-EDF, an arriving job with higher priority preempts

the executing job with the lowest priority if no processoaisuil-

able. The preempted job may later resume execution on a-diff

ent processor. Und&tP-CNG-EDF, the arriving job waits until

some job completes execution and a processor becomesxéwaila
Thus, undeNP-CNG-EDF, once scheduled, a job is guarantee

execution until completion without interruption. Fig. 1 epicts
a CNG-EDF schedule of the task systefdescribed above, and
Fig. 1(c) depicts &P-CNG-EDF schedule of the same system.
For an arbitrary scheduling algoriths and an arbitrary task
system’, we letS denote ann-processor schedulé of 7', and
let A(S,T7, t1, t2) denote the total time allocated I in S in
[t1,t2). Similarly, we useA(S, T, t1,t2) andA(S, T, t1, ta2),
respectively, to denote the total time allocated to all job$’; in
S and alltasks of " in S, overthe intervalt,, t,). We say that the
value of A(S, T, 0, t) is the amount thal” hasexecuted by.
For example in Fig. 1(b)A(S, 77,0, 6) = 2, A(S, T}, 0,12) =
2, andA(S, T7, 3, 12) = 0.

scenario, the actual execution cost of the job is determiydte
rules we present shortly.

LetT be atask system in which some t&skinitiates a weight
change from weightv to weightv at timet.. LetS be them-

$ProcessoCNG-EDF schedule off". Let T be the active job of

T; att.. If e(T?) — A(S, T7,0,t) > 0, then letrem(T”, ¢,.)

§(T))—A(S, T}, 0, 1); otherwiserem(T?, t.) = e(T}""). Note

thatrem(T{, t.) denotes the actual remaining computatiof'jis
current job or the size df;’s next job if the current job has com-
pleted. Thedeviance of joll™ of taskT’; at timet is defined as
dev(T7,t) = frt(TJ;) SWH(T, u)du — A(S, T?, 0,). The choice
of which rule to af)ply depends on whether deviance is pasiiv
negative. If positive, then we say tHAt is positive-changeable at
timet. from weightw to v; otherwiseTl’; is negative-changeable
at time ¢, from weightw to v. Becausel’; initiates its weight
change at., wt(7;,t.) = v holds; however,’;'s scheduling
weight does not change until the weight change has beaoted
as specified in the rules below. Note thatifoccurs between
the initiation and enaction of a previous reweighting easrif’;,

[Scheduled| Job Releasé Job Deadline} Job Release/DeadIin#

T3 | = = = Te[1/3,1/2] | =1 o - = Te[1/3,1/2] | =1 - — —1
Ty: /4 1 11 Ty:[1/4] |- 1 Ty:[1/4]
Ty:1/4 — — — Ty(1/4] — O s O PR E) — T
T4:1/6 — =t T4[0,1/6] — T4:[0,1/6] —
0123 456 789 101112 0123 456 7 89 101112 0123456 789 1011
Time Time Time
() (b) (©)

Figure 1:A one-processor (sporadic or dynamic sporadic) systeith four tasks. Insefa) depicts arEDF schedulel” where the tasks are defined
as follows:T'; with weight 1/3 ande(7'1) = 1, T'2 with weight 1/4 ande(T'2) = 3, T's with weight 1/4 ande(7's) = 1, and7'4 with weight 1/6 and
e(T1) = 1. Ininsets(b) and(c), the tasks are defined as followE; has an initial weight of 1/3 and increases to 1/2 at time(@}) = e(T7) = 2,
ande(T3) = 1; T has a constant weight of 1/4 andl'}) = 3; T's has a constant weight of 1/d(T3) = 1, ande(T3) = 2; andT 4 has an initial
weight of 1/6 and decrease to 0 at timei.@.(T, “leaves” the system at 6) ar&{T;) = 1. Inset (b) depicts €NG-EDF schedule off". Inset (c)
depicts aNP-CNG-EDF schedule off". All ties are broken in favor of the task with the lower index.

then the previous event is skippeég,, treated as if it had not oc- time) of thei** ((i + 1)**) job of a taskT’; is given byr(T{) +
curred. As discussed later, any “error” associated witppskig e(T{)/(swt(Ti, r(T{))). Hence, if a task; of weightv were to

a reweighting event like this is accounted for when deteimgin jssye a job of size = A(S, T7,0,t.) — dev(T’, t) at timet,,
drift. then the release time of its next job wouldhet y/v. A (one-
processor) example of a negative-changeable task that akes
its weight is given in Fig. 2(c). The depicted example caissié
the same four tasks except tliat has an initial weight of 4/6 and
decreases its weight at time 1, dfid joins the system as soon as
T4's weight change is enacted.

Since these rules change the ordering of a task in the prior-
ity queues that determine scheduling, the time complexty f
reweighting one task i©(log V), whereN is the number of tasks
in the system.

Rule P: If T'; is positive-changeable at timg from weightw
to v, then one of two actions is taken(i) if d(77)
rem(T’, t.)/v, thenT? is halted, its weight change is en-
acted, and a new job of sizem(T;, t.) is issued for it
with a release time of.; (ii) otherwise, its weight change
is enacted at timd(7"), i.e., the scheduling weight does not
change until the end of the current job.

Rule N: If T'; is negative-changeable at timefrom weightw

tojv.’ then one of two actions s takeri) if v > w, the.” odifications for NP-CNG-EDF. In order to adapt the rules
T.i Is halted, its _vvqght change IS enacted, anq a new job and N to work foiNP-CNG-EDF, the only modification we
S|zerem(Ti, tC). IS |ssuecj_ for it with a rel_c_aase t|me_ equal ©need to make is when these rules are initiated. If a task i
the timet at whichdev(T7, t) = 0 holds;(ii) otherwise, the) 0 or afterthe active job has been scheduled, then the rules P
weight change is enacted at tird€l;). and N are initiated as before. (Note that if the activejais not
Intuitively, Rule P changes a task’s weight by halting itsrent ~ been scheduled, then its deviance is positive, and if thieegjob
job and issuing a new job of sizem(T';, t.) with the new weight hasbeen scheduled, its deviance is negative.) However, ifla tas
if doing so would improve its deadline. A (one-processograx changes its weight while the active jd is exe_cuting, then the
ple of a positive-changeable task is given in Fig. 2(a). (W¢e d initiation of the weight change is delayedtil 77 has completed
cuss the termsirift, IDEAL allocations, andSW allocations in - or 77 is no longer activewhichever is first. Note that when a task
Sec. 4.) The depicted example consists of a task sy$temth 7, changes its weight from to v at timet, in NP-CNG-EDF,
four tasks as defined in the figure’s caption. Note that, singe thenwt(7;, t.) = v holds, regardless of whether the initiation of
T3, andT’y have the same deadline, we have arbitrarily ch@sen rule P or N must be delayed.
to have the lowest priority. In inset (d) is positive-changeable . .
since at time 2 it has not yet been scheduled. Note that galtir4 Tardiness and Drift Bounds
T'4's current job and issuing a new job of size one imprdi/g's In this section, we formally present and prove tardiness and
scheduling priorityj.e, d(7}) = 6 > Z = d(T%). Notice that drift bounds for theCNG-EDF algorithm. Because any set of
the second job of', is issued 6/4 quanta after time 2. This spacreweighting rules will cause the “actual” schedule to devfeom
ing is in keeping with a new job of weight 4/6 issued at time 2. the “ideal” schedule, the tardiness bounds ref@¥G-EDF'’s ac-
Rule N changes the weight of a task by one of two approachesiracy atschedulinghe job-set created lNG-EDF. The drift
(i) if a taskincreasesits weight, then Rule N adjusts the re-bounds, on the other-hand, refl@\G-EDF’s accuracy at cre-
lease time of its next job so that it is commensurate with #1& n ating a job-set that mimics the “ideal” task system, wheragie
weight; (i) if a taskdecreasedts weight, then Rule N waits un- changes can always be initiated and enacted instantayedos|
til the end of the current job and then issues the next job witthis end, we introduce two new theoretical scheduling atlyors:
a deadline that is commensurate with the new weight. A (oneéhe scheduling-weight processor-shariggW) scheduling algo-
processor) example of a negative-changeable task thaases rithm and thedeal processor-sharin| DEAL) scheduling algo-
its weight is given in Fig. 2(b). The depicted example cassi$ rithm. Both algorithms have the ability to preempt and sveesgks
the same tasks as in (a), except that we have clibsémhave the at arbitrarily small intervals. Howeve&W allocates each task a
highest priority. Notice that the second jobof is issued attime share equal to itscheduling weightmoreoverSW will not allo-
3, which is the time such thalev(Ty, 3) = f03 swt(T';, u)du — catecapacity to a task if its active job has received an allocatio
A(S,T4,0,3) =1 -1 = 0. Recall that the deadline (releaseequal to its actual execution co$DEAL, on the other hand, al-

Real time

(@)

sw T sw T sSw T 416 15/12 19/12 23/12
allocs. 410 0 0 4/6 8/6 12/6 16/ allocs. 410 1/6 2/6 6/6 10/6 14/6 18/ elhas, 4 0 1312 17112 21/12 25/12)
IDEAL T IDEAL T IDEAL T 416 6/6 8/6 10/6
allocs. 410 1/6 2/6 6/6 10/6 14/6 18/ allocs. 4|0 1/6 2/6 6/6 10/6 14/6 18/t allocs. 0 5/6 716 o6 116
q q T -3/12 -3/12 -3/12
¢ Job Release drift(T4, |0 O 2/6 2/6 216 2/6 2/6 drift(T4,)| 0 0 0 0 0 0 0 drift(' 4 , 0 0 -312 _a/12 _3112 312
4 Job Deadline T, [0.172] T, [0.172] T, [0.72] t 4 $ $
} JobRelease/Deadline T,:1/6 T,:1/6 T,:1/6
T,:1/6 T,:1/6 T,:1/6
Reweighting 8 8 3 3
Event Enactment Sermmereee-
T : [1/6,4/6} T, . . $
mmm Scheduled | 4 4 [U6.4/6] T, [U6,40
! ! L t .
Job Layout || [...
- without
Reweighting 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 56 7 8

Real time

©

Real time

(b)

Figure 2:A one-processor system consisting of four tadks,[0, 1/2], T'2:1/6, T'5:1/6, andT'4:[1/6, 4/6], where the execution cost of every job
is one. The dotted lines represent the interval up'is next deadline, which due to reweighting has been charggih(licated by the solid arrow).
Thedrift, allocations inDEAL, and allocations irtsW for T, are labeled as a function of time across the {@).The CNG-EDF schedule for the
scenario wherd'; is in the system initially and leaves at timeZ2 has an initial weight of 1/6 that increases to 4/6 at time 8,/Bqnhas the lowest
scheduling priority. Sincé, is not scheduled by time 2, it has positive deviance and amitg weight via Rule P, causifig; to be halted72 to be
released at 2 with a deadline of 9/2, dhgs drift to become 2/6(b) The same scenario as in (a) except thathas higher priority than botf'> and
T's. SinceT'4 has been scheduled by time 2, it has negative deviance andehis weight via Rule N, causing its next job to have a sel¢izne of

3 while maintaining a drift of zero(c) 71 joins the system at time 6/4 arfd, has an initial weight of 4/6 that decreases to 1/6 at time GceSI'y
has negative deviance at time 1, it is changed via Rule Njrg{s;’s next job to have a deadline of 15/2 aifidto have a drift of~3/12.

locates each task a share equal tonitsghtat each instant; and, the same task systef, then thelags at timet of a jobT{, task
unlike SW, IDEAL will not stop allocatingcapacity to a taskn-
lessthat task has received an allocation equal to the total execu
tion cost of all of its jobs. (For simplicity, we have assuntedt

every job inT is released as early as possible. This assumption
can be removed at the cost of more complex notation. If we did

not make this assumption, then the allocation function®&AL

would equal zero between active jobs.) We provide below emoNote thatLAG(T,

in-depth explanation of these two algorithms.

4.1 Tardiness and Lag
We begin by defining th&W scheduling algorithm.

T;, and task systeffi, respectively, are defined by Eqns. (2)—(4).

lag(T?,t) = ASW,T7,0,t)—AS,T2,0,t) (2)
Iag(Ti, t) = A(SW, T;,0, t) — A(S, T,,0, t) (3)
LAG(T, t) A(SW,T,0,t) —A(S,T,0,t) (4)

t) = >r,er'a9(Ti, t). The lag of a job

(or task or system) represents by how much a job (or task or
system) is under/over-allocated compared toSk¢ schedule at
time t. For example, in Fig. 3lag(T3,1) = 1/4 — 0 = 1/4,
lag(T3,2) = 2/4 —1 = —1/2,lag(T1,2) = 2/3 — 0 = 2/3,

lag(T1,3) =3/3 —0=1,andlag(T},6) =3/3—-1=0.
The SW scheduling algorithm. In order to establish tardi-)
ness bounds foENG-EDF, we compare allocations produced4.2 Tardiness Proof
by CNG-EDF to those produced bgW. UnderSW, at each
instantt, each non-complete job of each tagk is allocated a
fraction of a processor equal $at(T';, ¢). Furthermore, we con-
sider SW to be “clairvoyant” in the sense th&W can use the
value ofae(T") to determine ifl/ has completed before it has
halted. More specifically, for any scheddl&” underSW of any
task systen?’, we say that’; hascompleted by timein SWiff 10 5 of 7 then tardiness is boundeii) the LAG of T'in S is
T has executed foxe(T) byt. boundedy{jii) by (i) and (ii), the tardiness of each job of any task
For example, consider the one-processor task sy§tede- T;in T is at mosts(m — 1)
picted in Fig. 3. Inset (a) depict€GNG-EDF schedule and insets
(b) depictsi’s SW schedule. Notice that in tH&W scheduler’;
does not receive any allocations over the intef8a6). This is
because at time 3 the total allocationZg in the SW schedule
equalsae(T}) = 1, henceT'} is complete at time 3. However

In prior work, Devi and Anderson [6] proved that in amy-
processoEDF schedule of aporadictask systeni” (where the
total weight of all tasks is at most) the tardiness of each job of
any taskT'; is at mostx(m — 1) where,x(m — 1) is as defined
in (1). Their proof consists primarily of three lemmas/trerus:
(i) if the LAG of T" is bounded in then-processoEDF sched-

Since Devi and Anderson were proving tardiness bounds for
a sporadic task system, they were able to utilize the fadtaha
job T7 and its successdF!*" do not “overlap,’i.e, d(T7) <
r(T{“) holds for any sporadic task’;. However, this prop-
X oL X -~ erty can be weakened without affecting their proof (barsame
attime 6,77 is released, and therefof has an incomplete job nin, notational changes), so that their proof can be adapte
with a scheduling weight of 1/2. Henc#; begins to receive al- y, hoye tardiness bounds fordynamicsporadic task system.
locations equal to its scheduling weight, which is now 1/2téN Specifically, the Devi and Anderson proof can be used to show
that we assume that every job release, deadline, exeCui&in €y -+ the tardiness dcENG-EDF is bounded bys(m — 1). If the
and actual execution cost for@WV schedule to be the same aStollowing properties hold.
that inCNG-EDF.

(W) ZTieT wt(T;, t) < mforall t.

Lag. If Sis anm-processor schedule undeNG-EDF of the

task systen?’ andSW is anm-processor schedule und8w of (V) For any jobT” and its successd’ ™, if d(T7) > r(T¢ 1),

() (@ A1) o «(Th (T3 drddrh {(T}; (T3 d1d d1h
. S 1
[[]Sched. Jobi 111[11/;]1/21 . 1 = {212 e 2[2 _ t1 ES 2 §
Job Release | _2: — — 2 s 8 513
: e | 73l14] 1tz tha tf@ t | =8 3% 2%
+Job Deadline THO.1/6 T py T, . (% 0 T T T T 3 0
4[0,1/6] 0123456789 1011121314155 01 2 3 4 5 6 7_8 9 101112131415
$Job Release & T U L O O w ldle Time o Time
Deadline 0123456 7_8 9 101112131415 1 =
Time (b) (©)

|

@)

Figure 3:A one-processor task systefwith four tasks:e(T7) = 5 andT’; has an initial weight of 1/3 that increases to 1/2 via casef(ijle P
attime 6 and as a resulig(71) = 1, e(T3) = 4, 1(T3) = 6 andd(T?) = 14; T has a constant weight of 1/4 and a constant execution cost of 1
T3 has a constant weight of 1/4 and a constant execution costaofdll’, has an initial weight of 1/6 that decreases to 0 at time 6&1ﬂdi) =1.
Inset(a) depicts theCNG-EDF schedule off". The number in each box denotes which job is sched@er, over the rangéo, 1), T3 is executing,
and over the rangl, 5), T3 is executing. Insefb) depicts theSW schedule off". Note that sincee(71) = 1 at time 3,71 is complete irSW, i.e.,

T receives no allocations und8W over the rangg3, 6). Inset(c) depicts thdDEAL schedule off". Note that thdDEAL allocation to any tasi’;
equalsfff wt(T';, v)du if T; is active over the range, t2). For insets (b) and (c), the releases and deadlines of t&jblandT* are depicted.

thenT?, must have completed beforél? ") in both the The major difference between Devi and Anderson’s tardiness
CNG-EDF andSW schedules of . bound proof forEDF andNP-EDF for sporadic tasks is that in

Since (W) can be easily satisfied, for the remainder of thi§eir NP-EDF proof they calculate the upper bound on the length
subsection, we show thaENG-EDF satisfies property (V). of time for which a task can be blocked. Because of the blagkin
(Unfortunately, due to space constraints, we are not abf@ctor, the bound they construct fdP-EDF is x(m). As before,

to present the Devi and Anderson proof with the neced2eViand Anderson in their proof foWP-EDF rely on the prop-
sary (minor) adjustments in the body of this paper. Theré&ty of sporadic tasks that consecutive jobs do not “overhamd,
fore, we have placed this proof in an appendix to this pape?s before, this requirement can be weakened without affgcti
which can be found on the author's web-pagehat p: // their proof, so that their proof holds fordynamicsporadic task
W, cs. unc. edu/ ~ander son/ papers. html .) In order S€t, solong as conditions (V) and (W) hold. Since the rewteigh

to show that property (V) holds, we show that for any Iﬁb rules forNP-CNG-EDF are essentially thg same as the reweight-
in an arbitrary dynamic sporadic task systé if d(T{) - ingrules forCNG-EDF, by Lem. 1, conditions (V) and (W) hold
r(Tﬁl), thenT{ must have completed befor(ﬂ“{“) in both for anym-processoNP-CNG-EDF schedule, of any task s#ét

the CNG-EDF andSW schedules of". To this end, leS be the S° 1019 857 < 21,7 WH(T', 1) holds for allz. (As before, due
m-processoCNG-EDF schedule of some dynamic task systen%o space constraints we are forced to present the Devi and An-

derson proof, with its modification, in its entirety in an applix

T, wh t(T;, t) < m for all ¢, and let be th)

 whered p, e WH(Ts,) < m for all £, and letSW be the found on the author’'s web page.) Henb®-CNG-EDF's tardi-
m-processoBW schedule of the same task system.

ness bound ig(m).
Lemma 1. For a taskT’;, if r(77"*) < d(77), wherej, k > 1, _
thenT” will have completed by(77*) in S andSW'. 4.3 Drift

Proof. Suppose tha(T?**) < d(T7) holds. By the definition of We now turn our attention to the issue of measuring “drift* un

d(77), the minimum separation between job releases, and rule$ipr CNG-EDF. In order to measure the “drift” of a tffSk Sys-
and N,r(T7%) < d(T7) holds only ifT; reweighted and halted temT', we compare th&W schedule off" to that of an “ideal
TAT ¢ ! reweighting scheme that enacts reweighting changes tastan

Wh".e T7 was gctlve. Without loss of generallty,l l%t be the neously. Under th@leal processor sharind DEAL) scheduling
earliest such time. Then, by the rules P andN,-Z?f) = te- algorithm, at each instanf each task; in T is allocated a share
Hence,T7 will have halted and thus completed k7 ™*) in S. equal to its weight(T;, t). Hence, ifZ is the IDEAL sched-
It remains to be shown thdt! will have completed by(Tﬁ*k) ule of T, then over the intervdky, t2), the taskT; is allocated
in SW. SinceT{ is halted att., it must be the case thdt; A(Z, Tﬁ t1,t2) = :12 wt(T';, u)du time. As we mentioned ear-
changed its weight via case (i) of rule P or Ntat However, lier, IDEAL is similar toSW, with two major exceptions(i) un-
both cases follow easily by the clairvoyant natureSoy . OO0 derIDEAL, each task receives an allocation equal tonigsght
whereas undeBW, each task receives an allocation equal to its
Modifications for NP-CNG-EDF. In NP-CNG-EDF, if a job scheduling weightand (ii) underIDEAL, a task does not stop
is released and is ready at timeand the newly-released job hasreceiving allocations unless its total allocation equéls total
a deadline that is earlier than some other job executingthie execution cost of all of its jobs, whereas un@&W, a task will
newly released job cannot preempt the lower-priority jolond stop receiving allocations if its active job has receivedatio-
processor is available &t then this will lead to griority inver- cation equal to its actual execution cost. For example,idens
sion In such a scenario, the waiting ready, higher-priorityi®b the IDEAL schedule of the task systefdepicted in Fig. 3(c).
referred to as &locked job and the executing lower-priority job Notice that, over the rangg, 6), the taskl’; receives alloca-
is referred to as hlocking job A taskT; is said to beblockedat tions equal to its weight at every instant. Compare this édSW
tif T; is not executing at and the earliest pending jobe,, the ~ schedule (inset (b)), in whichi; receivesoallocations over the
ready job) ofT’; has a higher priority than at least one job executrange(3, 6).
ing att. For example, in Fig. 1(c)'s is the blocking job overthe For most real-time scheduling algorithms, the differenee b
interval[6, 7), andT’; is the blocked job over the same interval. tween the ideal and actual allocations a task receives ligsnw

some bounded range centered at zero. For example, undeba Experimental Results
uniprocessorEDF (i.e, CNG-EDF without weight changes) The results of this paper are part of a longer-term project on

fschedulel,(tlhe diff_err]_ence between the ideal a\r/l\(/ihactualamildmﬁ adaptive real-time allocation in which both Whisper and AST
or a task lies within(—emax(T's), emax(T'))- en a weight - joqcriped earlier, will be used as test applications. Ig sleic-

change occurs, the same bounds are maintained exceptélat jon, we provide extensive simulations of Whisper and ASTA

may be centered at a different value. For example, in Fig, 2(aas scheduled byPD2-OF, PAS, NP-PAS, CNG-EDF, and
the range is originally—1, 1), but after the reweighting event, \p_cNG-EDE ' ’ ’ '

it is (—4/6,8/6). This lost allocation is calledirift. Given
this loss (barring further reweighting event8)’s drift will not

Whisper. As noted earlier, Whisper tracks users via speakers
change. In general, a task’s drift per reweighting event lagl P P P

) A, . that emit white noise attached to each user’s hands, fedt, an
non-negative (non-posn_lve) ifit Increases (depreast_esb/e|ght. head. Microphones located on the wall or ceiling receivesehe
UnderCNG-EDF, the drift of a taskl'; at timet is defined as signals and a tracking computer calculates each spealasis p

drift(T;, t) = A(Z, 79,0, u) — A(SW,T9,0,u), (5) tion by measuring signal delays. Whisper is able to comphae t
time-shift between the transmitted and received versidrib®
whereSW is the schedule of' underSW, 7 is the schedule of sound by performing aorrelationcalculation on the most recent
T underIDEAL, andu is the last time a reweighting event®f set of samples. By varying the number of samples, Whisper can
was enacted before trade measurement accuracy for computation—with more sam-
Theorem 1. The absolute value of the per-event drift undelples’ th? more accqrate and more computationally intentbive
CNG-EDF for each taskr’; is less tharea(T) caIcu_Iayon. As a S|gnql bgcomes weaker, the number of sam-
ples is increased to maintain the same level of accuracyhdés t
Proof Sketch.If a taskT'; changes its weight at timg via rule distance between a speaker and microphone increasesgthe si
P, then when this weight change is enacted at tiimg.e, att. nal strength decreases. This behavior (along with the upeeef
under case (i) or ad(7*;) under case (ii)), then it is as thoughdictive techniques mentioned in the introduction) can eaesk-
allocation equal t&\(Z, 77, r(T7), te) —A(SW, T, r(T?), t.) is share changes of up to two orders of magnitude every 10mse Sin
“lost.” For example in Fig. 2(a), the task, “loses” an allocation Whisper continuously performs calculations on incomingagdat
of 2/6. Since this value (per reweighting event) is alwags laan any point in time, it does not have a significant amount of “use
emax(T';), the absolute value of drift is less theg.«(T;). ful” data stored in cache. As a result, migration/preemptiosts
If a taskT; changes its weight at timg via rule N, andI’; in Whisper are fairly small (at least, on a tightly-couplgdtem,
decreases its weight (case (ii)), then the weight changebeil as assumed here, where the main cost of a migration is a loss
enacted at(77). Since the maximum allocatiofi; can re- of cache affinity). In addition, fairness and real-time gudees
ceive in SW during TZ is emax(T:), A(SW, TZ te, d(T{)) — are important due to the inherent “tight coupling” amongkas
A(Z, Tz te, d(T{)) < emax(T:). Thus, the absolute value of required to accurately perform triangulation calculasion

the drift incurred is at most,.x(T;). For example, in Fig. 2(c),

the drift incurred byT, is —3/12, i.e., drift(Ty,t) = —3/12, ASTA system. Before describing ASTA in detail, we review
wheret > 3/2. If T; increases its weight (case (i), then it in-SOme basics of videography. All v_ideo is a collegtion ofl stil
curs zero drift, since immediatelyenacts the weight changes(, images calledrames Associated with each frame is @xpo-

the scheduling weight changes immediately). Hence, thelates Sure time which denotes the amount of time the camera’s shutter
value of the drift incurred by this reweighting event is Iésan ~ Was open while taking that frame. Frames with faster exgosur

emax(T';). For example, in Fig. 2(b), the driftincurred By, is 0, ~ times capture moving objects with more detail, while framwéh
i.e., drift(T4, t) = 0, wheret > 2. 0 slower exposure times are brighter. If a frameuiglerexposed
(i.e., the exposure time is too fast), then the image can be too

Modifications for NP-CNG-EDF. Note that delaying the ini- gark to d'sgefg anyr?_lbject.. 'tl'he_ASt'LA nyt?lm catm correct un-
tiation of a reweighting event does not substantially iaseethe erexposed video while maintaining the detail capturecsiser

drift incurred per reweighting event, since the longesteeight- exposure times by combining the information of multipleris.

ing event can be delayed is the execution cost of the actlve joTo intuitively understand how ASTA achieves this behavion-

If 77 is the active job off; att., and if T';'s reweighting event s_ider the fogbowing example. If a camerA, has an exposure
is delayed until some time, then att either (i) T{ has a non- time of1/30™ of a second, and a second camé@zhas an expo-

itive devi) j | before its deadl N sure time ofl /15*" of a second, then for every two frames shot
positive devianceife., 1% completes before its deadline), 0 1, cameran the shutter is open for the same time as one frame

T} is not active at (i.e, 77 does not complete before its dead-ghot hyB. ASTA is capable of exploiting this observation in or-
line, and thus is not active &}. In either case, the active job (if ger to allow camera to shoot frames with the detail af/30"

it exists) is negative-changeable. Hence, if the task as®e itS 4 53 second exposure time but the brightness/db* of a sec-
weight, then the only drift the task will incur for this rewgtiting jng exposure time. As noted earlier, darker objects requine
event results from delaying the initiation of its reweigigtievent, computation than lighter objects to correct. Thus, as dbj&as
i.e., at mostemax(T:). If T decreases its weight, then delayingmgye in the video, the processor shares of tasks assigned-o p
the reweighting event will not affect drift, since the emaent of o5 different areas of the video will change. As a resutksa

the reweighting event would occuré(Z;) regardless of whether il need to adjust their weights as quickly as an object canen
the initiation of the reweighting event was delayed or not.

across the screen. Since ASTA continuously performs aalculsimultaneously. Based on measurements taken on our testbed
tions based on previous frames, it performs best when aaubsttem, we estimated Whisper’s migration cost as21Qus, and
tial amount of “useful” data is stored in the cache. As a tesulASTAs as 5Q:s—6Qus. While we believe that these costs may be
migration/preemption costs in ASTA are fairly high. In atituh, typical for a wide range of systems, in our experiments wesdar
while strong real-time and fairness guarantees would bieadds the preemption/migration cost over a slightly larger rarfge all
in ASTA, they are not as important here as in Whisper, becausgperiments, the maximum execution cosPaS andNP-PAS
tasks can function more independently in ASTA. was 7ms and 5ms f@NG-EDF andNP-CNG-EDF. These val-
ues were determined by profiling each system beforehand-to de
Experimental system set up. Unfortunately, at this point in termine the “best” compromise of accuracy and performance.
time, it is not feasible to produce experiments involvingealr ~ While the ultimate metric for determining the efficacy of bot
implementation of either Whisper or ASTA, for several reaso Systems would be user perception, this metric is not cugrent
First, both the existing Whisper and ASTA systems are singl@vailable, for reasons discussed earlier. Therefore, wepaced
threaded (and non-adaptive) and consist of several thdssain €ach of the tested schemes by comparing against allocatites
lines of code. All of this code has to be re-implemented as WEAL algorithm. In particular, we measured both the “average
multi-threaded system, which is a nontrivial task. Indeleel; under-allocation” and “fairness factor” for each task s¢ha end
cause of this, it i®ssentiathat we first understand the schedulingof each simulationife., 10 secs.). Thaverage under-allocation
and resource-allocation trade-offs involved. The develept of (UA) is the average amount each task is behindD&AL allo-
PD2-OF, PAS, NP-PAS, CNG-EDF, andNP-CNG-EDF can cation (this value is defined to be nonnegatiwe, for a task that
be seen as an attempt to articulate these tradeoffs. Addiljp is not behind itdDEAL, this value is zero). Thé&irness factor
the focus of this paper is on scheduling methods that fatslit (FF) of a task set is the largest deviance from the allocations in
adaptation—we haveot addressed the issue of devising mechlDEAL between any two taske g, if a system has three tasks,
anisms for determiningow andwhenthe system should adapt. one that deviates from iOEAL allocation by—10, another by
Such mechanisms will be based on issues involving virteality ~ 20, and the third by 50, then ti&F is 50 — (—10) = 60). The
and multimedia systems that are well beyond the scope opthis FF is @ good indication of how fairly a scheme allocates process
per. For these reasons, we have chosen to evaluate the scheif@ capacity. A lowerFF means the system is more fair. For
discussed in this paper via simulations of Whisper and ASTApplications like Whisper, where the output generated bitimu
While just simulations, most of the parameters used here wepl€ tasks is periodically combined, a & is important, since if
obtained by implementing and timing the scheduling alpon any one task is “behind,” then performance of the entireesyss
discussed in this paper and some of the signal-processilg dmpacted; however, for applications like ASTA, where taaks
video-enhancement code in Whisper and ASTA, respectively, more independent, a higfF does not affect the system perfor-
a real multiprocessor testbed. Thus, the behaviors in thiese Mmance nearly as much. These metrics should provide us with a

ulations should fairly accurately reflect what one would isea reasonable impression of how well the tested schemes wil pe
real Whisper or ASTA implementation. form when Whisper and ASTA are fully re-implemented.

For both Whisper and ASTA, the simulated platform was as-
sumed to be a shared-memory multiprocessor, with four 242-G Whisper experiments. In our Whisper experiments, we sim-
processors and a 1-ms quantum. All simulations were run @dated three speakers (one per object) revolving aroune ipol
times. Both systems were simulated for 10 secs. (Note thgelo a 1m x 1m room with a microphone in each corner, as shown
simulations return similar results.) We implemented antetl in Fig. 4. The pole creates potential occlusions. One task is
each scheduling scheme considered in our simulations og-an eequired for each speaker-microphone pair, for a total of 12
tual testbed that is the same as that assumed in our simngatiotasks. In each simulation, the speakers were evenly disttb
and found that all scheduling and reweighting computattmu$d around the pole at an equal distance from the pole, and dbotate
be completed within pbs. We considered this value to be negli-around the pole at the same speed. The starting position for
gible in comparison to a 1-ms quantum and thus did not consideach speaker was set randomly. As mentioned above, as the dis
scheduling overheads in our simulations. For both Whispdr atance between a speaker and microphone changes, so does the
ASTA, we conducted two types of experimer(iyall preemption amount of computation necessary to correctly track theksrea
and migration costs were the same and corresponded to aflos§his distance is (ob-
cache affinity; andii) the preemption cost was set to some valugiously) impacted by L E—
and the migration cost was varied. If a task was preempted aadspeaker’s movement, @ . @
then migrated, we assumed that it incurred the maximum of thmit is also lengthened ./\ & Visonhons
two costs. We ignored the issue of bus contention, sinceiar pr when an occlusion is tm &Q \ O Occluding Object

e e

work, Holman and Anderson have shown that bus contention caaused by the pole. The o Speaker
be virtually eliminated in Pfair-scheduled systems dtggger- range of weights of
ing quantum allocations on different processors [7]. Staggeri each task was deter-
would be trivial to apply inPAS andNP-PAS as well, since in mined (as a function of Figure 4: The simulated Whisper sys-
PAS, processors run nearly independently of each other. Fua-tracked object's posi- tem.

thermore, sinc€€NG-EDF andNP-CNG-EDF are event-based tion) by implementing

rather than quantum-based, jobs are unlikely to begin exeru and timing the basic computation of the correlation aldponi{an

Average Under-Allocation for Whisper Fairness Factor for Whisper Average Under-Allocation for Whisper
250
T T T T
PD2-OF ——-

T T T T]
000 | PD2OF ———-] 500

CNG-EDF - -~ - ~ CNG-EDF - ---

200 HNP-CNG-EDF —-— =4
200 PAS

150 |~ NP-PAS —— g -

300 |-

200-f=

Fairness factor in milliseconds

100

Average under-allocation in milliseconds

Average under-allocation in milliseconds

E E
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

L__I Preemption/migration cost in microseconds __J Preemption/migration cost in microseconds LJ Migration cost in microseconds
Whisper (a) Whisper (b) Whisper (C)

Figure 5: (a) The average under-allocatio&) and(b) the fairness factorHF) for Whisper as a function of preemption/migration cost ér)

the averagd@JA for Whisper as a function of migration cost (preemption déedixed at 1Qis), as scheduled by each tested algorithm. The key in
each graph is in the order that the schemes appear in thdt gtaidQis. 98% confidence intervals are shown. Note that in @NG-EDF and
NP-CNG-EDF are indistinguishable from each-other.

accumulate-and-multiply operation) on our testbed system FF for CNG-EDF, NP-CNG-EDF, and PD2?-OF are smaller

In the Whisper simulations, we made several simplifying aghan forPAS andNP-PAS, sinceCNG-EDF, NP-CNG-EDF,
sumptions. First, all objects are moving in only two dimensi. andPD?-OF have better accuracy. Fifth, in inset ()P*-OF
Second, there is no ambient noise in the room. Third, no swealdnd CNG-EDF's UA do not appreciably increase until the mi-
can interfere with any other speaker. Fourth, all objectseraza gration cost exceeds 8. This is because, until the migration
constant rate. Fifth, the weight of each task changes ordg tor ~ €0st is 1Qus, PD*-OF andCNG-EDF incur the maximum of the
every 5cm of distance between its associated speaker amd-mighigration or preemption cost, which is A8,

phone. Sixth, all speakers and microphones are omnidwealti AgA experiments. In our ASTA experiments, we simulated a
Finally, all tasks have a minimum weight based on measurtsne 40 x 640-pixel video feed where a grey square that68 x 160

640 pixel

from our te.stbed syste|_”n anq a maximum weight of 1.0. A taSkEixels moves around in a circle with a radius kifo pixels on
current weight at any time In_es between’these two ext_r(_emés aQ \white background. This is illustrated in Fig. 6. The grey
depends on the corresponding speaker's current positioen E 516 makes one complete rotation every ten seconds. The
with theses assumptions, frequent share adaptationscreae. position of the grey square on the circle is random. Each
We conducted Whisper experiments in which the tracked olrame is divided into sixteed60 x 160-pixel regions; each of
jects were sampled at a rate of 1,000 Hz, the distance of éach ghese regions is corrected by a different task. A task’s hteig
ject from the room’s center was set at 50cm, the speed of éach @s determined by whether the grey square covers its region.
jectwas setat 5 m/sec. (this is within the speed of humarompti By analyzing ASTASs
and the maximum execution cost, migration, and preemptsh ¢ code, we determined that 640 pixel
were varied. However, due to page limitations, the graplmibe the grey square takes three
are a representative sampling our collected data. times more processing
The first set of graphs in Fig. 5 show the result of the Whistime to correct than the / gg‘;zrseq:z:
per simulations conducted to comp&@B2-OF, PAS, NP-PAS, white background. Hence, >
CNG-EDF, andNP-CNG-EDF. Insets (a) and (b) depict the av-if the grey square com- K
erageUA andFF, respectively, for each scheme, where the prepletely covers a task’s
emption cost is varied from O to 108 and the migration cost region, then its weight is
equals the preemption cost. Inset (c) depicts the avadégior three times larger than that
each scheme, where the preemption cost is set/a (the max- of a task with an all-white Figure 6: The simulated ASTA sys-
imum expected preemption cost for Whisper) and the mignatiaregion. The video is shot €M
cost is varied from 0 to 1Q@s. There are five things worth noting at a rate of 25 frames per second, and as a result, each frame ha
here. First, when the preemption/migration cost is variest the an exposure time of 40ms.
range 2 to 10s, theUA is about the same for all schemes (inset The second set of graphs, in Fig. 7, show the result of the ASTA
(a)); howeverPD?2-OF has the bedtF (inset (b)). Second, while simulations conducted to compare the five scheduling atyos.
CNG-EDF andNP-CNG-EDF do not have the be&lA for the Insets (a) and (b) depict the averdgdig andFF, for each scheme,
expected preemption/migration costs for Whisper, for bigire- where the preemption cost is varied from 0 to A8@nd the mi-
emption/migration costd,e., preemption/migration costs larger gration cost equals the preemption cost. Inset (c) defietaver-
than 1Qus, CNG-EDF andNP-CNG-EDF both have a substan- ageUA for each scheme, where the preemption cost is set;at 60
tially better UA than PD?-OF and betterFF than eitherPAS (the maximum expected preemption cost for ASTA) and the mi-
or NP-PAS. Third, as the migration cost (but not preemptiorgration cost is varied from 0 to 1@8. There are two things worth
cost) of a task increases, thiA of PAS andNP-PAS increases noting here. First, when the preemption/migration costised
slowly (inset (c)). However the performance of the otheeéhr over the range 50 to @&, NP-PAS and PAS have the small-
schemes decays quickly. Fourth, the confidence intervalhé estUA (inset (a)); howevelCNG-EDF andNP-CNG-EDF both

Average Under-Allocation for ASTA

T T T T
PD2-OF ——--

1000

Fairness Factor for ASTA

Average Under-Allocation for ASTA

300 T T T T
PD2-OF - ~--

(%] 12}
=] T o
S 250 |- ~ NP-PAS —— 15 i
3 CNG-EDF ---- e 8 PAS e 8 550 | CONG-EDF ---- Pl
E NP-CNG-EDF —-—- = § 800 |- PD2-OF ——~-- 4 £ NP-CNG-EDF —-—- ~
E 200 NP-PAS —— o 4 8 NP-CNG-EDF —-—- £ PAS o o
< PAS - ~ 2 CNG-EDF - --- £ 200} NP-PAS —— a7 .
c Pl = p P
s - E s - e
= 150 |- - -1 = T 150 |- -
g 7 5 g
? L - 4 s ?
5 10 - » 5 100 |- —
o = a k=]
Y £ 5
& Tl e & &
:% 0;’:25{5/7‘[’ e cor cosas fecosrmrsas s rmnieise] g | |
0 20 40 60 0 20 40 60 80 100
. ASTA _ ASTA
Preemption/migration cost in microseconds Preemption/migration cost in microseconds Migration cost in microseconds
(a) (c)

Figure 7: (a) The average under-allocatiod4) and(b) the fairness factorF) for ASTA as a function of preemption/migration cost, gejithe
averagdJA for ASTA as a function of migration cost (preemption costxedi at 6(:s), as scheduled by each tested algorithm. The key in eaph gra
is in the order that the schemes appear in that graph ats108% confidence intervals are shown. Note that in @NG-EDF andNP-CNG-EDF
are indistinguishable from each-other.

Provides Hard Has Low Provides
Scheme Real-Time Migration/ Strong Fairness
Guarantees Preemption Costs Guarantees
PDZ-OF v v
(NP-)PAS v
(NP-)CNG-EDF e v

generic €.g, feedback-control mechanisms incorporated within
scheduling algorithms [9]). Both kinds of techniques watffar-
ther study, especially in the domain of multiprocessorfptats.

Table 2:Summary of algorithm performance.

have arlJA that is competitive with botRAS andNP-PAS (inset
(a)) and have aubstantiallysmallerFF (inset (b)). Second, in in-

set (c)PD2-OF andCNG-EDF’s UA do not appreciably increase 2]
until the migration cost equals §8. This occurs for the same
reason thaPD2-OF andCNG-EDF did not noticeably increase,

until 10us in Fig. 5(c).

6 Concluding Remarks

We have presented a two new multiprocessor reweighting

schemesCNG-EDF andNP-CNG-EDF, which reduce migra-

tion costs and preemptions at the expense of allowing deadli
misses. We have also presented both analytical and experime
tal comparisons of these schemes with a more accurate bet mor
migration-prone schemé&D2-OF, and two less accurate parti-

tioning schemes that have lower tardineBAS and NP-PAS.
These results suggest that when it is critical that evely iaaske
its deadline and migration/preemption costs are logy, Gystems

like Whisper), thenPD2-OF is the best choice; when preemp-[7]

tion/migration costs are higl¢., either Whisper or ASTA as im-

plemented on a system where the processors are not as fightly

tegrated), average case performance is of the utmost iampuat
and fairness and timeless are less important, then dh8ror

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair sallety of
asynchronous periodic task3ournal of Computer and System Sci-
ences68(1):157—204, 2004.

E. Bennett and L. McMillan. Video enhancement using piel
virtual exposuresACM Trans. on Graphic24(3):845-852, 2005.

A. Block, J. Anderson, and G. Bishop. Fine-grained taskeighting
on multiprocessors. IRroc. of the 11th IEEE Int'| Conf. on Embed-
ded and Real-Time Comp. Sys. and Appages 429-35, 2005.

[4] A. Block and J. Anderson. Accuracy verus migration oestis in
multiprocessor reweighting. Algorithms. In submission.

[5] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Asaier and
S. Baruah. A categorization of real-time multiprocessdresitling
problems and algorithms. In Joseph Y. Leung, edittendbook
on Scheduling Algorithms, Methods, and Modpkges 30.1-30.19.
Chapman Hall/CRC, Boca Raton, Florida, 2004.

U. Devi and J. Anderson. Tardiness bounds under globaF ED
scheduling on a multiprocessor. Rroc. of the 26th IEEE Real-time
Sys. Symppages 330-41, 2005.

P. Holman and J. Anderson. Implementing Pfairness omasstric
multiprocessor. IrProc. of the 10th IEEE Real-time and Embedded
Technology and App. Sympages 544-553, 2004.

[8] J. Lopez, J. Diaz, and D. Garcia. Utilization bounds fdDFE
scheduling on real-time multiprocessor systenReal-Time Sys.

(3]

[6]

NP-PAS may be the best choice; and when preemption/migration 28(1):39-68, 2004.
costs are high and and a good mix of average-case performafgieC. Lu, J. Stankovic, G. Tao, and S. Son. Design and eviatuatf

and fairness factor is beneficial, systems like ASTA), then ei-

therCNG-EDF or NP-CNG-EDF may be the best choice. Thus,

a feedback control EDF scheduling algorithm. Aroc. of the 20th
IEEE Real-time Sys. Sympages 44-53, 1999.

each algorithm is of valuand will be the best choice in certain [10] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrand

application scenarios, as summarized in Table 2.

C.G. Plaxton. A proportional share resource allocatioorétigm for

While our focus in this paper has been on scheduling tech- real-time, time-shared systems. Rmoc. of the 17th IEEE Real-time

nigues thafacilitate fine-grained adaptations, techniques for de-

Sys. Symppages 288-299, 1996.

termining how and whento adapt are equally important. Such[11] N. Vallidis. WHISPER: A Spread Spectrum Approach to Occlu-

techniques can either be application-speciicg{ adaptation

sion in Acoustic TrackingPhD thesis, University of North Carolina,

policies unique to a tracking system like Whisper) or more Chapel Hill, North Carolina, 2002.

10

7 Appendix

In this section, we provide the tardiness proofs @NG-EDF and

time t4, all tasks inT" are entirely complete i . Therefore, atg,
the amount of work remaining to be completed by all task®'im the
scheduleS equalsA(SW, T, 0, tq) — A(S, T, 0, tq) = LAG(T, tq).

NP-CNG-EDF. Note that these proofs are only a slight modification of Because there are no new jobs at or aftethere can be no preemp-

the tardiness proofs f@DF andNP-EDF originally presented by Devi
and Anderson in [6]. For brevity, we use the functiandiness(S, T?)
to denote the tardiness of the j&b/ in the scheduleS. The tar-
diness proofs given below require one additional propeamycerning
CNG-EDF andNP-CNG-EDF, which is stated below.

(E) For all jobs T? in a task system scheduled viaNG-EDF or
NP-CNG-EDF, e(T?) = ema(T:), unless taskl’; reweighted
while 777" was active, and causeake(77 ") to be less than
e(T’ ™).

7.1 CNG-EDF

In this subsection, we show that tardiness of any job inrangrocessor
CNG-EDF schedule of any task systeémfor which Weum (T, t) < m,
for all ¢, is at mosts(m — 1), wherex(m — 1) is as defined in Eq. (1)
andWeum (T, t) = > p, 7 SWH(T'i, t). As mentioned in Sec. 4, the
following proof has three stepsi) prove that a boundedAG implies a
bounded tardinesgii) bound theLAG of the system; andii) combine
(i) and (ii) to produce a bounded tardiness for each job. &efontinu-
ing we introduce a few additional lemmas.

Since the total allocations to tasks inaprocesso€CNG-EDF sched-
ule S at any instant is at mosh, if [t1, t2) is a busy interval irS, then
the total allocation to tasks i in S over the rangéti, t2) is at most
m(t2—t1). Hence by the definition dfAG, LAG(T', t2) < LAG(T, t1).
Thus, we have the following lemma.

Lemma 2. For any m-processorCNG-EDF scheduleS of the task
systemT’, if LAG(T,t+46) > LAG(T,t), where§ > 0, and
Woum (T, ') < m for ¢’ > 0, then[t, t + §) is a non-busy interval
inS.

Lemma 3. If at some time > 0, somejotTg in some task systefhas
completed in botlSW and S, thenA(SW, T7,0,t) = A(S, T?, 0, t),
whereSTW andS are, respectively, thex-processoiSW andCNG-EDF
schedules of .

Proof. By definition of bothSW and S, once a jobT{ has received
its actual execution cost it does not receive any additiaflatations.
Hence, ift is as defined in the statement of the lemma, ther, at
ASW,T?,0,t) = A(S,T?,0,t) = ae(T?). O

The following corollary follows directly from Lemma 3.

Corollary 1. If for some timet > 0, a taskT’; is not pending in a
CNG-EDF schedule of the task syst@mthenlag(7;, t) < 0.

Now, we can show that if theAG of T is bounded, then the tardiness
of T is bounded.

Lemma 4. LetT be a task system such that the deadline of every job

is at mostty and let the tardiness of every jdbfz € T with a deadline
less thart, be at most +e(T%5) in them-processolCNG-EDF sched-
uled, S, of T, whereZ > 0, ty = d(T%), andT? some job inT". If

LAG(T, tq) < m - Z +e(T?), thentardiness(S, T?) < Z + e(T9).

Proof. To derive a contradiction, we assume that the]jl?}mas not com-
pleted inS by t4. Throughout this proof, we denote the processoSW
schedule ofl” asSW.

By Lem. 3, if at some time, all tasks in inT" are entirely complete
in bothSW andS, thenLAG(T', t) = 0. By the definition ofSW, at

11

tions, at or after,. (Note that this includes new jobs issued via the rules
Pand N.) Let = A(S,T7,0, tq), and lety = Z + 6/m. We consider
two cases depending on whetlgr, t4 + y) is busy inS or not.

Case 1:[tq, tq + y) is busy. Inthis case, the total amount allocated
to all tasks inl" in S over the rang@tq, ta + y) is exactlymy = mZ+4.
Since the amount of work that remains to be completef! iar all tasks

in T attyq is LAG(T, tq), the amount of work remaining i§ for all
tasks pending aft; + y is at moste(Tg) — §. Thus the latest time that
T{ resumes execution i aftert, is t4 + y, and because there are no
preemptions at or aftef;, T? is complete inS at or beforet; + vy +
e(T?) — § < tq + Z + e(T?). Hencetardiness(S, T?) < tq + Z +
e(T?) — d(T?) = Z + e(T7). This case is illustrated in Fig. 8(a).

Case 2: [tq, tq + y) is non-busy. Lett’ denote the first (earliest)
non-busy instant in the rande;, t4 + y). Because the release time of
any job inT is beforety, any pending jobl™ is ready att’ if T%'s
predecessor jobs have completediby t’. Since at least one processor
is idle att’, we have the following property.

(J) At mostm — 1 tasks have pending jobs &éat or aftert’.

Since at least one processor is idletatif T{ is not complete by, +

y in S, then some job of’; is executing at’. Because there are no
preemptions aftet; andt’ < tq + y, if T7 is executing at’, thenT?
completes irS beforet, +y+e(T?) — 3§ < ta+ Z+e(T?). Thus, the
tardiness off/ is less thanZ + e(77), which satisfies the lemma.

busy interval

(@)

m processors

T)

] | time

tg=d(T}) tyty
LAG(T,)< mZ+e(r))

busy

i, proc. m_
RSN s igle
(b)

m processors

time

e(m) | |

tg=d(T}) ty+y = ty+Z

IR tytZ-e(Tly e(T/™)
Figure 8:Lemma 4.(a) [t4, ta + y) is busy.T; ; commences execution
at or beforety + y. (b) [ta, ta +) is Ot busy.

| |
window of ! !

I Tu :[1Tiu ‘ :Ti e ‘ ITiTZ l in o
! | lag att < IWtya(T)+e(Ti?)
Tl 1y T iny
! | lagatt <O

t v
Figure 9:Lemma 5. Partitioning of tasks ifi. Jobs of a sample task in
each subset are shown. In this figure, all jobs except tho%g, efhich

is in o, complete executing by their deadlines.

The remaining possibility is thaf > 1, and that a predecessor
job (777" to T7 is executing at’ in S. In this caseT” could not
have executed |r£ beforety, and hence botld 0 andy Z
hold. If the jobT7~" is not complete inS by d(77~"), then by
Lem.1,r(T9) > d(T?7'). Thus, by the definition of deadline and
the fact that a task’s weight is at most fl, — e(77) > d(T9) —
e(T?) > r(T?) > d(TJ7"). Sincets — e(T7) > d(T7~") and
sincetardiness(7?"",S) < Z + e(T?™"), the last time at which
777" could complete inS is tq — e(T?) + Z + e(T?~"). Since
77" is not complete inS by d(7¢~"), by the definition of rules P
and N, it cannot be the case tHE{ "' was halted. Sincd? ' was
not halted,ae(77~"') = e(T?™"). Hence, by (E)e(T?) = emax(T).
Hence, the last time at which! ' could complete i$, + Z. Because
' <tat+y=ta+Z,by(Q), TJ commences execution & at or before
tq + Z, and hencéFJ is complete inS by tq + Z + e(TJ) This is
illustrated in Fig. 8(b) a

Now, we can bound theAG of T'.

Lemma 5. LetT be a task system such that the deadline of every job |
at mostt, and let the tardiness of everyjdﬁé € T with a deadline less
thant, be at mostZ + e(T"5) in them-processolCNG-EDF scheduled,
S, of T, whereZ > 0, Weum (7', s) < m forall s > 0, andt4 is the
deadline for some job ifi. For any maximally non-busy time interval
[t,t') in S, where0 < t < t' < tg4, the number of jobs i that
are executing at’ in S, k is at mostm — 1 and LAG(T,t') < Z -

2T X (T,) Wmax (1) + 20, e (T, k) Bmax(T0)-

Case 1:d(77) < t. Becausd is executing at in S and any newly
arriving job, which would have a deadline greater than d(T{f), cannot
preemptl”, the time at whichl/ completes irS is t 4 e(T7) — 8. (T
could complete earlier if its actual execution time is Id,rEme(T{).) By
definition of T', tardiness(S, 77) < Z + e(T?) . Therefored(T?) >
t+e(T)) — 6 — (2 +e(T9)) holds.

By the definition of SW and Lem. 1, T’ is complete inSW by
d(T7), and any job off’; that succeeds” is aIIocated (inSW) at most
wtmax(T';) at every instant in the ranQd(TJ) t) in whichT'; is active.
(SinceT” is not complete by > d(77), by Lem. 1,/(77+") > d(T7).)
Thus, the under-allocation t&; in S over the rangd0, t) equals the
under-allocation (relative t&W) to 77 in S, which is e(T7) — 4,
and the allocation to later jobs ifi; over the rangéd(77), t) in SW.
Hence,lag(T;, t) is at moste(T?) — 6 + (t — d(T7)) - Wtmax(T3) <
e(T?) — 5+ (2 +6) - Wtmax (T5).

Case 2:d(77) > t. In this case, the amount of work done By

in SW up to timet is at moste(77) — ftd(TJ') swt(T;, u)du. Be-

cause all prior jobs of’; are complete by in both S and SW, and

T7 has executed fof time units before in S, lag(T,t) < e(T7) —

JTD SW(Ty, u)du < e(T7) — 6 < €(T7) — 61 (2 +6) - Weman (T5)
Thus, for both cases, we have

lag(T;, t) < e(T?) — 04+ (Z+0) - wtmax(T%) (6)

Next, in order to determine tHag of T';, att’, we calculate the alloca-

tions toT'; over the rangét, t') in both theS and SW schedules. In

SW, T is allocated a share of at maswt(7';, u) at every instant. €

[t, "), for a total allocation of at mogf swt(T;, u)du. Becausd’; ex-

ecutes througholjt, t') in S, its total aIIocannsnS over[t, t') ist’ —t.

'ﬁenceA SW, T, t,t')—A(S, Ti, t,t') < ft swt(T';, u) — 1du, and
0, by the definition ofag and Eq. (6),

') e(T ') — 04+ (Z+0) - wtmax(T5)
+ [(SWH(T's, w) — 1) du
e(T?) +Z Wtmax (T;)

lag(T, <

@)

IN

sincet > t', wtmax(T) < 1, andd > 0.

Proof. LetT" and S be as defined in the statement of the lemma, anlpper bound on thelag of atask iny. LetT; be ataskiny and

let t andt’ be arbitrary values such that< ¢t < ¢’ < tg and[t, t')
is maximally non-busy fosS, andk be the number of jobs iff” that are
executing inS at the end of the interval. L&t denote then-processor
SW schedule off".

By the definition of busy, the fact th&t_ is non-busy, and by Eq. (4),
LAG(T,t) = > 7,1 lag(T7,t") Therefore, an upper bound on the

lett" be the last time in the randg, ¢') such thatl"; was not executing
in S (note thatt” may bet’_). SinceCNG-EDF is work conserving
and there is an idle processor @t T'; is not pending at”. Hence
by Cor. 1,lag(T;,t") < 0. (Note that ift” = #'_, then this case is
now complete.) By definition of”’, T'; is executing inS continuously
over the rangét”, ¢'). Since over this rang€W allocatesT’; at most

LAG of T att' can be determlned by establishing an upper bound on ttfe—t” andsS allocatesr’;, t' —t"”, lag(T, t") > lag(T%, t'). Therefore,

lag att’ of each task i’ . For this, we partition tasks iff’ into two

lag(T;,t') < 0.

subsetsq and-y, as defined below, and then determine an upper bound By Eq. (4),LAG(T, t') is given by the sum of the lags of tasks in sub-

on thelag of a task in both subset. This partitioning is illustrateéig. 9

subset of all tasks ifi” executing inS throughoutfz, ¢').
subset of all tasks iff” not executing inS for some part oft, ¢').

Upper bound on thelag of ataskin«. LetT); be atask invand
let T? be its job executing i at¢. Leté denote the amount of time that
T{ has executed i beforet. We first determine théag of T'; att by
considering two cases dependingdirT{). (We considet’ afterwards.)

12

setsa andy. As shown above, only tasks inmay have a positiviag,
and thusLAG(T, t') = o7, co, 189(T5 t) < 3op, ., 1ag(Ti, 1),
and by Eq. (9LAG(T,t") < 37, c.(emax(Ti) + 2 - Wtmax(T%)).
Since [t, t') is maximal non-busy and tasks are executing i at
the end of the intervalk < m — 1 holds. Hence, since a task
in o executes inS throughout[t, t'), there could be at most tasks
in a. ThereforeLAG(T,t') < Z - ZTieXmax(T, k) Wimax (1) +

2T i Ema(T, k) (1) s
Finally, to determine a tardiness bound foNG-EDF, we are left

with determining as small & as possible such that the upper bound
given by Lem. 5 is at most the lower bound required in Lem. 4.

Theore[n 2. The tardiness for everyjoﬁf of any task systerfi, where
Waum (T,) < m, for any timet is at mosts(m — 1) in anyCNG-EDF
schedule fofl’ onm processors.

Proof. To derive a contradiction, assume that there exists a testkrsy
T such thaW.u (T, t) < m for all t and there exists some ja in 7'

such thafl”; has a tardiness greater thafm — 1) in somem-processor
CNG-EDF scheduleS, of T. Let T denote the task system obtained

from 7' by removing all jobs with deadlines greater th&hand letS be
the m-processolCNG-EDF schedule ofl". Assuming thaCNG-EDF
resolves ties among jobs consistently, every jgbis scheduled at the

same time irS as its corresponding jo’f?i in S. Hence the tardiness of
every job inT is the same in both schedule.

Letty = d(77), SinceT? misses its deadlinéag (77, t,) > 0. Since
no job inT has a deadline greater than no task inT" no task has nega-
tive lag attq. Thus, by Eq. (4)LAG(T, tq) > 0. SinceLAG(T',0) = 0,
by Lem. 2, there exists a non-busy intervalint,) for S. Lett’ be the
end of the latest non-busy instant befoge By Lem. 2,

LAG(T, t4) < LAG(T, t'). ®)

By the definition ofT", the tardiness of any job; with deadline less than
tqis atmostc(m — 1) = Z +e(T7), forall 1 < ¢ < n, wheren is the
number of tasks il and

ZTzEgmax(Ty m — 1) emax(Tz)

Z =
m= ZTZEXIIlaX(Ty m — 1) thax(Tz)

Hence, by Eq. (8) and Lem. 5,

LAG(T, ts) < LAG(T,t)

<2 (S0, e (T, m — 1) Wemse(T2))
+ (ZTzegmax(T, m—1) emaX(Tz)) .

By definition of T and 77/, the tardiness of’ is greater tharZ +
e(T?7). Hence by Lem. 4LAG(T, tq) > m - Z + e(T7), which by

Eq. (9) implies that

9)

m-Z + e(T'Z) < zZ . z thax(T'L)
TiEXmax(Ty m — 1)
+ Z emax(Ti) s

T'L'Ggmax(Ty m — 1)

ETZ €€max (T, m — 1) emax(Tz)

77L72TzEXmax(T, m— 1) Wtmax (Tz)
definition of Z. HenceT does not exist.

e, Z < . This contradicts the

a

7.2 NP-CNG-EDF

In this section we establish the tardiness bound®f*CNG-EDF. The
approach for deriving a tardiness bound P-CNG-EDF differs from

N_B
———

7 ’ ’
blocking! [| |
[
D
b | |
| |

jobs, (in iB)
H H

n

T

A A
v ‘ n t
DL

:
‘
I 4Ty
‘

L S O
(b)

B: Blocking non-busy interval

o ts ty [

(@

N : Non-blocking non-busy interval

uoont

Figure 10:lllustration of the reasoning required fdiP-CNG-EDF .

Note thaLAG(¥, ¢) can also be defined as the sum ofldgof all tasks
that have a job inr at timet that are active or pending at tinte.

Definition 4 (Blocking interval). For a task syster#i’ the rangdt, t2)

is theblocking interval for¥ in the m-processoNP-CNG-EDF sched-
ule of T' if at least one job inV is blocked in[t1, t2). Moreover,[t1, t2) is
considered to benaximally blockingif every non-empty subinterval of
[t1, t2) is a blocking interval, and eitheg = 0 or ¢1_ is non-blocking.

Definition 5 (Pending blocking jobs 8) and work (B)). For any job set
W in the task systerfi’, we denote the set of all jobs that aréeflirand not
in ¥, block one or more jobs i at the timet_, and may execute in the
m-processoNP-CNG-EDF scheduleS att asB(T, ¥, ¢, S). Further-
more, we denote the total amount of time that the jobB8(#, ¥, ¢, S)
execute beyond in S, i.e., the total amount of work pending for those
jobs att asB(T, ¥,t,S). (For brevity, we denot8(7', ¥, ¢, S) as
B(¥,¢) whenT and S are obvious.) The set of all jobs of tasks in
T, not in the job sef that can block some job i& in a m-processor
NP-CNG-EDF scheduleS of T" at some time is denotd8l(7', ¥, S), or
simply B, when the parameters are obvious.

Non-busy interval categories. With respect to a job se¥, an in-
terval[ti, t2) is said to beébusyonly if every processor is executing some
job of ¥ throughout the interval. With this definition, it is easy tes
that theLAG of ¥ can increase only across a non-busy interval, and so
Lem. 2 applies tal in a schedule foff". Also note that by this definition,

a blocking interval for is also a non-busy interval fok. However, not
every instant in which a job i is executing need be a blocking instant.
Thus, a non-busy interval indP-CNG-EDF schedule fo U B can be
classified as eithdf) ablocking, non-busy intervalr (ii) anon-blocking,
non-busy interval (Note that in this section, every non-busy interval or
a blocking interval is taken to be maximal, unless othensts¢ed. We
refrain from explicitly saying so for conciseness.)

By Lem. 2, we know that th& AG of a job set¥ can increase only
across a non-busy interval (not necessarily maximal). TiiuB is the
set of jobs with a deadline at most, in order to determine an upper
bound ofLAG at ¢, it is sufficient to determine an upper bound at the
end of the latest non-busy interval. As discussed abovenebusy in-
terval for ¥ in an NP-CNG-EDF schedule is either blocking or non-
blocking. Therefore, to determine an upper bound onliA& of ¥ at
tq, we determine an upper-bound bAG at the end of the last blocking,
non-busy interval, or the last non-blocking, non-busyrivaé whichever
is later. For example, in Fig. 10(d}4, tq) is the latest non-busy interval.

that used foCNG-EDF in that we must also consider the length of timeWithin this interval, subintervgks, ts) is non-blocking, whilgts, t4) is

a task is blocked.

Before continuing it is useful to introduce some additionatation
and definitions. First, for any set of jols in the systenil’, we define
the LAG of ¥ as

LAG(W,t) = Y lag(T?,t).
T{e\Il

13

blocking. Therefore, we will determine an upper bound f&G at ¢4

by consideringdts, t4). Similarly, in Fig. 10(b), an upper bound &AG
will be determined at-, by considering the intervdts, t7). Next, be-
cause every job o that is not executing in a non-blocking, non-busy
interval is either not pending or pending but not ready (beeaa prior
job is executing) the procedure for determinlo®G at the end of of such
an interval is identical to that used fGNG-EDF in Lem. 2. (In Lem. 2,

we showed that th€AG of a task that does not execute at the end of

a non-busy interval is at most zero.) However, since througl non-
busy interval (relative tal) in which there is blocking, there is at least
one task that has a ready jobdnis not executing, théag of a task that
is not executing at the end of such a non-busy interval cabadaken
to be zero. For example, in Fig. 10(a), the td%kis not executing in
[ts, ta) and thelag of its task att4 is positive. Therefore, the procedure
for determiningLAG is slightly different in this case.

A blocking job with a deadline later tharn, that is executing but is
incomplete at, will continue to execute beyord, which will delay the

N B N B N Non-blocking N B blocking in
) in [t,t) _— [t,t) and

(in B) i # , inu | 4 executing gt t! .
| ' (inB) |
| ina | - ‘

) . (inyg,p) 7 P

(In q") I : ‘ :) y : i *‘ ,
! in 7 1
'\ [— p){ .
S t t td s t t td

() (b)
B : Blocking non-busy intervvalN : Non-blocking non—-busy interval

executing of pending jobs ifr. Hence, in order to determine a tardiness

bound for a job in¥, apart from an upper bound on the amount of work

pending for jobs inl att4, i.e, LAG(Y, tq4), we also need to determine
an upper bound on the total amount of work pending for jobs dna
blocking those ofl at ¢4, i.e, B(tq, S). In Fig. 10(a), if we assume
that T'» is the only pending blocking task a§, we will also need an
estimate of the amount of time th@: executes aftety. In Fig. 10(b),
the amount of pending work for jobs i is positive atts, while it is
zero at and after;. Note that unless the latest non-busy instamg jshe
amount of blocking work that is pending @t will be zero.

As with CNG-EDF, we then determine a lower bound on the sum o

the blocking workB and theLAG of ¥ at ¢4 that is necessary for the
tardiness of a job with a deadline at mésgto exceed a given value, and
an upper bound of the maximum value for the same that is dessith

a given task system. Finally, we use these to arrive at antasdibound.
The lemma that follows parallels Lem. 4 and its proof is sémil

Figure 11:Lemma 7.(a) CASE A. (b) CASE B.

CNG-EDF in Lemma. 5 to be at most

>

Ti EXmax (T\Ij ’ k)

Wimax (T’L) +

>

TieEmax (T\I/ ’ kf)

€max (T’L)y

(10)
]whereT\I, is the subset of all tasks i whose jobs in¥ are executing
at the end of the intervdt, ¢'), andk = [Ty | < m — 1.

We next determine a bound B, '). If ¢’ < t4, then by the state-
ment of the lemma’ is busy. Therefore no jol8 that is executing at
t' executes at’ or later. Hence, in this cad®(¥, t') = 0. The other
case is that’ = t4 holds. Note that each joﬁT{ in B(T, ¥, tq,S)
could execute for at mos#(7”) time units aftert,. Becausek jobs

Lemma 6. LetT be a task system such that the tardiness of every jo%re executing at the end of the interyal¢’) are inW, at mostm — k

T: € T with a deadline less thaty be at mostZ + e(T%) in the m-
processoﬂ\lP -CNG-EDF scheduleS, of T, whereZ > 0, ty = d(T7),
and T{ is some job ifl". Let ¥ denote the set of all jobs i with a
deadline at most,. If LAG(, t4) + B(¥, tq) < m- Z +e(T7), then
tardiness(77, S) < Z + e(T7).

An upper bound oL AG(¥, ¢') + B(¥, '), wheret' is the end of
maximally non-busy interval is given by the next lemma. Iteqf is
only slightly different from that of Lem. 5.

Lemma 7. LetT, ¥, S, andm be as defined in Lemma 6. Lt '),
where0 < s < t' < tg4, be a maximally non-busy interval fob
n [0,tq4) in S, such that eithert’ = ¢4 or ' is busy. Let the tar-
diness inS of every jobeI € T with a deadline less than, be at
mostZ + e(T%), whereZ > 0. ThenLAG(¥,t') + B(¥,t') < Z -

(0 e (1 m — 1) Weras(T3)) + S (7,) o (T).

Proof. Referring to the statement of the lemma,t’) is a maximal non-

obs of B are executing at”_. Therefore, whert’ = t4, B(¥,t4) <
ZTzeé’max((T\T\p) m— k) emax(T'3). Hence, for either case, by (10)
we have

LAG(Y,) +B(V,) < 2+ (S, typun(1, m — 1) Wem(T2))
+ ZT’iEgmax (T: m) emax(Ti)-

CASE B: t_ is a blocking instant. In this case, let denote the
earliest instant at or after such thatt, ¢') is a maximally-blocking in-
terval. Since every job o has an earlier deadline than a jobBn a
job in ¥ cannot be blocked at time 0 due to a job3rcommencing ex-
ecution at time 0. Therefore> 0 holds. Also, no job of¥ (including
jobs that are blocked &) is blocked at_. Hence, it cannot be the case
that a job in? is blocked at due to a job i3 commencing executing at
t. Rather, the blocking job should have commenced executborét.
Similarly, since every instarit, t') is a blocking instant, at which one or
more ready jobs o are waiting, no job ir3 can commence execution
anywhere in(t, t'). Therefore, we have the following.

busy interval forl'. Hence, every instant in the interval is either a block{B) Every job inJ3 that is executing at < ¢ < t’, is executing through-

ing, non-busy instant, or a non-blocking, non-busy inst&vi consider
two cases depending on whettieris blocking.

CASE A: t'_is a non-blocking instant. This case is illustrated
in Fig. 11(a). Lett be the earliest instant at or aftesuch that at every
instant in[t, ¢'), either at least one processor is idle, or at least one job
B is executing, or both hold. However, the jobdirthat are executing in

outft_, 7).
Let 7 denote the set of all jobs & that are executing &t and hence
are blocking one or more jobs &. Letb = | 7|, and letu denote the
subset of all tasks ifi' whose jobs are i7. By the nature oft, t'),
b > 1. Because, each task can have at most one job executing at any
f'rr]lstant, we have
T =

ul=b>1. (11)

this interval do not block any job i. Therefore, in both cases, every job By the definition ofLAG for a set of jobs, th€ AG of ¥ att is given

of ¥ that is not executing at some instantint’) is either inactive at that
instant or is active, but has no pending jobs. Hence, for thpgse of
determining th&. AG(, '), the jobs in3 that are executing ift, t') can
be ignored and the interval in which they are executing cataken to
be idle intervals on the respective processors. TherefueeAG(V, t'),
can be determined in the same manner as that used in the easegive

by the sum of thdags of all tasks inT" with at least one job if¥ that is
either pending or active @t . Let p denote the set of all such tasks. (It
is easy to see that no taskjris in p.) Therefore,

Z lag(T%, t),

'LGP

LAG(Y, 1) (12)

14

Partitioning p. Our approach for determining an upper bound on th¢B), no job of B that is not in;7 can execute anywhere i t'). Hence,
LAG of ¥ at ¢’ is mostly similar to that used in Lemma 5. Becausehe amount of work pending of jobs i# (i.e., the blocking work) at any

(12) holds, we first partition the tasks jninto the subsets and~, as
defined below, and determine upper bounds onldligeat ¢ of tasks in
each subset, and the number of tasks in each subset. We ssetthe
determine an upper-bound on thAG of ¥ at¢, from which, we then
determine an upper bound on thaG of ¥ att’

subset of all tasks ip executing at_
subset of all tasks ip not executing at—

v

Upper bound onlag at ¢ of atask ina. LetT; be atask invand
let TJ be its job executing at_. Let§ denote the amount of time that
T{ has executed for beforein S. We determine théag of T'; att by
considering two cases dependingdirT{).

Case 1:d(7T7) <t
thatT{f completes executing can be= e(T?) — ¢. (It could complete
earlier if its actual executing time is lower tha([F{)). By the statement
of the lemma, the tardiness of everyjokﬂqf with deadline less thaty,
is at mostZ + e(77). Therefored(T?) > ¢ + (e(T?) — 6) — (£ +
e(T?)) = t—3—Z holds. By Lemma 177 is complete inSW byd(TJ)
andT; is allocated a share aivt(T';, ¢) in every instany € [d(T7), t)
in which it is active. Thus the under-allocation@ in S in [0, t) is at
moste(T?) — & + (t — d(T7)) - Wtmax(T5) < €(T3) — 6 + (£ +9) -
Wtmax (7). Hencelag(Ti,t) < €(Ti) — 6 + (2 4 9) - wtmax(T) <
e(T?) + Z - Wtmax(T').

Case 2:d(T7) > t. In this case, the amount of work done by theZT

job 77 in SW up to timet is given bye(T7) — fd(T)wt(T w)du.
Because all prior jobs df’; have complete executing Byin bothS and
SW, andT" has executed fof time units before in S, lag(T;, t) <

v J , v
e(1?) — [ITD) swt(Ty, u)du < e(T?) — 6 < e(T?) — 6+ (Z+0) -
wtmax(T3). Thus in both cases we have

1ag(T;, t) < emax(T5) + Z - Wtmax (7). (13)
Upper Bound on thelag at ¢t of atask in~y. LetT; be ataskin
~. Then, no job ofl’; is executing at_. However, sincd’; is in p, there
is at least a job of’; that is in ¥ that is either pending or active &t .
We show that no job df’; that is in¥ is pending at_. Suppose that the
jobT7 isin ¥ and is pending at_. Thend(7?) < t4 holds and because
T;isin~, T{ is not executing at_. Since]t, t') is maximally-blocking,
at least on job oB is executing at, which by (B), is executing at- as
well. Because such a blocking job has its deadline aftand no job of
T'; is executing at_, this implies thatT{ is blocked at_, contradicting
our assumption that, ') is a maximally-blocked interval. For example,
T7 could be as indicated in Fig. 11(b).

Thus, no job ofT’; that is inW is pending at_. Therefore, the total
allocation to jobs ofl’; in ¥ up to timet in S is at least that i W, and
hence theéag of T'; att is at most zero.

Because thiag of ataskinyisatmostzeroat > . . lag(T, t) =
> Tica@9(Tit) + 3 7, 1a9(Ts t) < g, Iag()TZ,t Hence
by (13). 7, e 180(Ti 1) < 37, co(eman(T5) + Z - Weman(T5)).
Therefore, by (12), we have

LAG(W, 1) > (emax(T4) + 2 - Whmax(T':))
TZ'Ea

(14)

Since we need to determine an upper bound on the swAG{ Y, ¢')
andB(¥, t'), we also need to determine an upper bound@¢¥, ¢). By

15

BecauséF{ cannot be preempted, the latest time

timeu € [t t'), B(Y, u), equals the amount of work pendingafor
the jobs ing7. LetT'; be atask inu. Then, the amount of work that can
be pending for its job executing afwhich is in J) can be at most the
execution cost of job. Therefore we haBeW, ¢) < >, , emax(T'),
and hence by (14), we have

LAG(W, t) +B(¥, 1) < 307, ¢ (emax(Ti) + 2 - Wtmax (T'3)) +
ZTZEH emax(z) ZTLE@UM emax(z) + ZT@'E@ zZ. thax(Ti) S
Z- ZTiEXmax(T: m—) thax() + ZTiEgmax(Ty m) emax(Ti)7
(15)
where the last inequality follows from (11)] = b > 1) and (o] =

—b). |a| = m — b holds because every taskjiror « is executing at
t,.

Finally, we are are left with determining an upper bound esthm of
the LAG andB att'. Let X < B(¥, t) denote the total amount of time
that jobs in7 execute on alin processors if, ') (For example, if there
are two jobs in7, with one job executing for the entire interval and the
second executing for the first half of the interval, thén= 3(¢' —t)/2.)
Becauselt, t') is maximally blocking, no processor is idle i, t').
Hence, the total time allocated to jobsunin [t,t'), A(S, ¥, ¢, t') is
equal tom- (t' —t) — X. InSW, jobs in¥ could execute for at most -
(t'—t)time,i.e, A(S, U, t,t') < m-(t'—t). Therefore LAG(¥, t') =
LAG(W, t)+A(SW, W, t, ') —A(S, U, t, ') < LAG(, t)+X. How-
ever, since jobs it execute for a total time oK in [t, t’), the pend-
ing work for jobs in¥, and hence those i att’, B(¥, t'), is at most
B(¥,t') — X. ThusLAG(¥, ') + B(¥,t) < LAG(V,t) + B(¥T, t),
which by (15) is at mostZ - ZTZeXmaX(T,mf 1) Wtmax (T73) +

Legmax(T: m) emax(Tz)- =
Lemmas. 6 and 7 can be used to establish the following.
Theorem 3. The tardiness for everyjoﬁf of any task systerfi, where

Weum (T,) < m, for any timet is at most:(m) in anyNP-CNG-EDF
schedule fofl’ onm processors.

