
Tardiness Bounds for FIFO Scheduling on Multiprocessors∗

Hennadiy Leontyev and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

leontyev@cs.unc.edu, anderson@cs.unc.edu

Abstract

FIFO scheduling is often considered to be inappropriate
for scheduling workloads that are subject to timing
constraints. However, FIFO is implemented in many general-
purpose OSs, and is more widely supported than other
priority-based scheduling methods. In this paper, we show
that, when the global FIFO scheduling algorithm is used
to schedule sporadic real-time tasks on a multiprocessor,
deadline tardiness is bounded. This result shows that global
FIFO may in fact be useful for scheduling soft real-time
workloads.

1. Introduction

Historically, FIFO (first-in, first-out) scheduling was
one of the first scheduling policies to be implemented
in time-sharing systems. Due to its simplicity, it is
widely supported. For example, it is implemented
in the Linux kernel to schedule tasks with high
priority [1]. FIFO is inferior to other methods as
a means for scheduling recurring activities with hard
timing constraints [9]. Under FIFO, tasks start missing
deadlines on a uniprocessor when total utilization is
approximately 45% in the average case, and 5% in
the worst case [4]. In contrast, the EDF (earliest-
deadline-first) algorithm correctly schedules any task
set with total utilization at most 100% on uniprocessors.
Nonetheless, FIFO is a starvation-free policy, i.e., no
pending job is denied execution, and thus is of use in
time-sharing and packet-processing systems [1, 10].

In this paper, we consider the problem of scheduling
soft real-time sporadic tasks using the global FIFO
algorithm on a multiprocessor. This focus is driven
by two factors. First, although variants of FIFO
scheduling are widely implemented, they are often
dismissed as an option for scheduling real-time tasks

∗Work supported by a grant from Intel Corp., by NSF grants
CNS 0408996, CCF 0541056, and CNS 0615197 and by ARO grant
W911NF-06-1-0425.

— we wish to know if this dismissive attitude is
warranted. Second, with the emergence of multicore
technologies, the common platform in the future in
many settings will be a multiprocessor. These platforms
will likely be deployed in many settings where soft
real-time constraints are required [2]. On multicore
platforms, task migration costs are usually much lower
than on conventional SMPs, due to the presence of
shared on-chip caches. Thus, as kernels evolve to be
more “multicore-aware,” a strong case can be made that
global scheduling policies should be supported. As in
the past, we expect FIFO scheduling to be more widely
deployed (at least, in general-purpose OSs) than other
priority-based policies. FIFO is better understood by
many system designers, and other policies that have
been proposed for scheduling soft real-time workloads
on multiprocessors (e.g. [12, 6]) would require more
effort to integrate into existing kernels.

In this paper, we show that global FIFO scheduling
(henceforth, referred to simply as FIFO) ensures
bounded deadline tardiness when scheduling sporadic
real-time task systems on a multiprocessor. The term
tardiness refers to the extent by which deadlines may
be missed. If bounded tardiness can be ensured for a
sporadic task, then its long-term processor share can
be guaranteed — such guarantees are sufficient for
many soft real-time applications. Under FIFO, jobs
with earlier release times are given higher priority, and
as such, execute non-preemptively. Non-preemptive
execution has an advantage of simplifying WCET
analysis.

Like global EDF [6, 7, 13], FIFO does not require
restrictive caps on total utilization to ensure bounded
tardiness. In contrast, such caps are required for
ensuring timing constraints (even bounded tardiness)
under the most widely-studied alternative, partitioning
schemes. The need for such caps arises due
to connections to bin-packing. Because of these
connections, there exist real-time workloads with
total utilization of approximately m/2 that cannot be
scheduled via partitioning on m processors. Although

this weakness is counterbalanced by the avoidance of
task migrations, under FIFO, tasks can only migrate at
job boundaries, and overall utilization can be as high as
m (if tardiness is allowed).
Prior work. In [9], George and Minet considered
the use of FIFO in hard real-time distributed systems
with consistency constraints. They presented a pseudo-
polynomial time necessary and sufficient condition for
the feasibility of a sporadic task system scheduled
under FIFO. They also showed that FIFO with
deadline-monotonic tie-breaks is optimal in the class of
uniprocessor FIFO scheduling algorithms.

The analysis of FIFO in our paper uses ideas from
two prior papers by Devi and Anderson [6, 7]. In [6],
tardiness bounds for preemptive and non-preemptive
global EDF (henceforth referred as to EDF and NP-
EDF, respectively) are established. These bounds apply
to any sporadic task system with total utilization at
most m scheduled in an EDF manner on m symmetric
processors. The analysis from [6] is improved in [7].
In EDF and NP-EDF, jobs are prioritized by their
absolute deadlines. In FIFO, jobs are prioritized by
their release times. In all three algorithms, the priority
of a job does not change throughout its existence. This
type of job prioritization is called job-level restricted
dynamic [8]. Hence, results obtained for EDF and NP-
EDF are of relevance to our work.
Summary of contributions. The main contribution
of this paper is to establish tardiness bounds for
FIFO. We also present an experimental evaluation of
FIFO’s effectiveness in limiting tardiness compared to
EDF and NP-EDF. In the workloads considered in
these experiments, maximum tardiness (both observed
and via theoretical bounds) was higher under FIFO
than under EDF and NP-EDF. However, the three
schemes exhibited comparable average tardiness. To
our knowledge, this paper is the first to show that
tardiness for sporadic tasks scheduled under FIFO is
bounded (on multiprocessors or uniprocessors). In what
follows, we first present some necessary definitions in
Sec. 2, and then present our formal and experimental
results in Secs. 3–4.

2. System Model

We consider the problem of scheduling a set τ
of sporadic tasks on m ≥ 2 unit-speed processors.
(Tardiness is bounded for m = 1, but due to space
constraints, we only consider the case m ≥ 2.)
We assume that τ consists of n independent tasks,
T1, . . . , Tn. Each task is invoked or released repeatedly,
with each such invocation called a job. Associated
with each task Ti are two parameters, ei and pi: ei

gives the maximum execution time of one job of Ti,
while, pi, called the period of Ti, gives the minimum
time between two consecutive job releases of Ti. For
brevity, Ti’s parameters are sometimes denoted using
the notation Ti = (ei, pi). We assume that each job
of each task Ti executes for exactly ei time units. This
assumption can be eased to treat ei as an upper bound,
at the expense of more cumbersome notation. The
utilization of task Ti is defined as ui = ei/pi, and the
utilization of the task system τ as Usum =

∑

Ti∈τ ui.
The kth job of Ti, where k ≥ 1, is denoted Ti,k. A

task’s first job may be released at any time at or after
time zero. The release time of the job Ti,k is denoted
ri,k and its (absolute) deadline di,k is defined as ri,k +
pi. If a job Ti,j with a deadline at di,j completes at
time t, then its tardiness is defined as max(0, t − di,j).
A task’s tardiness is the maximum of the tardiness of
any of its jobs. We require ui ≤ 1 and Usum ≤ m.
Otherwise, tardiness can grow unboundedly. When a
job of a task misses its deadline, the release time of the
next job of that task is not altered. This ensures that
each task receives a processor share in accordance with
its utilization in the long term (if tardiness is bounded).
Each task is sequential, so at most one job of a task may
execute at any time, even if deadlines are missed.

We assume that released jobs are placed into a single
global ready queue and are prioritized by their release
times, with deadline-monotonic tie-breaking. That is,
Ti,j has higher priority than Tk,l if (ri,j < rk,l) ∨
((ri,j = rk,l) ∧ (pi < pk)). We further assume that if
two jobs have equal priority and one is executing, then
the tie is broken in its favor. Finally, (as reiterated in
Def. 3 below) a job is ready for execution if it has been
released and its predecessor has completed execution.
When choosing a new job to schedule, the scheduler
selects (and dequeues) the ready job of highest priority.

3. Tardiness Bound

In this section, we derive a tardiness bound for FIFO
using techniques presented in [6, 7] for EDF and NP-
EDF. Some results proved in these two prior papers also
hold for FIFO.

3.1. Definitions

The system start time is assumed to be zero. For
any time t > 0, t− denotes the time t − ε in the limit
ε → 0+.
Definition 1. (active jobs) A task Ti is active at time t
if there exists a job Ti,j (called Ti’s active job at t) such
that ri,j ≤ t < di,j . By our task model, every task has
at most one active job at any time.

Definition 2. (pending jobs) Ti,j is pending at t in
a schedule S if ri,j ≤ t and Ti,j has not completed
execution by t in S .

Definition 3. (ready jobs) A pending job Ti,j is ready
at t in a schedule S if t ≥ ri,j and all prior jobs of Ti

have completed execution by t in S.

Claim 1. Under FIFO, jobs execute non-preemptively.

Proof. Suppose that job Ti,j begins execution at time
t. Then, at that time, at most m − 1 tasks have ready
jobs with priority higher than Ti,j . We claim that this
property remains true until Ti,j completes execution,
which implies that it executes non-preemptively. To see
that this property holds, note that any job that becomes
ready after t does so either because it was just released,
or its predecessor job has just completed execution. In
the former case, the new job clearly has lower priority
than Ti,j , since it has a later release. This same
reasoning holds in the latter case as well, unless the new
job is released before Ti,j . However, in this case, the
new job’s predecessor also has an earlier release, so the
number of tasks with jobs of higher priority than Ti,j

remains unchanged.

Before continuing, we consider an example, which
illustrates some of the difference between EDF, NP-
EDF, and FIFO.

Example 1. Consider a task set τ to be scheduled under
EDF, NP-EDF, and FIFO that is comprised of four
tasks: T1 = (1, 2), T2 = (2, 6), T3 = (2, 8), and
T4 = (11, 12). The first jobs of T1, T2, T3, and T4

are released at times 2, 1, 0, and 0, respectively. Total
utilization is two, so this system can be scheduled on
two processors. Consider the three schedules in Fig. 1
for τ . In the EDF and FIFO schedules, in insets (a) and
(c), respectively, deadline misses occur. For example,
the job T4,1 misses its deadline at time 12 by one time
unit under EDF because it cannot execute in parallel,
and hence, cannot benefit from the spare processing
capacity in the system during the intervals [3, 4), [5, 6),
[7, 8), and [9, 10). Under FIFO, T1,1 misses its deadline
at time 4 by one time unit because it cannot preempt
T2,1 and T4,1, which have earlier release times and later
deadlines.

A task system is concrete if the release times of all
jobs are specified, and non-concrete, otherwise. The
tardiness bound established for FIFO is derived by
comparing the allocations to a concrete task system τ in
an ideal processor-sharing (PS) schedule to those in a
FIFO schedule. In a PS schedule, each job of a task Ti is
executed at a constant rate of ui between its release and

T1,1

T2,1

T3,1

T4,1

T1,2

T2,2

T4,1

Job release Job deadline

T1,3

T3,2

T1,4 T1,5

T2,2

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T4

deadline

miss

(a)

T1,1

T2,1

T3,1

T4,1

T1,2

T2,2

T1,3

T3,2

T1,4
T1,5

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T4

(b)

T1,1

T2,1

T3,1

T4,1

T1,2

T2,2

T1,3

T3,2

T1,4
T1,5

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T4

deadline

miss

(c)

Figure 1. Schedules under (a) EDF, (b)
NP-EDF, and (c) FIFO for the task set in
Example 1.

deadline. As an example, consider Fig. 2, which shows
the PS schedule for the task system τ in Example 1.
Note that, in a PS schedule, each job completes exactly
at its deadline. Thus, if a job misses its deadline, then it
is “lagging behind” the PS schedule — this concept of
“lag” is instrumental in the analysis and is formalized
below.

So that we may compare allocations in
different schedules, let A(Ti,j , t1, t2,S) denote
the total allocation to the job Ti,j in an
arbitrary schedule S in [t1, t2). Similarly, let
A(Ti, t1, t2,S) =

∑

j≥1 A(Ti,j , t1, t2,S) denote
the total time allocated to all jobs of Ti in [t1, t2) in S.

Since, in a PS schedule, Ti executes with the rate ui

Job release Job deadline

0.5

0

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8 9 10 11 12

T
1

T
2

T
3

T
4

Figure 2. PS schedule for τ in Example 1.

at each instant when it is active in [t1, t2), we have

A(Ti, t1, t2,PS) ≤ (t2 − t1)ui. (1)

The difference between the allocations to a job Ti,j

up to time t in a PS schedule and an arbitrary schedule
S, termed the lag of job Ti,j at time t in schedule S, is
given by

lag(Ti,j , t,S) = A(Ti,j , 0, t,PS) − A(Ti,j , 0, t,S).
(2)

The lag of a task Ti at time t in schedule S is defined
by

lag(Ti, t,S) =
∑

j≥1

lag(Ti,j , t,S)

= A(Ti, 0, t,PS)−A(Ti, 0, t,S).(3)

Finally, the lag for a finite job set Ψ at time t in the
schedule S is defined by

LAG(Ψ, t,S)

=
∑

Ti,j∈Ψ

lag(Ti,j , t,S)

=
∑

Ti,j∈Ψ

(A(Ti,j , 0, t,PS) − A(Ti,j , 0, t,S)).(4)

Since LAG(Ψ, 0,S) = 0, the following hold for t′ ≤
t.

LAG(Ψ, t,S)

= LAG(Ψ, t′,S) + A(Ψ, t′, t,PS) − A(Ψ, t′, t,S)

(5)

lag(Ti, t,S)

= lag(Ti, t
′,S) + A(Ti, t

′, t,PS) − A(Ti, t
′, t,S)

(6)

In essence, the concept of lag is important because, if
it can be shown that lags remain bounded, then tardiness

is bounded as well.

Definition 4. (busy and non-busy intervals) A time
interval [t1, t2), where t2 > t1, is said to be busy for
any job set Ψ if all m processors are executing some
job in Ψ at each instant in the interval, i.e., no processor
is ever idle in the interval or executes a job not in Ψ. An
interval [t1, t2) that is not busy for Ψ is said to be non-
busy for Ψ. An interval [t1, t2) is said to be maximally
non-busy if it is non-busy at every instant within it and
either t−1 is a busy instant or t1 = 0.

We are interested in non-busy intervals (for a job
set) because total lag (for that job set) can increase
only across such intervals. Such increases can lead to
deadline misses. This fact is proved in Lemma 2 in [6].
The following example illustrates how lag can change
across busy and non-busy intervals.

Example 2. Consider task set τ from Example 1. Let
Ψ = {T1,1, . . . , T1,5, T2,1, T3,1, T4,1} be the set of
jobs with deadlines at most 12. The interval [4, 7) in
Fig. 1(c) is a busy interval for Ψ. We will show that
the LAG for Ψ at the end of this interval is equal to the
LAG for Ψ at the beginning of the interval. By (5),
LAG(Ψ, 7,S) = LAG(Ψ, 4,S) + A(Ψ, 4, 7,PS) −
A(Ψ, 4, 7,S), where S is the FIFO schedule. The
allocation of Ψ in the PS schedule during the interval
[4, 7) is A(Ψ, 4, 7,PS) = 3/2+6/6+6/8+33/12 = 6.
The allocation of Ψ in S throughout [4, 7) is also 6.

Now let Ψ = {T1,1} be the set of jobs with deadlines
at most 4. Because the jobs T2,1 and T4,1, which
have deadlines after time 4, execute within the interval
[2, 4) in Fig. 1(c), this interval is non-busy for Ψ in S.
By (4), LAG(Ψ, 4,S) = A(Ψ, 0, 4,PS)−A(Ψ, 0, 4,S).
The allocation of Ψ in the PS schedule throughout
the interval [0, 4) is A(Ψ, 0, 4,PS) = 2 · 1/2 = 1.
The allocation of Ψ in S is A(Ψ, 0, 4,S) = 0. Thus,
LAG(Ψ, 4,S) = 1 − 0 = 1. Fig. 1(c) shows that
at time 4, T1,1 from Ψ is pending. This job has unit
execution cost, which is equal to the amount of pending
work given by LAG(Ψ, 4,S).

3.2. Tardiness Bound for FIFO

Given an arbitrary non-concrete task system τN , we
want to determine the maximum tardiness of any job
of any task in any concrete instantiation of τN . The
approach for doing this is taken from [6, 7]. Let τ be a
concrete instantiation of τN . Let T`,j be a job of a task
T` in τ , let td = d`,j , and let S be a FIFO schedule for
τ with the following property.

(P) The tardiness of every job of every task Tk in τ
with deadline less than td is at most x + ek in S,

where x ≥ 0.

Our goal is to determine the smallest x such that the
tardiness of T`,j remains at most x + e`. Such a
result would by induction imply a tardiness of at most
x + ek for all jobs of every task Tk ∈ τ . Because
τ is arbitrary, the tardiness bound will hold for every
concrete instantiation of τN .

The objective is easily met if T`,j completes by its
deadline, td, so assume otherwise. The completion time
of T`,j then depends on the amount of work that can
compete with T`,j after td. Hence, a value for x can be
determined via the following steps.

1. Compute an upper bound on the work pending for
tasks in τ (including that for T`,j) that can compete
with T`,j after td.

2. Determine the amount of such work necessary for
the tardiness of T`,j to exceed x + e`.

3. Determine the smallest x such that the tardiness of
T`,j is at most x + e` using the upper bound and
the necessary condition above.

To reason about the tardiness of T`,j we need to
determine how other jobs delay the execution of T`,j .
We classify jobs based on the relation between their
release times and deadlines to those of T`,j , as follows.

rd = {Ti,k : (ri,k ≤ r`,j) ∧ (di,k ≤ td)}

Rd = {Ti,k : (ri,k > r`,j) ∧ (di,k ≤ td)}

rD = {Ti,k : (ri,k < r`,j) ∧ (di,k > td)}

RD = {Ti,k : (ri,k ≥ r`,j) ∧ (di,k > td)}

In this notation, d denotes deadlines at most td, and
D denotes deadlines greater than td. Also, r denotes
release times at most or strictly less than r`,j , and R
denotes release times at least or strictly greater than r`,j .
For any td, the sets rd, Rd, and rD are finite. Note also
that T`,j ∈ rd.

Example 3. Consider the task set τ = {T1(1, 2),
T2(4, 7), T3(8, 9)} and the PS schedule for it in Fig. 3.
Jobs T1,1 and T2,1 are released at time 1, and job
T3,1 is released at time 0. Consider job T`,j = T2,1,
which has a deadline at time 8. With respect to T2,1,
the four sets mentioned above are rd = {T1,1, T2,1},
Rd = {T1,2, T1,3}, rD = {T3,1}, and RD =
{T1,4, T1,5, T2,2, T3,2}. (RD would also include any
jobs released after those shown in the figure.)

The set of jobs with deadlines at most td is further
referred to as Ψ = rd ∪ Rd. We are interested in this
set of jobs because these jobs do not execute beyond

0.5

0

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8 9 10 11 12

T1

T2

T3

T1,1 T1,2 T1,3 T1,4 T1,5

T2T =Tl,j 2,1 T2,2

T3,1 T3,2

rd Rd rD RD

Figure 3. Job set partitioning.

td in the PS schedule. Because jobs in rd ∪ rD have
priority at least that of T`,j , the execution of T`,j will be
postponed (in the worst case) until there are at most m
ready jobs in Ψ including T`,j with priority at least that
of T`,j .

So that we can analyze the impact of jobs from rD,
let the carry-in job Tk,j of a task Tk be defined as the
job, if any, for which rk,j ≤ td < dk,j holds. At most
one such job could exist for each task Tk.

Determining an upper bound on competing work.
Because jobs in rd∪rD have priority at least that of T`,j ,
the competing work for T`,j beyond td is upper bounded
by the sum of (i) the amount of work pending at td for
jobs in rd, and (ii) the amount of work D(rD, td,S)
demanded by jobs in rD that can compete with T`,j after
td.

For the pending work mentioned in (i), because jobs
from Ψ have deadlines at most td, they do not execute
in the PS schedule beyond td. Thus, the work pending
for jobs in rd is given by LAG(rd, td,S), which must be
positive in order for T`,j to miss its deadline at td. We
find it more convenient to reason about LAG(Ψ, td,S)
instead. Note that LAG(Rd, td,S) is non-negative
because the jobs in Rd cannot perform more work
by time td in S than they have performed in the PS
schedule. Hence, LAG(rd, td,S) ≤ LAG(Ψ, td,S)
Thus, the desired upper bound on the amount of
competing work for job T`,j after td is given by
LAG(Ψ, td,S) + D(rD, td,S). We are left with
determining upper bounds on LAG(Ψ, td,S) and
D(rD, td,S).

Upper bound on LAG(Ψ, td,S). In deriving this
bound, we assume that all busy and non-busy intervals
considered are with respect to Ψ and the FIFO schedule
S unless stated otherwise. As mentioned above, LAG

can increase only throughout a non-busy interval. Thus,
LAG(Ψ, td,S) ≤ LAG(Ψ, t′,S), where t′ is the end of
the latest maximally non-busy interval at or before td. If
such a non-busy interval does not exist, then the entire
interval [0, td) is busy. Hence, LAG(Ψ, td,S) ≤ 0, so

all jobs in Ψ complete by td, which is contrary to our
assumption that T`,j misses its deadline at td.

An interval could be non-busy for two reasons:

1. There are not enough ready jobs in Ψ to occupy all
available processors. In this case, it is immaterial
whether jobs from rD or RD execute during this
interval. We call such an interval non-busy non-
displacing.

2. Jobs in rD occupy one or more processors
(because they have earlier release times), and there
are ready jobs in Ψ. We call such an interval non-
busy displacing.

Example 4. In the FIFO schedule in Fig. 1(c), for the
task set τ from Example 1, the interval [2, 4) is a non-
busy displacing interval for Ψ = {T1,1}. The ready job
T1,1, which has a deadline at time 4, does not execute.
Jobs T2,1 and T4,1, which have deadlines at times 7 and
12, respectively, execute because they are released at
time 0.

The displacement of jobs in Ψ is caused by jobs in
rD, which have higher priority than T`,j . rD consists of
carry-in jobs, which have a release time before r`,j and
a deadline after td. As noted earlier, only one carry-in
job can exist for each task.

Definition 5. Let τH be the set of tasks that have jobs
in rD.

Definition 6. Let δk be the amount of work performed
by a carry-in job Tk,j in the schedule S by time td.

In much of the rest of the analysis, we focus on
a time tn defined as follows: if there exists a non-
busy non-displacing interval before td, across which
LAG for Ψ increases, then tn is the end of the latest
such interval; otherwise, tn = 0. In Lemma 1 below,
we establish a relationship between LAG(Ψ, td,S) and
LAG(Ψ, tn,S). We then upper bound LAG(Ψ, tn,S) in
Lemma 3 by a function of the task parameters and x.

Lemma 1. LAG(Ψ, td,S) ≤ LAG(Ψ, tn,S) +
∑

Tk∈τH
δk(1 − uk).

Proof. By (4),

LAG(Ψ, td,S)

≤ LAG(Ψ, tn,S)

+A(Ψ, tn, td,PS) − A(Ψ, tn, td,S). (7)

We split [tn, td) into b non-overlapping intervals
[tpi

, tqi
) 1 ≤ i ≤ b such that tn = tp1

, tqi−1
= tpi

, and
tqb

= td. Each interval [tpi
, tqi

) is either busy, non-busy
displacing, or non-busy non-displacing (see Fig. 4). We

P1

Pm

m

.........

P
S

F
IF

O

jobs in rDjobs not in rD

non-busy
non-displacing

non-busy
displacingbusy

... ...

t =tn t t t t t =tdp1 pi pj qb
qiq1

... ...

...
tqj

Figure 4. Splitting the interval [tn, td) into
subintervals [tpi

, tqi
).

assume that any displacing interval [tpi
, tqi

) is defined
so that if a task Tk ∈ τH executes at some point in the
interval, then it executes continuously throughout the
interval. Note that such a task Tk does not necessarily
execute continuously throughout [tn, td). For each
displacing interval [tpi

, tqi
), we define a subset of tasks

αi ⊆ τH that execute continuously throughout [tpi
, tqi

).
The allocation difference for Ψ throughout the interval
[tn, td) is thus A(Ψ, tn, td,PS) − A(Ψ, tn, td,S) =

b
∑

i=1

A(Ψ, tpi
, tqi

,PS) − A(Ψ, tpi
, tqi

,S).

We now bound the difference between the work
performed in the PS schedule and the FIFO schedule
S across each of these intervals [tpi

, tqi
). The sum of

these bounds gives us a bound on the total allocation
difference throughout [tn, td). Depending on the nature
of the interval [tpi

, tqi
), three cases are possible.

Case 1. [tpi
, tqi

) is busy. Because in S all processors
are occupied by jobs in Ψ, A(Ψ, tpi

, tqi
,S) = m(tqi

−
tpi

). In PS, A(Ψ, tpi
, tqi

,PS) ≤ Usum(tqi
−tpi

). Since
Usum ≤ m, we have

A(Ψ, tpi
, tqi

,PS) − A(Ψ, tpi
, tqi

,S) ≤ 0. (8)

Case 2. [tpi
, tqi

) is non-busy non-displacing. By the
selection of tn, LAG does not increase for Ψ across
[tpi

, tqi
). Therefore, from (5), we have

A(Ψ, tpi
, tqi

,PS) − A(Ψ, tpi
, tqi

,S) ≤ 0. (9)

Case 3. [tpi
, tqi

) is non-busy displacing. The
cumulative utilization of all tasks Tk ∈ αi,
which execute continuously throughout [tpi

, tqi
), is

∑

Tk∈αi
uk. The carry-in jobs of these tasks do not

belong to Ψ, by the definition of Ψ. Therefore, by (1),
the allocation of jobs in Ψ during [tpi

, tqi
) in PS is at

most A(Ψ, tpi
, tqi

,PS) ≤ (tqi
− tpi

)(m−
∑

Tk∈αi
uk).

All processors are occupied at every time instant in
the interval [tpi

, tqi
), because it is displacing. Thus,

A(Ψ, tpi
, tqi

,S) = (tqi
− tpi

)(m − |αi|). Therefore,
the allocation difference for jobs in Ψ throughout the
interval is

A(Ψ, tpi
, tqi

,PS) − A(Ψ, tpi
, tqi

,S)

≤ (tqi
− tpi

)

(

(m −
∑

Tk∈αi

uk) − (m − |αi|)

)

= (tqi
− tpi

)
∑

Tk∈αi

(1 − uk). (10)

To finish the proof, define αi = ∅ for all
intervals [tpi

, tqi
) that are either busy or non-busy non-

displacing. Then, summing the allocation differences
for all the intervals [tpi

, tqi
) given by (8), (9), and (10),

we have

A(Ψ, tn, td,PS) − A(Ψ, tn, td,S)

≤
b
∑

i=1

∑

Tk∈αi

(tpi
− tqi

)(1 − uk).

For each task Tk ∈ τH , the sum of the lengths
of the intervals [tpi

, tqi
), in which the carry-in job

of Tk executes continuously is at most δk. Thus,
A(Ψ, tn, td,PS) − A(Ψ, tn, td,S) ≤

∑

Tk∈τH
δk(1 −

uk). Setting this value into (7), we get LAG(Ψ, td,S) ≤
LAG(Ψ, tn,S) +

∑

Tk∈τH
δk(1 − uk).

We now determine an upper bound on
LAG(Ψ, tn,S), where tn is as defined earlier. We
first establish the following

Lemma 2. lag(Tk, t,S) ≤ x · uk + ek for any task Tk

and t ∈ [0, td].

Proof. Let dk,j be the deadline of the earliest pending
job of Tk, Tk,j , in the FIFO schedule S at time t. Let
γk be the amount of work Tk,j performs before t. We
prove the lemma for the case dk,j < t, leaving the case
dk,j ≥ t to the reader. By (3) and the selection of Tk,j ,

lag(Tk, t,S)

=
∑

h≥j

lag(Tk,h, t,S)

=
∑

h≥j

(A(Tk,h, 0, t,PS) − A(Tk,h, 0, t,S)).

Because no job executes before its release time,
A(Tk,h, 0, t,S) = A(Tk,h, rk,h, t,S). Thus,

lag(Tk, t,S)

=
∑

h>j

(A(Tk,h, rk,h, t,PS) − A(Tk,h, rk,h, t,S))

+A(Tk,j , rk,j , t,PS) − A(Tk,j , rk,j , t,S) (11)

By the definition of PS, A(Tk,j , rk,j , t,PS) = ek

and
∑

h>j A(Tk,h, rk,h, t,PS) ≤ uk(t − dk,j). By
the selection of Tk,j , A(Tk,j , rk,j , t,S) = γk and
∑

h>j A(Tk,h, rk,h, t,S) = 0. Setting these values
into (11), we have

lag(Tk, t,S) ≤ uk(t − dk,j) + ek − γk. (12)

By Property (P), Tk,j has tardiness at most x + ek, so
t + ek − γk ≤ dk,j + x + ek. Thus, t− dk,j ≤ x + γk.
From (12), we therefore have lag(Tk, t,S) ≤ uk(t −
dk,j) + ek − γk ≤ uk · x + ek.

The lemma above was originally proved in [7] for
EDF, but since it only depends on Property (P), it also
holds for FIFO.

Lemma 3 below upper bounds LAG(Ψ, tn,S) in
terms of two terms, EL and UL. Letting U(τ, y) be the
set of at most y tasks of highest utilization from the task
set τ , and E(τ, y) be the set of at most y tasks with the
highest execution costs from τ , EL and UL are defined
as follows.

EL =
∑

Ti∈E(τ,m−1)

ei and UL =
∑

Ti∈U(τ,m−1)

ui (13)

Lemma 3. LAG(Ψ, tn,S) ≤ EL + x · UL.

Proof. To bound LAG(Ψ, tn,S), we sum individual
task lags at tn. If tn = 0, then LAG(Ψ, tn,S) =
0 and the lemma holds trivially. So assume
that tn > 0. Consider the set of tasks
β = {Ti : ∃Ti,j ∈ Ψ such that Ti,j is pending at t−n }.
Because the instant t−n is non-busy non-displacing,
|β| ≤ m − 1. If a task has no pending jobs at t−n , then
lag(Ti, tn,S) ≤ 0. Therefore, by (4) and Lemma 2, we
have

LAG(Ψ, tn,S)

=
∑

Ti: Ti,j ∈ Ψ

lag(Ti, tn,S)

≤
∑

Ti ∈ β

lag(Ti, tn,S)

≤
∑

Ti ∈ β

x · ui + ei ≤ EL + x · UL.

Upper bound on LAG+D. The demand placed by jobs
in rD after td is clearly D(rD, td,S) ≤

∑

Tk∈τH
ek −

δk. Since the tasks in τH have jobs in rD, they have

periods greater than pl. From Lemmas 1 and 3, we
therefore have

LAG(Ψ, td,S) + D(rD, td,S)

≤ EL + x · UL +
∑

Tk∈τH

δk(1 − uk) + (ek − δk)

≤ EL + x · UL +
∑

Th:pk>p`

ek. (14)

Necessary condition for tardiness to exceed x + e`.
We now find the amount of competing work for T`,j

that is necessary for T`,j to miss its deadline by more
than x + e`.

Lemma 4. If the tardiness of T`,j exceeds x + e`, then
LAG(rd, td,S) + D(rD, td,S) > mx + e`.

Proof. We prove the contrapositive: we assume that
LAG(rd, td,S) + D(rD, td,S) ≤ mx + e` holds and
show that the tardiness of T`,j cannot exceed x + e`. In
S, the jobs in Rd and RD do not affect the execution
of jobs in rd and rD. We can thus concentrate on the
scheduling of jobs in rd ∪ rD. Let γ` be the amount of
work T`,j performs by time td in S. Let y = x + γ`

m
.

We consider two cases.

Case 1. [td, td + y) is a busy interval for rd ∪ rD. In
this case, the work performed by the system on the jobs
in rd ∪ rD throughout [td, td + y) is my = mx + γ`.
Let W be the amount of work that can compete with
T`,j after td + y, including the work due for T`,j .
Then, W = LAG(rd, td,S) + D(rD, td,S) − my ≤
mx + e` − my = e` − γ`. Because rd and rD
are finite, T`,j eventually completes execution at
some time tf . Because FIFO is work-conserving, at
least one processor is busy until T`,j completes.
Thus, the amount of work performed by the
system for jobs in rd ∪ rD during the interval
[td + y, tf) is at least tf − td − y. Therefore,
tf − td − y ≤ W . Because W ≤ e` − γ`, this implies
that tf − td − y ≤ e` − γ`, and hence, the tardiness of
T`,j is tf −td ≤ y+e`−γ` = x+ γ`

m
+e`−γ` ≤ x+e`.

Case 2. [td, td + y) is non-busy for rd ∪ rD. Let
ts > 0 be the earliest non-busy instant in [td, td + y).
Since FIFO is work-conserving, all time instants after
ts are non-busy for rd ∪ rD. The job T`,j cannot start
execution before the preceding job T`,j−1 (if it exists)
completes. Let tp be the finish time of the job T`,j−1, if
it exists, or 0 otherwise. We consider three subcases.

Subcase 1. T`,j executes at t−s . By Claim 1, T`,j

cannot be preempted after ts, so it finishes by time
ts+e`−γ` < td+y+e`−γ` = td+x+ γ`

m
−γ`+e` ≤

td + x + e`.

Subcase 2. T`,j does not execute at t−s and tp ≤ ts.
The latest time T`,j can commence execution is ts
(γ` = 0 holds in this case). By Claim 1, T`,j is
not preempted after it commences execution, and
thus finishes by time ts + e`. Because ts < td + y,
ts + e` < td + y + e` = td + x + e` (since γ` = 0).

Subcase 3. T`,j does not execute at t−s and tp > ts.
The latest time T`,j can commence execution is tp. By
Property (P) and the definition of td, the finish time of
T`,j−1 is tp ≤ td − p` + x + e` ≤ td + x. Also, γ` = 0.
Because tp > ts ≥ td and all time instants after ts are
non-busy for rd ∪ rD, the finish time of T`,j is at most
td + x + e`.

The lemma above was proved in [6] in the context
of EDF and NP-EDF. However, the proof only relies
on Property (P) and the fact that jobs have job-level
restricted-dynamic priorities so it holds for FIFO as
well.

By Lemma 4, setting the upper bound on
LAG(Ψ, td,S) + D(rD, td,S) as implied by (14) to be
at most mx + e` will ensure that the tardiness of T`,j

is at most x + e`. By solving for the minimum x that
satisfies the resulting inequality, we obtain a value of
x that is sufficient for ensuring a tardiness of at most
x + e`. The inequality is as follows.

x · UL + EL +
∑

Th:pk>p`

ek ≤ mx + e`.

Solving for x, we have

x ≥
EL + (

∑

pk>p`
ek) − e`

m−UL

. (15)

If x equals the right-hand side of (15), then the
tardiness of T`,j will not exceed x + e`. A value
for x that is independent of the parameters of T`

can be obtained by replacing
∑

pk>p`
ek − e` with

max`(
∑

pk>p`
ek − e`) in (15).

Theorem 1. With x as defined above, the tardiness for a
task Tk scheduled under global FIFO is at most x+ ek.

Note that, for tardiness to be bounded under FIFO,
the denominator in the right-hand-side expression in
(15) must not be zero. This condition is satisfied
because UL < Usum(τ) ≤ m by the definition of UL

in (13).

Example 5. Consider the task set from Example 1.
Applying Theorem 1 to the tasks in this set, we find
that the tardiness bound for each task Tk is 23.08 + ek.
For task T1, for example, the computed bound is 24.08.

3.3. Generalized Tardiness Bound

The proofs of the lemmas presented in the previous
section in the context of FIFO scheduling depend only
on Property (P), and the definition of a carry-in job
(particularly, the term δk). In particular, these proofs
do not mention the exact manner in which jobs are
scheduled. As a result, the bounds presented above
can be generalized to apply to a wide range of other
global scheduling algorithms. Such generalizations are
considered in [11].

4. Experimental Evaluation

In this section, we present an experimental
evaluation of FIFO. In our experiments, we compared
observed average and maximum tardiness under
FIFO, EDF, and NP-EDF, as computed from actual
schedules, to their respective maximum tardiness
bounds, as established in this paper and in [6]. As
explained below, each task set had a maximum per-
task execution cost of emax = 10. The task sets were
classified based on their maximum per-task utilization,
umax. In inset (a) of Fig. 5, both observed maximum
tardiness values and those computed from the respective
bounds are plotted versus umax ∈ {0.05, 0.1, 0.3} for
each scheme, for m = 4 and emax = 10. Inset (b) of
Fig. 5 is similar except that observed average tardiness
is plotted instead of observed maximum tardiness.
Also, for clarity, in each inset, the bars are listed in the
inset’s legend in the same order as they appear in the
graph from left to right.

For each value of umax in each graph, 50 task sets
were generated. Each such task set was generated by
creating tasks with utilizations taken randomly from
[0, umax] until total utilization exceeded four, and by
then reducing the last task’s utilization so that four
processors were exactly required. The execution cost
of the first task was then taken to be emax = 10 and
subsequent task execution costs were taken randomly
from [0, emax]. To determine observed tardiness values
(average and maximum), a simulator was used for
each scheduling scheme that schedules tasks in a
synchronous, periodic fashion until time 20,000. In this
set of experiments, costs due to scheduling and system
overheads were not considered. (Since EDF preempts
jobs more frequently, the performance of EDF would
worsen, comparatively, if overheads were considered.

In addition, scheduling costs under FIFO should be
lower, because FIFO-ordered priority queues can be
accessed in constant time, whereas deadline-ordered
priority queues have linear or logarithmic access costs,
depending on the implementation.)

As seen in Fig.5, observed maximum tardiness
under FIFO is fairly close to that given by the bound
computed in this paper. Furthermore, maximum
tardiness under FIFO (either observed or via the
bound) is significantly higher than that under the two
EDF schemes. However, maximum tardiness under
FIFO improves relative to the other two schemes as
umax increases. These trends are a consequence of
the fact that, under FIFO, tasks with later deadlines
can postpone the execution of tasks with smaller
deadlines, causing high tardiness values. The term
max(

∑

pk>pl
ek − el) in (15) describes this effect.

When umax is small, relative deadlines tend to be larger,
which increases the likelihood of having high maximum
tardiness.

In contrast to the maximum values considered
above, when average observed tardiness is considered,
as plotted in inset (b) of Fig.5, a different story
emerges. As seen, average tardiness under FIFO
is quite competitive with that under the two EDF
schemes. We conclude that FIFO is a reasonable
scheduling option to consider for applications in which
good average-case tardiness is required and somewhat
higher maximum tardiness is tolerable, as long as it
is bounded. We remind the reader that, on some
development platforms, FIFO might be the only option,
as other real-time scheduling approaches are not as
widely supported.

5. Conclusion

We have shown that the global FIFO scheduling
algorithm ensures bounded task tardiness when
scheduling sporadic soft real-time task systems on a
symmetric multiprocessor platform. To our knowledge,
this paper is the first attempt to establish soft real-time
constraints for tasks scheduled in a FIFO manner (on
multiprocessors or uniprocessors).

Several interesting avenues for further work exist.
They include probabilistic analysis of task tardiness
(that is, analytically determining average tardiness),
considering multi-speed multicore architectures,
and extending the results to include tasks with
synchronization requirements. It would also be
interesting to consider workloads that consist of a mix
of soft real-time and non-real-time tasks.

0.05 0.1 0.3

0

50

100

150

200

250

Max. task utilization

M
ax

. T
ar

di
ne

ss

Max. Tardiness vs. Util (m=4)

FIFO bound

Observed FIFO

NPEDF bound

Observed NPEDF

EDF bound

Observed EDF

(a)

0.05 0.1 0.3

0

50

100

150

200

250

Max. task utilization

A
vg

. T
ar

di
ne

ss

Avg. Tardiness vs. Util (m=4)

FIFO bound

Observed FIFO

NPEDF bound

Observed NPEDF

EDF bound

Observed EDF

(b)

Figure 5. Tardiness bounds and (a) observed maximum tardiness and (b) observed average
tardiness for EDF, NP-EDF, and FIFO vs. maximum per-task utilization.

References

[1] M. Cesati and D. Bovet. Understanding the Linux
Kernel, Second Edition. O’REILLY, 2002.

[2] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and
J. Anderson. Soft real-time scheduling on performance
asymmetric multicore platforms. In Proc. of the
13th IEEE Real-Time and Embedded Technology and
Applications Symp., pp. 101-110, Apr. 2007.

[3] J. Calandrino, H. Leontyev, A. Block, U. Devi, and
J. Anderson. LITMUSRT: A testbed for empirically
comparing real-time multiprocessor schedulers. In Proc.
of the 27th IEEE Real-Time Systems Symp., pages 111–
123, Dec. 2006.

[4] J. Lehoczky, D. Cornhill, and L. Sha. Limitations of ada
for real-time scheduling. In ACM SIGAda Ada Letters,
Proc. of the 1st International Workshop on Real-Time
Ada Issues, Vol. 8. ACM Press, Oct. 1987.

[5] U. Devi. Soft Real-Time Scheduling on Multiprocessors.
PhD thesis, Oct. 2006, http://www.cs.unc.edu/
˜anderson/diss/devidiss.pdf.

[6] U. Devi and J. Anderson. Tardiness bounds for global
EDF scheduling on a multiprocessor. In Proc. of the 26th
IEEE Real-Time Systems Symp., pages 330–341, Dec.
2005.

[7] U. Devi and J. Anderson. Flexible tardiness bounds
for sporadic real-time task systems on multiprocessors.
In Proc. of the 20th IEEE International Parallel and
Distributed Processing Symp., April 2006 (on CD
ROM).

[8] J. Carpenter and S. Funk and P. Holman and
A. Srinivasan and J. H. Anderson and S. Baruah. A
categorization of real-time multiprocessor scheduling

problems and algorithms. In Joseph Y. Leung, editor,
Handbook on Scheduling Algorithms, Methods, and
Models, pages 30.1–30.19. Chapman Hall/CRC, Boca
Raton, Florida, 2004.

[9] L. George and P. Minet. A FIFO worst case analysis
for a hard real-time distributed problem with consistency
constraints. In Proc. of the 17th International
Conference on Distributed Computing Systems, pages
441–448, May 1997.

[10] J. Lehoczky. Scheduling communication networks
carrying real-time traffic. In Proc. of the 19th IEEE
Real-Time Systems Symp., pages 470–479, Dec. 1998.

[11] H. Leontyev and J. H. Anderson. Tardiness bounds
for generalized priority scheduling. Unpublished
manuscript, 2007.

[12] A. Srinivasan and J. Anderson. Fair scheduling of
dynamic task systems on multiprocessors. Journal of
Systems and Software, 77(1):67–80, April 2005.

[13] P. Valente and G. Lipari. An upper bound to the
lateness of soft real-time tasks scheduled by EDF on
multiprocessors. In Proc. of the 26th IEEE Real-Time
Systems Symp., pages 311–320, Dec. 2005.

