
Integrating Hard/Soft Real-Time Tasks and Best-Effort Jobs on
Multiprocessors∗

Björn B. Brandenburg and James H. Anderson
The University of North Carolina at Chapel Hill

Abstract
We present a multiprocessor scheduling framework for in-
tegrating hard and soft real-time tasks and best-effort jobs.
This framework allows for full system utilization, and ensures
that hard real-time deadlines are met and that deadline tar-
diness is bounded for soft real-time tasks. Dynamic slack
reclamation is employed to reduce tardiness and to improve
the response time of best-effort jobs. The approach is vali-
dated using an implementation within the Linux kernel.

1 Introduction
An important trend in computing is the ongoing move to-
wards system- and chip-level parallelism. Because of heat
and power issues, it has become increasingly difficult to
improve processor performance by increasing clock speeds.
Therefore, in order to continue performance improvements,
major processor manufacturers, such as Intel, AMD, IBM,
and Sun Microsystems, have embraced multicore architec-
tures, which combine several processing cores on a single
chip. It is expected that most future commodity chips will
consist of multiple cores.

This development coincides with the emergence of appli-
cations for which both timing correctness and high perfor-
mance are required. Examples include multimedia and enter-
tainment applications and some business computing applica-
tions that require guaranteed transaction response times [14].
Such real-time applications have performance demands that,
in the foreseeable future, can only be satisfied by inherently
parallel systems. Vendors are responding to this need. For
example, IBM’s Cell processor, which includes a PowerPC
and eight specialized cores on the same chip, was originally
designed with gaming applications in mind. As another ex-
ample, Azul Systems has developed the Vega2 system, which
is a Java-based appliance with up to 768 cores for process-
ing time-sensitive business transactions [4]. In the embedded
systems arena, increasing processing-capacity demands and
tight power-consumption constraints are also making the use
of multicore systems increasingly widespread [3].
The problem. These emerging real-time workloads have
highly heterogeneous timing requirements and may consist
of hard real-time (HRT), soft real-time (SRT), and best-effort

∗Work supported by a grant from Intel Corp., by NSF grants CNS
0408996, CCF 0541056, and CNS 0615197 and by ARO grant W911NF-
06-1-0425. The first author was also supported by a Fulbright fellowship.

(BE) components. However, any HRT component, if present,
will likely be small in terms of system utilization [16]. To
enable such systems to be developed, a framework is needed
for integrating SRT tasks and BE aperiodic jobs1 with a rela-
tively small number of HRT tasks such that (i) HRT deadlines
can be guaranteed, (ii) deadline tardiness for SRT tasks and
response times for BE jobs can be minimized to the extent
possible, and (iii) the multiprocessor platform is efficiently
utilized. In this paper, we consider the problem of devising
and implementing such a framework.
Background. As in other work on integrating workloads
with different requirements, we use a server-based abstrac-
tion. Such abstractions were first considered in the context
of uniprocessor systems.2 The general idea here is to parti-
tion the tasks to be scheduled among various “server tasks.”
A two-level scheduling approach is then used, where at the
top level, server tasks are scheduled, and at the next level, the
servers themselves schedule their constituent tasks. In this
way, tasks with different timing requirements can be isolated
from one another and dealt with independently.

A common method for real-time scheduling on multipro-
cessor systems is to partition the tasks to be scheduled among
the available processors. While simple to implement, this
approach has several drawbacks when implementing servers.
For example, due to bin-packing issues, large parts of a sys-
tem’s capacity may have to remain unallocated. Further,
partitioning is inflexible in that spare capacities cannot be
reused on different processors. For these reasons, prior ef-
forts on implementing servers on multiprocessors have fo-
cused on the usage of global scheduling algorithms (which
allow tasks to migrate) as the top-level scheduler. Two dif-
ferent types of global algorithms have been considered: job-
level fixed-priority algorithms and Pfair algorithms. In a job-
level fixed-priority algorithm, a job’s priority, once assigned,
does not change. A notable example of such an algorithm
is global EDF. In contrast, Pfair algorithms break each job
to be scheduled into quantum-length pieces of work, called
subtasks, which are then scheduled. Pfair algorithms, in the-
ory, have the advantage that a system’s full capacity can be

1A task is invoked repeatedly, with each invocation called a job. An
aperiodic job is invoked once.

2The literature on uniprocessor server approaches is quite extensive. Due
to space constraints, we focus most of our attention on the multiprocessor
case. However, some of the ideas utilized in this paper first appeared in
work on uniprocessors. We review this prior work in later sections where it
is utilized.

utilized: any sporadic real-time task system with total utiliza-
tion at most m can be scheduled using Pfair algorithms with
no deadline misses on an m-processor system [18]. In con-
trast, as with partitioning, caps on overall utilization must be
used when using job-level fixed-priority algorithms if every
deadline must be met.

Related work. The problem of implementing servers on
a multiprocessor was first considered by Baruah and Li-
pari [2], who presented a multiprocessor implementation of
the uniprocessor total bandwidth server [17]. The problem
addressed in this work is that of integrating on a multiproces-
sor the processing of aperiodic jobs, which are served by a
total-bandwidth server, with the processing of jobs of recur-
rent HRT tasks. The paper focuses on using global EDF as
the top-level scheduler, but the authors note that their results
are applicable if other job-level fixed-priority algorithms or
Pfair algorithms are used. In later work, Baruah et al. [1] pre-
sented a scheme called M-CBS, which extends the unipro-
cessor constant-bandwidth server scheme [5] for application
on multiprocessor platforms. Each such server can encapsu-
late a collection of tasks with different requirements (perhaps
entire applications). In this work, a variant of global EDF
is used as the top-level scheduler that gives higher priority
to certain high-utilization servers. In recent work, Pelliz-
zoni and Caccamo [15] presented a scheme called M-CASH,
which extends M-CBS by adding reclaiming techniques for
reallocating processing capacity that becomes available when
a server completes early. In this work, global EDF is as-
sumed to be the top-level scheduler. Finally, in a somewhat
different vein, Srinivasan et al. [19] proposed to solve the
problem of integrating aperiodic jobs and HRT tasks by us-
ing Pfair-based algorithms as the top-level scheduler.

Unfortunately, none of the approaches above adequately
solves the problem of interest to us. In particular, while
the Pfair-based schemes can guarantee all real-time deadlines
(soft or hard) without severely constraining overall utiliza-
tion, this comes at the expense of higher runtime costs, as
such algorithms tend to preempt and migrate jobs frequently.
While such migrations are less costly on a multicore plat-
form (due to the presence of on-chip shared caches), these
algorithms also require that task execution costs be rounded
to be an integral number of quanta, which can waste process-
ing capacity. In all of the non-Pfair-based schemes discussed
above, it is assumed that server jobs cannot miss their dead-
lines (even if the jobs of the tasks they encapsulate can). As
noted earlier, caps on overall utilization must be enforced to
ensure this. These caps can be quite restrictive—indeed, sys-
tems exist with total utilization of approximately m/2 that
cannot be correctly scheduled (without missing deadlines) on
m processors. For the kind of applications that have moti-
vated our work, where only a small fraction of the workload
is likely to have hard deadlines, insisting that all sever dead-
lines be met is overkill.

This realization marks the main departure of our work
from prior efforts: we require that server deadlines not be
missed only for those servers that encapsulate the HRT com-
ponent of the workload. Other servers may miss their dead-
lines by bounded amounts. By allowing such misses, we are
able to eliminate restrictive utilization caps, while still using
a variant of global EDF. The fact that this is possible fol-
lows from recent work on global EDF. In particular, it has
been shown that, when using global EDF to schedule spo-
radic real-time tasks on m processors, deadline tardiness is
bounded, provided total utilization is at most m [9, 10, 20].
Furthermore, Devi and Anderson [10] have presented a vari-
ant of global EDF, called EDF-hl, that can guarantee zero
tardiness to at most m tasks.

Proposed approach. We propose an extension of EDF-
hl that does not restrict the number of HRT tasks. This
extension, which we call EDF-HSB, creates up to m non-
migratory servers to execute HRT tasks with zero tardiness.
These servers are statically prioritized over the other servers
in the system and can be provisioned independently of the
periods of their clients. Each SRT task is serviced by a single
server (or, equivalently, the task itself is scheduled directly
by the top-level scheduler). Queued BE jobs are scheduled
by additional SRT servers. The SRT servers may miss their
deadlines, but by bounded amounts only. To make best use of
dynamic slack when servers complete execution early, EDF-
HSB uses a spare capacity redistribution method similar to
CASH [6]. Jobs that finish early donate their unused capacity
to a global capacity queue. Both SRT tasks that are likely to
be tardy and BE jobs can receive such capacities to improve
performance.

Summary of contributions. This paper breaks new ground
in several ways. First, our server scheme is the first known to
us that takes “SRT execution” as a first-class concept when
scheduling servers. Second, our work is the first on im-
plementing multiprocessor servers that is directed at what
is likely to be the common case in practice: a system with
components with different timing requirements for which the
HRT component (if present) is relatively small. Third, our
scheme is novel in that it is able to avoid caps on overall uti-
lization (for the applications of interest to us), without resort-
ing to more costly scheduling algorithms, such as Pfair-based
schemes. Fourth, though others have previously considered
reclamation schemes in the context of multiprocessors, we
are the first to do so within a scheme where reclamation can
be used to lower deadline tardiness in addition to improving
BE responsiveness. Finally, to the best of our knowledge, no
other multiprocessor server scheme has actually been imple-
mented within a real operating system (though the designers
of M-CASH have implemented both it and M-CBS within a
real-time simulator [15]). In contrast, we have implemented
EDF-HSB within Linux and thus have a real working frame-
work.

Organization. The rest of this paper is organized as fol-
lows. In Secs. 2–4, respectively, we present needed defini-
tions, describe EDF-HSB, and prove several important prop-
erties concerning it. Then, in Sec. 5, we discuss our imple-
mentation of EDF-HSB in Linux and an associated experi-
mental evaluation. Finally, in Sec. 6, we conclude.

2 System Model
We consider the problem of scheduling a set τ of n fully pre-
emptive, independent, sporadic real-time tasks concurrently
with independent BE aperiodic jobs on a set of m identi-
cal multiprocessors with unit capacity. Each sporadic task
Ti = (ei, pi) is characterized by its worst-case execution re-
quirement, ei, its minimum inter-arrival time, or period, pi,
and its utilization, ui = ei/pi. Each such task generates a
sequence of jobs Ti,j , where j ≥ 1. We denote the instant
that a job becomes ready for execution as ri,j , and require
ri,j + pi ≤ ri,j+1. If the jobs of a sporadic task Ti are al-
ways released pi time units apart, starting at time 0, then Ti is
called a periodic task. If a job Ti,j of a sporadic task executes
for ei,j < ei time units, then the resulting unused capacity,
ei − ei,j , is referred to as dynamic slack. If such a job does
not receive an allocation of ei,j time units before its implicit
deadline di,j = ri,j + pi, then it is tardy. Note that, if a job
of a sporadic task is tardy, then the release time of the next
job of that task is not delayed.

All tasks and jobs are sequential, i.e., the jobs of a spo-
radic task must execute in sequence, and each job can only
execute on one processor at a time. We require all periods
and deadlines to be some integral number of quanta (though
execution costs can be non-integral). We assume this because
actual hardware has inherent limits on timer resolution and
reasonable overhead costs. For the purpose of the analysis,
we consider preemption and migration costs to be negligible.
However, we address these costs when discussing the issue
of reclaiming spare capacities.

We assume in this paper that each sporadic task is either a
HRT task or a SRT task. A HRT task may never miss a dead-
line. As noted earlier, the total utilization of all HRT tasks is
assumed to be relatively small—more precisely, we require
that it be possible to statically assign such tasks to proces-
sors such that no processor is overutilized. SRT tasks, on the
other hand, may experience tardiness, but only by a bounded
amount. This is sufficient to ensure that each SRT task re-
ceives a processor share matching its required utilization in
the long term. As noted above, in addition to the jobs of real-
time tasks, the system must process aperiodic BE jobs. These
are unknown to the system before their arrival and no service
guarantees can be ensured. BE jobs should be processed as
fast as possible without compromising SRT and HRT guar-
antees.

3 Algorithm EDF-HSB
In this section, we present a new scheme, EDF-HSB, which
meets the above requirements. EDF-HSB allows the system
to be fully utilized and can flexibly deal with dynamic slack.
The various mechanisms used in EDF-HSB are described in
detail in later subsections. We begin with a general descrip-
tion of some of the underlying design choices.

EDF-HSB ensures the temporal correctness of HRT tasks
by statically partitioning them among the available proces-
sors, and by encapsulating those assigned to each processor
within a periodic HRT server, which executes only on that
processor. These HRT servers offer three distinct advantages.
First, because HRT tasks do not migrate, the analysis of their
worst-case execution times is simplified. (It is worth noting
that work on timing-analysis tools for multiprocessor plat-
forms is in its infancy.) Second, our HRT servers require
no over-provisioning, i.e., such a server’s utilization is sim-
ply the sum of the utilizations of its clients. Third, a HRT
server’s period can be sized independently of its client tasks,
and thus its impact on SRT tasks and BE jobs can be adjusted
freely. In contrast to our approach, in most (if not all) prior
server approaches (e.g., [5, 12, 13]), client tasks either may
incur tardiness of up to the server’s period, or the server must
be over-provisioned in order to avoid client deadline misses
(although it is important to acknowledge that these prior ap-
proaches were devised with different workloads in mind).

In EDF-HSB, the top-level scheduler schedules the HRT
servers just described along with the other tasks in the sys-
tem. These other tasks are prioritized against each other us-
ing a global EDF policy. Hence, they may migrate among the
processors in the system. In addition, these other tasks may
experience bounded deadline tardiness. Such tasks include
both the SRT tasks that are part of the system to be scheduled
and also a collection of sporadic BE servers, which are re-
sponsible for scheduling BE jobs. We will use the term “non-
HRT task” when collectively referring to the set of SRT tasks
and BE servers. When we use the term “job” in reference to
a non-HRT task, and that task is a BE server, we are referring
to an invocation of the server as scheduled by the top-level
scheduler, and not a job that the server itself schedules.

Although EDF-HSB prioritizes HRT servers over other
tasks, such servers may be considered ineligible for execu-
tion even when they have client tasks with unfinished jobs.
The eligibility rules for these servers, given later, are defined
so that non-HRT tasks can be given preference in schedul-
ing when doing so would not cause HRT tasks to miss their
deadlines.

Arriving aperiodic jobs are placed in a single global FIFO
queue. When a BE server is scheduled for execution, it ser-
vices jobs from this queue until either the queue empties or
the server has exhausted its allocated budget (whichever oc-
curs first). We assume that there are a total of m BE servers,
so that arriving BE jobs can be scheduled in parallel to the

extent possible. If the system experiences intervals of under-
utilization, then the BE servers double as background servers.

At runtime, the performance of the system is further en-
hanced through a novel use of spare capacity redistribution
to lessen tardiness for non-HRT tasks and to adapt quickly
to load changes. For example, even if one processor is fully
committed to serving HRT tasks, EDF-HSB can still use dy-
namic slack released on that processor to improve the per-
formance of non-HRT tasks. The redistribution of slack is
controlled by a heuristic. By using different heuristics, it is
possible to tune EDF-HSB for various task loads. As dis-
cussed in Sec. 5, different heuristics can be defined depend-
ing on whether it is more important to lower BE job response
times or to lower SRT task tardiness.

Example. Fig. 1 depicts an EDF-HSB schedule for a sys-
tem of eight real-time tasks executing on three processors.
Five of the tasks (H1, . . . , H5) are HRT tasks, while the re-
maining three (S1, . . . , S3) are SRT tasks. The HRT tasks are
partitioned into two sets and assigned to HRT servers on Pro-
cessors 1 and 2. The HRT component has a total utilization of
0.2+0.3 = 0.5 and the SRT component has a total utilization
of 1/3 + 1/3 + 1/3 = 1.0. For the sake for illustration, the
HRT server on Processor 2 is slightly over-provisioned (1/3
instead of 0.3) to generate a more interesting schedule. The
remaining capacity of the system is distributed among three
BE servers (B1, . . . , B3). We assume that these servers are
continually backlogged with BE jobs to schedule.

The HRT server on Processor 1 is not initially eligible (for
reasons discussed later), but the one on Processor 2 is, so it is
scheduled at time 0. This leaves two processors at time 0 on
which to schedule two of S1, . . . , S3, B1, . . . , B3. S2 and B1

have the earliest deadlines, so they are selected for execution
at time 0. We will consider other aspects of this schedule in
detail later. For now, we turn our attention to describing the
HRT server rules in detail.

3.1 Hard Real-Time Servers
Each HRT server S is a periodic task, with a maximum bud-
get es, a current budget bs, and a period ps, that services a
group of HRT tasks τH

s . The server’s period can be cho-
sen arbitrarily as long as its execution budget is scaled ac-
cording to the total utilization of its client tasks, i.e., es =
ps ·

∑
Tx∈τH

s

ux. Short periods have less impact on non-
HRT task tardiness but require more preemptions. Further,
hardware constraints such as minimum quantum sizes may
require rounding the budget to the next larger integral num-
ber of quanta, so a careless choice can cause a significant loss
in allocatable utilization or an unnecessary increase in tardi-
ness. In general, the optimal server period heavily depends on
hardware properties such as preemption costs, time-keeping
overhead, caching effects, etc. It is fairly straightforward to
derive such a period analytically based on such parameters.

However, due to space constraints, we omit this analysis from
the paper.

As HRT servers are statically prioritized over other tasks
by the top-level scheduler, the execution of a HRT server S
with parameters es, ps, and bs is only governed by the replen-
ishment and eligibility rules, S1–S6, below.

S1 The server executes whenever it is eligible, preempting
any other task that may have been executing on its as-
signed processor before the server became active. It re-
tains its budget when it suspends.

S2 The server is eligible if it has a positive budget, i.e., bs >
0, and at least one client job is eligible (see below).

S3 The server decrements its budget bs by one for every time
unit a client executes.

S4 Initially, the server’s deadline ds is set to ps and its budget
bs is set to es. Every ps time units, ds is increased by ps

and bs is reset to es.

The eligibility and priority of clients at time t is determined
according to the following rules.

S5 A job T H
k,j generated by one of the tasks in τH is eligible

if either (a) the job’s deadline is earlier than the server’s
next deadline (dH

k,j < ds), or (b) the server has zero
slack time in its current period (i.e., ds − t = bs at time
t).

S6 The server selects the eligible client job with the earliest
deadline for execution.

Note that rule S5b forces the server to always consume its
complete budget as long as there are client jobs pending.
Example. Returning to the schedule in Fig. 1, at time 0, the
deadline of the job H5,1 (10) is earlier than that of its server
HS

2 (15). Thus, according to Rule S5a, H5,1 is eligible, and
because HS

2 has sufficient budget, H5,1 is scheduled on Pro-
cessor 2 and completes. In contrast, at the same time, HS

1 has
no client job with a deadline earlier than 10, it has non-zero
slack, and there are competing non-HRT tasks. Thus, none of
its client jobs are eligible and the server suspends itself, free-
ing Processor 1 for non-HRT tasks. HS

1 remains suspended
until time 8, where it has zero slack and all of its jobs become
eligible (Rule S5b). At that time, H1,1 is the client job with
the earliest deadline and thus is scheduled. It then completes
after one time unit and H2,1 is scheduled. Whenever a client
job executes, its server’s budget is decreased (Rule S3), and
therefore HS

1 ’s budget is exhausted at time 10 and is replen-
ished immediately. The update of HS

1 ’s deadline causes it to
have non-zero slack again and it suspends until time 18. Note
that, earlier in the schedule, at time 5, B2 is able to execute
as a background scheduler. This is because (by assumption)
it is backlogged and a processor would otherwise be idle.

���
�
���
�

���
�

���
�

�	��	�

�	��	��
�
�
�
���
�

���
�

���
�

�	��	��	��	�

�	��	��
�

�	��	��	��	� �	��	��	��	�

���
�

��

!!"
"
##$
$

%%&
&

'	''	'(((())*
*
++,
,--.

.
//0
0
1	11	12	22	2

334
4
556
6
7	77	78	88	89	99	9:
:
;;<
<
==>
>
?	??	?@
@

A	AA	AB	BB	BC	CC	CD
D
E	EE	EF	FF	F G
G
HH

I	II	IJ
J

KK
K
LL
L

MM
M
NN

O	OO	OP
P

QQR
R
S	SS	ST
T

UUV
V

WWX
X

Y	YY	YZ
Z

[[\
\
]]^
^

_	__	_`	``	`

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

PSfrag replacements

HS
1 = (2, 10)

H1 = (1, 10)
H2 = (3, 30)

HS
2 = (5, 15)

H3 = (1, 20)
H4 = (3, 20)
H5 = (1, 10)

S1 = (3, 9)
S2 = (2, 6)
S3 = (5, 15)
B1 = (4, 8)
B2 = (4, 8)
B3 = (7, 15)

CPU1 CPU2 CPU3 budget decrease release deadline

Figure 1: An example schedule illustrating EDF-HSB hard real-time server rules and capacity sharing.

On Processor 2, the jobs H3,1 and H4,1 are able to exe-
cute in the interval [11, 15) by Rule S5b, and H5,1 is able to
execute at time 15 by Rule S5a. Later in the schedule, H5,3

experiences a delayed sporadic release by three quanta until
time 23. As H5,3 is not eligible at the time of release, Pro-
cessor 2 schedules B2 as a background server.

In the above discussion, it has been assumed that an as-
signment of HRT tasks to processors exists. Such an assign-
ment can be obtained using any of several bin-packing-based
heuristics. However, as explained later in Sec. 4.2, some as-
signments may be more desirable than others from the stand-
point of lessening non-HRT task tardiness.

3.2 Dynamic Slack Reclamation
Dynamic slack reclaiming works at the level of the top-level
scheduler, so any references to the terms “job” and “task” in
the ensuing discussion should be taken from the perspective
of that scheduler, unless stated otherwise. While any job may
produce dynamic slack, such slack may be consumed only by
non-HRT tasks. An example of this can be seen at time 15 in
Fig. 1, where the job S1,2 completes two time units early, and
these two units of capacity are consumed by the BE server
B1. Our goal is to redistribute slack so that tardiness is re-
duced for SRT tasks and BE response times are improved.

Our approach for meeting this goal is to use a modification
of the CASH [6] and BACKSLASH [11] slack reclaiming al-
gorithms. Similar to the multiprocessor extension M-CASH
[15], EDF-HSB maintains a global queue of capacities sorted
by deadline. These capacities are treated as “schedulable en-
tities” by the top-level scheduler, and when a capacity is se-
lected to execute, its processor time is (potentially) donated
to some non-HRT task. Because of system overheads such as
preemption and context-switching costs, not every amount of
spare capacity can be consumed efficiently. Thus, we impose
a lower bound of qmin on queued capacities. If a job creates
a spare capacity of smaller size, it is not enqueued, but in-

stead can be consumed only by the next non-HRT job that
executes on the same processor. This allows small capacities
to accumulate into usable chunks.

Our rules for managing spare capacities are as follows.

C1 A capacity c = (q, d) is defined by a nonzero number of
quanta q (perhaps non-integral) and a deadline d. Such
a capacity c expires at time d.

C2 When a job Ti,j completes at time t < di,j after having
received ei,j < ei time units of service, it produces a
capacity of (min(ei − ei,j , di,j − t), di,j).

C3 A new capacity consisting of less than qmin quanta is as-
signed to the processor on which it was released and will
be consumed by the next non-HRT job with a later dead-
line that executes on that processor, unless the processor
idles beforehand. In the latter event, or if the capacity
expires or is exhausted, it is disposed of.

C4 Non-expired capacities consisting of at least qmin quanta
are stored in deadline order in a global queue.

C5 When a capacity is enqueued, it is immediately consid-
ered to be a “schedulable entity” by the top-level sched-
uler, i.e., a capacity with a deadline at time d competes
for processor time as if it were a SRT job with a deadline
at time d. If the capacity is selected for execution, then it
may execute only prior to time d and the processor time
it receives can be consumed by any (single) non-HRT
task with a current deadline at least d that may receive
spare capacity. (In our implementation, we select such
a task using a heuristic, as discussed later in Sec. 5.) A
SRT task may receive spare capacity if its most recently
released job has not completed execution. A BE server
may do so if there are queued BE jobs. (A BE server
may consume the capacity even if has executed for more
than its worst-case execution cost in its current period.)

C6 When a non-HRT job J consumes a capacity, it is sched-
uled using the capacity’s deadline and its own execu-
tion budget remains unaltered. If J completes or is pre-
empted while consuming the capacity and if that capac-
ity is neither expired nor exhausted, the leftover capac-
ity is treated as a new spare capacity release according
to C3 or C4.

C7 If a processor ever idles and the capacity queue is
nonempty, then it dequeues the capacity with the earliest
deadline and executes it without donating the resulting
execution to any task. The processor continues to exe-
cute the capacity as long as it would otherwise be idle
(and the capacity is neither exhausted nor expired).

One issue that we have glossed over above is that of de-
termining when a server task can conclude that it has spare
capacity to release. For a HRT server, this can be determined
by having the server monitor the actual execution costs of its
client tasks and releasing spare capacity that is created at that
level. For a BE server, however, some application-specific
knowledge of future aperiodic BE job arrivals would be re-
quired.

4 Correctness
We have three proof obligations, which are addressed in the
following subsections: (i) no HRT task misses a deadline, (ii)
tardiness is bounded for non-HRT tasks, and (iii) the recla-
mation of dynamic slack does not invalidate (i) and (ii).

4.1 Hard Real-Time Correctness
To establish HRT correctness, we first prove the follow-
ing lemma concerning the use of (preemptive) uniprocessor
EDF.

Lemma 1. Let S denote a HRT server with maximum bud-
get es, period ps, utilization us, and client set τH

s , where∑
Tx∈τH

s

ux ≤ us ≤ 1. Further, let TI be a periodic task
with period pI = ps and execution cost eI = ps − es. For
any schedule of S under EDF-HSB with no dynamic slack
reclaiming, there exists an EDF schedule of τ ∗ = {TI}∪ τH

s

in which the allocations to tasks in τH
s are the same.

Proof: We show that whenever S schedules one of its client
tasks in EDF-HSB, the same scheduling choice can be made
for τ∗ under EDF. For a client job J of S to be scheduled
under EDF-HSB, it must have been eligible via Rule S5. If
J is eligible via Rule S5a, then its deadline is less than S’s.
Thus, in EDF, J’s deadline is less than that of the current
job of TI (as S’s deadlines and TI ’s always coincide) and
thus can be scheduled. If J’s deadline is greater than S’s
current deadline, and J becomes eligible via Rule S5b, then
S’s slack is zero, which means that in the EDF schedule, the

most recently released job of TI has finished execution. Thus,
J can be scheduled in the EDF schedule. ¤

Theorem 1. In EDF-HSB with no dynamic slack reclaiming,
no HRT job misses its deadline.

Proof: Because the scheduling of a HRT server does not de-
pend on the workload that competes with it on its assigned
processor, this workload can be characterized via a fictitious
task TI as defined above. From Lemma 1 and the optimality
of EDF on uniprocessors, the result follows. ¤

4.2 Tardiness
From the standpoint of the non-HRT tasks in the system, the
HRT servers appear as a collection of up to m ordinary HRT
periodic tasks that execute with higher priority and do not
migrate. The EDF-hl algorithm of Devi and Anderson [10]
mentioned in the introduction is similar: in that algorithm, a
collection of SRT sporadic tasks is scheduled together with
up to m HRT sporadic tasks that execute with higher prior-
ity. Because there are at most m such tasks, they can always
be scheduled without migration. Devi and Anderson showed
that in EDF-hl, SRT task tardiness is bounded. In this re-
gard, our scheme differs from EDF-hl only in that our HRT
servers may execute in a non-work-conserving manner due
to the eligibility rules that we use. In particular, we allow
such a server to retain a portion of its current budget with-
out being scheduled until later in its current period. It can
be shown, however, that this non-work-conserving behavior
does not cause tardiness to become unbounded. In particu-
lar, letting τL denote the set of non-HRT tasks, τH denote
the set of HRT servers, EL denote the m largest SRT execu-
tion costs, UL denote the m largest utilizations, emin denote
the smallest worst-case execution cost, emax denote the max-
imum worst-case execution cost, and uL

max denote the largest
non-HRT utilization, we have the following theorem.

Theorem 2. In EDF-HSB with no dynamic slack reclaiming,
the tardiness of any task Tk in τL is at most ek +min(x1, x2),
where

x1 =
EL − emin + 2 ·

∑
Th∈τH

eh · (1 − uh)

m − |τH | − UL

,

x2 =
EL + (|τH | − 1) · emax + 3 ·

∑
Th∈τH

eh · (1 − uh)

m − max(|τH | − 1, 0) · uL
max − UL −

∑
Th∈τH

uh

.

While this theorem is a fairly minor extension of one
proved by Devi and Anderson [10], it is not feasible to in-
clude its proof here, due to space constraints.

The tardiness bound above is similar in magnitude to oth-
ers proved by Devi and Anderson [9, 10]. In practice, we
have found that if task execution costs are worst-case val-
ues, then tardiness under global EDF is substantially lower
than implied by these bounds. This suggests that the bounds

are not tight.3 Furthermore, with a worst-case provisioning,
using dynamic slack to lower tardiness may not be neces-
sary. The experiments given in Sec. 5 confirm this. How-
ever, if SRT tasks are provisioned using average-case exe-
cution costs, then tardiness can be much higher due to tem-
porary overloads that may occur when a job’s actual execu-
tion cost exceeds its average cost. All of our results can be
applied without modification assuming such an average-case
provisioning if such overloads are handled by requiring any
overrunning job to finish execution by using time allocated to
future jobs of the same task. Such an approach has the advan-
tage that an overrunning job does not negatively impact the
jobs of other tasks. However, with this approach, tardiness
can be higher, since an overrunning job may actually execute
as several jobs. In such a system, using dynamic slack to
lower tardiness could be advantageous.

The above expressions reveal that the assignment of HRT
tasks to processors (which determines the HRT server uti-
lizations) may impact tardiness (as given by the bounds) for
the tasks in τL. While an optimal assignment may be diffi-
cult to obtain, generally speaking, the bounds are lessened by
an assignment that fully utilizes k < m processors for HRT
processing and balances the remaining HRT workload on the
other processors (so that the HRT server utilization on these
processors is approximately the same). Assuming (as we do
here) that HRT tasks have fairly small utilizations, the first-fit
heuristic will tend to nearly completely utilize some subset
of the processors, while the worst-fit heuristic will tend to
balance the load. An overall approach can be obtained by
combining these heuristics and assessing tardiness for differ-
ent values of k and the assignments produced.

4.3 Dynamic Slack Reclamation
We now show that dynamic slack reclamation does not com-
promise real-time correctness.

Theorem 3. The dynamic slack reclamation mechanism of
EDF-HSB does not invalidate the timing guarantees made
in Theorems 1 and 2.

Proof sketch. HRT correctness is straightforward: A HRT
server only releases spare capacities and never consumes
any. Given that HRT servers are prioritized over all non-HRT
tasks, the manner in which non-HRT jobs consume spare ca-
pacities does not affect the scheduling of HRT jobs.

As for the tardiness of non-HRT jobs, small capacities that
are dealt with via Rule C3 merely cause the consuming job
to consume less of its own execution budget, which cannot
increase tardiness. As for larger capacities that are dealt with
via Rule C5, if such a capacity is donated by a non-HRT job,
then the reasoning is also straightforward, due to Rules C5

3The bound given by Valente and Lipari [20] for global EDF is much
smaller, but the proof of their bound was found to be in error.

and C6: the donated capacity is scheduled essentially as it
would have been had it not been donated and instead were
included as part of the execution of the donating job.

The only relatively tricky case is the situation where a
HRT server donates a larger capacity. This is trickier because
the donated capacity would have been executed at a higher
priority level had it not been donated, but once donated, it
competes for scheduling like a SRT job and is prioritized by
its deadline. This change in the status of the donated capacity
can cause it to shift later in time in the schedule. However, it
will shift later only if a portion of the execution of some non-
HRT job correspondingly shifts forward. Such modifications
to the schedule cannot cause tardiness to increase. (Shifting
some piece of computation c of a job of a task T to the future
could potentially cause a problem if this causes a cascade of
other future shifts. However, this could only happen if c is
shifted so that it would execute concurrently with some por-
tion of future jobs of T , which would cause future jobs to
shift forward. Since a capacity can only be consumed prior
to its deadline, this cannot happen in our case.) ¤

5 Implementation
To assess the effectiveness of EDF-HSB in scheduling the
kinds of workloads of interest to us, we implemented it within
the Linux 2.6.9 kernel configured to run on a symmetric
multiprocessor (SMP) architecture.4 Our particular develop-
ment platform is an SMP consisting of four 32-bit Intel(R)
Xeon(TM) processors running at 2.70 GHz, with 8K instruc-
tion and data caches, and a unified 512K L2 cache per proces-
sor, and 2 GB of main memory. We implemented EDF-HSB
by modifying a previously-developed system by our group
called LITMUSRT [8], which extends the base Linux kernel
to allow different multiprocessor real-time scheduling algo-
rithms to be utilized as plug-in components. Unfortunately,
the previous LITMUSRTimplementation did not support hi-
erarchical scheduling, so implementing EDF-HSB within it
actually required significant effort.

We do not have sufficient space to include an extensive
discussion of how we modified LITMUSRTto support EDF-
HSB, so we give here only a brief overview of some aspects
of the implementation. HRT and BE servers were realized
as accounting abstractions inside the kernel, with actual tasks
implemented as Linux tasks. To create and modify servers, a
new generic system call sched setup was introduced that
allows scheduler plugins to be configured similar to the stan-
dard system call ioctl. To allow for detailed analysis of
the system’s behavior, we implemented a new tracing facil-
ity. A sufficiently large ring-buffer was allocated for each
CPU and exported as a character device to user space. During

4While the advent of multicore platforms is one of the motivating factors
that led to our research, we currently do not have such a platform in our lab.
We plan to port EDF-HSB to such a platform in the near future.

real-time mode, scheduling events such as new task arrivals,
tasks blocking for I/O, and preemptions were recorded to-
gether with a timestamp in the ring-buffer of the CPU where
they occurred. As each CPU has its own ring-buffer, there
is no lock contention and the tracing overhead is reasonably
small. The exported trace data was saved in user space for
detailed offline analysis. This allowed us to perform in-depth
trace analysis that would be too expensive to do online in ker-
nel space.

5.1 Experiments
We tested the effectiveness of four schemes in scheduling a
test workload consisting of HRT, SRT, and BE components.
The four tested schemes were global EDF (each HRT and
SRT task is treated as an ordinary EDF-scheduled task; each
arriving BE job is scheduled as a background job), global
EDF with BE servers (like global EDF, except that BE jobs
are processed by BE servers as described in this paper), EDF-
HSB without capacity sharing, and EDF-HSB with capacity
sharing. We also measured BE job response times in an idle
system.

We considered several test workloads in our work, one
of which is discussed here. It consisted of eight synthetic
HRT tasks with a total utilization of 0.8, fourteen synthetic
SRT tasks with a total utilization of 2.76, and four HRT tasks
on Processor 4 dedicated to flushing the trace ring buffers to
disk. The remaining static capacity of 0.4 was assigned to
four BE servers. The task-set composition is summarized in
Table 1.

To evaluate the effectiveness of capacity sharing, we con-
figured the HRT and SRT tasks to release spare capacity ac-
cording to a Gaussian distribution. This method has been
employed previously by Lin et al. [11]. Each real-time task
was configured to execute for 75% of its worst-case execution
time plus an additive term (which may be negative) that was
obtained via a normal distribution with a mean of zero 0ms
and variance of 20ms. The resulting actual execution time
was limited to be within 50% to 100% of the corresponding
task’s worst-case execution time. The BE component was
simulated using ten synthetic job generators that generate a
sequence of jobs that require about 3ms to complete. Job re-
leases were separated by an amount taken from a normal dis-
tribution with a mean of 100ms and variance of 40ms limited
to lie with [0ms, 200ms].

Spare capacity can be used to improve BE response times
or to lessen the tardiness of SRT tasks. As it is generally not
possible to know in advance whether a task is going to be
tardy (this would require knowledge of future job arrivals), a
heuristic is needed to select tasks that are likely to be tardy.
We implemented three different heuristics. The first heuris-
tic compares a task’s slack time with its remaining execution
requirement. When the slack time is less than its execution
requirement, it is considered to be in danger of being tardy.

�����������	
����� �����	��	
�
�

���� �������� ���� ��������

���� ������� ���� ��������

���� ��������� ���� ���������

���� ���������� ���� ���������

���� ����������� ���� �������

���� �������

�����������	
����� ���� ���������

���� �������� ���� ���������

���� ����������

 !�������� ���� �����������

���� ���������

Table 1: The task set used to obtain the results given in
Figs. 2, 3, and 4.

The second heuristic considers a task likely to be tardy if one
of its last five jobs has been tardy. The third heuristic is a
null heuristic that is used as a baseline. It never considers
SRT tasks to be eligible for spare capacities before they are
tardy. In each heuristic, SRT tasks are given preference to
BE servers for consuming spare capacity. Of course, variants
of these heuristics can be obtained in which BE servers are
sometimes or always given preference.

In each of the four schemes we tested, no real-time task
(hard or soft) ever missed a deadline. As a result, all spare
capacity was donated to BE servers. The lack of any dead-
line misses is likely a consequence of the fact that, as noted
earlier, global EDF rarely produces significant tardiness in a
system provisioned assuming worst-case execution costs (as
done for our test system). In future work, we plan to experi-
mentally evaluate average-case-provisioned systems in which
significant tardiness may occur. Even though no deadlines
were missed in the two global EDF variants we tested, it is
important to note that it is generally not possible to analyti-
cally guarantee that deadlines will not be missed under these
schemes (without severely constraining overall utilization).

As no deadlines were missed in any of the tested schemes,
the main metric that we used in comparing them was BE
responsiveness. We ran each tested scheme for three min-
utes and then analyzed the resulting scheduler event traces
for average and maximum BE response times as well as the
response-time distribution. The results so obtained are de-
scribed below.

5.2 Results
Our results are shown in several different ways in Figs. 2-
4. Fig. 2 shows the BE job response-time distribution for
each tested scheme. As can be seen here, response times un-
der EDF are significantly worse than in the other schemes,
and those under EDF-HSB with capacity sharing are signif-
icantly better. Interestingly, EDF with BE servers and EDF-
HSB without capacity sharing have almost identical distribu-
tions. However, under these two schemes, HRT deadlines can
be guaranteed only under EDF-HSB. Note also that capacity
sharing significantly impacts performance under EDF-HSB.

In Fig. 3, the average and worst-case BE response time is

0

10

20

30

40

50

60

70

80

90

100

 0 50 100 150 200 250 300

Jo
bs

 w
ith

 re
sp

on
se

 ti
m

e
<=

 x
 (i

n
pe

rc
en

t)

Response time (in milliseconds)

EDF-HSB
EDF with BE servers

EDF-HSB without capacity sharing
EDF

Figure 2: BE job response-time distribution for each tested
scheme.

���� ����	
� ����	
��
������

�����������
���

����������

�

��

��

��

���

���

���

���

���

���

���

���

���

���

�������

 ��!"

#
�
!
�
�
�
!
�
�"
$%
�
�
$�
�%
$�
�$
!
�
�
�
�
�
!
�

Figure 3: Average and worst-case BE job response times un-
der each tested scheme.

shown for each scheme and also for an idle system. Inter-
estingly, the worst-case response time under EDF-HSB with
capacity sharing is reasonably close to the average-case re-
sponse time under EDF. Note also that the average-case re-
sponse time under EDF-HSB is quite close to that of an idle
system.

Finally, in Fig. 4, the recorded response times under each
scheme are given as scatter plots. Comparing inset (d) to in-
sets (a)–(c), we see that rather long response times are possi-
ble without capacity sharing and (for this tested system) these
long responses are completely eliminated by capacity shar-
ing.

6 Conclusion
Our focus in this paper has been highly heterogeneous multi-
processor workloads that may consist of HRT, SRT, and BE
components, where the HRT component is relatively small.
We expect such workloads to become rather common as mul-
ticore platforms become more ubiquitous. Our goal has been

to devise a scheme for supporting such workloads that does
not require severe restrictions on overall utilization and that
performs well in practice. The proposed scheme, EDF-HSB,
meets this goal. We base this conclusion both on the formal
analysis of EDF-HSB presented in Sec. 4 and the experimen-
tal validation discussed in Sec. 5. To our knowledge, EDF-
HSB is the first real-time multiprocessor server scheme that
does not require severe utilization restrictions and that has
actually been implemented within a real operating system.

Numerous avenues for further research exist. These in-
clude adding support for synchronization to EDF-HSB, im-
plementing some of the multiprocessor server schemes pro-
posed by others and experimentally comparing them to EDF-
HSB, and considering other variants of EDF-HSB in which
some of the tradeoffs in system design discussed in this paper
are resolved differently. One particularly interesting variant
is one where nonpreemptive EDF is used to schedule HRT
tasks. Our interest in this variant is motivated by the fact
that timing analysis is much simpler if jobs are executed non-
preemptively. Another interesting open question is whether
the tardiness bounds we have established can be tightened.
Finally, as noted in [7], large multicore systems are likely
to have hierarchical cache layouts, and in such systems, a
scheduling approach that mixes aspects of partitioning and
global scheduling might be preferable. In particular, while
task migrations within a cluster of cores that share some
lower level cache might be acceptable, migrations among
processors that are “far apart” in the cache hierarchy may be
too expensive. It would be interesting to extend EDF-HSB
to take into account both cache asymmetry such as this and
also processor asymmetry, which arises when different cores
have different functional characteristics.

References
[1] S. Baruah, J. Goossens, and G. Lipari. Implementing constant-

bandwidth servers upon multiprocessor platforms. In Proceed-
ings of the IEEE International Real-Time and Embedded Tech-
nology and Applications Symposium, pages 154–163, 2002.

[2] S. Baruah and G. Lipari. A multiprocessor implementation of
the total bandwidth server. In Proceedings of the 18th Interna-
tional Parallel and Distributed Processing Symposium, 2004.

[3] A. Bechini and C. Prete. Performance-steered design of soft-
ware architectures for embedded multicore systems. Software-
Practice and Experience, 2002.

[4] S. Bisson. Azul announces 192 core Java appliance.
http://www.itpro.co.uk/servers/news/99765/azul-announces-
192-core-java-appliance.html, December 2006.

[5] L. A. G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proceedings of the 19th IEEE Real-time
Systems Symposium, pages 3–13, 1998.

[6] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for
overrun control. In Proceedings of the 21st IEEE Real-Time
Systems Symposium, pages 295–304, 2000.

[7] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-
time scheduling approach for large-scale multicore platforms.

0
1
2
3
4
5
6
7
8
9

10

 0 50 100 150 200 250 300

Jo
bs

 w
ith

 re
sp

on
se

 ti
m

e
=

x
(in

 p
er

ce
nt

)

Response time (in milliseconds)

(a)

0
1
2
3
4
5
6
7
8
9

10

 0 50 100 150 200 250 300

Jo
bs

 w
ith

 re
sp

on
se

 ti
m

e
=

x
(in

 p
er

ce
nt

)

Response time (in milliseconds)

(b)

0
1
2
3
4
5
6
7
8
9

10

 0 50 100 150 200 250 300

Jo
bs

 w
ith

 re
sp

on
se

 ti
m

e
=

x
(in

 p
er

ce
nt

)

Response time (in milliseconds)

(c)

0
1
2
3
4
5
6
7
8
9

10

 0 50 100 150 200 250 300

Jo
bs

 w
ith

 re
sp

on
se

 ti
m

e
=

x
(in

 p
er

ce
nt

)

Response time (in milliseconds)

(d)

Figure 4: Scatter plots of response times under (a) EDF, (b) EDF with BE servers, (c) EDF-HSB without capacity sharing,
and (d) EDF-HSB with capacity sharing.

In Proceedings of the 19th EuroMicro Conference on Real-
Time Systems, (these proceedings), 2007.

[8] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT: A testbed for empirically comparing
real-time multiprocessor schedulers. In Proceedings of the
27th IEEE International Real-Time Systems Symposium, pages
111–123, 2006.

[9] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor. In Proceedings of the 26th
IEEE Real-time Systems Symposium, pages 330–341, 2005.

[10] U. Devi and J. Anderson. Flexible tardiness bounds for spo-
radic real-time task systems on multiprocessors. In Proceed-
ings of the 20th IEEE International Parallel and Distributed
Processing Symposium, 2006 (on CD ROM).

[11] C. Lin and S. Brandt. Improving soft real-time performance
through better slack reclaiming. In Proceedings of the 26th
IEEE International Real-Time Systems Symposium, pages 3–
14, 2005.

[12] G. Lipari and S. Baruah. Greedy reclaimation of unused band-
width in constant-bandwidth servers. In Proceedings of the
EuroMicro Conference on Real-Time Systems, pages 193–200,
2000.

[13] G. Lipari and E. Bini. Resource partitioning among real-time
applications. In Proceedings of the 15th Euromicro Confer-
ence on Real-Time Systems, pages 151–158, 2003.

[14] Novell, Inc. SUSE Linux Enterprise Real Time. http://
www.novell.com/products/realtime/, 2006.

[15] R. Pellizzoni and M. Caccamo. The M-CASH resource
reclaiming algorithm for identical multiprocessor platforms.
Technical Report UIUCDCS-R-2006-2703, University of Illi-
nois at Urbana-Champaign, 2006.

[16] R. Rajkumar. Resource Kernels: Why Resource Reservation
should be the Preferred Paradigm of Construction of Embed-
ded Real-Time Systems. Keynote talk, 18th Euromicro Con-
ference on Real-Time Systems, Dresden, Germany, 2006.

[17] M. Spuri and G. Buttazzo. Efficient aperiodic service under
earliest deadline scheduling. In Proceedings of the 15th IEEE
Real-time Systems Symposium, pages 228–237, 1994.

[18] A. Srinivasan and J. Anderson. Optimal rate-based schedul-
ing on multiprocessors. Journal of Computer and System Sci-
ences, 72(6):1094–1117, September 2006.

[19] A. Srinivasan, P. Holman, and J. Anderson. Integrating aperi-
odic and recurrent tasks on fair-scheduled multiprocessors. In
Proceedings of the 14th Euromicro Conference on Real-time
Systems, pages 19–28, 2002.

[20] P. Valente and G. Lipari. An upper bound to the lateness of
soft real-time tasks scheduled by EDF on multiprocessors. In
Proceedings of the 26th IEEE Real-time Systems Symposium,
pages 311–320, 2005.

