Parallel Real-Time Task Scheduling on Multicore Platforms *

James H. Anderson and John M. Calandrino
Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract a much greater extent than L1 misses or pipeline conflicts.
They showed that L2 contention can be reduced, and through-
We propose a scheduling method for real-time systems implgut improved, by discouraging threads that generate signifi-
mented on multicore platforms that encourages certain groupseznt memory-to-L2 traffic from being co-scheduled. In recent
equal-utilization tasks to be scheduled together. This method camrk [1], we presented results comparable to those of Fedorova
be applied to encourage tasks that share a common working eedl. but pertaining taeal-time systems. Specifically, we showed
to be executed in parallel, which makes more effective use of othat it is possible to discourage high-cache-impact tasks from be-
chip shared caches. The proposed method can be adapted foringeco-schedulesvhile ensuring real-time constraints.
in any global, deadline-based scheduling approach. It exploits the .) o
fact that, under such approaches, “work” submitted at the sam&€ Problem. In this paper, we consider the opposite issue
time by equal-utilization tasks will occupy consecutive slots in th@ Whether certain sets of tasks can &wouraged to be co-
scheduler’s global priority queue, and thus, will be scheduled #fheduled—we refer to such a task set assa group. Co-
close proximity, unless disrupted by later-arriving, higher-prioritpcheduling may be beneficial for tasks that share a common
work. We show that certain properties of such global scheduliftjorking set (WS). Fedorovet al. claimed that, for throughput-

approaches can be exploited to limit this disruptive behavior. ~Oriented applications, co-scheduling tasks that share a common
WS would provide little performance benefit. The results of this

paper, which are discussed below, call into question the validity
1 Introduction of this claim for real-time systems. To simplify the problem, we
henceforth assume that all tasks in each task group have the same
Thermal and power problems limit the performance that singletilization, orweight. This restriction also minimizes the duration
processor chips can deliver. Multicore architectures, or chip mudf time that a parallel-accessed WS may create cache traffic. For
tiprocessors, which include several processors on a single chigxample, with four tasks of weigldy/4, 1/4, 1/2, and1/2, the
are being widely touted as a solution to this problem. Severd¥S is accessed at least 75% of the time, as opposed to 50% if the
chip makers have released, or will soon release, dual-core chifgsk weights were eady2 and perfect parallelism ensured.
Such chips include Intel's Pentium D and Pentium Extreme Ed'i__-eelated work

tion, IBM’s PowerPC, AMD’s Opteron, and Sun’s UltraSPARC In work on (non-multicore) systems that sup-

IV. A few designs with more than two cores have also been aR—Ort simultaneous multithreading (SMT), prior work onsymbi-

: N .__ofic scheduling is of relevance to our work [8, 9, 12]. In sym-
nounced. For instance, Sun expects to ship its eight-core Niag ta . scheduling. the aoal is to maximize the overall “svmbio-
chip by early 2006, while Intel is expected to release four-, eight-, 9. 9 y

16-, and perhaps even 32-core chips within a decade [11]. sis factor,” which indicates how well various thread groupings
perform when co-scheduled. To the best of our knowledge, no
In many proposed mul-

analytical results concerning real-time constraints have been ob-

ticore - platforms, 'd|fferent @ B @ tained in work on symbiotic scheduling. Additionally, the issue of
cores share on-chip caches.

To effectively exploit the scheduling tasks that require mul_tiple_processors has been c_onsid-

available parallelism on ered prevpusly [4]. How_evgr, this prior work places.restrlcUons

these platforms, shared L on schedylmg, such as pinning certain tasks to certain processors,
' and provides few analytical results.

caches must not become

performance bottlenecks. In Figure 1:Multicore architecture. ~ Proposed approach. The essence of the problem at hand is to
this paper, we consider this encourag@arallelism: when one of a group of tasks is scheduled,
issue in the context of real-time applications. To reasonabhi| such tasks should be scheduled. Unfortunately, achieving per-
constrain the discussion, we henceforth limit attention to thfect parallelism for all task groups is not always possible. For ex-
widely-studied multicore architecture shown in Fig. 1, where alimple, it is not possible to schedule two parallel tasks of weight
cores are symmetric, single-threaded, and share an L2 cache. 1/2 together with a task of weight 3/4 on two processors without
In prior work pertaining to throughput-oriented systems, Femissing a deadline. Additionally, we have shown that the general
dorovaet al. [7] noted that L2 misses affect performance tqroblem of optimizing for parallelism while respecting real-time

*Work supported by NSF grants CCR 0309825 and CCR 0408996. A prelirr?cmsn’aInts (nOt surprlsmgly) is NP-hard in the strong sense.

inary version of this paper was among a set of RTSS 2005 WIP papers selected tc_p_ue_ tf) these limitations, we ha_/e chosen to focus our efforts on
appear in ACM SIGBED Review. minimizing a factor we cal{pread: if a task group has a spread of

ol E

group. Inset (a) shows a schedule without early releasing. In in-
Scheduled o

X X4~ quantum eay set (b), all subtask windows are shifted right by one quantum, and
v K R K all tasks are early released by one quantum, producing the same
schedule as in (a). (All deadline comparisons are the same.) We
v vs —>— refer to a schedule in which all subtask windows are right-shifted
by k& quanta and all subtasks are early released uanta as a
va Xy va Xy k-shifted schedule. In inset (b),k = 1. Both schedules result

in a spread of three for the/4-wt. task group. In inset (c), we
show that selectively allowing early releasing can reduce spread
_ to two. Alternately, instead of shifting the schedule and early re-
Figure 2: A one-processor Pfair schedule for a set of three tasks (¢¢asing subtasks, as in insets (b) and (c), we can instead make it
weight 1/2, 1/4, and 1/4, respectively) wi(g) no early releasing and ¢,mpletely optional whether to schedule subtasks for the/irst
(b) early releases allowed by one quantum. This schedule can also %e fter their rel llow i . hei i
viewed as an EDF schedule where the execution cost of each job is dfidanta after their release, and allow jobs to miss their deadlines
quantum. In depicting Pfair schedules, we use solid lines to indicate supy up tok quanta, as shown in inset (d). Here, the dotted lines
task windows, dashed lines to indicate where early releasing is allowesfter each window indicate by how much each deadline could be
and an “X" to indicate when a subtask is scheduled. missed (though no misses occur here). Note that there are “in-

termediate” cases between an unshifted akeshifted schedule.

k, then thei*® quantum of computation of each task in the grougor €xample, ift = 4 is required by our method for a partic-
must be scheduled within an intenjalt + k) for somet (treat- ular task set, then we could choose instead to creatstifted

ing each quantum as a “time unit”). A spread of one is pence(‘gphedule ar_nd aIIQWJobs to early release by qnly thre(_a quanta, but
parallelism. Our goal, then, is to schedule tasks so that real-tir@0 make it optional whether to schedule jobs during the first
constraints are met and spread is minimized to the extent possifigantum after their actual release. In this case, deadlines could
Note that, even with small spreads that exceed one, there maysemissed by at most one quantum. In general, if subtasks can
a potential for cache reuse. Although our motivation here is bettBf €arly released to the extent we require, then no deadlines will
cache performance, minimizing spread may also be beneficial 8¢ Missed; otherwise, deadlines may be missed, but by bounded

synchronization: if groups of tasks have precedence constraints@pounts only.

are otherwise dependent on one another, then small spreads B@)riphutions, Based upon the above observations, we have
be desirable. Our approach for minimizing spread while meeting,ised a set of rules for encouraging low spreads that can be
real-ime constraints is based upon three observations. adapted to any deadline-based, global scheduling approach. We
First, global scheduling al_gorlthms,. yvhllc.h use a single lUBresent these rules in Sec. 3.1 by focusing o BBY then ex-
queue, are more naturally suited to minimizing spread than pa§tain in Sec. 3.3 how they can be adapted to apply to EDF. Experi-
titioning approaches. This is particularly the case W“he” USINGents involving randomly-generated task sets presented in Sec. 4
deadline-based scheduling methods. This is because “work” sulfio\y that these rules are effective in reducing spreads iawhe
mitted at the same time by same-weight tasks will occupy CoRsage case. In fact, in these experiments, spreads were usually
secutive slots in the scheduler's run queue, and thus, such weyky close to one (which is perfect parallelism). However, in real-
will be scheduled in close proximity over time, unless disruptegy,e systems, spreagliarantees are desirable. We show in Sec. 3
by later-arriving, higher-priority work. Based on this observagyat sych guarantees are possible (for both ®ml EDF) and that
tion, we henceforth limit our attention to global, d_eadllne-bz_iseﬂl]ey hinge on the largest task weight in the system. As a final con-
scheduling approaches. Two such approaches will be considefgftion, we assess the effectiveness of our spread-minimization
in detail: the '_DB Pfair scheduling algorithm [2] and the global yethod by examining the results of experiments involving several
earliest-deadline-first (EDF) algorithm. In Pfair scheduling, eachy,|-time workloads conducted on a multicore simulator. In these
unit of work” is a quantum-lengttsubtask, while under EDF, gyperiments, the usage of our method resulted in L2 miss-rate re-
each unit is gob of arbitrary (but bounded) length. ductions in the range of 8-35%. We argue that our metizogl
Second, in all global, deadline-based scheduling methoggt goes not always, lead to lower L2 miss rates. Determining
known to us, the ability to meet timing constraints is not comproyys for a particular application can be difficult due to the inherent
mised if subtasks or jobs (as the case may be) are “early releas%’r’nplexity of memory access patterns.
i.e.,, allowed to become eligible for execution “early.” This is de- Tne rest of this paper is organized as follows. In Sec. 2, we
picted with respect to Pfair scheduling in Fig. 2. In Pfair schedulsresent a brief overview of Pfair and EDF scheduling. Then, in
ing, each subtask must be scheduled within a time window, thg.c. 3, we describe our spread-reduction approach and establish
end of which is its deadline. Note that, in inset (b), allowing early, o spread guarantees mentioned earlier. In Sec. 4, we present

releasing does not cause deadline misses. . experimental results, and in Sec. 5, we conclude.
Third, when a subtask or job is early released, it is completely

optional as to whether the scheduler considers it to be available
for execution. We can exploit this fact to minimize disruptions t@ Backgr ound
task groups caused by higher-priority work.
As an example of the last point, consider the Pfair scheduleslim this section, we briefly introduce both Pfair [5, 13] and EDF
Fig. 3, where both tasks of weight4 are placed in their own task scheduling. For simplicity, we consider only periodic task sys-

T T T
(€) 001 2 3 4 (b) 001 2 3 4

2 12 X 2 2 X
X X
112 v T w 112
X
12 w X w 12

i V4 -
Spread b Spread 6

three two
{ va t--

va

fl o 7

X
—
X
P
—
X
X
—
X ;
V4 14 -
Spread b
three
X i
v4 V4 k-
T T T T T T T T T T
0o 1 2 3 4 01 2 3 4 5 01 2 3 4 5 01 2 3 4 5

@ (b) © (d)

va

Figure 3: A two-processor Pfair schedule of a set of five tasks (three of weight 1/2, and two of weight 1/4pwiit early releasing(b) early
releasing by one quantum and all windows right-shifted by one quar{t)rsimilarly-shifted windows, but selective early releasi(d); no shifting
or early releasing, but subtasks are considered optional within the first quantum after their release, and deadlines can be missed by one quantum

tems. However, all of our results apply to sporadic task systeni®fair scheduling algorithms. Pfair scheduling algorithms
and also to intra-sporadic task systems, as considered in worksehedule tasks by scheduling their subtasks on an earliest-
Pfair scheduling [13]. In a periodic task systemeach taski” deadline-first basis. Tie-breaking rules are used in case two sub-
is subdivided into a sequence of sequertibs, and is character- tasks have the same deadline. The most efficient optimal algo-
ized by two quantities: a per-jaxecution cost T.e and aperiod rithm known is PO [3, 13], which uses two tie-breaking rules.
T.p. EveryT.p time units, starting at time @, releases a new job Because it is optimal, PDmeets all subtask deadlines, as long as
with an execution cost df’.e time units. A time unit is referred the system’s total utilizatior}y ;... wt(T"), does not exceedi/.

to as aquantum. Each task’s execution cost and period are ea . . .
assumed to be integral values, where a value of one correspon&'édm%S bounds. If a scheduling algorithm cannot ensure all

to the length of the system’s quantum size. The quafitity T.p gm'?ﬁ. re?w(rje_zment_s, tlhen It k;nay ;t'g Ee possible tg sh(?cw tha;
is theweight, or utilization, of T', denotedwt (7). The problem eadiine tardiness 1s always bounded by some humber of quanta.

of interest to us is that of scheduling a set of periodic tasks dﬁ;;ggnﬁra%uggeorfitf dﬁzzﬁethat a subtask will complete at
M > 1 processors (or cores). q ’

Early-release scheduling. In the early-release (ER) task
2.1 Pfair Scheduling model [3], a subtask may be released earlg, be eligible to ex-
ecute before its window, while still ensuring the timing require-
Pfair scheduling algorithms [5, 13] (as applied to periodic task$hents of all tasks. The decision of whether or not to release a
allocate processor time one quantum at a time. The quantuBibtask early, and how early to release it, can be arbitrary, except
length time intervalt, ¢ + 1), wheret > 0, is calledslot ¢. In that all subtasks of a task must execute in order.
each slot, each processor (task) can be assigned to at most one

task (processor). Task migration is allowed. .
Processor time is allocated one quantum at a time by sug'—2 EDF Scheduling

dividing each tasK’ into a sequence of quantum-lengtibtasks, |n global earliest-deadline-first (EDF) scheduling, jobs are sched-

denotedT:, T, Each subtask; has an associate@lease yled in the order of increasing deadlines, with ties broken arbitrar-
r(T;) anddeadline d(T;), defined as follows. ily. In the case of EDF scheduling, all task groups are assumed
i1 ; to consist of tasks with the same execution cost and period. As
@)= | = || @ e
Tsi
The time-slot intervalr(T;), d(T;)) is called thewindow of T;. T Ta
Consecutive subtask windows of a task are either disjoint or over- T, T
lap by one slot. Fig. 4 shows an example. A task’s windowing is Ly B
defined so that its allocation approximates that of an ideal (fluid) L

system that allocatest(7")- L units of processor time to each task

T in any interval of lengthl.. Note that, since all tasks in each Fcigggﬁlﬁ]igv(i)r\lg?‘/tvri]ggi:]?é ﬁ/;ﬁg \é\'(i)t]h v&g?ehilﬁag?t)h?e 3/(é&;igﬂg{azfgrhave
task group have the same weight, tasks in the same group alW%¥ dlines by time 10 (20). Thus, if each subtask meets its deadline, then

have subtask windows and task periods that coincide. (For spps allocation up to these times is the same as in an ideal system10
radic or intra-sporadic tasks, this requirement is needed as We|hb|d13—0 x 20, respectively).

3

such, all such periods will always coincide. (For sporadic tasks,

this requirement is needed as well.) ws X ox T

EDF scheduling isiot optimal, and therefore tasks may miss X X
their deadlines even when total utilization is at magdt It Group I . N
has been shown, however, that deadline tardiness under EDF is a5 x x
bounded [6] when the total utilization of a task set is not re- K Lo
stricted. Additionally, jobs may be optionally and arbitrarily early N .
released under EDF, as in Pfair scheduling, with no additional tar- o5 x
diness penalties. — —

We assume guantized version of EDF in this paper, where «
scheduling decisions are made only on quantum boundaries that ot ’
are aligned across all processors (and all task execution costs and Group 1o} X,
periods are integral, as noted earlier). We further assume that
jobs of all tasks require their full execution cost. For example, a @) /O R O R DR
task with execution cost 4 will never have a job that completes
after only three quanta. These assumptions are motivated by the
fact that spread is a per-quantum measure. Additionally, if jobs L ‘X‘ o ‘X‘ !
can receivdewer aIIo_cations_ than their_execution cost specifies, w5 X, Hﬁwx i
then we are essentially trying to provide spread guarantees for Xy
a group of tasks with varying execution requirements. This is a Group 1 X e
hard problem left as an area of future work. 5L N B

Pt F—
3 Spread-Cognizant Scheduling w s
N A . P

We begin with a description of our scheduling method applied to = B
PD?, and follow with a correctness proof of the spread guarantees 110 -4 X %
we claim when applying this method. We then discuss how to Group »

1/10 -+ {

adapt the method tquantized EDF.

T T T T T T T T T 177
(b) 00123 456 7 8 910 11

3.1 Method Applied to PD?

Figure 5:An example two-processor schedule wighregular P, and
In general, we will useX to denote the spread guarantee we se€l) PD? using our method.
to establish. For PB X is defined as follows, wherB/,,,. =
maxpe, wWE(T). in H has higher priority than at least one subtask in
U. Note that tasks iri{ are (by definition) not early-

release eligible at time
(iv) SubtaskT; is one of thee highest-priority subtasks at

time ¢ satisfying conditions (i) and (ii) above, where
e =M — (U] +[H]).

3, if Winax < 1/3
X =4 4, if1/3< Whax <1/2 (2)
2 x [%1 —1, if Wiay > 1/2

We describe our method as additional rules foPPDVe as-
sume we are working with agX — 1)-shifted schedule (or al-
ternately, that subtasks can miss their deadlines by up te 1
guanta—see Fig. 3(d)). Three rules are required:

e Urgent Tasks. When subtask; is scheduled, wheré&' is
in some task groug, andT is the first task ink whosei*"
subtask is scheduled, each subtédskwhereU € R and
U # T, is flagged “urgent” until it is also scheduled.

A subtaskT}; that is urgent at time is “early-release eligi-
ble” at timet if only conditions (i) and (ii) hold for it.

Priorities. Eligible subtasks (early released or not) are
scheduled using the same priority rules as i’ PIn the
case of a tie, urgent subtasks have higher priority, with the
task-group identity used as a tie-break. (This ensures that
task groups achieve the lowest possible spread when noth-
ing in the P} priority rules would prevent it.)

o Early-Release Eligibility. A subtaskl’; non-urgent at time Fig. 5 shows how selective early-release eligibility reduces
is “early-release eligible” atif all of the following are true: spread. In this example, early-release eligibility starts amly
(i) r(T;) — (X — 1) < t < r(T}) (i.e, ime ¢ is within slot before t_he_ actual release t@me of a subtask—in many cases,
X — 1 slots of the actual release time of subtagk even very limited early releasing has a substantial impact on
(i) All subtasksT}, of T, wherek < j, have already been spread. With regular PD(inset (a)), the task set achieves max-
scheduled prior to time imum spreads of two and six for Groups 1 and 2, respectively.
(iii) |U|+|H| < M, where, attime, I/ is the set of eligible Our rules reduce the spread of Group 2 to two (inset (b)), without
urgent subtasks, arfd is the set of non-urgent eligible changing the spread of Group 1. This reduction happens because
subtaskdly, wherer(T}) < t, such that each subtask at time 5 in (b), the /10-wt. task not scheduled at that time in (a)

is favored over thg/5-wt. tasks by theJrgent Tasks rule. Note
that theEarly-Release Eligibility rule only allows one of th/5-

wt. subtasks released at time 6 to become early-release eligible
at time 5. Note also that, if the task set included some additional

tasks of weightl /10 that were eligible at timé, the Priorities

rule would ensure that the urgent task was scheduled first, and

Group 2 would still have a spread of two.

3.2 Correctness Proof

We now prove that when our method is applied to’PEpreads

as defined by (2) are ensured. Specifically, we prove that, for any

1, if t is the earliest time at which some subtdskis scheduled,
whereT is in task groupR, then all tasks inR have theiri™
subtask scheduled ift,z + X). We begin with the following
property about all task groups.

(PM) A task group contains at most/ tasks, which
is the maximum parallelism achievable on/ahk
core architecture.

The next lemma precludes subtasks of two tasks from the same
group being scheduled at the same time if their indices differ by

more than one.

Lemmal IftasksU and V are both in task group R, and if sub-
task U; is scheduled at time ¢y and subtask V;, is scheduled at
timet < ty,thenk —j < 1.

SetH is partitioned into disjoint subsefd; and H, where
T € H, iff T; is scheduled at, andT € H, otherwise.

Note that ifU andU’ are from the same group, aig is
scheduled at butU/ could not be scheduled atthen either
U!’s predecessor is scheduledtabr U/ is not among the
M highest-priority subtasks selected for execution. By the
Prioritiesrule, there is at most one task group for which the
latter could have happened. Thus, we have the following.

(PH) SetH contains tasks from at most one task group, and
these tasks have lower priority than the lowest-priority
task in sei7 at timet.

e Setl: includes each task notin sets7 or H. Setl contains
disjoint subsetd;, I, andls, defined as follows.

(i) T € I, iff T is scheduled at timg but not in the inter-
val [t + 1,t + X).
(i) T € I, iff T'is not scheduled at time but is scheduled
inthe intervallt + 1,¢ 4+ X).
(iii) T € I iff T is scheduled at timeand in the interval
[t+1,t+ X).

By the definitions of set§’ andH, if Gy U H» is empty, thend
is empty and any task group satisfying conditions (i) and (ii) of set
G achieves perfect parallelism for subtasknd thus satisfies any

spread guarantees we make. Therefore, we assume the following.

(PE) G2 U H, is non-empty.

Proof: Follows easily by inducting over the subtask indices since

tasks in the same group have the same window structure.ll

Set categorization. At time ¢ in a schedules, tasks are placed
in the following sets, which are illustrated in Fig. 6. Subsgts
and H, contain tasks with a subtask that is eligible at titrend
must be scheduled over the inter{tal- 1, t+ X') to avoid a spread
violation. Hereafter, we call such eligible subtagleading sub-
tasks (and, implicitly, this term is used with respect to ti)e

e SetG: includes each task € R, whereR is any task group,
such that, for somé
(i) No subtask; is scheduled before timegfor U € R;
(if) U; is scheduled at timefor some tasl € R;
(iii) U;—1 is scheduled at timefor some task/ € R;
(iv) T; or T;_, is scheduled at time
Set(G is partitioned into subsets; andGs whereT € G,
iff T; is scheduled at, andT € G, iff T;_; is scheduled at
t (implying 7T; is not scheduled &). Note that, by (ii), (iii),
and Lemma 1, no subtask of a task in gra@wvith an index
other than ori — 1 can be scheduled at tinte

e SetH: includes eachtask € R, whereR is any task group,
such that, for somé&
(i) NoU; is scheduled before time whereU € R;
(if) U; is scheduled at timefor some tasl € R;
(iii) Some tasky € R is not scheduled at time

In our proof, we assume there is a spread violation, which
implies thatt’ defined next exists, and then derive a contradiction.

Definition 1: ¢’ is the latest time at which any pending subtask of
atask inG» U H, is scheduled, wherg > ¢ + X.

We assume the following for any tagkin either/, or I5.

(PI) A subtask ofl" has equal or higher priority than at
least one pending subtask of a taslGnuU H at
some timeu in the intervallt + 1,¢ + 1).

Otherwise, by thérioritiesrule and Def. 17" could not be sched-
uled until all pending subtasks of tasks@h U H, were sched-
uled, and we would not need to account for allocationgtm
our proof, orT would be inI;.

Task allocations over an interval. For any subsetn €
{G1,Gq, H1, Hy, I5, I3}, we defined x («) to be the maximum
number of subtask®), of anyone taskT € «, wherek > 0,
scheduled over the intervill + 1,¢t + X). Ay () is similarly
defined with respect tip + 1,¢ + 1), except that subtasks sched-
uled at timet’ with priority lower than any pending subtask of a
task inG5 U H, also scheduled at that time are not counted, as
such subtasks do not interfere with the scheduling of any pending
subtask. By Def. 1, we have the following.

(PT) Foranya, Ay () > Ax(«).

=
P D S N
-
Gag v r
R S
— ix. i [Grouwtl
sl L P _
—
e T
eyt
T T B RS S S S S
— P ‘Group2
S
T
W] T By S SER SN
i =
D S
— P
X
x . r Group3
N
N
Lox b
XXX
R !
i i
t t+X

Figure 6:SetsG, H, andl, and their respective subsets.

Freeprocessor allocations. The number of “free” processor al-

locations,F', available for pending subtasks of tasksidpn U Ho
over the intervalt+1, t+X) is given by subtracting frorX —1)-

subtasks at time ¢, wheree = M — (U] + |H|) as defined by the
Early-Release Eligibilityrule, then T; is early-release eligible in
dlot ¢t. Additionally, if T; isnon-urgentin [t + 1,¢), then T} is not
early-release eligiblein [t + 1,¢').

Proof: Assume thaf; is released in the intervi+-1,¢+X), and

no prior subtask of task is scheduled in the intervéd, »(T;)).
Then,T; satisfies conditions (i) and (ii) of thearly-Release Eli-
gibility rule. If we further assume thdt is one of thee highest-
priority tasks at time, wheree is defined in the statement of the
lemma, then condition (iv) of the rule is satisfied, and it must also
follow thate > 0. This implies thatM — (|| + |H|) > 0, and
therefore(|i/| + |H|) < M, so condition (jii) is satisfied. Thus,
T; is early-release eligible.

Once the eligible subtask of every taskdh U H; is scheduled
in slot ¢, by the definition of subset§'s and H,, each pending
subtask of a task i’ U Hs is both eligible and urgent from time
t + 1 until it is scheduled. By th&arly-Release Eligibility rule,
no subtask released in the inter{talt 1,¢ + X'), and non-urgent
over that same interval, can be early-release eligible atdime
unless|i{/| + |H| < M for slotu, which cannot be the case for
any slotin[t + 1,¢'). [|

The following lemma states a number of properties related to
the calculation ofF".

Lemma 3 The properties below hold for M, and the variables

and subsets defined above.

(8) [G1| + [Gal + |Ha| + |1a| + Is] < M.

(b) |Hs| < M.

(c) Ax(I2) =0.

(d) Ay (Hy) =0and Ay (Hp) = 1.

(e) ‘(é)i)(fa) = Ax(G1) = Ax(G2) £ X =2) = (F = |Ha[+
2]).

Proof: Part (a) holds since all tasks in séts, G2, Hy, I, andl3
are scheduled at timeby definition. Thus, these subsets together
contain at most\/ tasks. By (PH) and (PM),H| < M and
|Hs| < M, and therefore part (b) holds.

We prove part (c) by proving that no task Ig can receive an
allocation in[t + 1,¢ + X). Assume to the contrary that some
subtask of a task i, is scheduled int + 1,t + X). LetT;

denote the earliest-scheduled such subtask and assume that it is

scheduled in slot.. Note that, becausg € I, T;'s predecessor

M the maximum number of allocations to tasks in other group#s not scheduled ift,). Now, if »(T;) < t 4 X, then by (PI)

Thatis,FF = (X —1) M—Ax(I2)-|l2|—-Ax(I3)-|I5|— Ax (G1)-
G —(Ax (G2)-1)-|G2| = Ax (Hy) - |Hi|— (Ax (H2)—1)- | Ha|.
Our proof obligation is to show tha@ > |G2| + |Hz|. By (PT),

F > (X—-1)-M—-Ax(I2) - |I2| = Ax(I3) - |I3]
—Ax(G1) - |G1] = (Ax(G2)—1) - |G2]
—Ay (Hy) - |Hy| = (Ap(H2)—1) - |Hal. 3)

The next lemma concerns early-release eligibility at or dfter

Lemma 2 SupposesubtaskT; isreleasedintheinterval [t+1,t+
X) (e, t+1<r(T;) <t+ X). If noprior subtask of task T
is scheduled in [¢, 7(T;)), and T; is one of the e highest-priority

and Lemma 2,1; would be scheduled at timg contradicting
T € I>. Hencen(T;) > t + X. This implies thafl; was early-
release eligible when it was scheduled. But, by condition (iii)
of the Early-Release Eligibility rule, this implies that all of the
urgent subtasks ity U H, are scheduled ift + 1, u]. However,
this contradicts Def. 1.

We begin our proof of part (d) with the following claim, which
follows easily from (PH).

Claim 1 Ataskin set H; can receive no subtask allo-
cationsin theinterval [t + 1,¢'). Also, atask in set Hy
can receive only one subtask allocation in the interval
[t + 1,t')—the allocation for its pending subtask.

If H is empty, then (d) holds easily. Otherwise, by part (ii)Lemma6 (from [3]) The length of any subtask window of a task

of the definition of setd, Hs is nonempty. Thus, by Claim 1,
At/(Hl) =0 andAt/(HQ) = 1.
Finally, part (e) can be established as follows.

F > (X—-1)-M—Ax(I3) - |I3] — Ax(G1) - |G1]
—(Ax(G2) = 1) - |G2| {by (3), (c), and (d)
> M+ |Ga|l+a-[Hi|+a- ||
{by (@) andAx(I3) = Ax(G1) = Ax(G2) < X — 2}
> M+ |G|
> |Ha| +[G2| {by (b)} u

The next lemma concerns urgent subtasks.

Lemma4 Suppose a subtask 7; of a task 7" is urgent from time
t + 1 until it is scheduled, is scheduled in theinterval [t + 1,t/),
and T; is not the first subtask of a task 7' scheduled in the interval
[t + 1,¢'). Then, T; must be scheduled at time r(T;) or later, i.e.,
it cannot be scheduled beforeits release time.

Proof: If T; is scheduled at timg,, wheret +1 < t,, < t/, then
by theUrgent Tasks rule, there must exist some subtdgkin the

T iseither [ﬁw or [ﬁw +1.
We now state our main lemma for algorithm £vhich allows
us to contradict Def. 1.

Lemma?7 F > |Gs| + |Hzl|,ie,t' <t+ X.

Proof: Consider a subtask; of ataskl” such that+1 < »(T;) <

t + X. If T; is non-urgent over the entire interjak 1,¢ + X),

then by Def. 1 and Lemma 2, early releasing is disabledifor
over that same interval. The same is tru&ifis urgent at some
time in the intervalt + 1, ¢ + X), and therefore is urgent at some
time in the intervalt + 1,¢') by Def. 1, but is not the first subtask
of T scheduled in the intervgt + 1,¢'), by Lemma 4. IfT;

is urgent at some time in the intervgl+ 1,¢ + X) and is the

first task of 7" scheduled in the intervat + 1.t + X)) thenT;

can be scheduled early, but by Lemmal5¢cannot receive any
more allocations over the intervigh- 1, ¢ + X) than if 7; had not
been scheduled early. Together, these facts imply that we do not
need to consider early-releasing over the intefvat 1,¢ + X)
when determining the maximum number of allocations a task can

same task group that was both non-urgent and scheduled at UPBGeive in that interval. We now consider three cases, depending

thu < tu. If th, > t, then by Lemma 2[J; is not early-release
eligible in the intervalt + 1,¢), and thudJ; andT; must both be
scheduled at time(U;) or later. Since(U;) = r(T;), T; must
therefore be scheduled at tim€T;) or later. Ift,, < t, then
T; must be the first subtask of tagk scheduled in the interval
[t+1,¢"), for otherwise, subtaskg andT;_; would be scheduled
at timet + 1 or later, while subtask&; andU,_; are scheduled
at timet or earlier, sincd/;_; must be scheduled earlier than.
This cannot be the case since it implies that at some#jimec t,
U; was scheduled instead @f_;, and by Lemma 17;_, must
have been scheduled before timg,, and thereforel;_; must

have been eligible at timk, .. [|
The following lemma concerns 11

the first urgent s_ubtask of a task X

scheduled in the interv@, t+ X). T, X | «T
X

Lemmab If subtask T; of a task

T is urgent from time ¢t + 1 un- X

til it is scheduled, is the first sub- T X T

task of T" scheduled in the interval X (no early
| releasiny

[t+1,t+X),and T; is scheduled

early, then the maximum number t X

of allocations that task 7' can re- Figure 7:Lemma 5.
ceiveover theinterval [t+1, t+X)

is no more than what it could have received if T; had not been
scheduled early.

Proof: In the absence of early releasing, a maximal allocation fd

T over[t + 1,t + X) occurs when every subtask Bfreleased in

this interval is scheduled in the first slot of its window. As seefP
in Fig. 7, early releasind; cannot increase this allocation. This

is due to the fact that, by Lemma 2 and Lemm@&4is the only
subtask off" that can be scheduled early in the interval 1,¢'),
and therefore by Def. 1, in the intenval+ 1,¢ + X). []

The next lemma concerns subtask window lengths.

on the value oV ...

CaseWmaxgl/?). We T T
claim a spread of three in
this caseji.e, X = 3.
Lemma 6 and the upper
bound on task weights,
in conjunction with (1), 1 X
imply that no task can
have a subtask window
of length less than three, I e e e
or an overlapping sub- ‘
task window of length
less than four. Therefore,
tasks inI; and G can receive at most two consecutive proces-
sor allocations before becoming ineligible, and thus no more than
one additional allocation in the intervgl+ 1, ¢ + X), since they
have already received an allocation in sloThis is illustrated in

Fig. 8. ThereforeAx (I3) = Ax(G1) = Ax(G2) =1 < X —2.
Thus, by Lemma 3(e)f’ > |G2| + |Ha|.

Figure 8:Lemma 7:Woax < 1/3.

Case1/3 < Whax < 1/2. We claim a spread of four in this
casej.e, X = 4. The reasoning is very similar to that above, and
hence is omitted due to space constraints.

Case Whax > 1/2. In this case, we consider a sequence
T;, ..., T; of subtasks of a task such that the windows of sub-
sksT;t1,. .., T; are of length two and overlap the windows of
their successor subtasks by one, and the window of sulitask
either of length three, or of length two and does not overlap
with its successor subtaskd., 77, T» or T3, Ty, T5 or Ty, 1%

in Fig. 9). If any ofT;, ..., Tj is scheduled in the last slot of its
window, then each subsequent subtask in this sequence must be
scheduled in its last slot. In effed;, . . ., T; must be considered

as a single schedulable entity subject tgeup deadline, defined
asd(T}) + 1. Intuitively, if we imagine a job off” in which each

T not scheduled in these slots

I I A I | Y I
X
Ti — To

X
T —
X
Tu &8

X ;
Tb——

X
T —
X
Tia ———
X
Tist

X
T —

L L L D N N e N
0 1 2 3 4 5 6 7 8 910 1112 13 14 15 16 17 18 19 20 21 22

be most effective, deadline ties should be broken in factor of the
task with higher weighbefore urgency is used as a tie-breaker.

As an aside, note that tasks in task sets scheduled with EDF
may miss their deadlines by bounded amounts, as stated in
Sec. 2.2. Thus, tasks scheduled with EDF using our method, but
without early releasing and a shifted schedule, may miss their
deadlines by the sum of the tardiness bound for BB any ad-
ditional amount added by choosing to shift the schedule and early
release by a smaller amount (or not at all).

Theorem 2 Consider a task set 7 for which tardiness is at most

Figure 9: The maximum number of consecutive subtask allocations t& under global EDF, and let e,,,, denote the largest job execu-
taskT is twice the maximum distance between consecutive group deaglon cost in 7. Suppose that EDF is modified as described above

lines minus twoI" has weigh8/11.

subtask is scheduled in the first slot of its window, then the r

maining empty slots correspond to the group deadlin€E.olin
Fig. 9,T has group deadlines at slots 4, 8, 11, 15, 19, and 22.

Claim 2 If Wi,ax > 1/2, then the maximum number of
consecutive subtask allocations that any task receives
inany interval is2 x [{—p—1] — 2.

Proof: The calculation required here is straightforward
and hence is omitted due to space constraints. (The
term|[1—V11/max1 is the maximum distance between con-
secutive group deadlines and is calculated in [3].) As
an example, iV, = wit(T') in Fig. 9, then the maxi-
mum number of consecutive subtask allocations for any
task is2 X [{—pp—1 ~2 =2 x [—zp] — 2 =6,
demonstrated from time 8 to time 14. |

for PD2, but instead jobs are allowed to become early-release el-
igibleupto 2 - e,,,, quanta before their actual release times. If

ef.p > T.e+ 1+ Afor eachtask T € 7, then the spread of any

task groupisat most 2 - €, + 1.

Proof: This proof is similar to that
for the Wi > 1/2 case of PB,
so only a sketch is provided. As Pl
with the P¥ cases, we assumg X X X
is defined as in Def. 1 and derive aT
contradiction by showing that' >

|G2| + |Hz|, given theX (spread) = ©° 1 23456738
stated in Theorem 2. For quan-F1gure 10:AssumingA =

. . 0, the maximum number
tized EDF, the maximum number of ot ¢onsecutive quantum al-
guanta for which a task can consec-ocations to taskI’ occurs
utively receive processor allocationswhen consecutive jobs are
iS 2 - epag. This is illustrated in Scheduled as shown here.
Fig. 10, whereA = 0 is assumed.

T not scheduled in these slo

By Claim 2, if we increase our maximum guaranteed spréad With a spread o - e, + 1, every task inl; and G is guar-

t0 2 x f%} —1, then every task if; andG is guaranteed to
be ineligible for at least one quantum in the interfgad 1, ¢+ X)
(again, in the absence of early releasing). Taskg iandG can
receive no more thaf x [ml — 3 additional allocations

in the intervallt + 1,t + X) since they have already received a

allocation in slot. ThereforeAx (I3) = Ax(G1) = Ax(G2) =
2x [1=pp—1—3 < X — 2. Thus, by Lemma 3(e}’ > |G| +
| Ha|. n

From Lemma 7, Theorem 1 follows.

Theorem 1 If PD? is modified as described above, and subtasks
areearly-release eligible X — 1 quanta before their actual release
times, then the spread of any group of tasks that we wish to co-
schedule is no greater than X as defined in (2).

3.3 Method Applied to EDF

Theorem 2 below states a spread result forquantized version

anteed to be ineligible for at least one quantum in the inter-
val [t + 1,¢t + X) (again, in the absence of early releasing).
This means that tasks ify and G can receive no more than

2 - emar — 1 additional allocations in the intervifl + 1,¢ + X)

rsince they have already received an allocation intsléherefore,

X(IS) = AX(GI) = Ax(GQ) =2 -€Cmar — 1 <X —2. ThUS,
by Lemma 3(e)F > |G2| + |Hz.]

4 Experimental Results

In this section, we assess the efficacy of our method in reducing
spread and achieving better L2 cache performance.

Spread reduction experiments. First, we randomly generated
50,000 task sets in several categories, and simulated the schedul-
ing of these task sets on a four-processor system with EDF and
PD?. For each task set with which we experimented, we first al-
lowed no early-releasing and did not shift the schedule, and then
allowed early-releasing and shifted By— 1 quanta, as specified

of EDF as described in Sec. 2.2, with aligned quanta and integesdrlier for both P and EDF. For PB, an upper bound on task
task execution costs and periods. The spread guarantees madeghts was enforced, during task set generation,/8f 1/2, or

for EDF are with respect toguantum of computation rather than

3/4, depending on the experiment. For EDF, all tasks had an ex-

a subtask as in P[¥, and therefore we are concerned with thescution cost ofl. Task periods varied from two (or three, if tasks

nextpending unit of computation of each task iG> U H, rather

could not have a weight of/2) to 50. All task sets fully uti-

thanpending subtask. Additionally, in EDF, jobs become urgent lized all four processors, and the task groups varied in size from
instead of subtasks. Finally, note that in order for the method tme {.e., a lone task in its own task “group”) to four (the total

Spread

Grp. Size=2||Grp. Size=3||Grp. Size=4
Algorithm|Wt. Constr.| X |ER||Min|Avg|Max||Min|Avg|Max||Min|Avg|Max Spread
Reg. Pfair| (0,1/3] [N/A| O | 1 [1.39 41| 1 |1.66 40 || 1 |1.99 41 Grp. Size=2||Grp. Size=3||Grp. Size=4
Mod. Pfaif (0,1/3] [3 |2[1124 2 || 1157 2 || 1 1.7 3 Algorithm|emaz| X |ER||Min|Avg|Max||Min|Avg|Max||Min|Avg|Max
Reg. Pfair| (0,1/2] |[N/A| Ol 1 |1.40 37| 1 |1.74 41| 1 (2.1 37 Reg. EDF| 1 [N/A| O 1 |1.96 41| 1 [2.28 42 || 1 |2.54 45
Mod. Pfaif (0,1/2 4 13 11128 2 1153 2 11177 3 Mod. EDF 1 312 11134 2 11147 2 11162 2
Reg. Pfair| (0,3/4] |[N/A| Ol 1]1.39 25| 1 |1.83 33| 1 |2.29 41
Mod. Pfai (0,3/4 7161 11129 2 11157 2 11181 3

a) (b)
Table 1:Raw parallelism and spread f(a) Pfair and(b) EDF algorithms. Each different constraint represents 50,000 task sets.

number of processors). These constraints were reasonable as tteese memory performance of tasks and keeps groups of tasks syn-
included task sets with a wide variety of task weights, includinghronized with one another. Due to this memory access pattern,
those with large periodsg., 50). The only types of tasks not tasks access approximately 960K of memory per quantum. Thus,
included were tasks with weight greater ttigfa in PD? or exe- the sliding window allows for some level of cache reuse that de-
cution cost ovell in EDF. All simulations were run for the length creases and eventually drops off entirely with increasing spread,
of the task-set hyperperiod. Results are shown in Table 1. due to capacity and conflict misses.

One application with the potential to exhibit a memory access

Results. Our method generates low spreads in all cases (Nearn similar to the one described might be parallel motion com-
two quanta), thus appearing to perform considerably better ii.qation search, which is the most compute-intensive part of
practice than migh'g be expected from the analytical upper boungfﬁDEG_2 video encoding. In such an application, some number of
on spread proven in Sec. 3. For the task sets _u_sed in the glopalys would access the same region of memory during the search.
EDF experiments.p > T.c + 1 + A wasnot explicitly ensured 1, vever. each task would start accessing the region in different

for each taski” in the EDF task sets. However, the spread réj, qiion - Such an application might encode a video stream in

sults are still impressive and within the analytical bound state[%a| time on a frame-by-frame basis, and therefore would require

in Sec. 3.3. Note that our method decreases average spread @) real-time guarantees. Additionally, there would clearly be
always prevents extremely high spreads, as shown in the boldface g e penefit to co-scheduling tasks that are encoding the same

columns of Table 1. frame (during the same quantum of computation).

L2 CachePerformance. We nextdemonstrate the effectivenessygnd-crafted Task Sets. We created several hand-crafted task
of our method at improving L2 cache performance by simulatingets to demonstrate the effectiveness of our method at reducing
the scheduling and execution of task sets with the SESC Simup cache-miss rates. The hand-crafted task sets are listed in Ta-
lator [10], which is capable of simulating a variety of multicorep|e 2. We allowed early-releasing and shifted the schedule by the
architectures. We chose to use a simulator so that we could §Xgicated number of guanta when applicable. Each task set was
periment with more cores than commonly available today. Thegn for 20 guanta (assuming a 0.75-ms quantum length) on an ar-
simulated architecture consists of four cores, each with dedicatggliecture with the specified number of cores and the indicated L2
16K L1 data (4-way set assoc.) and instruction (2-way set assoggche size. Table 3 shows for each case the L2 cache-miss rates
caches with random and LRU replacement policies, respectiveliat were observed.
and a shared 8-way set assoc. on-chip L2 cache with an LRU reqypijle the SESC Simulator is very accurate, it comes at the
placement policy (size varies per experiment). Each cache haggt of being quite slow. Therefore, longer and more detailed re-
64-byte line size. sults could not be obtained because of the length of time it took
All'tasks in the same group access the same large “working s¢fe simulations to run. Additionally, space constraints were also
region of memory. Tasks make one pass over a region of thgilimiting factor in the amount of experimental data we could
working set per quantum of execution, and therefore only taskgesent. We hope to present more extensive experiments in a fu-
in the same group can utilize the cache by reusing blocks alreaglife paper.
brought in by other tasks in that group. To encourage such reuseshe |2 cache-miss rates given in Table 3 show that our method
all tasks in the same group access the same region of memory fQeay|ts in substantially better performance. Note that the opportu-
given quantum of computation, and each task starts accessing ffiifes for cache reuse are limited by our memory access pattern,

region in a different location, wrapping if necessary. If all taskand therefore all miss ratios are quite high. However, our method
started accessing memory in the same location, all tasks would

proceed in a “lock step” manner while waiting for blocks to be

loaded into the cache from main memory, resulting in virtuallyNarne ng(-sTask Properties ER C’\é?-&sl_zgze
1 1 H 1 1 e
no benefit from the cache. By starting in d!ﬁergnt locations, tas"‘_BASIC 5 12 of Wi, 1/4 (same group) 1T 2 12048K
in the group can better reuse what remains in the cache later|in 3 of Wt. 1/2 (indep.)
the quantum LONGERBASIC| 5 |2 of Wt. 1/10 (same group) 1| 2 |2048K
. . . 3 of Wt. 3/5 (indep.
The.reglo'n of memory accessed each quantum is determined Byie proc 3 2 of Wi 1/4 Esamg éroup) 1T 1 [1024K
a “sliding window” that moves by 15,000 cache blocks over the 1 of Wt. 1/2 (indep.)
“working set” region of memory shared by all tasks in the groupMAX -PARA 3 |16 0]‘: Wt. 1;4 (4 gm“ps ofdtasksp | 4 |2048K
This memory access pattern is intended to account for the worgto-"ARA 5 |16 of Wt. 1/4 (indep.) 2] 4 |2048K

Table 2:Properties of hand-crafted task sets.

Name Reg. Pfair [Mod. Pfair [|Reg. EDF|Mod. EDF the PI¥ and EDF scheduling algorithms, and made certain guar-

BASIC 7957% | 63.79% || 79.18% | 63.74% : .
L ONGERBASIC| 6054% | 55.35% | 20.27% | 34.89% antees abOl_Jt spread for a task set depending on thg maximum
ONE_PROC 80.93% | 52.53% || 80.92% | 52.60% weight task in the set. We then evaluated our scheduling method
MAX _PARA 23.43% | 23.35% || 23.45% | 23.46% by showing its effect on raw parallelism and spread, as well as L2
NO_PARA 79.02% | 78.73% || 78.72% | 79.02% cache-miss ratios in a simulated multicore environment.

Table 3:L2 cache miss ratios for hand-crafted task sets. There are many directions for future work. First, we want

shows a substantial overall improvement with these task sets. 'th combine this “schedullng metbod W'th the methods” in [1]
task sets BASIC, LONGEMBASIC, and ONEPROC, one task S° that _both the encourageme_znt and “discouragement” of co-
group can benefit from the cache, and tasks in that group ha%hﬁdu“ng lcan be sup;]zorteo_l n lthe same sydstem. ?econd, we
relatively low weight. In order to see a significant overall benefit!S" to exp ore support for critica secuo_ns and precedence con-
the actual performance of tasks in that group must have dram3jraints that incorporate our spread-cognizant scheduling policies.
ically improved, though the SESC Simulator gave us no way q ird, we currently assume that all tasks to be co-scheduled have
measuring the cache performance of specific tasks. Additional € same weight; we would like to remove this constraint. Finally,

because an L2 miss incurs a time penalty roughly two orders _W_OUId Iike_ to ﬁm_j ot_h_er applicati_ons for which our scheduling
magnitude greater than a h#, miss-rate difference can corre- pg I'C'ei pr%wdeffa stgjjln]flcan;c benefit, and per:form experlment; tg
spond to a significant difference in performance, as seen in [1]. show that benefit. Ultimately, we want to showcase our metho

BASIC and LONGERBASIC consist of three independent by implementing applications on a real multicore system.
tasks with large weight, and two tasks of smaller weight in th eferences
same task group. A spread of three is achieved for the task gro
of each set without our method, and thus little opportunity for[1; 3 anderson, J. M. Calandrino, and U. Devi. Real-time scheduling
cache reuse exists. With our method, spread is reduced to two, on multicore platforms. To appear Rroc. of the 12th |EEE Real-
and the cache is better utilized, resulting in decreased miss rates. Time and Embedded Tech. and Apps. Symp., 2006.

Note that LONGERBASIC shows less of an overall improve- (2] . Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of
ment, as the tasks in the group are of lower weight and therefore asynchronous periodic tasks. Pnoc. of the 13th Euromicro Conf.
there is a smaller improvement in overall cache performance. on Real-time Systems, pages 76-85, 2001.

ONE_PROC consists of one independent task with welglt 3] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of
and two tasks of weight/4 in the same task group. As there is asynchronous periodic task¥urnal of Computer and System Sci-
only one processor, these two tasks cannot be co-scheduled, but ences, 68(1):157-204, 2004.
we can achieve a spread of two with our method. This allows on¢4] E. Bampis, M. Caramia, J. Fiala, A. V. Fishkin, and A. lovanella.
task in the group to directly reuse data brought in from the other Scheduling of independent dedicated multiprocessor tagih
task during the preceding quantum, and we therefore see the most Annual Int’l Symp. on Algorithms and Computation, 2002.
impressive benefit from reducing spread in this case. [5] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate

MAX _PARA and NQPARA demonstrate the dramatic cache progress: A notion of fairness in resource allocatialgorithmica,
benefits that can be achieved when tasks that share memory 15:600-625, 1996.
regions achieve a spread of one. Every quantum with seB] U. Devi and J. Anderson. Tardiness bounds for global EDF
MAX _PARA, each block of memory brought into the cache is scheduling on a multiprocessdproc. of the 26th |EEE Real-time
reused three times, resulting in approximately a 25% cache-miss Systems Symp., 2005.
ratio in all cases. Alternately, NGARA provides no opportunity [7] A. Fedorova, M. Seltzer, C. Small, and Daniel Nussbaum.
for reuse, and we see very high cache-miss ratios as a result. Throughput-oriented scheduling on chip multithreading systems.

We emphasize that these example task sets demonstrate that our Tech. Report TR-17-04, Division of Engineering and Applied Sci-
methodcan lead to lower L2 miss rates. However, there will not ~ €nces, Harvard University, 2004.
always be a benefit, and this is why it is difficult to demonstrate al8] R. Jain, C. Hughs, and S Adve. Soft real-time scheduling on si-
benefit for some number of randomly-generated task sets, as was Multaneous multithreaded processors. Phoc. of the 23rd IEEE
done in the spread reduction experiments presented earlier. Deter- Real-time Systems Symp., pages 134-145, 2002.
mining whether our method will improve cache performance forl® S. Parekh, ~S. Eggers, H. Lewy, and J. Lo
a particular application is difficult because it depends on many 'hread-sensitive scheduling ~ for ~ SMT processors.
factors related to how memory is accessed, such as the percent- NtP-//www.cs.washington.edu/research/smt/.
age of reads and writes, opportunities for reuse, (reuse dis- [10] J. Renau. SESC website. http://sesc.sourceforge.net.
tances), and other aspects of the overall memory access patté€khl S- Shankland and M. Kanellos. Intel to elabo-
For many applications, these factors could vary dramatically over fate on new multicore processor. http://news.zdnet.
each quantum of computation, which further complicates the is- ¢0-uk/hardware/chips/0,39020354,39116043,00.htm, 2003.
sue. We claim, however, that our method will not have a dramati¢2] A- Snavely, D. Tullsen, and G. Voelker. Symbiotic job schedul-

negative effect on cache-miss rates ing with priorities for a simultaneous multithreading processor. In
' Proc. of SGMETRICS 2002, 2002.
5 Concludi ng Remarks [13] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on

t multiprocessors. IrProc. of the 34th ACM Symp. on Theory of

We have proposed a “spread-cognizant” scheduling method tha)
Computing, pages 189-198, 2002.

decreases average and maximum spread when applied to both

10

