
Task Reweighting under Global Scheduling on Multiprocessors

Aaron Block, James H. Anderson, and UmaMaheswari C. Devi
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
We consider schemes for enacting task share changes—a process
calledreweighting—on real-time multiprocessor platforms. Our
particular focus is reweighting schemes that are deployed in envi-
ronments in which tasks mayfrequentlyrequestsignificantshare
changes. Prior work has shown that fair scheduling algorithms are
capable of reweighting tasks with minimal allocation errorand
that partitioning-based scheduling algorithms can reweight tasks
with better average-case performance, but greater error. However,
preemption and migration overheads can be high in fair schemes.
In this paper, we consider the question of whether global schedul-
ing techniques can improve the accuracy of reweighting relative
to partitioning-based schemes and provide improved average-case
performance relative to fair scheduled systems. Our conclusion is
that, for soft real-time systems, global scheduling techniques pro-
vide a good mix of accuracy and average-case performance.

1 Introduction
Real-time systems that areadaptivein nature have received con-
siderable recent attention [3, 9, 10, 4]. In addition,multiprocessor
platforms are of growing importance, due to both hardware trends
such as the emergence of multicore technologies and the preva-
lence of computationally-intensive applications for which single-
processor designs are not sufficient. In prior work [3, 4], wecon-
sidered the use of both fair and partitioning-based algorithms to
schedule highly-adaptive workloads on (tightly-coupled)multi-
processor platforms, where the processor shares of tasks change
frequently and to a significant extent. Fair scheduling techniques
achieve high accuracy in enacting share changes, but do so atthe
expense of potentially frequent task preemptions and migrations
among processors. Partitioning algorithms, in contrast, entail less
overhead, but provide poorer (but sometimes acceptable) accu-
racy. The focus of this paper is adaptive global scheduling al-
gorithms that avoid the high preemption and migration costsof
fair scheduling techniques, yet have superior accuracy relative
to partitioning-based schemes. The primary drawback of global
scheduling algorithms is that, in order to fully utilize a multipro-
cessor system, bounded deadline misses must be acceptable.The
key issue we address is whether the lower migration/preemption
overheads and improved accuracy of such algorithms are suffi-
cient to compensate for their inability to meet all deadlines.

Whisper. To motivate the need for this work, we consider two
example applications under development at the University of
North Carolina. The first of these is the Whisper tracking system,
which performs full-body tracking in virtual environments[11].
Whisper tracks users via an array of wall- and ceiling-mounted
microphones that detect white noise emitted from speakers at-

tached to each user’s hands, feet, and head. Like many tracking
systems, Whisper usespredictive techniquesto track objects. The
workload on Whisper is intensive enough to necessitate a mul-
tiprocessor design. Furthermore, adaptation is required because
the computational cost of making the “next” prediction in track-
ing an object depends on the accuracy of the previous one. Thus,
the processor shares of the tasks that are deployed to implement
these tracking functions will vary with time. In fact, the variance
can be as much astwo orders of magnitude. Moreover, adapta-
tions must be enacted withintime scales as short as 10 ms.

ASTA. The second application is the ASTA video-enhancement
system [2]. ASTA is capable of improving the quality of an un-
derexposed video feed so that objects that are indistinguishable
from the background become clear and in full color. In ASTA,
darker objects require more computation to correct. Thus, as dark
objects move in the video, the processor shares of the tasks as-
signed to process different areas of the video will change. ASTA
will eventually be deployed in a military-grade full-colornight
vision system, so tasks will need to change shares as fast as asol-
dier’s head can turn. In the planned configuration, a 10-processor
multicore platform will be used.

Dynamic sporadic tasks. In this paper, we are primarily con-
cerned withdynamic sporadic tasks. Each such taskT i releases
a sequence ofjobs, T 1

i , T 2
i ,... Each task is defined by theexecu-

tion costof each of its jobs, denotede(T j
i ), and itsweightat any

time t, denotedwt(T i, t), which specifies the fraction of a sin-
gle processor it requires. This differs from the usual definition of
a sporadictask, wherein per-job execution costs and weights do
not change. While the terms “share,” “weight,” and “utilization”
are often used interchangeably, we useweight to denote a task’s
desired utilization, andshareto denote its actual guaranteed uti-
lization. In each scheduling scheme we consider, a task’s share
is determined by its weight; in some of these schemes, the two
are always equal, while in others, they may differ. We refer to the
process of enacting task weight/share changes asreweighting.

Summary of results. In this paper, we consider five
reweighting-capable scheduling algorithms: a previous fair al-
gorithm developed by us called calledPD2-OF [3], which is a
derivative of thePD2 Pfair algorithm [1]; a previous partitioning-
based algorithm developed by us called thepartitioned-adaptive
scheduling(PAS) algorithm [4]; thenon-preemptive-partitioned-
adaptive-scheduling(NP-PAS) algorithm, which is a non-
preemptive variant ofPAS; and two new algorithms proposed
herein, thechangeable-earliest-deadline-first(CNG-EDF) al-
gorithm, which is a derivative of the well known global-
earliest-deadline-first (EDF) algorithm, and thenon-preemptive-
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Scheme Tardiness Drift Overload Migrations Preemptions
PD2-OF 0 2 0 every quantum every quantum

PAS 1 emax(T i) W weight-change events weight-change events& job releases
NP-PAS e(T j

i ) +emax(T i)+1 emax(T i) W weight-change events weight-change events
CNG-EDF κ(m − 1) emax(T i) 0 job releases job releases

NP-CNG-EDF κ(m) emax(T i) 0 only in-between jobs never

Table 1:Summary of worst-case results.

changeable-earliest-deadline-first(NP-CNG-EDF) algorithm,
which is a non-preemptive variant ofCNG-EDF.

Our results are summarized in Table 1, which lists the accuracy,
migration cost, and preemption cost of each of the above schemes.
Accuracy is assessed in terms of three quantities, “drift,”“over-
load error,” and “tardiness,” which are measured in terms ofthe
system’s scheduling quantum size.Drift is the error, in com-
parison to an ideal allocation, that results due to a reweighting
event [3]. (Under an ideal allocation, tasks are reweightedin-
stantaneously, which is not possible in practice.)Overload error,
which arises under partitioning-based schemes (see [4]), is the
error that results from a scheduler’s inability to allocatea task
a share equal to its desired weight.Tardinessis the maximal
amount by which any job can miss its deadline. Of these three
types of error, overload error is potentially the most detrimental,
since drift is a one-time error assessed per reweighting event and
tardiness is bounded in the schemes we consider. Overload error,
on the other hand, accumulates over time.

In Table 1,emax(T i) denotes themaximum execution costof
any job of the taskT i, wtmax(T i) denotes themaximal weightof
taskT i at any time, andW denotes the maximal weight of the
(m · ⌊1/X⌋+ 1)

st “heaviest” task (by maximal weight), where
m is the number of processors andX is the maximal weight of
the heaviest task. Furthermore,

κ(ℓ) =

∑
T z∈Emax(T , ℓ) emax(T z)

m −
∑

T z∈Xmax(T , m − 1) wtmax(T z)
+ e(T j

i ), (1)

whereEmax(T , ℓ) is the set ofℓ tasks inT with the highestmaxi-
malexecution cost andXmax(T , m − 1) is the set ofm− 1 tasks
in T with the heaviestmaximalweight. (This bound is derived
from prior work by Devi and Anderson on multiprocessorEDF
scheduling [6].) Table 1 shows that algorithms that allow more
frequent migrations and preemptions, likePD2-OF, produce lit-
tle drift, no overload error, and no tardiness; however, algorithms
that restrict the frequency of migrations and preemptions can pro-
duce greater drift, overload error, and/or tardiness.

Contributions. Our theoretical contributions include devising
CNG-EDF andNP-CNG-EDF reweighting rules, and establish-
ing the error bounds forCNG-EDF andNP-CNG-EDF in Ta-
ble 1. The question that then remains is: for the five aforemen-
tioned algorithms, how do drift, overload error, and tardiness com-
pare to any error due to migration and preemption costs? We
attempt to answer this question via extensive simulation studies
of Whisper and ASTA. In these studies, real migration and pre-
emption costs were assumed based on actual measured values.
These studies confirm the expectation that, whileCNG-EDF and
NP-CNG-EDF provide a good compromise of accuracy and av-
erage case performance,there exists no single “best” algorithm:

for each algorithm, application scenarios exist for which that al-
gorithm is the best choice.

The rest of this paper is organized as follows. In Secs. 2 and
3, we discuss theCNG-EDF andNP-CNG-EDF algorithms in
greater detail. Then, in Sec. 4, we establish the propertiesmen-
tioned above. Our experimental evaluation is presented in Sec. 5.
We conclude in Sec. 6.

2 System Model and Scheduling
In this section, we define our system model and theCNG-EDF
andNP-CNG-EDF reweighting algorithms.

Sporadic task systems. We denote theith task of a task sys-
temT asT i (where tasks are ordered by some arbitrary method),
and denote thejth job of the taskT i asT j

i (where jobs are or-
dered by the sequence in which they are invoked). Asporadic
task is defined by anexecution cost, denotede(T i), andweight,
denotedwt(T i), which specifies the fraction of a single processor
it requires. (It is customary to define a sporadic task by its exe-
cution cost and the minimum separation time between its succes-
sive jobs—we define the latter in terms of weight and execution
cost below.) Fig. 1(a) depicts a one-processor system scheduled
via EDF with four tasks, as defined in the figure’s caption. (The
other insets in the figure are considered later.) The first jobof a
task may be invoked orreleasedat any time at or after time zero.
The release time of jobT j

i is denotedr(T j
i ). Successive job re-

leases of taskT i must be separated by at leaste(T i)/wt(T i) time.
For example, in Fig. 1(a),r(T 1

1 ) = 0 andr(T 2
1 ) = 3. Theabso-

lute deadline(or justdeadline) of job T j
i , denotedd(T j

i ), equals
r(T j

i ) + e(T i)/wt(T i). For example, in Fig. 1(a),d(T 1
1 ) = 3

andd(T 2
1 ) = 6. We consider a sporadic taskT i to beactiveat

time t if there exists a jobT j
i (calledT i’s active job) such that

t ∈ [r(T j
i ), d(T j

i )).

Dynamic sporadic task systems. A dynamic sporadic task sys-
tem is an extension of a sporadic task system, where the weight
of each taskT i is a function of timet and its execution cost can
vary with each jobT j

i . We usewt(T i, t) ande(T j
i ), respectively,

to denote these two quantities. (For the remainder of the paper,
whenever we refer to a “task” we are referring to a “dynamic spo-
radic task.”) We usewtmin(T i) (wtmax(T i)) to denote themin-
imum (maximum) allowed weight forT i. As a shorthand, we
useT i:[a, b] to denote a taskT i such thatwtmin(T i) = a and
wtmax(T i) = b, andT i:a to denoteT i:[a, a]. Furthermore, we
useemax(T i) to denote the maximal execution cost of any job of
T i. Fig. 1(b) gives an example.

For dynamic sporadic tasks, theabsolute deadlineof a jobT j
i

equalsr(T j
i )+e(T j

i )/wt(T i, r(T j
i )). In the absence of reweight-

ing, consecutive job releases (r(T j
i ) and r(T j+1

i )) of a taskT i

must be separated by at leaste(T j
i )/wt(T i, r(T j

i )). For example,
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in Fig. 1(b), r(T 2
1) − r(T 1

1) = 2/(1/3) = 6, r(T 3
1) − r(T 2

1) =
2/(1/2) = 4, andd(T 3

1) = 10 + 1/(1/2) = 12.
A task T i changes weightor reweights at time t if

wt(T i, t − ǫ) 6= wt(T i, t) whereǫ → 0+. If a taskT i changes
weight at a timetc between the release and the deadline of some
job T j

i , then the following three actionsmayoccur:

• The execution cost ofT j
i maybe reduced to the amount of

time for whichT j
i has executed prior totc.

• r(T j+1

i ) maybe less thanr(T j
i )+ e(T j

i )/wt(T i, r(T j
i )).

• If T j+1

i is released beforer(T j
i ) + e(T j

i )/wt(T i, r(T j
i )),

then sinced(T j
i ) = r(T j

i ) + e(T j
i )/wt(T i, r(T j

i )), jobs
T j

i andT j+1

i will “overlap.” (In the variant of the sporadic
model defined earlier, every job’s deadline is at or before its
successors’s release.) Hence, we say that a jobT j

i is active
at timet iff t ∈ [r(T j

i ), min(r(T j+1

i ), d(T j
i ))).

The reweighting rules we present in Sec. 3 state under what
conditions the above actions occur and by how much before
r(T j

i )+e(T j
i )/wt(T i, r(T j

i )) the jobT j+1

i can be released. Since
a reweighting event may cause a job’s execution cost to decrease,
we introduce the notion of a jobT j

i ’s actual execution cost, de-
notedae(T j

i ), which represents the total amount of execution
time thatT j

i will receive.
When a task reweights, there can be a difference between when

it “initiates” the change and when the change is “enacted.” The
time at which the change isinitiated is a user-defined time; the
time at which the change isenactedis dictated by a set of condi-
tions discussed shortly. We use thescheduling weight of a taskT i

at timet, denotedswt(T i, t), to represent the “last enacted weight
of T i”. Formally,swt(T i, t) equalswt(T i, u), whereu is the last
time at or beforet that a weight change was enacted forT i. It
is important to note that,henceforth, we compute task deadlines
and releases using scheduling weights.

Scheduling. Under both CNG-EDF and NP-CNG-EDF,
“ready” jobs are prioritized by deadline, with earlier dead-
lines having higher priority. (“Ready” will be formally defined
shortly.) Deadline ties are resolved arbitrarily, but consistently.
UnderCNG-EDF, an arriving job with higher priority preempts
the executing job with the lowest priority if no processor isavail-
able. The preempted job may later resume execution on a differ-
ent processor. UnderNP-CNG-EDF, the arriving job waits until
some job completes execution and a processor becomes available.
Thus, underNP-CNG-EDF, once scheduled, a job is guaranteed
execution until completion without interruption. Fig. 1(b) depicts
aCNG-EDF schedule of the task systemT described above, and
Fig. 1(c) depicts aNP-CNG-EDF schedule of the same system.

For an arbitrary scheduling algorithmA and an arbitrary task
systemT , we letS denote anm-processor scheduleA of T , and
let A(S, T j

i , t1, t2) denote the total time allocated toT j
i in S in

[t1, t2). Similarly, we useA(S, T i, t1, t2) and A(S, T , t1, t2),
respectively, to denote the total time allocated to all jobsof T i in
S and all tasks ofT in S, over the interval[t1, t2). We say that the
value ofA(S, T j

i , 0, t) is the amount thatT j
i hasexecuted byt.

For example in Fig. 1(b),A(S, T 1
1, 0, 6) = 2, A(S, T 1

1, 0, 12) =
2, andA(S, T 1

1, 3, 12) = 0.

Definition 1 (Halted). As discussed later, if a reweighting event
in scheduleS occurs at timet, then it is possible that some job
T j

i is haltedat t. In this case,ae(T j
i ) is set toA(S, T j

i , 0, t).

Definition 2 (Completed). If S is anm-processorCNG-EDF or
NP-CNG-EDF schedule of the task systemT , then a jobT j

i ∈ T

is said to havecompleted by timet in S iff T j
i has executed for

e(T j
i ) by t in S, or T j

i has halted by timet. A taskT i is said
to havecompleted at timet in S if at time t every job ofT i that
has been released byt has completed. A taskT i is said to have
entirely completed by timet iff all jobs ofT i in T have completed.
For example, in Fig. 1(b),T 1

1 has completed by time 3,T 1 is
complete (butnotentirely complete) at time 3 but not complete at
time 6, andT 4 is entirely complete at time 4.

Definition 3 (Pending and Ready).For an arbitrary scheduling
algorithmA, if S is anm-processor schedule of the task system
T underA, then a jobT j

i is said to bepending at timet in S if
r(T j

i ) ≤ t andT j
i is not complete byt in S. For example, in

Fig. 1(a), the jobT 1
2 is pending over the range[0, 9). Note that

a job can be pending, but not active, if it misses its deadline. A
pending jobT j

i is said to beready at timet in S if all prior jobs
of taskT i have completed byt. For example, in Fig. 1(a), the job
T 1

2 is ready over the range[0, 9). A job T j
i can be pending but

not ready ifT j−1

i has not completed byr(T j
i ).

3 Task Reweighting
We now introduce two new reweighting rules that areCNG-EDF
extensions of thePD2-OF reweighting rules presented by us pre-
viously [3]. As mentioned before, these rules work by modifying
future job release times and deadlines. At the end of this section,
we discuss how to adjust these rules forNP-CNG-EDF.

For simplicity, we assume that the actual execution cost forany
job is equal to its specified execution cost,unlessa task reweights
while a job is active. Thenand only thencan the actual execution
cost of a job be less than its execution cost. (This assumption can
be removed at the expense of more complicated notation.) In this
scenario, the actual execution cost of the job is determinedby the
rules we present shortly.

Let T be a task system in which some taskT i initiates a weight
change from weightw to weightv at timetc. Let S be them-
processorCNG-EDF schedule ofT . Let T j

i be the active job of
T i at tc. If e(T j

i ) − A(S, T j
i , 0, t) > 0, then letrem(T j

i , tc) =

e(T j
i )−A(S, T j

i , 0, t); otherwise,rem(T j
i , tc) = e(T j+1

i ). Note
thatrem(T j

i , tc) denotes the actual remaining computation inT i’s
current job or the size ofT i’s next job if the current job has com-
pleted. Thedeviance of jobT j

i of taskT i at timet is defined as
dev(T j

i , t) =
∫ t

r(T j
i )

swt(T i, u)du − A(S, T j
i , 0, t). The choice

of which rule to apply depends on whether deviance is positive or
negative. If positive, then we say thatT i is positive-changeable at
time tc from weightw to v; otherwiseT i is negative-changeable
at time tc from weightw to v. BecauseT i initiates its weight
change attc, wt(T i, tc) = v holds; however,T i’s scheduling
weight does not change until the weight change has beenenacted,
as specified in the rules below. Note that iftc occurs between
the initiation and enaction of a previous reweighting eventof T i,
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Figure 1:A one-processor (sporadic or dynamic sporadic) systemT with four tasks. Inset(a) depicts anEDF scheduleT where the tasks are defined
as follows:T 1 with weight 1/3 ande(T 1) = 1, T 2 with weight 1/4 ande(T 2) = 3, T 3 with weight 1/4 ande(T 3) = 1, andT 4 with weight 1/6 and
e(T 4) = 1. In insets(b) and(c), the tasks are defined as follows:T 1 has an initial weight of 1/3 and increases to 1/2 at time 6,e(T 1

1) = e(T 2
1) = 2,

ande(T 3
1) = 1; T 2 has a constant weight of 1/4 ande(T 1

2) = 3; T 3 has a constant weight of 1/4,e(T 1
3) = 1, ande(T 2

3) = 2; andT 4 has an initial
weight of 1/6 and decrease to 0 at time 6 (i.e., T 4 “leaves” the system at 6) ande(T 1

4) = 1. Inset (b) depicts aCNG-EDF schedule ofT . Inset (c)
depicts aNP-CNG-EDF schedule ofT . All ties are broken in favor of the task with the lower index.

then the previous event is skipped,i.e., treated as if it had not oc-
curred. As discussed later, any “error” associated with skipping
a reweighting event like this is accounted for when determining
drift.

Rule P: If T i is positive-changeable at timetc from weightw
to v, then one of two actions is taken:(i) if d(T j

i ) >

rem(T i, tc)/v, thenT j
i is halted, its weight change is en-

acted, and a new job of sizerem(T i, tc) is issued for it
with a release time oftc; (ii) otherwise, its weight change
is enacted at timed(T j

i ), i.e., the scheduling weight does not
change until the end of the current job.

Rule N: If T i is negative-changeable at timetc from weightw
to v, then one of two actions is taken:(i) if v > w, then
T j

i is halted, its weight change is enacted, and a new job of
sizerem(T i, tc) is issued for it with a release time equal to
the timet at whichdev(T j

i , t) = 0 holds;(ii) otherwise, the
weight change is enacted at timed(T j

i ).

Intuitively, Rule P changes a task’s weight by halting its current
job and issuing a new job of sizerem(T i, tc) with the new weight
if doing so would improve its deadline. A (one-processor) exam-
ple of a positive-changeable task is given in Fig. 2(a). (We dis-
cuss the termsdrift, IDEAL allocations, andSW allocations in
Sec. 4.) The depicted example consists of a task systemT with
four tasks as defined in the figure’s caption. Note that, sinceT 2,
T 3, andT 4 have the same deadline, we have arbitrarily chosenT 4

to have the lowest priority. In inset (a),T 4 is positive-changeable
since at time 2 it has not yet been scheduled. Note that halting
T 4’s current job and issuing a new job of size one improvesT 4’s
scheduling priority,i.e., d(T 1

4) = 6 > 7

2
= d(T 2

4). Notice that
the second job ofT 4 is issued 6/4 quanta after time 2. This spac-
ing is in keeping with a new job of weight 4/6 issued at time 2.

Rule N changes the weight of a task by one of two approaches:
(i) if a task increasesits weight, then Rule N adjusts the re-
lease time of its next job so that it is commensurate with the new
weight; (ii) if a taskdecreasesits weight, then Rule N waits un-
til the end of the current job and then issues the next job with
a deadline that is commensurate with the new weight. A (one-
processor) example of a negative-changeable task that increases
its weight is given in Fig. 2(b). The depicted example consists of
the same tasks as in (a), except that we have chosenT 4 to have the
highest priority. Notice that the second job ofT 4 is issued at time
3, which is the time such thatdev(T 4, 3) =

∫ 3

0
swt(T i, u)du −

A(S, T 4, 0, 3) = 1 − 1 = 0. Recall that the deadline (release

time) of theith ((i + 1)th ) job of a taskT j is given byr(T j
i ) +

e(T j
i )/(swt(T i, r(T j

i ))). Hence, if a taskT i of weightv were to
issue a job of sizey = A(S, T j

i , 0, tc) − dev(T j
i , t) at timetc,

then the release time of its next job would betc + y/v. A (one-
processor) example of a negative-changeable task that decreases
its weight is given in Fig. 2(c). The depicted example consists of
the same four tasks except thatT 4 has an initial weight of 4/6 and
decreases its weight at time 1, andT 1 joins the system as soon as
T 4’s weight change is enacted.

Since these rules change the ordering of a task in the prior-
ity queues that determine scheduling, the time complexity for
reweighting one task isO(logN), whereN is the number of tasks
in the system.

Modifications for NP-CNG-EDF. In order to adapt the rules
P and N to work forNP-CNG-EDF, the only modification we
need to make is when these rules are initiated. If a task reweights
before or afterthe active job has been scheduled, then the rules P
and N are initiated as before. (Note that if the active jobhas not
been scheduled, then its deviance is positive, and if the active job
hasbeen scheduled, its deviance is negative.) However, if a task
changes its weight while the active jobT j

i is executing, then the
initiation of the weight change is delayeduntil T j

i has completed
or T j

i is no longer active, whichever is first. Note that when a task
T i changes its weight fromu to v at timetc in NP-CNG-EDF,
thenwt(T i, tc) = v holds, regardless of whether the initiation of
rule P or N must be delayed.

4 Tardiness and Drift Bounds
In this section, we formally present and prove tardiness and
drift bounds for theCNG-EDF algorithm. Because any set of
reweighting rules will cause the “actual” schedule to deviate from
the “ideal” schedule, the tardiness bounds reflectCNG-EDF’s ac-
curacy atschedulingthe job-set created byCNG-EDF. The drift
bounds, on the other-hand, reflectCNG-EDF’s accuracy at cre-
ating a job-set that mimics the “ideal” task system, where weight
changes can always be initiated and enacted instantaneously. To
this end, we introduce two new theoretical scheduling algorithms:
thescheduling-weight processor-sharing(SW) scheduling algo-
rithm and theideal processor-sharing(IDEAL) scheduling algo-
rithm. Both algorithms have the ability to preempt and swap tasks
at arbitrarily small intervals. However,SW allocates each task a
share equal to itsscheduling weight; moreover,SW will not allo-
catecapacity to a task if its active job has received an allocation
equal to its actual execution cost.IDEAL, on the other hand, al-
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Figure 2:A one-processor system consisting of four tasks,T 1:[0, 1/2], T 2:1/6, T 3:1/6, andT 4:[1/6, 4/6], where the execution cost of every job
is one. The dotted lines represent the interval up toT 4’s next deadline, which due to reweighting has been changed (as indicated by the solid arrow).
Thedrift, allocations inIDEAL, and allocations inSW for T 4 are labeled as a function of time across the top.(a) TheCNG-EDF schedule for the
scenario whereT 1 is in the system initially and leaves at time 2,T 4 has an initial weight of 1/6 that increases to 4/6 at time 2, and T 4 has the lowest
scheduling priority. SinceT 4 is not scheduled by time 2, it has positive deviance and changes its weight via Rule P, causingT 1

4 to be halted,T 2
4 to be

released at 2 with a deadline of 9/2, andT 4’s drift to become 2/6.(b) The same scenario as in (a) except thatT 4 has higher priority than bothT 2 and
T 3. SinceT 4 has been scheduled by time 2, it has negative deviance and changes its weight via Rule N, causing its next job to have a release time of
3 while maintaining a drift of zero.(c) T 1 joins the system at time 6/4 andT 4 has an initial weight of 4/6 that decreases to 1/6 at time 1. SinceT 4

has negative deviance at time 1, it is changed via Rule N, causing T 4’s next job to have a deadline of 15/2 andT4 to have a drift of−3/12.

locates each task a share equal to itsweightat each instant; and,
unlikeSW, IDEAL will not stop allocatingcapacity to a taskun-
lessthat task has received an allocation equal to the total execu-
tion cost of all of its jobs. (For simplicity, we have assumedthat
every job inT is released as early as possible. This assumption
can be removed at the cost of more complex notation. If we did
not make this assumption, then the allocation function forIDEAL
would equal zero between active jobs.) We provide below a more
in-depth explanation of these two algorithms.

4.1 Tardiness and Lag

We begin by defining theSW scheduling algorithm.

The SW scheduling algorithm. In order to establish tardi-
ness bounds forCNG-EDF, we compare allocations produced
by CNG-EDF to those produced bySW. UnderSW, at each
instantt, each non-complete job of each taskT i is allocated a
fraction of a processor equal toswt(T i, t). Furthermore, we con-
siderSW to be “clairvoyant” in the sense thatSW can use the
value ofae(T j

i ) to determine ifT j
i has completed before it has

halted. More specifically, for any scheduleSW underSW of any
task systemT , we say thatT j

i hascompleted by timet in SW iff
T j

i has executed forae(T j
i ) by t.

For example, consider the one-processor task systemT de-
picted in Fig. 3. Inset (a) depicts aCNG-EDF schedule and insets
(b) depictsT ’s SW schedule. Notice that in theSW scheduleT 1

does not receive any allocations over the interval[3, 6). This is
because at time 3 the total allocation toT 1

1 in the SW schedule
equalsae(T 1

1) = 1, hence,T 1
1 is complete at time 3. However,

at time 6,T 2
1 is released, and thereforeT 1 has an incomplete job

with a scheduling weight of 1/2. Hence,T 1 begins to receive al-
locations equal to its scheduling weight, which is now 1/2. Note
that we assume that every job release, deadline, execution cost,
and actual execution cost for aSW schedule to be the same as
that inCNG-EDF.

Lag. If S is anm-processor schedule underCNG-EDF of the
task systemT andSW is anm-processor schedule underSW of

the same task systemT , then thelags at timet of a jobT j
i , task

T i, and task systemT , respectively, are defined by Eqns. (2)–(4).

lag(T j
i , t) = A(SW , T j

i , 0, t) − A(S, T j
i , 0, t) (2)

lag(T i, t) = A(SW , T i, 0, t) − A(S, T i, 0, t) (3)

LAG(T , t) = A(SW , T , 0, t) − A(S, T , 0, t) (4)

Note thatLAG(T , t) =
∑

T i∈T lag(T i, t). The lag of a job
(or task or system) represents by how much a job (or task or
system) is under/over-allocated compared to theSW schedule at
time t. For example, in Fig. 3,lag(T 1

3, 1) = 1/4 − 0 = 1/4,
lag(T 1

3, 2) = 2/4 − 1 = −1/2, lag(T 1
1, 2) = 2/3 − 0 = 2/3,

lag(T 1
1, 3) = 3/3 − 0 = 1, andlag(T 1

1, 6) = 3/3 − 1 = 0.

4.2 Tardiness Proof

In prior work, Devi and Anderson [6] proved that in anym-
processorEDF schedule of asporadictask systemT (where the
total weight of all tasks is at mostm) the tardiness of each job of
any taskT i is at mostκ(m − 1) where,κ(m − 1) is as defined
in (1). Their proof consists primarily of three lemmas/theorems:
(i) if the LAG of T is bounded in them-processorEDF sched-
uleS of T , then tardiness is bounded;(ii) theLAG of T in S is
bounded;(iii) by (i) and (ii), the tardiness of each job of any task
T i in T is at mostκ(m − 1).

Since Devi and Anderson were proving tardiness bounds for
a sporadic task system, they were able to utilize the fact that a
job T j

i and its successorT j+1

i do not “overlap,”i.e., d(T j
i ) ≤

r(T j+1

i ) holds for any sporadic taskT i. However, this prop-
erty can be weakened without affecting their proof (barringsome
minor notational changes), so that their proof can be adapted
to prove tardiness bounds for adynamicsporadic task system.
Specifically, the Devi and Anderson proof can be used to show
that the tardiness ofCNG-EDF is bounded byκ(m − 1). If the
following properties hold.

(W)
∑

T i∈T wt(T i, t) ≤ m for all t.

(V) For any jobT j
i and its successorT j+1

i , if d(T j
i ) > r(T j+1

i ),
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Figure 3:A one-processor task systemT with four tasks:e(T 1
1) = 5 andT 1 has an initial weight of 1/3 that increases to 1/2 via case (i)of rule P

at time 6 and as a result,ae(T 1
1) = 1, e(T 2

1) = 4, r(T 2
1) = 6 andd(T 2

1) = 14; T 2 has a constant weight of 1/4 and a constant execution cost of 1;
T 3 has a constant weight of 1/4 and a constant execution cost of 1; andT 4 has an initial weight of 1/6 that decreases to 0 at time 6 ande(T 1

4) = 1.
Inset(a) depicts theCNG-EDF schedule ofT . The number in each box denotes which job is scheduled,e.g., over the range[0, 1), T 1

2 is executing,
and over the range[4, 5), T 2

2 is executing. Inset(b) depicts theSW schedule ofT . Note that sinceae(T 1
1) = 1 at time 3,T 1

1 is complete inSW, i.e.,
T 1 receives no allocations underSW over the range[3, 6). Inset(c) depicts theIDEAL schedule ofT . Note that theIDEAL allocation to any taskT i

equals
R t2

t1
wt(T i, u)du if T i is active over the range[t1, t2). For insets (b) and (c), the releases and deadlines of the jobsT 1

1 andT 2
1 are depicted.

thenT j
i , must have completed beforer(T j+1

i ) in both the
CNG-EDF andSW schedules ofT .

Since (W) can be easily satisfied, for the remainder of this
subsection, we show thatCNG-EDF satisfies property (V).
(Unfortunately, due to space constraints, we are not able
to present the Devi and Anderson proof with the neces-
sary (minor) adjustments in the body of this paper. There-
fore, we have placed this proof in an appendix to this paper,
which can be found on the author’s web-page athttp://
www.cs.unc.edu/∼anderson/papers.html.) In order
to show that property (V) holds, we show that for any jobT j

i

in an arbitrary dynamic sporadic task systemT , if d(T j
i ) >

r(T j+1

i ), thenT j
i must have completed beforer(T j+1

i ) in both
theCNG-EDF andSW schedules ofT . To this end, letS be the
m-processorCNG-EDF schedule of some dynamic task system
T , where

∑
T i∈T wt(T i, t) ≤ m for all t, and letSW be the

m-processorSW schedule of the same task system.

Lemma 1. For a taskT i, if r(T j+k
i ) < d(T j

i ), wherej, k ≥ 1,
thenT j

i will have completed byr(T j+k
i ) in S andSW .

Proof. Suppose thatr(T j+k
i ) < d(T j

i ) holds. By the definition of
d(T j

i ), the minimum separation between job releases, and rules P
and N,r(T j+k

i ) < d(T j
i ) holds only ifT i reweighted and halted

while T j
i was active. Without loss of generality, lettc be the

earliest such time. Then, by the rules P and N,r(T j+k
i ) ≥ tc.

Hence,T j
i will have halted and thus completed byr(T j+k

i ) in S.
It remains to be shown thatT j

i will have completed byr(T j+k
i )

in SW . SinceT j
i is halted attc, it must be the case thatT i

changed its weight via case (i) of rule P or N attc. However,
both cases follow easily by the clairvoyant nature ofSW .

Modifications for NP-CNG-EDF. In NP-CNG-EDF, if a job
is released and is ready at timet, and the newly-released job has
a deadline that is earlier than some other job executing att, the
newly released job cannot preempt the lower-priority job. If no
processor is available att, then this will lead to apriority inver-
sion. In such a scenario, the waiting ready, higher-priority jobis
referred to as ablocked job, and the executing lower-priority job
is referred to as ablocking job. A taskT i is said to beblockedat
t if T i is not executing att and the earliest pending job (i.e., the
ready job) ofT i has a higher priority than at least one job execut-
ing att. For example, in Fig. 1(c),T 2 is the blocking job over the
interval[6, 7), andT 1 is the blocked job over the same interval.

The major difference between Devi and Anderson’s tardiness-
bound proof forEDF andNP-EDF for sporadic tasks is that in
theirNP-EDF proof they calculate the upper bound on the length
of time for which a task can be blocked. Because of the blocking
factor, the bound they construct forNP-EDF is κ(m). As before,
Devi and Anderson in their proof forNP-EDF rely on the prop-
erty of sporadic tasks that consecutive jobs do not “overlap.” And,
as before, this requirement can be weakened without affecting
their proof, so that their proof holds for adynamicsporadic task
set, so long as conditions (V) and (W) hold. Since the reweighting
rules forNP-CNG-EDF are essentially the same as the reweight-
ing rules forCNG-EDF, by Lem. 1, conditions (V) and (W) hold
for anym-processorNP-CNG-EDF schedule, of any task setT
so long asm ≤

∑
T i∈T wt(T i, t) holds for allt. (As before, due

to space constraints we are forced to present the Devi and An-
derson proof, with its modification, in its entirety in an appendix
found on the author’s web page.) Hence,NP-CNG-EDF’s tardi-
ness bound isκ(m).

4.3 Drift

We now turn our attention to the issue of measuring “drift” un-
der CNG-EDF. In order to measure the “drift” of a task sys-
temT , we compare theSW schedule ofT to that of an “ideal”
reweighting scheme that enacts reweighting changes instanta-
neously. Under theideal processor sharing(IDEAL) scheduling
algorithm, at each instantt, each taskT i in T is allocated a share
equal to its weightwt(T i, t). Hence, ifI is the IDEAL sched-
ule of T , then over the interval[t1, t2), the taskT i is allocated
A(I, T j

i , t1, t2) =
∫ t2

t1
wt(T i, u)du time. As we mentioned ear-

lier, IDEAL is similar toSW, with two major exceptions:(i) un-
der IDEAL, each task receives an allocation equal to itsweight,
whereas underSW, each task receives an allocation equal to its
scheduling weight; and (ii) underIDEAL, a task does not stop
receiving allocations unless its total allocation equals the total
execution cost of all of its jobs, whereas underSW, a task will
stop receiving allocations if its active job has received anallo-
cation equal to its actual execution cost. For example, consider
the IDEAL schedule of the task systemT depicted in Fig. 3(c).
Notice that, over the range[3, 6), the taskT 1 receives alloca-
tions equal to its weight at every instant. Compare this to theSW
schedule (inset (b)), in whichT 1 receivesnoallocations over the
range[3, 6).

For most real-time scheduling algorithms, the difference be-
tween the ideal and actual allocations a task receives lies within
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some bounded range centered at zero. For example, under a
uniprocessorEDF (i.e., CNG-EDF without weight changes)
schedule, the difference between the ideal and actual allocations
for a task lies within(−emax(T i), emax(T i)). When a weight
change occurs, the same bounds are maintained except that they
may be centered at a different value. For example, in Fig. 2(a),
the range is originally(−1, 1), but after the reweighting event,
it is (−4/6, 8/6). This lost allocation is calleddrift. Given
this loss (barring further reweighting events)T i’s drift will not
change. In general, a task’s drift per reweighting event will be
non-negative (non-positive) if it increases (decreases) its weight.
UnderCNG-EDF, the drift of a taskT i at timet is defined as

drift(T i, t) = A(I, T j
i , 0, u) − A(SW , T j

i , 0, u), (5)

whereSW is the schedule ofT underSW, I is the schedule of
T underIDEAL, andu is the last time a reweighting event ofT i

was enacted beforet.

Theorem 1. The absolute value of the per-event drift under
CNG-EDF for each taskT i is less thanemax(T i).

Proof Sketch.If a taskT i changes its weight at timetc via rule
P, then when this weight change is enacted at timete (i.e., at tc
under case (i) or atd(T j

i ) under case (ii)), then it is as though
allocation equal toA(I, T j

i , r(T j
i ), te)−A(SW , T j

i , r(T j
i ), te) is

“lost.” For example in Fig. 2(a), the taskT 4 “loses” an allocation
of 2/6. Since this value (per reweighting event) is always less than
emax(T i), the absolute value of drift is less thanemax(T i).

If a taskT i changes its weight at timetc via rule N, andT i

decreases its weight (case (ii)), then the weight change will be
enacted atd(T j

i ). Since the maximum allocationT i can re-
ceive inSW during T j

i is emax(T i), A(SW , T j
i , tc, d(T j

i )) −

A(I, T j
i , tc, d(T j

i )) ≤ emax(T i). Thus, the absolute value of
the drift incurred is at mostemax(T i). For example, in Fig. 2(c),
the drift incurred byT 4 is −3/12, i.e., drift(T 4, t) = −3/12,
wheret ≥ 3/2. If T i increases its weight (case (i)), then it in-
curs zero drift, since itimmediatelyenacts the weight change (i.e.,
the scheduling weight changes immediately). Hence, the absolute
value of the drift incurred by this reweighting event is lessthan
emax(T i). For example, in Fig. 2(b), the drift incurred byT 4 is 0,
i.e., drift(T 4, t) = 0, wheret ≥ 2.

Modifications for NP-CNG-EDF. Note that delaying the ini-
tiation of a reweighting event does not substantially increase the
drift incurred per reweighting event, since the longest a reweight-
ing event can be delayed is the execution cost of the active job.
If T j

i is the active job ofT i at tc, and if T i’s reweighting event
is delayed until some timet, then att either (i) T j

i has a non-
positive deviance (i.e., T j

i completes before its deadline), or(ii)
T j

i is not active att (i.e., T j
i does not complete before its dead-

line, and thus is not active att). In either case, the active job (if
it exists) is negative-changeable. Hence, if the task increases its
weight, then the only drift the task will incur for this reweighting
event results from delaying the initiation of its reweighting event,
i.e., at mostemax(T i). If T i decreases its weight, then delaying
the reweighting event will not affect drift, since the enactment of
the reweighting event would occur atd(T j

i ) regardless of whether
the initiation of the reweighting event was delayed or not.

5 Experimental Results
The results of this paper are part of a longer-term project on
adaptive real-time allocation in which both Whisper and ASTA
described earlier, will be used as test applications. In this sec-
tion, we provide extensive simulations of Whisper and ASTA
as scheduled byPD2-OF, PAS, NP-PAS, CNG-EDF, and
NP-CNG-EDF.

Whisper. As noted earlier, Whisper tracks users via speakers
that emit white noise attached to each user’s hands, feet, and
head. Microphones located on the wall or ceiling receive these
signals and a tracking computer calculates each speaker’s posi-
tion by measuring signal delays. Whisper is able to compute the
time-shift between the transmitted and received versions of the
sound by performing acorrelationcalculation on the most recent
set of samples. By varying the number of samples, Whisper can
trade measurement accuracy for computation—with more sam-
ples, the more accurate and more computationally intensivethe
calculation. As a signal becomes weaker, the number of sam-
ples is increased to maintain the same level of accuracy. As the
distance between a speaker and microphone increases, the sig-
nal strength decreases. This behavior (along with the use ofpre-
dictive techniques mentioned in the introduction) can cause task-
share changes of up to two orders of magnitude every 10ms. Since
Whisper continuously performs calculations on incoming data, at
any point in time, it does not have a significant amount of “use-
ful” data stored in cache. As a result, migration/preemption costs
in Whisper are fairly small (at least, on a tightly-coupled system,
as assumed here, where the main cost of a migration is a loss
of cache affinity). In addition, fairness and real-time guarantees
are important due to the inherent “tight coupling” among tasks
required to accurately perform triangulation calculations.

ASTA system. Before describing ASTA in detail, we review
some basics of videography. All video is a collection of still
images calledframes. Associated with each frame is anexpo-
sure time, which denotes the amount of time the camera’s shutter
was open while taking that frame. Frames with faster exposure
times capture moving objects with more detail, while frameswith
slower exposure times are brighter. If a frame isunderexposed
(i.e., the exposure time is too fast), then the image can be too
dark to discern any object. The ASTA system can correct un-
derexposed video while maintaining the detail captured by faster
exposure times by combining the information of multiple frames.
To intuitively understand how ASTA achieves this behavior,con-
sider the following example. If a camera,A, has an exposure
time of1/30th of a second, and a second camera,B, has an expo-
sure time of1/15th of a second, then for every two frames shot
by cameraA the shutter is open for the same time as one frame
shot byB. ASTA is capable of exploiting this observation in or-
der to allow cameraA to shoot frames with the detail of1/30th

of a second exposure time but the brightness of1/15th of a sec-
ond exposure time. As noted earlier, darker objects requiremore
computation than lighter objects to correct. Thus, as dark objects
move in the video, the processor shares of tasks assigned to pro-
cess different areas of the video will change. As a result, tasks
will need to adjust their weights as quickly as an object can move
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across the screen. Since ASTA continuously performs calcula-
tions based on previous frames, it performs best when a substan-
tial amount of “useful” data is stored in the cache. As a result,
migration/preemption costs in ASTA are fairly high. In addition,
while strong real-time and fairness guarantees would be desirable
in ASTA, they are not as important here as in Whisper, because
tasks can function more independently in ASTA.

Experimental system set up. Unfortunately, at this point in
time, it is not feasible to produce experiments involving a real
implementation of either Whisper or ASTA, for several reasons.
First, both the existing Whisper and ASTA systems are single-
threaded (and non-adaptive) and consist of several thousands of
lines of code. All of this code has to be re-implemented as a
multi-threaded system, which is a nontrivial task. Indeed,be-
cause of this, it isessentialthat we first understand the scheduling
and resource-allocation trade-offs involved. The development of
PD2-OF, PAS, NP-PAS, CNG-EDF, andNP-CNG-EDF can
be seen as an attempt to articulate these tradeoffs. Additionally,
the focus of this paper is on scheduling methods that facilitate
adaptation—we havenot addressed the issue of devising mech-
anisms for determininghow andwhenthe system should adapt.
Such mechanisms will be based on issues involving virtual-reality
and multimedia systems that are well beyond the scope of thispa-
per. For these reasons, we have chosen to evaluate the schemes
discussed in this paper via simulations of Whisper and ASTA.
While just simulations, most of the parameters used here were
obtained by implementing and timing the scheduling algorithms
discussed in this paper and some of the signal-processing and
video-enhancement code in Whisper and ASTA, respectively,on
a real multiprocessor testbed. Thus, the behaviors in thesesim-
ulations should fairly accurately reflect what one would seein a
real Whisper or ASTA implementation.

For both Whisper and ASTA, the simulated platform was as-
sumed to be a shared-memory multiprocessor, with four 2.7-GHz
processors and a 1-ms quantum. All simulations were run 61
times. Both systems were simulated for 10 secs. (Note that longer
simulations return similar results.) We implemented and timed
each scheduling scheme considered in our simulations on an ac-
tual testbed that is the same as that assumed in our simulations,
and found that all scheduling and reweighting computationscould
be completed within 5µs. We considered this value to be negli-
gible in comparison to a 1-ms quantum and thus did not consider
scheduling overheads in our simulations. For both Whisper and
ASTA, we conducted two types of experiments:(i) all preemption
and migration costs were the same and corresponded to a loss of
cache affinity; and(ii) the preemption cost was set to some value
and the migration cost was varied. If a task was preempted and
then migrated, we assumed that it incurred the maximum of the
two costs. We ignored the issue of bus contention, since in prior
work, Holman and Anderson have shown that bus contention can
be virtually eliminated in Pfair-scheduled systems bystagger-
ing quantum allocations on different processors [7]. Staggering
would be trivial to apply inPAS andNP-PAS as well, since in
PAS, processors run nearly independently of each other. Fur-
thermore, sinceCNG-EDF andNP-CNG-EDF are event-based
rather than quantum-based, jobs are unlikely to begin executing

simultaneously. Based on measurements taken on our testbedsys-
tem, we estimated Whisper’s migration cost as 2µs–10µs, and
ASTA’s as 50µs–60µs. While we believe that these costs may be
typical for a wide range of systems, in our experiments we varied
the preemption/migration cost over a slightly larger range. For all
experiments, the maximum execution cost ofPAS andNP-PAS
was 7ms and 5ms forCNG-EDF andNP-CNG-EDF. These val-
ues were determined by profiling each system beforehand to de-
termine the “best” compromise of accuracy and performance.

While the ultimate metric for determining the efficacy of both
systems would be user perception, this metric is not currently
available, for reasons discussed earlier. Therefore, we compared
each of the tested schemes by comparing against allocationsin the
IDEAL algorithm. In particular, we measured both the “average
under-allocation” and “fairness factor” for each task set at the end
of each simulation (i.e., 10 secs.). Theaverage under-allocation
(UA) is the average amount each task is behind itsIDEAL allo-
cation (this value is defined to be nonnegative,i.e., for a task that
is not behind itsIDEAL, this value is zero). Thefairness factor
(FF) of a task set is the largest deviance from the allocations in
IDEAL between any two tasks (e.g., if a system has three tasks,
one that deviates from itsIDEAL allocation by−10, another by
20, and the third by 50, then theFF is 50 − (−10) = 60). The
FF is a good indication of how fairly a scheme allocates process-
ing capacity. A lowerFF means the system is more fair. For
applications like Whisper, where the output generated by multi-
ple tasks is periodically combined, a lowFF is important, since if
any one task is “behind,” then performance of the entire system is
impacted; however, for applications like ASTA, where tasksare
more independent, a highFF does not affect the system perfor-
mance nearly as much. These metrics should provide us with a
reasonable impression of how well the tested schemes will per-
form when Whisper and ASTA are fully re-implemented.

Whisper experiments. In our Whisper experiments, we sim-
ulated three speakers (one per object) revolving around pole in
a 1m× 1m room with a microphone in each corner, as shown
in Fig. 4. The pole creates potential occlusions. One task is
required for each speaker-microphone pair, for a total of 12
tasks. In each simulation, the speakers were evenly distributed
around the pole at an equal distance from the pole, and rotated
around the pole at the same speed. The starting position for
each speaker was set randomly. As mentioned above, as the dis-
tance between a speaker and microphone changes, so does the
amount of computation necessary to correctly track the speaker.

1 m

�
�
�
� Speaker

Occluding Object

Microphone�
�
�
�

��
��
��
��

�
�
�
�

1 m

Figure 4: The simulated Whisper sys-
tem.

This distance is (ob-
viously) impacted by
a speaker’s movement,
but is also lengthened
when an occlusion is
caused by the pole. The
range of weights of
each task was deter-
mined (as a function of
a tracked object’s posi-
tion) by implementing
and timing the basic computation of the correlation algorithm (an
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Figure 5: (a) The average under-allocation (UA) and(b) the fairness factor (FF) for Whisper as a function of preemption/migration cost, and (c)
the averageUA for Whisper as a function of migration cost (preemption costis fixed at 10µs), as scheduled by each tested algorithm. The key in
each graph is in the order that the schemes appear in that graph at 100µs. 98% confidence intervals are shown. Note that in (b),CNG-EDF and
NP-CNG-EDF are indistinguishable from each-other.

accumulate-and-multiply operation) on our testbed system.

In the Whisper simulations, we made several simplifying as-
sumptions. First, all objects are moving in only two dimensions.
Second, there is no ambient noise in the room. Third, no speaker
can interfere with any other speaker. Fourth, all objects move at a
constant rate. Fifth, the weight of each task changes only once for
every 5cm of distance between its associated speaker and micro-
phone. Sixth, all speakers and microphones are omnidirectional.
Finally, all tasks have a minimum weight based on measurements
from our testbed system and a maximum weight of 1.0. A task’s
current weight at any time lies between these two extremes and
depends on the corresponding speaker’s current position. Even
with theses assumptions, frequent share adaptations are required.

We conducted Whisper experiments in which the tracked ob-
jects were sampled at a rate of 1,000 Hz, the distance of each ob-
ject from the room’s center was set at 50cm, the speed of each ob-
ject was set at 5 m/sec. (this is within the speed of human motion),
and the maximum execution cost, migration, and preemption cost
were varied. However, due to page limitations, the graphs below
are a representative sampling our collected data.

The first set of graphs in Fig. 5 show the result of the Whis-
per simulations conducted to comparePD2-OF, PAS, NP-PAS,
CNG-EDF, andNP-CNG-EDF. Insets (a) and (b) depict the av-
erageUA andFF, respectively, for each scheme, where the pre-
emption cost is varied from 0 to 100µs and the migration cost
equals the preemption cost. Inset (c) depicts the averageUA for
each scheme, where the preemption cost is set at 10µs (the max-
imum expected preemption cost for Whisper) and the migration
cost is varied from 0 to 100µs. There are five things worth noting
here. First, when the preemption/migration cost is varied over the
range 2 to 10µs, theUA is about the same for all schemes (inset
(a)); however,PD2-OF has the bestFF (inset (b)). Second, while
CNG-EDF andNP-CNG-EDF do not have the bestUA for the
expected preemption/migration costs for Whisper, for higher pre-
emption/migration costs,i.e., preemption/migration costs larger
than 10µs, CNG-EDF andNP-CNG-EDF both have a substan-
tially better UA than PD2-OF and betterFF than eitherPAS
or NP-PAS. Third, as the migration cost (but not preemption
cost) of a task increases, theUA of PAS andNP-PAS increases
slowly (inset (c)). However the performance of the other three
schemes decays quickly. Fourth, the confidence intervals for the

FF for CNG-EDF, NP-CNG-EDF, and PD2-OF are smaller
than forPAS andNP-PAS, sinceCNG-EDF, NP-CNG-EDF,
andPD2-OF have better accuracy. Fifth, in inset (c),PD2-OF
and CNG-EDF’s UA do not appreciably increase until the mi-
gration cost exceeds 10µs. This is because, until the migration
cost is 10µs,PD2-OF andCNG-EDF incur the maximum of the
migration or preemption cost, which is 10µs.

ASTA experiments. In our ASTA experiments, we simulated a
640× 640-pixel video feed where a grey square that is160× 160
pixels moves around in a circle with a radius of160 pixels on
a white background. This is illustrated in Fig. 6. The grey
square makes one complete rotation every ten seconds. The
position of the grey square on the circle is random. Each
frame is divided into sixteen160 × 160-pixel regions; each of
these regions is corrected by a different task. A task’s weight
is determined by whether the grey square covers its region.

64
0 

pi
xe

l

640 pixel

Grey Square

Square’s Path

Figure 6: The simulated ASTA sys-
tem.

By analyzing ASTA’s
code, we determined that
the grey square takes three
times more processing
time to correct than the
white background. Hence,
if the grey square com-
pletely covers a task’s
region, then its weight is
three times larger than that
of a task with an all-white
region. The video is shot
at a rate of 25 frames per second, and as a result, each frame has
an exposure time of 40ms.

The second set of graphs, in Fig. 7, show the result of the ASTA
simulations conducted to compare the five scheduling algorithms.
Insets (a) and (b) depict the averageUA andFF, for each scheme,
where the preemption cost is varied from 0 to 100µs and the mi-
gration cost equals the preemption cost. Inset (c) depicts the aver-
ageUA for each scheme, where the preemption cost is set at 60µs
(the maximum expected preemption cost for ASTA) and the mi-
gration cost is varied from 0 to 100µs. There are two things worth
noting here. First, when the preemption/migration cost is varied
over the range 50 to 60µs, NP-PAS and PAS have the small-
estUA (inset (a)); however,CNG-EDF andNP-CNG-EDF both
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Figure 7: (a) The average under-allocation (UA) and(b) the fairness factor (FF) for ASTA as a function of preemption/migration cost, and(c) the
averageUA for ASTA as a function of migration cost (preemption cost is fixed at 60µs), as scheduled by each tested algorithm. The key in each graph
is in the order that the schemes appear in that graph at 100µs. 98% confidence intervals are shown. Note that in (b),CNG-EDF andNP-CNG-EDF
are indistinguishable from each-other.

Provides Hard Has Low Provides
Scheme Real-Time Migration/ Strong Fairness

Guarantees Preemption Costs Guarantees
PD2-OF X X

(NP-)PAS X

(NP-)CNG-EDF X X

Table 2:Summary of algorithm performance.

have anUA that is competitive with bothPAS andNP-PAS (inset
(a)) and have asubstantiallysmallerFF (inset (b)). Second, in in-
set (c)PD2-OF andCNG-EDF’s UA do not appreciably increase
until the migration cost equals 60µs. This occurs for the same
reason thatPD2-OF andCNG-EDF did not noticeably increase,
until 10µs in Fig. 5(c).

6 Concluding Remarks
We have presented a two new multiprocessor reweighting
schemes,CNG-EDF andNP-CNG-EDF, which reduce migra-
tion costs and preemptions at the expense of allowing deadline
misses. We have also presented both analytical and experimen-
tal comparisons of these schemes with a more accurate but more
migration-prone scheme,PD2-OF, and two less accurate parti-
tioning schemes that have lower tardiness,PAS and NP-PAS.
These results suggest that when it is critical that every task make
its deadline and migration/preemption costs are low (i.e., systems
like Whisper), thenPD2-OF is the best choice; when preemp-
tion/migration costs are high (i.e., either Whisper or ASTA as im-
plemented on a system where the processors are not as tightlyin-
tegrated), average case performance is of the utmost importance,
and fairness and timeless are less important, then eitherPAS or
NP-PAS may be the best choice; and when preemption/migration
costs are high and and a good mix of average-case performance
and fairness factor is beneficial (i.e., systems like ASTA), then ei-
therCNG-EDF or NP-CNG-EDF may be the best choice. Thus,
each algorithm is of valueand will be the best choice in certain
application scenarios, as summarized in Table 2.

While our focus in this paper has been on scheduling tech-
niques thatfacilitate fine-grained adaptations, techniques for de-
termininghow and when to adapt are equally important. Such
techniques can either be application-specific (e.g., adaptation
policies unique to a tracking system like Whisper) or more

generic (e.g., feedback-control mechanisms incorporated within
scheduling algorithms [9]). Both kinds of techniques warrant fur-
ther study, especially in the domain of multiprocessor platforms.
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7 Appendix
In this section, we provide the tardiness proofs forCNG-EDF and
NP-CNG-EDF. Note that these proofs are only a slight modification of
the tardiness proofs forEDF andNP-EDF originally presented by Devi
and Anderson in [6]. For brevity, we use the functiontardiness(S, T j

i )
to denote the tardiness of the jobT j

i in the scheduleS. The tar-
diness proofs given below require one additional property concerning
CNG-EDF andNP-CNG-EDF, which is stated below.

(E) For all jobs T j
i in a task system scheduled viaCNG-EDF or

NP-CNG-EDF, e(T j
i ) = emax(T i), unless taskT i reweighted

while T j−1

i was active, and causedae(T j−1

i ) to be less than
e(T j−1

i ).

7.1 CNG-EDF

In this subsection, we show that tardiness of any job in anym-processor
CNG-EDF schedule of any task systemT for whichWsum(T , t) ≤ m,
for all t, is at mostκ(m − 1), whereκ(m − 1) is as defined in Eq. (1)
andWsum(T , t) =

P

T i∈T swt(T i, t). As mentioned in Sec. 4, the
following proof has three steps:(i) prove that a boundedLAG implies a
bounded tardiness;(ii) bound theLAG of the system; and(iii) combine
(i) and (ii) to produce a bounded tardiness for each job. Before continu-
ing we introduce a few additional lemmas.

Since the total allocations to tasks in am-processorCNG-EDF sched-
uleS at any instant is at mostm, if [t1, t2) is a busy interval inS, then
the total allocation to tasks inT in S over the range[t1, t2) is at most
m(t2−t1). Hence by the definition ofLAG, LAG(T , t2) ≤ LAG(T , t1).
Thus, we have the following lemma.

Lemma 2. For any m-processorCNG-EDF scheduleS of the task
systemT , if LAG(T , t + δ) > LAG(T , t), where δ > 0, and
Wsum(T , t′) ≤ m for t′ ≥ 0, then [t, t + δ) is a non-busy interval
in S.

Lemma 3. If at some timet ≥ 0, some jobT j
i in some task systemT has

completed in bothSW andS, thenA(SW , T j
i , 0, t) = A(S, T j

i , 0, t),
whereSW andS are, respectively, them-processorSW andCNG-EDF
schedules ofT .

Proof. By definition of bothSW andS, once a jobT j
i has received

its actual execution cost it does not receive any additionalallocations.
Hence, if t is as defined in the statement of the lemma, then att,
A(SW , T j

i , 0, t) = A(S, T j
i , 0, t) = ae(T j

i ).

The following corollary follows directly from Lemma 3.

Corollary 1. If for some timet ≥ 0, a taskT i is not pending in a
CNG-EDF schedule of the task systemT , thenlag(T i, t) ≤ 0.

Now, we can show that if theLAG of T is bounded, then the tardiness
of T is bounded.

Lemma 4. Let T be a task system such that the deadline of every job
is at mosttd and let the tardiness of every jobT ℓ

q ∈ T with a deadline
less thantd be at mostZ+e(T ℓ

q) in them-processorCNG-EDF sched-
uled,S, of T , whereZ ≥ 0, td = d(T j

i ), andT j
i some job inT . If

LAG(T , td) ≤ m · Z + e(T j
i ), thentardiness(S, T j

i ) ≤ Z + e(T j
i ).

Proof. To derive a contradiction, we assume that the jobT j
i has not com-

pleted inS by td. Throughout this proof, we denote them-processorSW
schedule ofT asSW .

By Lem. 3, if at some timet, all tasks in inT are entirely complete
in bothSW andS, thenLAG(T , t) = 0. By the definition ofSW , at

time td, all tasks inT are entirely complete inSW . Therefore, attd,
the amount of work remaining to be completed by all tasks inT in the
scheduleS equalsA(SW , T , 0, td) − A(S, T , 0, td) = LAG(T , td).

Because there are no new jobs at or aftertd, there can be no preemp-
tions, at or aftertd. (Note that this includes new jobs issued via the rules
P and N.) Letδ = A(S, T j

i , 0, td), and lety = Z + δ/m. We consider
two cases depending on whether[td, td + y) is busy inS or not.

Case 1:[td, td + y) is busy. In this case, the total amount allocated
to all tasks inT in S over the range[td, td + y) is exactlymy = mZ+δ.
Since the amount of work that remains to be completed inS for all tasks
in T at td is LAG(T , td), the amount of work remaining inS for all
tasks pending attd + y is at moste(T j

i ) − δ. Thus the latest time that
T j

i resumes execution inS after td is td + y, and because there are no
preemptions at or aftertd, T j

i is complete inS at or beforetd + y +
e(T j

i ) − δ ≤ td + Z + e(T j
i ). Hencetardiness(S, T j

i ) ≤ td + Z +
e(T j

i ) − d(T j
i ) = Z + e(T j

i ). This case is illustrated in Fig. 8(a).

Case 2: [td, td + y) is non-busy. Let t′ denote the first (earliest)
non-busy instant in the range[td, td + y). Because the release time of
any job in T is beforetd, any pending jobT b

a is ready att′ if T b
a’s

predecessor jobs have completed inS by t′. Since at least one processor
is idle att′, we have the following property.

(J) At mostm − 1 tasks have pending jobs inS at or aftert′.

Since at least one processor is idle att′, if T j
i is not complete bytd +

y in S, then some job ofT i is executing att′. Because there are no
preemptions aftertd andt′ < td + y, if T j

i is executing att′, thenT j
i

completes inS beforetd + y + e(T j
i )− δ ≤ td +Z + e(T j

i ). Thus, the
tardiness ofT j

i is less thanZ + e(T j
i ), which satisfies the lemma.
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Figure 8:Lemma 4.(a) [td, td + y) is busy.Ti,j commences execution
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Figure 9:Lemma 5. Partitioning of tasks inT . Jobs of a sample task in
each subset are shown. In this figure, all jobs except those ofTi, which
is in α, complete executing by their deadlines.

The remaining possibility is thatj > 1, and that a predecessor
job (T j−1

i ) to T j
i is executing att′ in S. In this case,T j

i could not
have executed inS before td, and hence bothδ = 0 and y = Z
hold. If the job T j−1

i is not complete inS by d(T j−1

i ), then by
Lem. 1, r(T j

i ) ≥ d(T j−1

i ). Thus, by the definition of deadline and
the fact that a task’s weight is at most 1,td − e(T j

i ) ≥ d(T j
i ) −

e(T j
i ) ≥ r(T j

i ) ≥ d(T j−1

i ). Since td − e(T j
i ) ≥ d(T j−1

i ) and
since tardiness(T j−1

i , S) ≤ Z + e(T j−1

i ), the last time at which
T j−1

i could complete inS is td − e(T j
i ) + Z + e(T j−1

i ). Since
T j−1

i is not complete inS by d(T j−1

i ), by the definition of rules P
and N, it cannot be the case thatT j−1

i was halted. SinceT j−1

i was
not halted,ae(T j−1

i ) = e(T j−1

i ). Hence, by (E),e(T j
i ) = emax(T i).

Hence, the last time at whichT j−1

i could complete istd + Z. Because
t′ < td + y = td +Z, by (J),T j

i commences execution inS at or before
td + Z, and henceT j

i is complete inS by td + Z + e(T j
i ). This is

illustrated in Fig. 8(b).

Now, we can bound theLAG of T .

Lemma 5. LetT be a task system such that the deadline of every job is
at mosttd and let the tardiness of every jobT ℓ

q ∈ T with a deadline less
thantd be at mostZ +e(T ℓ

q) in them-processorCNG-EDF scheduled,
S, of T , whereZ ≥ 0, Wsum(T , s) ≤ m for all s ≥ 0, and td is the
deadline for some job inT . For any maximally non-busy time interval
[t, t′) in S, where0 ≤ t < t′ ≤ td, the number of jobs inT that
are executing att′ in S, k is at mostm − 1 and LAG(T , t′) ≤ Z ·
P

T i∈Xmax(T , k) wtmax(T i) +
P

T i∈Emax(T , k) emax(T i).

Proof. Let T andS be as defined in the statement of the lemma, and
let t and t′ be arbitrary values such that0 ≤ t < t′ ≤ td and [t, t′)
is maximally non-busy forS, andk be the number of jobs inT that are
executing inS at the end of the interval. LetSW denote them-processor
SW schedule ofT .

By the definition of busy, the fact thatt′− is non-busy, and by Eq. (4),
LAG(T , t′) =

P

T i∈T lag(T j
i , t′) Therefore, an upper bound on the

LAG of T at t′ can be determined by establishing an upper bound on the
lag at t′ of each task inT . For this, we partition tasks inT into two
subsets,α andγ, as defined below, and then determine an upper bound
on thelag of a task in both subset. This partitioning is illustrated inFig. 9

α = subset of all tasks inT executing inS throughout[t, t′).

γ = subset of all tasks inT not executing inS for some part of[t, t′).

Upper bound on thelag of a task in α. Let T i be a task inα and
let T j

i be its job executing inS at t. Let δ denote the amount of time that
T j

i has executed inS beforet. We first determine thelag of T i at t by
considering two cases depending ond(T j

i ). (We considert′ afterwards.)

Case 1:d(T j
i ) < t. BecauseT j

i is executing att in S and any newly
arriving job, which would have a deadline greater thant > d(T j

i ), cannot
preemptT j

i , the time at whichT j
i completes inS is t + e(T j

i ) − δ. (T j
i

could complete earlier if its actual execution time is less thane(T j
i ).) By

definition ofT , tardiness(S, T j
i ) ≤ Z + e(T j

i ) . Therefore,d(T j
i ) ≥

t + e(T j
i ) − δ − (Z + e(T j

i )) holds.
By the definition ofSW and Lem. 1,T j

i is complete inSW by
d(T j

i ), and any job ofT i that succeedsT j
i is allocated (inSW ) at most

wtmax(T i) at every instant in the range[d(T j
i ), t) in whichT i is active.

(SinceT j
i is not complete byt ≥ d(T j

i ), by Lem. 1,r(T j+1

i ) ≥ d(T j
i ).)

Thus, the under-allocation toT i in S over the range[0, t) equals the
under-allocation (relative toSW ) to T j

i in S, which is e(T j
i ) − δ,

and the allocation to later jobs inT i over the range[d(T j
i ), t) in SW .

Hence,lag(T i, t) is at moste(T j
i ) − δ + (t − d(T j

i )) · wtmax(T i) ≤
e(T j

i ) − δ + (Z + δ) · wtmax(T i).

Case 2: d(T j
i ) ≥ t. In this case, the amount of work done byT j

i

in SW up to time t is at moste(T j
i ) −

R d(T j
i )

t
swt(T i, u)du. Be-

cause all prior jobs ofT i are complete byt in both S andSW , and
T j

i has executed forδ time units beforet in S, lag(T i, t) ≤ e(T j
i ) −

R d(T j
i )

t
swt(T i, u)du ≤ e(T j

i )− δ ≤ e(T j
i )− δ +(Z+ δ) ·wtmax(T i)

Thus, for both cases, we have

lag(T i, t) ≤ e(T j
i ) − δ + (Z + δ) · wtmax(T i) (6)

Next, in order to determine thelag of T i, at t′, we calculate the alloca-
tions toT i over the range[t, t′) in both theS andSW schedules. In
SW , T i is allocated a share of at mostswt(T i, u) at every instantu ∈

[t, t′), for a total allocation of at most
R t′

t
swt(T i, u)du. BecauseT i ex-

ecutes throughout[t, t′) in S, its total allocations inS over[t, t′) is t′−t.

Hence,A(SW , T i, t, t′)−A(S, T i, t, t′) ≤
R t′

t
swt(T i, u)− 1du, and

so, by the definition oflag and Eq. (6),

lag(T i, t′) ≤ e(T j
i ) − δ + (Z + δ) · wtmax(T i)

+
R t′

t
(swt(T i, u) − 1) du

≤ e(T j
i ) + Z · wtmax(T i)

(7)

sincet > t′, wtmax(T i) ≤ 1, andδ ≥ 0.

Upper bound on the lag of a task in γ. Let T i be a task inγ and
let t′′ be the last time in the range[t, t′) such thatT i was not executing
in S (note thatt′′ may bet′−). SinceCNG-EDF is work conserving
and there is an idle processor att′′, T i is not pending att′′. Hence
by Cor. 1, lag(T i, t′′) ≤ 0. (Note that ift′′ = t′−, then this case is
now complete.) By definition oft′′, T i is executing inS continuously
over the range[t′′, t′). Since over this rangeSW allocatesT i at most
t′−t′′ andS allocatesT i, t′−t′′, lag(T i, t′′) ≥ lag(T i, t′). Therefore,
lag(T i, t′) ≤ 0.

By Eq. (4),LAG(T , t′) is given by the sum of the lags of tasks in sub-
setsα andγ. As shown above, only tasks inα may have a positivelag,
and thusLAG(T , t′) =

P

T i∈α∪γ
lag(T i, t′) ≤

P

T i∈α
lag(T i, t′),

and by Eq. (9),LAG(T , t′) ≤
P

T i∈α
(emax(T i) + Z · wtmax(T i)).

Since [t, t′) is maximal non-busy andk tasks are executing inS at
the end of the interval,k ≤ m − 1 holds. Hence, since a task
in α executes inS throughout[t, t′), there could be at mostk tasks
in α. ThereforeLAG(T , t′) ≤ Z ·

P

T i∈Xmax(T , k) wtmax(T i) +
P

T i∈Emax(T , k) emax(T i).

Finally, to determine a tardiness bound forCNG-EDF, we are left
with determining as small aZ as possible such that the upper bound
given by Lem. 5 is at most the lower bound required in Lem. 4.

12



Theorem 2. The tardiness for every job̂T
j

i of any task system̂T , where
Wsum(T̂ , t) ≤ m, for any timet is at mostκ(m − 1) in anyCNG-EDF
schedule for̂T onm processors.

Proof. To derive a contradiction, assume that there exists a task system

T̂ such thatWsum(T̂ , t) ≤ m for all t and there exists some job̂T
j

i in T̂

such that̂T
j

i has a tardiness greater thanκ(m − 1) in somem-processor
CNG-EDF schedule,̂S, of T̂ . Let T denote the task system obtained

from T̂ by removing all jobs with deadlines greater thanT̂
j

i and letS be
them-processorCNG-EDF schedule ofT . Assuming thatCNG-EDF
resolves ties among jobs consistently, every jobT ℓ

k is scheduled at the

same time inS as its corresponding job̂T
ℓ

k in Ŝ. Hence the tardiness of
every job inT is the same in both schedule.

Let td = d(T j
i ), SinceT j

i misses its deadline,lag(T j
i , td) > 0. Since

no job inT has a deadline greater thantd, no task inT no task has nega-
tive lag attd. Thus, by Eq. (4),LAG(T , td) ≥ 0. SinceLAG(T , 0) = 0,
by Lem. 2, there exists a non-busy interval in[0, td) for S. Let t′ be the
end of the latest non-busy instant beforetd. By Lem. 2,

LAG(T , td) ≤ LAG(T , t′). (8)

By the definition ofT , the tardiness of any jobT q
ℓ with deadline less than

td is at mostκ(m − 1) = Z + e(T q
ℓ ), for all 1 ≤ ℓ ≤ n, wheren is the

number of tasks inT and

Z =

P

T z∈Emax(T , m − 1) emax(T z)

m −
P

T z∈Xmax(T , m − 1) wtmax(T z)

Hence, by Eq. (8) and Lem. 5,

LAG(T , td) ≤ LAG(T , t′)

≤ Z ·
“

P

T z∈Xmax(T , m − 1) wtmax(T z)
”

+
“

P

T z∈Emax(T , m − 1) emax(T z)
”

.

(9)

By definition of T andT j
i , the tardiness ofT j

i is greater thanZ +
e(T j

i ). Hence by Lem. 4,LAG(T , td) ≥ m · Z + e(T j
i ), which by

Eq. (9) implies that

m · Z + e(T j
i ) < Z ·

0

B

@

X

T i∈Xmax(T , m − 1)

wtmax(T i)

1

C

A

+

0

B

@

X

T i∈Emax(T , m − 1)

emax(T i)

1

C

A
,

i.e., Z <

P

T z∈Emax(T , m − 1)
emax(T z)

m−
P

T z∈Xmax(T , m − 1)
wtmax(T z)

. This contradicts the

definition ofZ. HenceT does not exist.

7.2 NP-CNG-EDF
In this section we establish the tardiness bounds forNP-CNG-EDF. The
approach for deriving a tardiness bound forNP-CNG-EDF differs from
that used forCNG-EDF in that we must also consider the length of time
a task is blocked.

Before continuing it is useful to introduce some additionalnotation
and definitions. First, for any set of jobsΨ in the systemT , we define
theLAG of Ψ as

LAG(Ψ, t) =
X

T j
i∈Ψ

lag(T j
i , t).

T
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Figure 10:Illustration of the reasoning required forNP-CNG-EDF .

Note thatLAG(Ψ, t) can also be defined as the sum of thelag of all tasks
that have a job inΨ at timet that are active or pending at timet−.

Definition 4 (Blocking interval). For a task systemT the range[t1, t2)
is theblocking interval forΨ in them-processorNP-CNG-EDF sched-
ule ofT if at least one job inΨ is blocked in[t1, t2). Moreover,[t1, t2) is
considered to bemaximally blocking, if every non-empty subinterval of
[t1, t2) is a blocking interval, and eithert1 = 0 or t1− is non-blocking.

Definition 5 (Pending blocking jobs (B) and work (B)). For any job set
Ψ in the task systemT , we denote the set of all jobs that are inT and not
in Ψ, block one or more jobs inΨ at the timet−, and may execute in the
m-processorNP-CNG-EDF scheduleS at t asB(T , Ψ, t, S). Further-
more, we denote the total amount of time that the jobs inB(T , Ψ, t, S)
execute beyondt in S, i.e., the total amount of work pending for those
jobs at t as B(T , Ψ, t, S). (For brevity, we denoteB(T , Ψ, t, S) as
B(Ψ, t) when T andS are obvious.) The set of all jobs of tasks in
T , not in the job setΨ that can block some job inΨ in a m-processor
NP-CNG-EDF scheduleS of T at some time is denotedB(T , Ψ, S), or
simplyB, when the parameters are obvious.

Non-busy interval categories. With respect to a job setΨ, an in-
terval[t1, t2) is said to bebusyonly if every processor is executing some
job of Ψ throughout the interval. With this definition, it is easy to see
that theLAG of Ψ can increase only across a non-busy interval, and so
Lem. 2 applies toΨ in a schedule forT . Also note that by this definition,
a blocking interval forΨ is also a non-busy interval forΨ. However, not
every instant in which a job inB is executing need be a blocking instant.
Thus, a non-busy interval in aNP-CNG-EDF schedule forΨ∪B can be
classified as either(i) ablocking, non-busy intervalor (ii) anon-blocking,
non-busy interval.(Note that in this section, every non-busy interval or
a blocking interval is taken to be maximal, unless otherwisestated. We
refrain from explicitly saying so for conciseness.)

By Lem. 2, we know that theLAG of a job setΨ can increase only
across a non-busy interval (not necessarily maximal). Thus, if Ψ is the
set of jobs with a deadline at mosttd, in order to determine an upper
bound ofLAG at td it is sufficient to determine an upper bound at the
end of the latest non-busy interval. As discussed above, a non-busy in-
terval for Ψ in an NP-CNG-EDF schedule is either blocking or non-
blocking. Therefore, to determine an upper bound on theLAG of Ψ at
td, we determine an upper-bound onLAG at the end of the last blocking,
non-busy interval, or the last non-blocking, non-busy interval, whichever
is later. For example, in Fig. 10(a),[t4, td) is the latest non-busy interval.
Within this interval, subinterval[t4, t5) is non-blocking, while[t5, td) is
blocking. Therefore, we will determine an upper bound forLAG at td

by considering[t5, td). Similarly, in Fig. 10(b), an upper bound onLAG
will be determined att7, by considering the interval[t6, t7). Next, be-
cause every job ofΨ that is not executing in a non-blocking, non-busy
interval is either not pending or pending but not ready (because a prior
job is executing) the procedure for determiningLAG at the end of of such
an interval is identical to that used forCNG-EDF in Lem. 2. (In Lem. 2,
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we showed that theLAG of a task that does not execute at the end of
a non-busy interval is at most zero.) However, since throughout a non-
busy interval (relative toΨ) in which there is blocking, there is at least
one task that has a ready job inΨ is not executing, thelag of a task that
is not executing at the end of such a non-busy interval cannotbe taken
to be zero. For example, in Fig. 10(a), the taskT 5 is not executing in
[t5, td) and thelag of its task attd is positive. Therefore, the procedure
for determiningLAG is slightly different in this case.

A blocking job with a deadline later thantd, that is executing but is
incomplete attd, will continue to execute beyondtd, which will delay the
executing of pending jobs inΨ. Hence, in order to determine a tardiness
bound for a job inΨ, apart from an upper bound on the amount of work
pending for jobs inΨ at td, i.e., LAG(Ψ, td), we also need to determine
an upper bound on the total amount of work pending for jobs that are
blocking those ofΨ at td, i.e., B(td, S). In Fig. 10(a), if we assume
that T 2 is the only pending blocking task attd, we will also need an
estimate of the amount of time thatT 2 executes aftertd. In Fig. 10(b),
the amount of pending work for jobs inB is positive att6, while it is
zero at and aftert7. Note that unless the latest non-busy instant istd, the
amount of blocking work that is pending attd will be zero.

As with CNG-EDF, we then determine a lower bound on the sum of
the blocking workB and theLAG of Ψ at td that is necessary for the
tardiness of a job with a deadline at mosttd to exceed a given value, and
an upper bound of the maximum value for the same that is possible with
a given task system. Finally, we use these to arrive at a tardiness bound.
The lemma that follows parallels Lem. 4 and its proof is similar.

Lemma 6. Let T be a task system such that the tardiness of every job
T ℓ

q ∈ T with a deadline less thantd be at mostZ + e(T ℓ
q) in them-

processorNP-CNG-EDF schedule,S, of T , whereZ ≥ 0, td = d(T j
i ),

and T j
i is some job inT . Let Ψ denote the set of all jobs inT with a

deadline at mosttd. If LAG(Ψ, td) + B(Ψ, td) ≤ m · Z + e(T j
i ), then

tardiness(T j
i , S) ≤ Z + e(T j

i ).

An upper bound ofLAG(Ψ, t′) + B(Ψ, t′), wheret′ is the end of
maximally non-busy interval is given by the next lemma. Its proof is
only slightly different from that of Lem. 5.

Lemma 7. Let T , Ψ, S, andm be as defined in Lemma 6. Let[s, t′),
where0 ≤ s < t′ ≤ td, be a maximally non-busy interval forΨ
in [0, td) in S, such that eithert′ = td or t′ is busy. Let the tar-
diness inS of every jobT ℓ

q ∈ T with a deadline less thantd be at
mostZ + e(T ℓ

q), whereZ ≥ 0. ThenLAG(Ψ, t′) + B(Ψ, t′) ≤ Z ·
“

P

T i∈Xmax(T , m − 1) wtmax(T i)
”

+
P

T i∈Emax(T , m) emax(T i).

Proof. Referring to the statement of the lemma,[s, t′) is a maximal non-
busy interval forΨ. Hence, every instant in the interval is either a block-
ing, non-busy instant, or a non-blocking, non-busy instant. We consider
two cases depending on whethert′− is blocking.

CASE A: t′
−

is a non-blocking instant. This case is illustrated
in Fig. 11(a). Lett be the earliest instant at or afters such that at every
instant in[t, t′), either at least one processor is idle, or at least one job in
B is executing, or both hold. However, the jobs inB that are executing in
this interval do not block any job inΨ. Therefore, in both cases, every job
of Ψ that is not executing at some instant in[t, t′) is either inactive at that
instant or is active, but has no pending jobs. Hence, for the purpose of
determining theLAG(Ψ, t′), the jobs inB that are executing in[t, t′) can
be ignored and the interval in which they are executing can betaken to
be idle intervals on the respective processors. Therefore,theLAG(Ψ, t′),
can be determined in the same manner as that used in the case preemptive

j
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Figure 11:Lemma 7.(a) CASE A. (b) CASE B.

CNG-EDF in Lemma. 5 to be at most

Z ·

0

B

@

X

T i∈Xmax(TΨ, k)

wtmax(T i)

1

C

A
+

X

T i∈Emax(TΨ, k)

emax(T i),

(10)
whereTΨ is the subset of all tasks inT whose jobs inΨ are executing
at the end of the interval[t, t′), andk = |TΨ| ≤ m − 1.

We next determine a bound ofB(Ψ, t′). If t′ ≤ td, then by the state-
ment of the lemmat′ is busy. Therefore no jobB that is executing at
t′− executes att′ or later. Hence, in this caseB(Ψ, t′) = 0. The other
case is thatt′ = td holds. Note that each jobT j

i in B(T , Ψ, td, S)
could execute for at moste(T j

i ) time units aftertd. Becausek jobs
are executing at the end of the interval[t, t′) are inΨ, at mostm − k
jobs ofB are executing att′−. Therefore, whent′ = td, B(Ψ, td) ≤
P

T i∈Emax((T\TΨ), m − k) emax(T i). Hence, for either case, by (10)

we have

LAG(Ψ, t′) + B(Ψ, t′) ≤ Z ·
“

P

T i∈Xmax(T , m − 1) wtmax(T i)
”

+
P

T i∈Emax(T , m) emax(T i).

CASE B: t′
−

is a blocking instant. In this case, lett denote the
earliest instant at or afters such that[t, t′) is a maximally-blocking in-
terval. Since every job ofΨ has an earlier deadline than a job inB, a
job in Ψ cannot be blocked at time 0 due to a job inB commencing ex-
ecution at time 0. Thereforet > 0 holds. Also, no job ofΨ (including
jobs that are blocked att) is blocked att−. Hence, it cannot be the case
that a job inΨ is blocked att due to a job inB commencing executing at
t. Rather, the blocking job should have commenced execution beforet.
Similarly, since every instant[t, t′) is a blocking instant, at which one or
more ready jobs ofΨ are waiting, no job inB can commence execution
anywhere in(t, t′). Therefore, we have the following.

(B) Every job inB that is executing att ≤ t̂ < t′, is executing through-
out [t−, t̂].

LetJ denote the set of all jobs ofB that are executing att, and hence
are blocking one or more jobs ofΨ. Let b = |J |, and letµ denote the
subset of all tasks inT whose jobs are inJ . By the nature of[t, t′),
b ≥ 1. Because, each task can have at most one job executing at any
instant, we have

|J | = |µ| = b ≥ 1. (11)

By the definition ofLAG for a set of jobs, theLAG of Ψ at t is given
by the sum of thelags of all tasks inT with at least one job inΨ that is
either pending or active att−. Let ρ denote the set of all such tasks. (It
is easy to see that no task inµ is in ρ.) Therefore,

LAG(Ψ, t) ≤
X

T i∈ρ

lag(T i, t), (12)
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Partitioning ρ. Our approach for determining an upper bound on the
LAG of Ψ at t′ is mostly similar to that used in Lemma 5. Because
(12) holds, we first partition the tasks inρ into the subsetsα andγ, as
defined below, and determine upper bounds on thelag at t of tasks in
each subset, and the number of tasks in each subset. We use these to
determine an upper-bound on theLAG of Ψ at t, from which, we then
determine an upper bound on theLAG of Ψ at t′

α = subset of all tasks inρ executing att−

γ = subset of all tasks inρ not executing att−

Upper bound on lag at t of a task in α. Let T i be a task inα and
let T j

i be its job executing att−. Let δ denote the amount of time that
T j

i has executed for beforet in S. We determine thelag of T i at t by
considering two cases depending ond(T j

i ).

Case 1:d(T j
i ) ≤ t. BecauseT j

i cannot be preempted, the latest time
thatT j

i completes executing can bet = e(T j
i ) − δ. (It could complete

earlier if its actual executing time is lower thane(T j
i )). By the statement

of the lemma, the tardiness of every job ofT i, with deadline less thantd

is at mostZ + e(T j
i ). Therefore,d(T j

i ) ≥ t + (e(T j
i ) − δ) − (Z +

e(T j
i )) = t−δ−Z holds. By Lemma 1,T j

i is complete inSW by d(T j
i )

andT i is allocated a share ofswt(T i, q) in every instantq ∈ [d(T j
i ), t)

in which it is active. Thus the under-allocation toT i in S in [0, t) is at
moste(T j

i ) − δ + (t − d(T j
i )) · wtmax(T i) ≤ e(T i) − δ + (Z + δ) ·

wtmax(T i). Hencelag(T i, t) ≤ e(T i) − δ + (Z + δ) · wtmax(T i) ≤
e(T j

i ) + Z · wtmax(T i).

Case 2: d(T j
i ) ≥ t. In this case, the amount of work done by the

job T j
i in SW up to timet is given bye(T j

i ) −
R d(T j

i
)

t
wt(T i, u)du.

Because all prior jobs ofT i have complete executing byt in bothS and
SW , andT j

i has executed forδ time units beforet in S, lag(T i, t) ≤

e(T j
i ) −

R d(T j
i
)

t
swt(T i, u)du ≤ e(T j

i ) − δ ≤ e(T j
i ) − δ + (Z + δ) ·

wtmax(T i). Thus in both cases we have

lag(T i, t) ≤ emax(T i) + Z · wtmax(T i). (13)

Upper Bound on the lag at t of a task in γ. Let T i be a task in
γ. Then, no job ofT i is executing att−. However, sinceT i is in ρ, there
is at least a job ofT i that is inΨ that is either pending or active att−.
We show that no job ofT i that is inΨ is pending att−. Suppose that the
job T j

i is in Ψ and is pending att−. Thend(T j
i ) ≤ td holds and because

T i is in γ, T j
i is not executing att−. Since[t, t′) is maximally-blocking,

at least on job ofB is executing att, which by (B), is executing att− as
well. Because such a blocking job has its deadline aftertd and no job of
T i is executing att−, this implies thatT j

i is blocked att−, contradicting
our assumption that[t, t′) is a maximally-blocked interval. For example,
T j

i could be as indicated in Fig. 11(b).
Thus, no job ofT i that is inΨ is pending att−. Therefore, the total

allocation to jobs ofT i in Ψ up to timet in S is at least that inSW , and
hence thelag of T i at t is at most zero.

Because thelag of a task inγ is at most zero att,
P

T i∈ρ
lag(T i, t) =

P

T i∈α
lag(T i, t) +

P

T i∈γ
lag(T i, t) ≤

P

T i∈α
lag(T i, t). Hence

by (13),
P

T i∈α
lag(T i, t) ≤

P

T i∈α
(emax(T i) + Z · wtmax(T i)).

Therefore, by (12), we have

LAG(Ψ, t)
X

T i∈α

(emax(T i) + Z · wtmax(T i)) (14)

Since we need to determine an upper bound on the sum ofLAG(Ψ, t′)
andB(Ψ, t′), we also need to determine an upper bound onB(Ψ, t). By

(B), no job ofB that is not inJ can execute anywhere in[t, t′). Hence,
the amount of work pending of jobs inB (i.e., the blocking work) at any
time u ∈ [t, t′), B(Ψ, u), equals the amount of work pending atu for
the jobs inJ . Let T i be a task inµ. Then, the amount of work that can
be pending for its job executing att (which is inJ ) can be at most the
execution cost of job. Therefore we haveB(Ψ, t) ≤

P

T i∈µ
emax(T i),

and hence by (14), we have

LAG(Ψ, t) + B(Ψ, t) ≤
P

T i∈α
(emax(T i) + Z · wtmax(T i))+

P

T i∈µ
emax(T i) =

P

T i∈α∪µ
emax(T i) +

P

T i∈α
Z · wtmax(T i) ≤

Z ·
P

T i∈Xmax(T , m − 1) wtmax(T i) +
P

T i∈Emax(T , m) emax(T i),

(15)
where the last inequality follows from (11) (|µ| = b ≥ 1) and (|α| =
m − b). |α| = m − b holds because every task inµ or α is executing at
t−.

Finally, we are are left with determining an upper bound on the sum of
theLAG andB at t′. Let X ≤ B(Ψ, t) denote the total amount of time
that jobs inJ execute on allm processors in[t, t′) (For example, if there
are two jobs inJ , with one job executing for the entire interval and the
second executing for the first half of the interval, thenX = 3(t′ − t)/2.)
Because[t, t′) is maximally blocking, no processor is idle in[t, t′).
Hence, the total time allocated to jobs inΨ in [t, t′), A(S, Ψ, t, t′) is
equal tom ·(t′− t)−X. InSW , jobs inΨ could execute for at mostm ·
(t′−t) time, i.e., A(S, Ψ, t, t′) ≤ m ·(t′−t). Therefore,LAG(Ψ, t′) =
LAG(Ψ, t)+A(SW , Ψ, t, t′)−A(S, Ψ, t, t′) ≤ LAG(Ψ, t)+X. How-
ever, since jobs inΨ execute for a total time ofX in [t, t′), the pend-
ing work for jobs inΨ, and hence those inB at t′, B(Ψ, t′), is at most
B(Ψ, t′) − X. ThusLAG(Ψ, t′) + B(Ψ, t′) ≤ LAG(Ψ, t) + B(Ψ, t),
which by (15) is at mostZ ·

P

T i∈Xmax(T , m − 1) wtmax(T i) +
P

T i∈Emax(T , m) emax(T i).

Lemmas. 6 and 7 can be used to establish the following.

Theorem 3. The tardiness for every job̂T
j

i of any task system̂T , where
Wsum(T̂ , t) ≤ m, for any timet is at mostκ(m) in anyNP-CNG-EDF
schedule for̂T onm processors.
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