
Parallel Real-Time Task Scheduling on Multicore Platforms ∗

James H. Anderson and John M. Calandrino
Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

We propose a scheduling method for real-time systems imple-
mented on multicore platforms that encourages certain groups of
equal-utilization tasks to be scheduled together. This method can
be applied to encourage tasks that share a common working set
to be executed in parallel, which makes more effective use of on-
chip shared caches. The proposed method can be adapted for use
in any global, deadline-based scheduling approach. It exploits the
fact that, under such approaches, “work” submitted at the same
time by equal-utilization tasks will occupy consecutive slots in the
scheduler’s global priority queue, and thus, will be scheduled in
close proximity, unless disrupted by later-arriving, higher-priority
work. We show that certain properties of such global scheduling
approaches can be exploited to limit this disruptive behavior.

1 Introduction

Thermal and power problems limit the performance that single-
processor chips can deliver. Multicore architectures, or chip mul-
tiprocessors, which include several processors on a single chip,
are being widely touted as a solution to this problem. Several
chip makers have released, or will soon release, dual-core chips.
Such chips include Intel’s Pentium D and Pentium Extreme Edi-
tion, IBM’s PowerPC, AMD’s Opteron, and Sun’s UltraSPARC
IV. A few designs with more than two cores have also been an-
nounced. For instance, Sun expects to ship its eight-core Niagara
chip by early 2006, while Intel is expected to release four-, eight-,
16-, and perhaps even 32-core chips within a decade [11].

Core 1

L1

L2

L1

Core M

Figure 1:Multicore architecture.

In many proposed mul-
ticore platforms, different
cores share on-chip caches.
To effectively exploit the
available parallelism on
these platforms, shared
caches must not become
performance bottlenecks. In
this paper, we consider this
issue in the context of real-time applications. To reasonably
constrain the discussion, we henceforth limit attention to the
widely-studied multicore architecture shown in Fig. 1, where all
cores are symmetric, single-threaded, and share an L2 cache.

In prior work pertaining to throughput-oriented systems, Fe-
dorova et al. [7] noted that L2 misses affect performance to

∗Work supported by NSF grants CCR 0309825 and CCR 0408996. A prelim-
inary version of this paper was among a set of RTSS 2005 WIP papers selected to
appear in ACM SIGBED Review.

a much greater extent than L1 misses or pipeline conflicts.
They showed that L2 contention can be reduced, and through-
put improved, by discouraging threads that generate signifi-
cant memory-to-L2 traffic from being co-scheduled. In recent
work [1], we presented results comparable to those of Fedorova
et al. but pertaining toreal-time systems. Specifically, we showed
that it is possible to discourage high-cache-impact tasks from be-
ing co-scheduledwhile ensuring real-time constraints.

The problem. In this paper, we consider the opposite issue
of whether certain sets of tasks can beencouraged to be co-
scheduled—we refer to such a task set as atask group. Co-
scheduling may be beneficial for tasks that share a common
working set (WS). Fedorovaet al. claimed that, for throughput-
oriented applications, co-scheduling tasks that share a common
WS would provide little performance benefit. The results of this
paper, which are discussed below, call into question the validity
of this claim for real-time systems. To simplify the problem, we
henceforth assume that all tasks in each task group have the same
utilization, orweight. This restriction also minimizes the duration
of time that a parallel-accessed WS may create cache traffic. For
example, with four tasks of weight3/4, 1/4, 1/2, and1/2, the
WS is accessed at least 75% of the time, as opposed to 50% if the
task weights were each1/2 and perfect parallelism ensured.

Related work. In work on (non-multicore) systems that sup-
port simultaneous multithreading (SMT), prior work on symbi-
otic scheduling is of relevance to our work [8, 9, 12]. In sym-
biotic scheduling, the goal is to maximize the overall “symbio-
sis factor,” which indicates how well various thread groupings
perform when co-scheduled. To the best of our knowledge, no
analytical results concerning real-time constraints have been ob-
tained in work on symbiotic scheduling. Additionally, the issue of
scheduling tasks that require multiple processors has been consid-
ered previously [4]. However, this prior work places restrictions
on scheduling, such as pinning certain tasks to certain processors,
and provides few analytical results.

Proposed approach. The essence of the problem at hand is to
encourageparallelism: when one of a group of tasks is scheduled,
all such tasks should be scheduled. Unfortunately, achieving per-
fect parallelism for all task groups is not always possible. For ex-
ample, it is not possible to schedule two parallel tasks of weight
1/2 together with a task of weight 3/4 on two processors without
missing a deadline. Additionally, we have shown that the general
problem of optimizing for parallelism while respecting real-time
constraints (not surprisingly) is NP-hard in the strong sense.

Due to these limitations, we have chosen to focus our efforts on
minimizing a factor we callspread: if a task group has a spread of

1

(a) 0 1 2 3 4

1/4

X
1/4

X

1/2

X

X

(b) 0 1 2 3 4

1/4

1/4

X

1/2

X

X

Scheduled one
quantum early

X

Figure 2: A one-processor Pfair schedule for a set of three tasks (of
weight 1/2, 1/4, and 1/4, respectively) with(a) no early releasing and
(b) early releases allowed by one quantum. This schedule can also be
viewed as an EDF schedule where the execution cost of each job is one
quantum. In depicting Pfair schedules, we use solid lines to indicate sub-
task windows, dashed lines to indicate where early releasing is allowed,
and an “X” to indicate when a subtask is scheduled.

k, then theith quantum of computation of each task in the group
must be scheduled within an interval[t, t + k) for somet (treat-
ing each quantum as a “time unit”). A spread of one is perfect
parallelism. Our goal, then, is to schedule tasks so that real-time
constraints are met and spread is minimized to the extent possible.
Note that, even with small spreads that exceed one, there may be
a potential for cache reuse. Although our motivation here is better
cache performance, minimizing spread may also be beneficial for
synchronization: if groups of tasks have precedence constraints or
are otherwise dependent on one another, then small spreads may
be desirable. Our approach for minimizing spread while meeting
real-time constraints is based upon three observations.

First, global scheduling algorithms, which use a single run
queue, are more naturally suited to minimizing spread than par-
titioning approaches. This is particularly the case when using
deadline-based scheduling methods. This is because “work” sub-
mitted at the same time by same-weight tasks will occupy con-
secutive slots in the scheduler’s run queue, and thus, such work
will be scheduled in close proximity over time, unless disrupted
by later-arriving, higher-priority work. Based on this observa-
tion, we henceforth limit our attention to global, deadline-based
scheduling approaches. Two such approaches will be considered
in detail: the PD2 Pfair scheduling algorithm [2] and the global
earliest-deadline-first (EDF) algorithm. In Pfair scheduling, each
“unit of work” is a quantum-lengthsubtask, while under EDF,
each unit is ajob of arbitrary (but bounded) length.

Second, in all global, deadline-based scheduling methods
known to us, the ability to meet timing constraints is not compro-
mised if subtasks or jobs (as the case may be) are “early released,”
i.e., allowed to become eligible for execution “early.” This is de-
picted with respect to Pfair scheduling in Fig. 2. In Pfair schedul-
ing, each subtask must be scheduled within a time window, the
end of which is its deadline. Note that, in inset (b), allowing early
releasing does not cause deadline misses.

Third, when a subtask or job is early released, it is completely
optional as to whether the scheduler considers it to be available
for execution. We can exploit this fact to minimize disruptions to
task groups caused by higher-priority work.

As an example of the last point, consider the Pfair schedules in
Fig. 3, where both tasks of weight1/4 are placed in their own task

group. Inset (a) shows a schedule without early releasing. In in-
set (b), all subtask windows are shifted right by one quantum, and
all tasks are early released by one quantum, producing the same
schedule as in (a). (All deadline comparisons are the same.) We
refer to a schedule in which all subtask windows are right-shifted
by k quanta and all subtasks are early released byk quanta as a
k-shifted schedule. In inset (b),k = 1. Both schedules result
in a spread of three for the1/4-wt. task group. In inset (c), we
show that selectively allowing early releasing can reduce spread
to two. Alternately, instead of shifting the schedule and early re-
leasing subtasks, as in insets (b) and (c), we can instead make it
completely optional whether to schedule subtasks for the firstk
quanta after their release, and allow jobs to miss their deadlines
by up tok quanta, as shown in inset (d). Here, the dotted lines
after each window indicate by how much each deadline could be
missed (though no misses occur here). Note that there are “in-
termediate” cases between an unshifted and ak-shifted schedule.
For example, ifk = 4 is required by our method for a partic-
ular task set, then we could choose instead to create a3-shifted
schedule and allow jobs to early release by only three quanta, but
also make it optional whether to schedule jobs during the first
quantum after their actual release. In this case, deadlines could
be missed by at most one quantum. In general, if subtasks can
be early released to the extent we require, then no deadlines will
be missed; otherwise, deadlines may be missed, but by bounded
amounts only.

Contributions. Based upon the above observations, we have
devised a set of rules for encouraging low spreads that can be
adapted to any deadline-based, global scheduling approach. We
present these rules in Sec. 3.1 by focusing on PD2 and then ex-
plain in Sec. 3.3 how they can be adapted to apply to EDF. Experi-
ments involving randomly-generated task sets presented in Sec. 4
show that these rules are effective in reducing spreads in theav-
erage case. In fact, in these experiments, spreads were usually
very close to one (which is perfect parallelism). However, in real-
time systems, spreadguarantees are desirable. We show in Sec. 3
that such guarantees are possible (for both PD2 and EDF) and that
they hinge on the largest task weight in the system. As a final con-
tribution, we assess the effectiveness of our spread-minimization
method by examining the results of experiments involving several
real-time workloads conducted on a multicore simulator. In these
experiments, the usage of our method resulted in L2 miss-rate re-
ductions in the range of 8–35%. We argue that our methodcan,
but does not always, lead to lower L2 miss rates. Determining
this for a particular application can be difficult due to the inherent
complexity of memory access patterns.

The rest of this paper is organized as follows. In Sec. 2, we
present a brief overview of Pfair and EDF scheduling. Then, in
Sec. 3, we describe our spread-reduction approach and establish
the spread guarantees mentioned earlier. In Sec. 4, we present
experimental results, and in Sec. 5, we conclude.

2 Background

In this section, we briefly introduce both Pfair [5, 13] and EDF
scheduling. For simplicity, we consider only periodic task sys-

2

0 1 2 3 4

X

1/4

1/4

X

X

X

X

X1/2

1/2 X

X1/2

three
Spread of

1/4

1/2

1/2

1/2

1/4

0 1 2 3 4 5

X

X

X

X

X

X

X

X

Spread of
three

1/4

1/2

1/2

1/2

1/4

0 1 2 3 4 5

X

X

X

X

X

X

X

X

Spread of
two

1/4

1/2

1/2

1/2

1/4

0 1 2 3 4 5

X

X

X

X

X

X

X

X

Spread of
two

(a) (b) (c) (d)

Figure 3: A two-processor Pfair schedule of a set of five tasks (three of weight 1/2, and two of weight 1/4) with(a) no early releasing;(b) early
releasing by one quantum and all windows right-shifted by one quantum;(c) similarly-shifted windows, but selective early releasing;(d) no shifting
or early releasing, but subtasks are considered optional within the first quantum after their release, and deadlines can be missed by one quantum.

tems. However, all of our results apply to sporadic task systems,
and also to intra-sporadic task systems, as considered in work on
Pfair scheduling [13]. In a periodic task systemτ , each taskT
is subdivided into a sequence of sequentialjobs, and is character-
ized by two quantities: a per-jobexecution cost T.e and aperiod
T.p. EveryT.p time units, starting at time 0,T releases a new job
with an execution cost ofT.e time units. A time unit is referred
to as aquantum. Each task’s execution cost and period are each
assumed to be integral values, where a value of one corresponds
to the length of the system’s quantum size. The quantityT.e/T.p
is theweight, or utilization, of T , denotedwt(T). The problem
of interest to us is that of scheduling a set of periodic tasks on
M ≥ 1 processors (or cores).

2.1 Pfair Scheduling

Pfair scheduling algorithms [5, 13] (as applied to periodic tasks)
allocate processor time one quantum at a time. The quantum-
length time interval[t, t + 1), wheret ≥ 0, is calledslot t. In
each slot, each processor (task) can be assigned to at most one
task (processor). Task migration is allowed.

Processor time is allocated one quantum at a time by sub-
dividing each taskT into a sequence of quantum-lengthsubtasks,
denotedT1, T2, Each subtaskTi has an associatedrelease
r(Ti) anddeadline d(Ti), defined as follows.

r(Ti) =
⌊

i − 1
wt(T)

⌋
∧ d(Ti) =

⌈
i

wt(T)

⌉
(1)

The time-slot interval[r(Ti), d(Ti)) is called thewindow of Ti.
Consecutive subtask windows of a task are either disjoint or over-
lap by one slot. Fig. 4 shows an example. A task’s windowing is
defined so that its allocation approximates that of an ideal (fluid)
system that allocateswt(T)·L units of processor time to each task
T in any interval of lengthL. Note that, since all tasks in each
task group have the same weight, tasks in the same group always
have subtask windows and task periods that coincide. (For spo-
radic or intra-sporadic tasks, this requirement is needed as well.)

Pfair scheduling algorithms. Pfair scheduling algorithms
schedule tasks by scheduling their subtasks on an earliest-
deadline-first basis. Tie-breaking rules are used in case two sub-
tasks have the same deadline. The most efficient optimal algo-
rithm known is PD2 [3, 13], which uses two tie-breaking rules.
Because it is optimal, PD2 meets all subtask deadlines, as long as
the system’s total utilization,

∑
T∈τ wt(T), does not exceedM .

Tardiness bounds. If a scheduling algorithm cannot ensure all
timing requirements, then it may still be possible to show that
deadline tardiness is always bounded by some number of quanta.
A tardiness bound of B means that a subtask will complete at
mostB quanta after its deadline.

Early-release scheduling. In the early-release (ER) task
model [3], a subtask may be released early,i.e. be eligible to ex-
ecute before its window, while still ensuring the timing require-
ments of all tasks. The decision of whether or not to release a
subtask early, and how early to release it, can be arbitrary, except
that all subtasks of a task must execute in order.

2.2 EDF Scheduling

In global earliest-deadline-first (EDF) scheduling, jobs are sched-
uled in the order of increasing deadlines, with ties broken arbitrar-
ily. In the case of EDF scheduling, all task groups are assumed
to consist of tasks with the same execution cost and period. As

0 5 10 15 20

T1

T2

T3

T4

T5

T6

Figure 4:Windowing for a task with weightwt(T) = 3/10 under Pfair
scheduling over the interval [0,20]. Note that three (six) subtasks have
deadlines by time 10 (20). Thus, if each subtask meets its deadline, then
T ’s allocation up to these times is the same as in an ideal system (3

10
×10

and 3
10

× 20, respectively).

3

such, all such periods will always coincide. (For sporadic tasks,
this requirement is needed as well.)

EDF scheduling isnot optimal, and therefore tasks may miss
their deadlines even when total utilization is at mostM . It
has been shown, however, that deadline tardiness under EDF is
bounded [6] when the total utilization of a task set is not re-
stricted. Additionally, jobs may be optionally and arbitrarily early
released under EDF, as in Pfair scheduling, with no additional tar-
diness penalties.

We assume aquantized version of EDF in this paper, where
scheduling decisions are made only on quantum boundaries that
are aligned across all processors (and all task execution costs and
periods are integral, as noted earlier). We further assume that
jobs of all tasks require their full execution cost. For example, a
task with execution cost 4 will never have a job that completes
after only three quanta. These assumptions are motivated by the
fact that spread is a per-quantum measure. Additionally, if jobs
can receivefewer allocations than their execution cost specifies,
then we are essentially trying to provide spread guarantees for
a group of tasks with varying execution requirements. This is a
hard problem left as an area of future work.

3 Spread-Cognizant Scheduling

We begin with a description of our scheduling method applied to
PD2, and follow with a correctness proof of the spread guarantees
we claim when applying this method. We then discuss how to
adapt the method toquantized EDF.

3.1 Method Applied to PD2

In general, we will useX to denote the spread guarantee we seek
to establish. For PD2, X is defined as follows, whereWmax =
maxT∈τ wt(T).

X =




3, if Wmax ≤ 1/3
4, if 1/3 < Wmax ≤ 1/2
2 × � 1

1−Wmax
� − 1, if Wmax > 1/2

(2)

We describe our method as additional rules for PD2. We as-
sume we are working with an(X − 1)-shifted schedule (or al-
ternately, that subtasks can miss their deadlines by up toX − 1
quanta—see Fig. 3(d)). Three rules are required:

• Urgent Tasks. When subtaskTi is scheduled, whereT is
in some task groupR, andT is the first task inR whoseith

subtask is scheduled, each subtaskUi, whereU ∈ R and
U �= T , is flagged “urgent” until it is also scheduled.

• Early-Release Eligibility. A subtaskTj non-urgent at timet
is “early-release eligible” att if all of the following are true:

(i) r(Tj) − (X − 1) ≤ t < r(Tj) (i.e., time t is within
X − 1 slots of the actual release time of subtaskTj).

(ii) All subtasksTk of T , wherek < j, have already been
scheduled prior to timet.

(iii) |U|+ |H| < M , where, at timet, U is the set of eligible
urgent subtasks, andH is the set of non-urgent eligible
subtasksTk, wherer(Tk) ≤ t, such that each subtask

(a) 0 1 2 3 4 5 6 7 8 9 10

1/10

1/10

3/5

3/5

3/5
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Group 1

Group 2

(b)

X

X

X

X

X

X

X

X

Group 2

Group 1

3/5

3/5

3/5

1/10

1/10

XX

X

X

X

X

X

X

X

X

X

X

0 1 2 3 4 5 6 7 8 9 1110

Figure 5:An example two-processor schedule with(a) regular PD2, and
(b) PD2 using our method.

in H has higher priority than at least one subtask in
U . Note that tasks inH are (by definition) not early-
release eligible at timet.

(iv) SubtaskTj is one of thee highest-priority subtasks at
time t satisfying conditions (i) and (ii) above, where
e = M − (|U| + |H|).

A subtaskTj that is urgent at timet is “early-release eligi-
ble” at timet if only conditions (i) and (ii) hold for it.

• Priorities. Eligible subtasks (early released or not) are
scheduled using the same priority rules as in PD2. In the
case of a tie, urgent subtasks have higher priority, with the
task-group identity used as a tie-break. (This ensures that
task groups achieve the lowest possible spread when noth-
ing in the PD2 priority rules would prevent it.)

Fig. 5 shows how selective early-release eligibility reduces
spread. In this example, early-release eligibility starts onlyone
slot before the actual release time of a subtask—in many cases,
even very limited early releasing has a substantial impact on
spread. With regular PD2 (inset (a)), the task set achieves max-
imum spreads of two and six for Groups 1 and 2, respectively.
Our rules reduce the spread of Group 2 to two (inset (b)), without
changing the spread of Group 1. This reduction happens because
at time 5 in (b), the1/10-wt. task not scheduled at that time in (a)

4

is favored over the3/5-wt. tasks by theUrgent Tasks rule. Note
that theEarly-Release Eligibility rule only allows one of the3/5-
wt. subtasks released at time 6 to become early-release eligible
at time 5. Note also that, if the task set included some additional
tasks of weight1/10 that were eligible at time5, the Priorities
rule would ensure that the urgent task was scheduled first, and
Group 2 would still have a spread of two.

3.2 Correctness Proof

We now prove that when our method is applied to PD2, spreads
as defined by (2) are ensured. Specifically, we prove that, for any
i, if t is the earliest time at which some subtaskTi is scheduled,
whereT is in task groupR, then all tasks inR have theirith

subtask scheduled in[t, t + X). We begin with the following
property about all task groups.

(PM) A task group contains at mostM tasks, which
is the maximum parallelism achievable on anM -
core architecture.

The next lemma precludes subtasks of two tasks from the same
group being scheduled at the same time if their indices differ by
more than one.

Lemma 1 If tasks U and V are both in task group R, and if sub-
task Uj is scheduled at time tU and subtask Vk is scheduled at
time t ≤ tU , then k − j ≤ 1.

Proof: Follows easily by inducting over the subtask indices since
tasks in the same group have the same window structure.�

Set categorization. At time t in a scheduleS, tasks are placed
in the following sets, which are illustrated in Fig. 6. SubsetsG2

andH2 contain tasks with a subtask that is eligible at timet and
must be scheduled over the interval[t+1, t+X) to avoid a spread
violation. Hereafter, we call such eligible subtaskspending sub-
tasks (and, implicitly, this term is used with respect to timet).

• SetG: includes each taskT ∈ R, whereR is any task group,
such that, for somei:

(i) No subtaskUi is scheduled before timet, for U ∈ R;

(ii) Ui is scheduled at timet for some taskU ∈ R;

(iii) Ui−1 is scheduled at timet for some taskU ∈ R;

(iv) Ti or Ti−1 is scheduled at timet.

SetG is partitioned into subsetsG1 andG2 whereT ∈ G1

iff Ti is scheduled att, andT ∈ G2 iff Ti−1 is scheduled at
t (implying Ti is not scheduled att). Note that, by (ii), (iii),
and Lemma 1, no subtask of a task in groupR with an index
other thani or i − 1 can be scheduled at timet.

• SetH: includes each taskT ∈ R, whereR is any task group,
such that, for somei:

(i) No Ui is scheduled before timet, whereU ∈ R;

(ii) Ui is scheduled at timet for some taskU ∈ R;

(iii) Some taskU ∈ R is not scheduled at timet.

SetH is partitioned into disjoint subsetsH1 andH2 where
T ∈ H1 iff Ti is scheduled att, andT ∈ H2 otherwise.

Note that ifU andU ′ are from the same group, andUi is
scheduled att butU ′

i could not be scheduled att, then either
U ′

i ’s predecessor is scheduled att, or U ′
i is not among the

M highest-priority subtasks selected for execution. By the
Priorities rule, there is at most one task group for which the
latter could have happened. Thus, we have the following.

(PH) SetH contains tasks from at most one task group, and
these tasks have lower priority than the lowest-priority
task in setG at timet.

• SetI: includes each taskT not in setsG orH. SetI contains
disjoint subsetsI1, I2, andI3, defined as follows.

(i) T ∈ I1 iff T is scheduled at timet, but not in the inter-
val [t + 1, t + X).

(ii) T ∈ I2 iff T is not scheduled at timet, but is scheduled
in the interval[t + 1, t + X).

(iii) T ∈ I3 iff T is scheduled at timet and in the interval
[t + 1, t + X).

By the definitions of setsG andH, if G2∪H2 is empty, thenH
is empty and any task group satisfying conditions (i) and (ii) of set
G achieves perfect parallelism for subtaski, and thus satisfies any
spread guarantees we make. Therefore, we assume the following.

(PE) G2 ∪ H2 is non-empty.

In our proof, we assume there is a spread violation, which
implies thatt′ defined next exists, and then derive a contradiction.

Definition 1: t′ is the latest time at which any pending subtask of
a task inG2 ∪ H2 is scheduled, wheret′ ≥ t + X.

We assume the following for any taskT in eitherI2 or I3.

(PI) A subtask ofT has equal or higher priority than at
least one pending subtask of a task inG2 ∪ H2 at
some timeu in the interval[t + 1, t′ + 1).

Otherwise, by thePriorities rule and Def. 1,T could not be sched-
uled until all pending subtasks of tasks inG2 ∪ H2 were sched-
uled, and we would not need to account for allocations toT in
our proof, orT would be inI1.

Task allocations over an interval. For any subsetα ∈
{G1, G2,H1, H2, I2, I3}, we defineAX(α) to be the maximum
number of subtasksTk of any one taskT ∈ α, wherek > 0,
scheduled over the interval[t + 1, t + X). At′(α) is similarly
defined with respect to[t + 1, t′ + 1), except that subtasks sched-
uled at timet′ with priority lower than any pending subtask of a
task inG2 ∪ H2 also scheduled at that time are not counted, as
such subtasks do not interfere with the scheduling of any pending
subtask. By Def. 1, we have the following.

(PT) For anyα, At′(α) ≥ AX(α).

5

G

t t+X

X

X

X

X

X X

X

X

XX

I

I

I

H

H

1

2

3

2

1

I

X

X

X

X

X

X

X

X
1

G

G

2

X

X

X

X

X

X

X

X
1

G

G

2

Group 1

Group 2

H Group 3

X

X

Figure 6:SetsG, H, andI, and their respective subsets.

Free processor allocations. The number of “free” processor al-
locations,F , available for pending subtasks of tasks inG2 ∪ H2

over the interval[t+1, t+X) is given by subtracting from(X−1)·
M the maximum number of allocations to tasks in other groups.
That is,F = (X−1)·M−AX(I2)·|I2|−AX(I3)·|I3|−AX(G1)·
|G1|−(AX(G2)−1)·|G2|−AX(H1)·|H1|−(AX(H2)−1)·|H2|.
Our proof obligation is to show thatF ≥ |G2| + |H2|. By (PT),

F ≥ (X − 1) · M − AX(I2) · |I2| − AX(I3) · |I3|
−AX(G1) · |G1| − (AX(G2)−1) · |G2|
−At′(H1) · |H1| − (At′(H2)−1) · |H2|. (3)

The next lemma concerns early-release eligibility at or aftert.

Lemma 2 Suppose subtask Ti is released in the interval [t+1, t+
X) (i.e., t + 1 ≤ r(Ti) < t + X). If no prior subtask of task T
is scheduled in [t, r(Ti)), and Ti is one of the e highest-priority

subtasks at time t, where e = M − (|U| + |H|) as defined by the
Early-Release Eligibilityrule, then Ti is early-release eligible in
slot t. Additionally, if Ti is non-urgent in [t + 1, t′), then Ti is not
early-release eligible in [t + 1, t′).

Proof: Assume thatTi is released in the interval[t+1, t+X), and
no prior subtask of taskT is scheduled in the interval[t, r(Ti)).
Then,Ti satisfies conditions (i) and (ii) of theEarly-Release Eli-
gibility rule. If we further assume thatTi is one of thee highest-
priority tasks at timet, wheree is defined in the statement of the
lemma, then condition (iv) of the rule is satisfied, and it must also
follow that e > 0. This implies thatM − (|U| + |H|) > 0, and
therefore(|U| + |H|) < M , so condition (iii) is satisfied. Thus,
Ti is early-release eligible.

Once the eligible subtask of every task inG1∪H1 is scheduled
in slot t, by the definition of subsetsG2 andH2, each pending
subtask of a task inG2 ∪H2 is both eligible and urgent from time
t + 1 until it is scheduled. By theEarly-Release Eligibility rule,
no subtask released in the interval[t + 1, t + X), and non-urgent
over that same interval, can be early-release eligible at timeu > t
unless|U| + |H| < M for slot u, which cannot be the case for
any slot in[t + 1, t′). �

The following lemma states a number of properties related to
the calculation ofF .

Lemma 3 The properties below hold for M , and the variables
and subsets defined above.

(a) |G1| + |G2| + |H1| + |I1| + |I3| ≤ M .

(b) |H2| ≤ M .

(c) AX(I2) = 0.

(d) At′(H1) = 0 and At′(H2) = 1.

(e) (AX(I3) = AX(G1) = AX(G2) ≤ X−2) ⇒ (F ≥ |H2|+
|G2|).

Proof: Part (a) holds since all tasks in setsG1, G2, H1, I1, andI3

are scheduled at timet by definition. Thus, these subsets together
contain at mostM tasks. By (PH) and (PM),|H| ≤ M and
|H2| ≤ M , and therefore part (b) holds.

We prove part (c) by proving that no task inI2 can receive an
allocation in[t + 1, t + X). Assume to the contrary that some
subtask of a task inI2 is scheduled in[t + 1, t + X). Let Ti

denote the earliest-scheduled such subtask and assume that it is
scheduled in slotu. Note that, becauseT ∈ I2, Ti’s predecessor
is not scheduled in[t, u). Now, if r(Ti) < t + X, then by (PI)
and Lemma 2,Ti would be scheduled at timet, contradicting
T ∈ I2. Hence,r(Ti) ≥ t + X. This implies thatTi was early-
release eligible when it was scheduled. But, by condition (iii)
of the Early-Release Eligibility rule, this implies that all of the
urgent subtasks inG2 ∪H2 are scheduled in[t + 1, u]. However,
this contradicts Def. 1.

We begin our proof of part (d) with the following claim, which
follows easily from (PH).

Claim 1 A task in set H1 can receive no subtask allo-
cations in the interval [t + 1, t′). Also, a task in set H2

can receive only one subtask allocation in the interval
[t + 1, t′)—the allocation for its pending subtask.

6

If H is empty, then (d) holds easily. Otherwise, by part (iii)
of the definition of setH, H2 is nonempty. Thus, by Claim 1,
At′(H1) = 0 andAt′(H2) = 1.

Finally, part (e) can be established as follows.

F ≥ (X − 1) · M − AX(I3) · |I3| − AX(G1) · |G1|
−(AX(G2) − 1) · |G2| {by (3), (c), and (d)}

≥ M + |G2| + a · |H1| + a · |I1|
{by (a) andAX(I3) = AX(G1) = AX(G2) ≤ X − 2}

≥ M + |G2|
≥ |H2| + |G2| {by (b)} �

The next lemma concerns urgent subtasks.

Lemma 4 Suppose a subtask Ti of a task T is urgent from time
t + 1 until it is scheduled, is scheduled in the interval [t + 1, t′),
and Ti is not the first subtask of a task T scheduled in the interval
[t + 1, t′). Then, Ti must be scheduled at time r(Ti) or later, i.e.,
it cannot be scheduled before its release time.

Proof: If Ti is scheduled at timetu, wheret + 1 ≤ tu < t′, then
by theUrgent Tasks rule, there must exist some subtaskUi in the
same task group that was both non-urgent and scheduled at time
tnu < tu. If tnu > t, then by Lemma 2,Ui is not early-release
eligible in the interval[t + 1, t′), and thusUi andTi must both be
scheduled at timer(Ui) or later. Sincer(Ui) = r(Ti), Ti must
therefore be scheduled at timer(Ti) or later. If tnu ≤ t, then
Ti must be the first subtask of taskT scheduled in the interval
[t+1, t′), for otherwise, subtasksTi andTi−1 would be scheduled
at timet + 1 or later, while subtasksUi andUi−1 are scheduled
at timet or earlier, sinceUi−1 must be scheduled earlier thanUi.
This cannot be the case since it implies that at some timetnu < t,
Ui was scheduled instead ofTi−1, and by Lemma 1,Ti−2 must
have been scheduled before timetnu, and thereforeTi−1 must
have been eligible at timetnu. �

t t+X

X

X

X

X

T

X

X

Ti

T
(no early
releasing)

iT

Figure 7:Lemma 5.

The following lemma concerns
the first urgent subtask of a task
scheduled in the interval[t, t+X).

Lemma 5 If subtask Ti of a task
T is urgent from time t + 1 un-
til it is scheduled, is the first sub-
task of T scheduled in the interval
[t + 1, t + X), and Ti is scheduled
early, then the maximum number
of allocations that task T can re-
ceive over the interval [t+1, t+X)
is no more than what it could have received if Ti had not been
scheduled early.

Proof: In the absence of early releasing, a maximal allocation for
T over[t + 1, t + X) occurs when every subtask ofT released in
this interval is scheduled in the first slot of its window. As seen
in Fig. 7, early releasingTi cannot increase this allocation. This
is due to the fact that, by Lemma 2 and Lemma 4,Ti is the only
subtask ofT that can be scheduled early in the interval[t + 1, t′),
and therefore by Def. 1, in the interval[t + 1, t + X). �

The next lemma concerns subtask window lengths.

Lemma 6 (from [3]) The length of any subtask window of a task

T is either
⌈

1
wt(T)

⌉
or

⌈
1

wt(T)

⌉
+ 1.

We now state our main lemma for algorithm PD2, which allows
us to contradict Def. 1.

Lemma 7 F ≥ |G2| + |H2|, i.e., t′ < t + X .

Proof: Consider a subtaskTi of a taskT such thatt+1 ≤ r(Ti) <
t + X. If Ti is non-urgent over the entire interval[t + 1, t + X),
then by Def. 1 and Lemma 2, early releasing is disabled forTi

over that same interval. The same is true ifTi is urgent at some
time in the interval[t + 1, t + X), and therefore is urgent at some
time in the interval[t+1, t′) by Def. 1, but is not the first subtask
of T scheduled in the interval[t + 1, t′), by Lemma 4. IfTi

is urgent at some time in the interval[t + 1, t + X) and is the
first task ofT scheduled in the interval[t + 1, t + X) thenTi

can be scheduled early, but by Lemma 5,T cannot receive any
more allocations over the interval[t+1, t+X) than ifTi had not
been scheduled early. Together, these facts imply that we do not
need to consider early-releasing over the interval[t + 1, t + X)
when determining the maximum number of allocations a task can
receive in that interval. We now consider three cases, depending
on the value ofWmax.

t

X

X

X

X

t+X

1/3

3/10

Figure 8:Lemma 7:Wmax ≤ 1/3.

Case Wmax ≤ 1/3. We
claim a spread of three in
this case,i.e., X = 3.
Lemma 6 and the upper
bound on task weights,
in conjunction with (1),
imply that no task can
have a subtask window
of length less than three,
or an overlapping sub-
task window of length
less than four. Therefore,
tasks inI3 andG can receive at most two consecutive proces-
sor allocations before becoming ineligible, and thus no more than
one additional allocation in the interval[t + 1, t + X), since they
have already received an allocation in slott. This is illustrated in
Fig. 8. Therefore,AX(I3) = AX(G1) = AX(G2) = 1 ≤ X−2.
Thus, by Lemma 3(e),F ≥ |G2| + |H2|.
Case 1/3 < Wmax ≤ 1/2. We claim a spread of four in this
case,i.e., X = 4. The reasoning is very similar to that above, and
hence is omitted due to space constraints.

Case Wmax > 1/2. In this case, we consider a sequence
Ti, . . . , Tj of subtasks of a taskT such that the windows of sub-
tasksTi+1, . . . , Tj are of length two and overlap the windows of
their successor subtasks by one, and the window of subtaskTj+1

is either of length three, or of length two and does not overlap
with its successor subtask (e.g., T1, T2 or T3, T4, T5 or T6, T7

in Fig. 9). If any ofTi, . . . , Tj is scheduled in the last slot of its
window, then each subsequent subtask in this sequence must be
scheduled in its last slot. In effect,Ti, . . . , Tj must be considered
as a single schedulable entity subject to agroup deadline, defined
asd(Tj) + 1. Intuitively, if we imagine a job ofT in which each

7

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

0 1 2 3 4 5 6 7 8 9 11

T

T

T

T

T

T

T

T

T1

2

3

4

5

6

7

8

10

T

T

T

T

T

T

T

2221201918171615141312

T9

10

11

12

13

14

15

16
X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

T not scheduled in these slots

Figure 9:The maximum number of consecutive subtask allocations to
taskT is twice the maximum distance between consecutive group dead-
lines minus two.T has weight8/11.

subtask is scheduled in the first slot of its window, then the re-
maining empty slots correspond to the group deadlines ofT . In
Fig. 9,T has group deadlines at slots 4, 8, 11, 15, 19, and 22.

Claim 2 If Wmax > 1/2, then the maximum number of
consecutive subtask allocations that any task receives
in any interval is 2 × � 1

1−Wmax
� − 2.

Proof: The calculation required here is straightforward
and hence is omitted due to space constraints. (The
term� 1

1−Wmax
� is the maximum distance between con-

secutive group deadlines and is calculated in [3].) As
an example, ifWmax = wt(T) in Fig. 9, then the maxi-
mum number of consecutive subtask allocations for any
task is2 × � 1

1−Wmax
� − 2 = 2 × � 1

1−(8/11)� − 2 = 6,
demonstrated from time 8 to time 14. �

By Claim 2, if we increase our maximum guaranteed spreadX
to 2×� 1

1−Wmax
�−1, then every task inI3 andG is guaranteed to

be ineligible for at least one quantum in the interval[t+1, t+X)
(again, in the absence of early releasing). Tasks inI3 andG can
receive no more than2 × � 1

1−Wmax
� − 3 additional allocations

in the interval[t + 1, t + X) since they have already received an
allocation in slott. Therefore,AX(I3) = AX(G1) = AX(G2) =
2×� 1

1−Wmax
�− 3 ≤ X − 2. Thus, by Lemma 3(e),F ≥ |G2|+

|H2|. �

From Lemma 7, Theorem 1 follows.

Theorem 1 If PD2 is modified as described above, and subtasks
are early-release eligible X−1 quanta before their actual release
times, then the spread of any group of tasks that we wish to co-
schedule is no greater than X as defined in (2).

3.3 Method Applied to EDF

Theorem 2 below states a spread result for ourquantized version
of EDF as described in Sec. 2.2, with aligned quanta and integral
task execution costs and periods. The spread guarantees made
for EDF are with respect to aquantum of computation rather than
a subtask as in PD2, and therefore we are concerned with the
nextpending unit of computation of each task inG2 ∪ H2 rather
thanpending subtask. Additionally, in EDF, jobs become urgent
instead of subtasks. Finally, note that in order for the method to

be most effective, deadline ties should be broken in factor of the
task with higher weightbefore urgency is used as a tie-breaker.

As an aside, note that tasks in task sets scheduled with EDF
may miss their deadlines by bounded amounts, as stated in
Sec. 2.2. Thus, tasks scheduled with EDF using our method, but
without early releasing and a shifted schedule, may miss their
deadlines by the sum of the tardiness bound for EDFplus any ad-
ditional amount added by choosing to shift the schedule and early
release by a smaller amount (or not at all).

Theorem 2 Consider a task set τ for which tardiness is at most
∆ under global EDF, and let emax denote the largest job execu-
tion cost in τ . Suppose that EDF is modified as described above
for PD2, but instead jobs are allowed to become early-release el-
igible up to 2 · emax quanta before their actual release times. If
T.p ≥ T.e + 1 + ∆ for each task T ∈ τ , then the spread of any
task group is at most 2 · emax + 1.

T not scheduled in these slots

X

X X

J 2

1J
T

X

X X

0 1 2 3 4 5 6 7 8

Figure 10:Assuming∆ =
0, the maximum number
of consecutive quantum al-
locations to taskT occurs
when consecutive jobs are
scheduled as shown here.

Proof: This proof is similar to that
for the Wmax > 1/2 case of PD2,
so only a sketch is provided. As
with the PD2 cases, we assumet′

is defined as in Def. 1 and derive a
contradiction by showing thatF ≥
|G2| + |H2|, given theX (spread)
stated in Theorem 2. For quan-
tized EDF, the maximum number of
quanta for which a task can consec-
utively receive processor allocations
is 2 · emax. This is illustrated in
Fig. 10, where∆ = 0 is assumed.
With a spread of2 · emax + 1, every task inI3 andG is guar-
anteed to be ineligible for at least one quantum in the inter-
val [t + 1, t + X) (again, in the absence of early releasing).
This means that tasks inI3 and G can receive no more than
2 · emax − 1 additional allocations in the interval[t + 1, t + X)
since they have already received an allocation in slott. Therefore,
AX(I3) = AX(G1) = AX(G2) = 2 · emax − 1 ≤ X − 2. Thus,
by Lemma 3(e),F ≥ |G2| + |H2|. �

4 Experimental Results
In this section, we assess the efficacy of our method in reducing
spread and achieving better L2 cache performance.

Spread reduction experiments. First, we randomly generated
50,000 task sets in several categories, and simulated the schedul-
ing of these task sets on a four-processor system with EDF and
PD2. For each task set with which we experimented, we first al-
lowed no early-releasing and did not shift the schedule, and then
allowed early-releasing and shifted byX − 1 quanta, as specified
earlier for both PD2 and EDF. For PD2, an upper bound on task
weights was enforced, during task set generation, of1/3, 1/2, or
3/4, depending on the experiment. For EDF, all tasks had an ex-
ecution cost of1. Task periods varied from two (or three, if tasks
could not have a weight of1/2) to 50. All task sets fully uti-
lized all four processors, and the task groups varied in size from
one (i.e., a lone task in its own task “group”) to four (the total

8

Spread
Grp. Size = 2 Grp. Size = 3 Grp. Size = 4

Algorithm Wt. Constr. X ER Min Avg Max Min Avg Max Min Avg Max
Reg. Pfair (0, 1/3] N/A 0 1 1.35 41 1 1.66 40 1 1.99 41
Mod. Pfair (0, 1/3] 3 2 1 1.27 2 1 1.52 2 1 1.77 3

Reg. Pfair (0, 1/2] N/A 0 1 1.40 37 1 1.78 41 1 2.18 37
Mod. Pfair (0, 1/2] 4 3 1 1.28 2 1 1.53 2 1 1.77 3

Reg. Pfair (0, 3/4] N/A 0 1 1.39 25 1 1.83 33 1 2.29 41
Mod. Pfair (0, 3/4] 7 6 1 1.29 2 1 1.57 2 1 1.81 3

Spread
Grp. Size = 2 Grp. Size = 3 Grp. Size = 4

Algorithm emax X ER Min Avg Max Min Avg Max Min Avg Max
Reg. EDF 1 N/A 0 1 1.96 41 1 2.28 42 1 2.54 45
Mod. EDF 1 3 2 1 1.34 2 1 1.47 2 1 1.62 2

(a) (b)

Table 1:Raw parallelism and spread for(a) Pfair and(b) EDF algorithms. Each different constraint represents 50,000 task sets.

number of processors). These constraints were reasonable as they
included task sets with a wide variety of task weights, including
those with large periods (e.g., 50). The only types of tasks not
included were tasks with weight greater than3/4 in PD2 or exe-
cution cost over1 in EDF. All simulations were run for the length
of the task-set hyperperiod. Results are shown in Table 1.

Results. Our method generates low spreads in all cases (near
two quanta), thus appearing to perform considerably better in
practice than might be expected from the analytical upper bounds
on spread proven in Sec. 3. For the task sets used in the global
EDF experiments,T.p ≥ T.e + 1 + ∆ wasnot explicitly ensured
for each taskT in the EDF task sets. However, the spread re-
sults are still impressive and within the analytical bound stated
in Sec. 3.3. Note that our method decreases average spread and
always prevents extremely high spreads, as shown in the boldface
columns of Table 1.

L2 Cache Performance. We next demonstrate the effectiveness
of our method at improving L2 cache performance by simulating
the scheduling and execution of task sets with the SESC Simu-
lator [10], which is capable of simulating a variety of multicore
architectures. We chose to use a simulator so that we could ex-
periment with more cores than commonly available today. The
simulated architecture consists of four cores, each with dedicated
16K L1 data (4-way set assoc.) and instruction (2-way set assoc.)
caches with random and LRU replacement policies, respectively,
and a shared 8-way set assoc. on-chip L2 cache with an LRU re-
placement policy (size varies per experiment). Each cache has a
64-byte line size.

All tasks in the same group access the same large “working set”
region of memory. Tasks make one pass over a region of their
working set per quantum of execution, and therefore only tasks
in the same group can utilize the cache by reusing blocks already
brought in by other tasks in that group. To encourage such reuse,
all tasks in the same group access the same region of memory for a
given quantum of computation, and each task starts accessing the
region in a different location, wrapping if necessary. If all tasks
started accessing memory in the same location, all tasks would
proceed in a “lock step” manner while waiting for blocks to be
loaded into the cache from main memory, resulting in virtually
no benefit from the cache. By starting in different locations, tasks
in the group can better reuse what remains in the cache later in
the quantum.

The region of memory accessed each quantum is determined by
a “sliding window” that moves by 15,000 cache blocks over the
“working set” region of memory shared by all tasks in the group.
This memory access pattern is intended to account for the worst-

case memory performance of tasks and keeps groups of tasks syn-
chronized with one another. Due to this memory access pattern,
tasks access approximately 960K of memory per quantum. Thus,
the sliding window allows for some level of cache reuse that de-
creases and eventually drops off entirely with increasing spread,
due to capacity and conflict misses.

One application with the potential to exhibit a memory access
pattern similar to the one described might be parallel motion com-
pensation search, which is the most compute-intensive part of
MPEG-2 video encoding. In such an application, some number of
tasks would access the same region of memory during the search.
However, each task would start accessing the region in different
location. Such an application might encode a video stream in
real time on a frame-by-frame basis, and therefore would require
(soft) real-time guarantees. Additionally, there would clearly be
some benefit to co-scheduling tasks that are encoding the same
frame (during the same quantum of computation).

Hand-Crafted Task Sets. We created several hand-crafted task
sets to demonstrate the effectiveness of our method at reducing
L2 cache-miss rates. The hand-crafted task sets are listed in Ta-
ble 2. We allowed early-releasing and shifted the schedule by the
indicated number of quanta when applicable. Each task set was
run for 20 quanta (assuming a 0.75-ms quantum length) on an ar-
chitecture with the specified number of cores and the indicated L2
cache size. Table 3 shows for each case the L2 cache-miss rates
that were observed.

While the SESC Simulator is very accurate, it comes at the
cost of being quite slow. Therefore, longer and more detailed re-
sults could not be obtained because of the length of time it took
the simulations to run. Additionally, space constraints were also
a limiting factor in the amount of experimental data we could
present. We hope to present more extensive experiments in a fu-
ture paper.

The L2 cache-miss rates given in Table 3 show that our method
results in substantially better performance. Note that the opportu-
nities for cache reuse are limited by our memory access pattern,
and therefore all miss ratios are quite high. However, our method

No. No.
Name Tasks Task Properties ER Cores L2 Size
BASIC 5 2 of Wt. 1/4 (same group) 1 2 2048K

3 of Wt. 1/2 (indep.)
LONGER BASIC 5 2 of Wt. 1/10 (same group) 1 2 2048K

3 of Wt. 3/5 (indep.)
ONE PROC 3 2 of Wt. 1/4 (same group) 1 1 1024K

1 of Wt. 1/2 (indep.)
MAX PARA 3 16 of Wt. 1/4 (4 groups of 4 tasks)2 4 2048K
NO PARA 5 16 of Wt. 1/4 (indep.) 2 4 2048K

Table 2:Properties of hand-crafted task sets.

9

Name Reg. Pfair Mod. Pfair Reg. EDF Mod. EDF
BASIC 79.57% 63.79% 79.18% 63.74%
LONGER BASIC 60.54% 55.36% 40.27% 34.89%
ONE PROC 80.93% 52.53% 80.92% 52.60%
MAX PARA 23.43% 23.35% 23.45% 23.46%
NO PARA 79.02% 78.73% 78.72% 79.02%

Table 3:L2 cache miss ratios for hand-crafted task sets.

shows a substantial overall improvement with these task sets. In
task sets BASIC, LONGERBASIC, and ONEPROC, one task
group can benefit from the cache, and tasks in that group have
relatively low weight. In order to see a significant overall benefit,
the actual performance of tasks in that group must have dramat-
ically improved, though the SESC Simulator gave us no way of
measuring the cache performance of specific tasks. Additionally,
because an L2 miss incurs a time penalty roughly two orders of
magnitude greater than a hit,a miss-rate difference can corre-
spond to a significant difference in performance, as seen in [1].

BASIC and LONGERBASIC consist of three independent
tasks with large weight, and two tasks of smaller weight in the
same task group. A spread of three is achieved for the task group
of each set without our method, and thus little opportunity for
cache reuse exists. With our method, spread is reduced to two,
and the cache is better utilized, resulting in decreased miss rates.
Note that LONGERBASIC shows less of an overall improve-
ment, as the tasks in the group are of lower weight and therefore
there is a smaller improvement in overall cache performance.

ONE PROC consists of one independent task with weight1/2,
and two tasks of weight1/4 in the same task group. As there is
only one processor, these two tasks cannot be co-scheduled, but
we can achieve a spread of two with our method. This allows one
task in the group to directly reuse data brought in from the other
task during the preceding quantum, and we therefore see the most
impressive benefit from reducing spread in this case.

MAX PARA and NOPARA demonstrate the dramatic cache
benefits that can be achieved when tasks that share memory
regions achieve a spread of one. Every quantum with set
MAX PARA, each block of memory brought into the cache is
reused three times, resulting in approximately a 25% cache-miss
ratio in all cases. Alternately, NOPARA provides no opportunity
for reuse, and we see very high cache-miss ratios as a result.

We emphasize that these example task sets demonstrate that our
methodcan lead to lower L2 miss rates. However, there will not
always be a benefit, and this is why it is difficult to demonstrate a
benefit for some number of randomly-generated task sets, as was
done in the spread reduction experiments presented earlier. Deter-
mining whether our method will improve cache performance for
a particular application is difficult because it depends on many
factors related to how memory is accessed, such as the percent-
age of reads and writes, opportunities for reuse (i.e., reuse dis-
tances), and other aspects of the overall memory access pattern.
For many applications, these factors could vary dramatically over
each quantum of computation, which further complicates the is-
sue. We claim, however, that our method will not have a dramatic
negative effect on cache-miss rates.

5 Concluding Remarks
We have proposed a “spread-cognizant” scheduling method that
decreases average and maximum spread when applied to both

the PD2 and EDF scheduling algorithms, and made certain guar-
antees about spread for a task set depending on the maximum
weight task in the set. We then evaluated our scheduling method
by showing its effect on raw parallelism and spread, as well as L2
cache-miss ratios in a simulated multicore environment.

There are many directions for future work. First, we want
to combine this scheduling method with the methods in [1]
so that both the “encouragement” and “discouragement” of co-
scheduling can be supported in the same system. Second, we
wish to explore support for critical sections and precedence con-
straints that incorporate our spread-cognizant scheduling policies.
Third, we currently assume that all tasks to be co-scheduled have
the same weight; we would like to remove this constraint. Finally,
we would like to find other applications for which our scheduling
policies provide a significant benefit, and perform experiments to
show that benefit. Ultimately, we want to showcase our method
by implementing applications on a real multicore system.

References
[1] J. Anderson, J. M. Calandrino, and U. Devi. Real-time scheduling

on multicore platforms. To appear inProc. of the 12th IEEE Real-
Time and Embedded Tech. and Apps. Symp., 2006.

[2] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks. InProc. of the 13th Euromicro Conf.
on Real-time Systems, pages 76–85, 2001.

[3] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks.Journal of Computer and System Sci-
ences, 68(1):157–204, 2004.

[4] E. Bampis, M. Caramia, J. Fiala, A. V. Fishkin, and A. Iovanella.
Scheduling of independent dedicated multiprocessor tasks.13th
Annual Int’l Symp. on Algorithms and Computation, 2002.

[5] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate
progress: A notion of fairness in resource allocation.Algorithmica,
15:600–625, 1996.

[6] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor.Proc. of the 26th IEEE Real-time
Systems Symp., 2005.

[7] A. Fedorova, M. Seltzer, C. Small, and Daniel Nussbaum.
Throughput-oriented scheduling on chip multithreading systems.
Tech. Report TR-17-04, Division of Engineering and Applied Sci-
ences, Harvard University, 2004.

[8] R. Jain, C. Hughs, and S Adve. Soft real-time scheduling on si-
multaneous multithreaded processors. InProc. of the 23rd IEEE
Real-time Systems Symp., pages 134–145, 2002.

[9] S. Parekh, S. Eggers, H. Levy, and J. Lo.
Thread-sensitive scheduling for SMT processors.
http://www.cs.washington.edu/research/smt/.

[10] J. Renau. SESC website. http://sesc.sourceforge.net.

[11] S. Shankland and M. Kanellos. Intel to elabo-
rate on new multicore processor. http://news.zdnet.
co.uk/hardware/chips/0,39020354,39116043,00.htm, 2003.

[12] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job schedul-
ing with priorities for a simultaneous multithreading processor. In
Proc. of SIGMETRICS 2002, 2002.

[13] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on
multiprocessors. InProc. of the 34th ACM Symp. on Theory of
Computing, pages 189–198, 2002.

10

