
A Hybrid Real-Time Scheduling Approach for Large-Scale
Multicore Platforms ∗

John M. Calandrino1, James H. Anderson1, and Dan P. Baumberger2
1Department of Computer Science, The University of North Carolina at Chapel Hill

2Systems Technology Lab, Intel Corporation, Hillsboro, OR

Abstract

We propose a hybrid approach for scheduling real-time
tasks on large-scale multicore platforms with hierarchi-
cal shared caches. In this approach, a multicore platform
is partitioned into clusters. Tasks are statically assigned
to these clusters, and scheduled within each cluster us-
ing the preemptive global EDF scheduling algorithm. We
show that this hybrid of partitioning and global schedul-
ing performs better on large-scale platforms than either
approach alone. We also determine the appropriate clus-
ter size to achieve the best performance possible, given
the characteristics of the task set to be supported.

1 Introduction
Multicore architectures, which include several processors
on a single chip, are being widely touted as a solution to
the “thermal roadblock” imposed by single-core designs.
Most chip makers have released dual-core chips, and a
few designs with more than two cores have been released
as well. For instance, both Intel and AMD have released
four-core chips, Sun recently released its eight-core Nia-
gara chip, and Intel is expected to release chips with 80
cores within five years [6]. Azul, a company that builds
Java appliances, has created 48-core chips that are used
in systems with up to 768 total cores [1]. These appli-
ances are used to process large numbers of transactions
with soft real-time requirements. To summarize, large-
scale multicore platforms with tens or even hundreds of
cores per chip may become a reality fairly soon and ap-
plications with (soft) real-time constraints will likely be
deployed on them. In this paper, we consider the issue of
how to efficiently schedule soft real-time workloads on
such large platforms.

In most proposed multicore platforms, different cores
share on-chip caches. For example, by the end of 2007,
both Intel and AMD plan to have chips with a cache
shared by four cores, and the aforementioned Azul chip

∗Work supported by a grant from Intel Corp., by NSF grants
CNS 0408996, CCF 0541056, and CNS 0615197 and by ARO grant
W911NF-06-1-0425.

From other
eight cores...

From other
48 cores...

L1 L1

Core 4

L1

Core 13Core 1 Core 16

L3

L4

L1

L2 L2

Figure 1: Large-scale multicore architecture with a four-level
cache hierarchy. Three of the levels contain shared caches.

has a shared cache for each group of eight cores. To effec-
tively exploit the available parallelism in these systems,
such caches must not become performance bottlenecks.
In fact, the issue of efficient cache usage on multicore
platforms is one of the most important problems with
which chip makers are currently grappling. This will be-
come an even more pressing issue as the number of cores
on a chip increases. For example, Intel envisions a 32-
core platform where all cores share a cache. To alleviate
issues related to cache contention and coherence, a tree-
like cache hierarchy will likely exist. To reasonably con-
strain the focus of this paper, we henceforth take the 64-
core platform shown in Fig. 1 to be the “canonical” large
platform under consideration. In this platform, all cores
are symmetric, single-threaded, and share an L4 cache.
Note that groups of cores also share L2 and L3 caches,
which reduces contention at the L4 cache.

Given such a platform, the question of whether to
use partitioning or global scheduling approaches when
scheduling soft real-time applications becomes more
complicated. While either approach might be viable,
each has serious drawbacks on this platform, and neither
will likely utilize the system very well. Global scheduling
algorithms are better able than partitioning approaches
to utilize multiprocessor systems when system overheads
are negligible. For example, on a system with M cores,
the global earliest-deadline-first (EDF) algorithm can en-
sure bounded deadline tardiness (which is sufficient for
many soft real-time applications) for any such task sys-
tem if total utilization is at most M [5, 10]. On the



other hand, global algorithms are susceptible to large
overheads on large platforms. These overheads are due
to scheduling-related costs when scheduling a large task
set on a large number of cores, high contention for the
global run queue, and the cost of migrating data between
two cores that share only a low-level cache (or, on some
platforms, no cache at all). Partitioning approaches re-
sult in no task migrations and reduced scheduling costs;
however, due to bin-packing limitations, there exist task
systems with total utilization of approximately M/2 that
no such approach can correctly schedule, even if bounded
deadline tardiness is allowed. This becomes an even
greater concern on large-scale platforms with relatively
simple cores (a likely scenario, since using simple cores
enables more cores to be placed onto a chip). This is be-
cause task utilizations on such simple cores may be high,
which makes partitioning more difficult.

Contributions. Driven by the above considerations, we
propose the use of a hybrid approach that exploits the nat-
ural groupings of cores around different levels of shared
caches. In our hybrid approach, we partition the platform
into clusters of cores that share a cache. We then stati-
cally assign tasks to clusters, and schedule tasks within
each cluster using a global scheduling algorithm, namely,
preemptive global EDF. In this approach, migration costs
within a cluster are a function of the access time (and
size) of the shared cache of that cluster. When tasks have
large working sets (WSs), cluster sizes can be kept small
in order to keep migration costs low. By partitioning the
system into clusters instead of individual cores, we al-
leviate bin-packing limitations by effectively increasing
bin sizes in comparison to item sizes. For example, with
four-core clusters, a task can occupy at most 25% of a bin.
As a result, it is much easier to partition such tasks onto
clusters than onto individual cores. Note that by tuning
the cluster size, we can mitigate the weaknesses of (and
exploit the advantages of ) each approach.

The “ideal” cluster size depends on both the maximum
task utilization and task working set size (WSS), as well
as the overall system utilization of the real-time work-
load. One of the main contributions of this paper is to
devise rules of thumb for choosing cluster sizes. These
rules were devised based upon a series of schedulability
experiments that were conducted for our canonical sys-
tem under a variety of different real-time workloads. We
used SESC, a cycle-accurate architecture simulator that
supports the MIPS instruction set [8], to obtain realistic
overheads for our schedulability experiments.

We found that larger cluster sizes improve bin pack-
ings, and are preferable when task utilizations are high.
When task utilizations are lower, migration and schedul-
ing costs are usually the greater concern, particularly
when WSSs are large, and therefore smaller cluster sizes

are preferable. We show that for many of the workloads
that we investigated, a cluster size of four is ideal for our
platform, as the maximum size of a bin item is reduced
to a size that makes bin packing much easier while keep-
ing scheduling and migration costs low. There also exist
scenarios where a pure partitioning or global scheduling
approach is the best choice, and we do not rule out the
possibility of using these approaches when it is beneficial
to do so. For example, a pure partitioning approach might
be beneficial when the real-time workload is very small,
as the bin-packing problem would not be a concern. Al-
ternately, when task utilizations are very high and WSSs
are very low, a pure global approach might prove to be
best. Our hybrid approach simply provides greater flexi-
bility when determining how to most efficiently schedule
a real-time workload.

One limitation of our experiments is worth noting.
While we believe that many of our conclusions are of a
general nature, these conclusions have been drawn based
on empirical data taken from one simulated test platform,
that shown in Fig. 1 and further elaborated upon in Sec. 3.
SESC produces very detailed simulations, but is quite
slow, so it was only feasible to explore one such plat-
form in this paper. While it is difficult to predict exactly
what future 64-core platforms will look like, we believe
that our chosen platform is a reasonable approximation of
what can be expected. In future work, we hope to evalu-
ate other platforms, most notably those exhibiting either
core or cache asymmetry.

Another difficultly in performing these experiments for
soft real-time systems is the need to generate average-
case, rather than worst-case, measurements. This is par-
ticularly difficult when determining system overheads, as
discussed further in Sec. 3.1. Furthermore, when provi-
sioning a system based on average-case execution costs,
overruns can occur. We assume that such overruns will be
temporary—if an execution cost is truly an average-case
measurement, then underruns should occur sufficiently
frequently to counterbalance overruns in the long run.
In terms of scheduling, there are numerous ways of han-
dling overruns. In this paper, we assume that a job that
does not complete by the end of its provisioned time uses
time allocated to the next job of the same task. This is
the simplest way of handling overruns, as it does not re-
quire modification to the scheduling algorithm and pre-
vents an overrunning task from having a negative impact
on other tasks in the system. Unfortunately, this approach
can lead to increased deadline tardiness. It also makes it
difficult to consider truly non-preemptive scheduling al-
gorithms, as it allows overrunning jobs to be preempted.
Issues related to using non-preemptive scheduling algo-
rithms assuming average-case execution costs are left as
future work.



Related work. Little work has explored the impact of
large-scale multicore platforms on real-time scheduling
algorithms. Recent work [3] (by our research group) has
compared partitioning and global approaches using real
scheduling and system overheads. However, this work
was performed on a conventional (non-multicore) four-
processor SMP platform. Unfortunately, the platform of
interest in this paper, or any approximation thereof, may
not exist for at least several years, so we must resort to
simulation.

What real-time workload needs 64 cores? Before
continuing, we explain the need for real-time support on
a platform with 64 cores. One envisioned application
of multicore platforms is as multi-purpose home appli-
ances, with one machine serving many of the comput-
ing needs of a home. These may include supporting, for
example, HDTV video streaming, a videoconferencing
session, and several “virtual” user terminals simultane-
ously. In such a system, applications with soft real-time
requirements must run alongside other (soft real-time and
non-real-time) applications. If our hybrid approach were
used to implement such a system, then some tasks of the
real-time workload could actually be server tasks for sup-
porting non-real-time processing. In such a scenario, our
approach would increase the capacity of the system for
handling both real-time and non-real-time applications.
It is worth noting that, in these home appliances, many
of the envisioned real-time applications might be very
processor-intensive (e.g., streaming from an HDTV video
source), and therefore might contain tasks with utiliza-
tions higher than are typically considered “normal” for
real-time tasks, especially if processing cores get sim-
pler as the number of cores on a chip increases. For
this reason, we consider task sets containing such high-
utilization tasks in our experiments.

Another application of these large-scale platforms
is real-time transaction processing. As noted earlier,
Azul [9] is a company that has developed a variety of
large-scale multicore platforms explicitly for the purpose
of handling transaction-oriented, Java-based workloads.
Processors with 48 cores on a chip are being placed into
systems with hundreds of cores in order to handle the de-
mand created by businesses such as financial institutions.
While developing more powerful hardware is certainly an
important part of satisfying the demand for processing
real-time transactions, it will also be important to most ef-
ficiently make use of currently-existing hardware through
the use of appropriate scheduling algorithms. This will
allow timing guarantees to be made while supporting the
largest real-time workload possible, in turn allowing busi-
nesses to achieve the largest possible return on their hard-
ware investment.

Organization. The rest of this paper is organized as
follows. In Sec. 2, we present a brief introduction to
EDF-based partitioned and global scheduling and a de-
scription of our hybrid EDF scheduling approach. In
Sec. 3, we present the results of experiments performed
to determine the ideal cluster size for our target platform
under a variety of real-time workloads. In Sec. 4, we state
several “rules of thumb” based on these results that can be
employed when determining an appropriate cluster size
for a real-time workload running on a large-scale multi-
core platform. Finally, in Sec. 5, we conclude.

2 EDF Scheduling
We focus herein on the scheduling of periodic task sys-
tems. Each task in such a system is invoked or released
repeatedly; each such invocation is called a job of the
task. A periodic task is specified by a period, which de-
notes the (exact) separation between its successive job re-
leases, and by an execution cost, which denotes the max-
imum execution time of any of its jobs. Each job of a
task has a deadline corresponding to the release time of
the task’s next job. Task periods are assumed to be in-
tegral with respect to the length of the system’s schedul-
ing quantum, but execution costs may be non-integral. A
task’s utilization or weight is given by the ratio of its ex-
ecution cost and period.

In EDF scheduling algorithms, jobs are scheduled in
order of increasing deadlines, with ties broken arbitrarily.
In partitioned EDF (P-EDF), tasks are statically assigned
to processors and those on each processor are scheduled
on an EDF basis. Tasks may not migrate. In global EDF
(G-EDF), jobs are allowed to be preempted and job mi-
gration is permitted with no restrictions. No variant of
EDF is optimal, i.e., deadline misses can occur under
each EDF variant in feasible systems (i.e., systems with
total utilization at most the number of processors). It
has been shown, however, that deadline tardiness under
G-EDF is bounded in such systems, which is sufficient
for many soft real-time applications [5, 10]. (In contrast
to G-EDF, for global static-priority algorithms, scenar-
ios exist in which tardiness is unbounded even though to-
tal system utilization is at most M [4].)

In our hybrid EDF approach, herein referred to as
H-EDF, tasks are statically assigned to fixed-size clus-
ters, much as tasks are assigned to processors in P-EDF.
The G-EDF algorithm is then used to schedule the tasks
on each cluster. Tasks may migrate within a cluster, but
not across clusters. In other words, each cluster is treated
as an independent system for scheduling purposes. Under
such an approach, deadline tardiness is bounded for each
cluster as long as the total utilization of the tasks assigned
to each cluster is at most the number of cores per cluster.



Core 1 Core 2

Core 3 Core 4

job/subtask release

task migration from
core x to y

job/subtask deadline

cluster assignment����������
����������

����������������������
��������������������������������������������

����������������������

����������
���������� 	�	�	�		�	�	�	


�
�
�

�
�
�


����������������������
���������������������� ����������

����������������������

0 1 2 3 4 5 6 7

2/3

2/3

1/19

1/19

7/20

2/3

2/3

1/19

0 1 2 3 4 5 6 7

7/20 (2)

1/19 (2)

1/19 (1)

1/19 (1)

2/3 (2)

2/3 (2)

2/3 (1)

2/3 (1)

(a) (b)

x..y (z)

4..1 4..3

Figure 2: (a) G-EDF and (b) H-EDF schedules on a four-
core system of eight tasks: four with an execution cost of 2 and
period of 3, three with an execution cost of 1 and a period of
19, and one with an execution cost of 7 and a period of 20. We
assume a cluster size of two under H-EDF.

To see some of the differences in these algorithms, con-
sider Fig. 2, which depicts two schedules for a system
of eight tasks, as defined in the figure’s caption. These
tasks are scheduled on a four-core system, with Cores 1
and 2 in one cluster and Cores 3 and 4 in another clus-
ter. (The cores in each cluster share a cache.) There are
several things worth noting here. First, these eight tasks
cannot be partitioned onto four cores—each task of uti-
lization 2/3 needs to be placed on its own core, thus the
task of utilization 7/20 cannot be placed anywhere since
2/3 + 7/20 > 1. As a result, this system is not schedu-
lable under P-EDF (so we do not depict a schedule for
this case). Second, under each of G-EDF and H-EDF,
tasks are migrated and deadlines may be missed. Un-
der H-EDF, tasks migrate only within a cluster, which
lessens migration costs. Under G-EDF, tasks may mi-
grate across clusters, and thus migration costs may be
higher. Such higher costs in practice might result in in-
creased deadline tardiness or the inability to schedule the
task set under G-EDF. This is less likely to occur under
H-EDF. Thus, H-EDF allows the task set to be scheduled
(unlike P-EDF) with reduced overheads (as opposed to
G-EDF).

3 Experimental Results
In this section, we report on the results of experi-
ments conducted to compare both P-EDF and G-EDF to
H-EDF with several different cluster sizes. We compared
these algorithms on the basis of schedulability. The re-
sults of these experiments are presented in Sec. 3.2. In the
schedulability evaluation, random task sets were gener-
ated and their schedulability under each scheme checked.

Component Attributes
Processor 64 32-bit processing cores, 3 GHz clock speed
L1 instr. cache Private, 2-way SA, 8 KB, 2 cycles/access
L1 data cache Private, 4-way SA, 8 KB, 2 cycles/access
L2 cache Shared (4 cores), 8-way SA, 128 KB, 8 cycles/access
L3 cache Shared (16 cores), 8-way SA, 2 MB, 16 cycles/access
L4 cache Shared (64 cores), 8-way SA, 32 MB, 32 cycles/access

Table 1: Platform processor and cache attributes.

In this evaluation, realistic overheads were assumed when
checking schedulability. In Sec. 3.1 below, we discuss
the micro-benchmarks that were used to determine these
overheads.

3.1 Micro-Benchmarks
We measured four sources of overhead of relevance to
each algorithm: task preemption and migration costs, and
context-switching and scheduling overhead. Preemption
and migration costs are dominated by the time it takes to
reload data into a cold cache, and potentially invalidate
data in remote caches. Context-switching overhead re-
flects the actual cost of switching between two tasks, and
does not include any task-specific cache-related costs.
Scheduling overhead reflects the cost of making one
scheduling decision.

For the micro-benchmarks, time-related measurements
were taken using the SESC architecture simulator. The
architecture simulated is summarized in Table 1. These
caches are somewhat smaller than they might be in
reality—this “scaling back” was required in order to fea-
sibly perform simulations given system memory and time
constraints. Nevertheless, the cache sizes and cycle times
are “realistic” in that the number of cycles required to ac-
cess a level-(k + 1) cache is approximately twice that of
a level-k cache, and the size of a level-(k + 1) cache is
about four times the size of the sum of the sizes of all
level-k caches that “share” this cache. For example, four
L2 caches feed into an L3 cache, so the L3 cache needs to
be four times the size of four L2 caches, or sixteen times
the size of a single L2 cache.

The SESC simulator is very accurate, but is extraordi-
narily slow, particularly when simulating a 64-core plat-
form. Because of this, it was not feasible to simulate a
full 64-core platform for every scenario of interest. When
cluster sizes were small, we instead simulated only a por-
tion of the platform to get the measurements we desired.
For example, with a cluster size of four, we simulated a
four-core machine with a single shared L2 cache, and a
“main memory” with the characteristics of an L3 cache.
Since the per-task WSSs considered in this paper are not
large enough to thrash the L3 cache, there was no need to
simulate the L4 cache or any other part of the system for
such experiments.



Preemption and migration costs. As we are interested
in average-case costs rather than worst-case costs, given
our emphasis on soft real-time applications, measuring
preemption and migration costs was not as straightfor-
ward as might be expected. (In the worst-case scenario,
all reads/writes are from/to memory, so knowledge of the
cache hierarchy is not needed when measuring preemp-
tion or migration costs.) Under each algorithm, aligned
quanta represent the worst-case scenario in terms of bus
contention. Such an alignment will occur at least once
per hyperperiod. We measured preemption and migra-
tion costs by focusing on one quantum of execution on
each core, with all quanta beginning at some time X + k,
where X is the same for all processors (synchronized us-
ing a barrier), and k is a small amount of random wait
time (different for each core). This wait time was be-
tween 0 and 1,000 iterations of an empty loop, equivalent
to no more than approximately one microsecond of wait
time. This wait time, however, was large enough to add a
necessary random element to the simulation runs, which
would otherwise generate identical results over multiple
runs. This wait time also allowed all cores to be busy
while placing less bus contention pressure on the system
than would be expected in the worst case.

We used SESC to measure the cost of a preemp-
tion (under P-EDF) or a migration (under G-EDF and
H-EDF), while varying both cluster size and the amount
of time that a task was preempted, in quanta. We assumed
that preemption and migration costs did not increase sub-
stantially for preemption periods of five quanta or more,
since virtually all of the cache lines associated with the
WS of a task will have been evicted in most or all cache
levels after such a time period. Therefore, we did not
measure these costs for preemption periods greater than
five quanta. (Later, when we use these measurements, we
assume that the preemption or migration cost for a task
that is preempted for greater than five quanta is identical
to the cost assuming that task is preempted for exactly
five quanta.)

The actual cost of a preemption or migration was mea-
sured as follows. First, the WS of the task was read,
bringing data from the WS into the cache hierarchy. Sec-
ond, the task was preempted, and other data was brought
into the cache hierarchy at the same rate for some num-
ber of quanta (indicating the preemption period of the
task). Finally, the time to sequentially write the WS of
the task from the same processor (simulating a preemp-
tion under P-EDF) or from another processor in the same
cluster (simulating a migration under G-EDF or H-EDF)
was measured. For smaller preemption periods, this time
should be smaller, since more data from the WS should
be present in the cache hierarchy, as fewer cache lines
are evicted, thus resulting in improved performance. We

then subtracted from this time the time to write the same
WS assuming no preemption occurred, i.e., assuming the
maximum level of cache reuse. The resulting time rep-
resents the additional overhead resulting from the task
preemption or migration—in other words, the preemp-
tion/migration cost. Note that, in the case of a migration,
our measurement method may force cache invalidations
at several caches in the hierarchy, resulting in an addi-
tional cost. This cost can be significant, especially during
a write, due to the synchronous nature of cache coherency
protocols, and therefore we cannot simply assume that
preemption and migration costs are equivalent. In all
cases, we assumed that the data was migrated through
the lowest level of cache shared by all cores in the cluster.
For example, with a cluster size of four, the lowest level
of cache shared exclusively by the cores within a cluster
is an L2. As a result, when using smaller cluster sizes, it
was much more likely that any cache reuse would result
in improved performance, since cache access times were
smaller and the shared cache of the cluster was “closer”
to its cores.

One reason that we chose to measure the cost of writ-
ing the WS rather than reading it was to ensure that we
captured the full impact of a task migration, as cache in-
validations are the primary source of additional overhead
when a task incurs a migration versus a preemption. Such
invalidations should only be generated by a write follow-
ing a read—a read following a read would not require a
cache invalidation in most cases.

Task WSSs were varied over {4K, 32K, 64K} bytes
in the micro-benchmark results. Larger WSSs were not
chosen for several reasons. First, simulating larger task
WSSs took an extraordinarily long time in SESC. Sec-
ond, we define WSS with respect to a single quantum
of computation, and it is not possible to write too much
more than 64K bytes within a reasonably-sized (e.g., 1-
ms) quantum. Finally, these WSSs are intended to be
a measure of cache reuse, and not the total memory us-
age of a task during a quantum—if after a preemption
or migration a task accesses memory that was never in
any cache, then this access is part of the task’s execu-
tion cost and does not contribute to preemption or migra-
tion costs. Many applications have high locality, so their
WSS is small (in terms of reuse), even if the amount of
data they access in a quantum is large. Overall, the over-
heads that we measured are reasonable and allowed us to
get meaningful numbers for our purposes so that a valid
comparison of EDF approaches and cluster sizes could be
made on our platform.

Generating average-case costs. Using the preemption
and migration cost data obtained using SESC, for each
combination of cluster size, WSS, and preemption period,
we then generated average-case preemption and migra-



tion costs. For each combination of cluster size, max-
imum task utilization, and system utilization shown in
Table 2, we simulated the execution of 100 randomly-
generated task sets until their hyperperiods. For each task
set, a frequency distribution was generated indicating the
lengths of the preemption periods tasks experienced dur-
ing execution. These frequency distributions were then
combined into one distribution, which was used to cal-
culate a weighted average preemption or migration cost
for that combination. As a simple example, assume that
after simulating all task sets, we get a frequency distribu-
tion indicating that 1,000 preemptions were two quanta
long, and 500 were ten quanta long. If the preemp-
tion/migration cost for a preemption period of two quanta
is 50 µs, and for a period of five or more quanta is 100
µs, then the resultant average preemption/migration cost
would be (50 ∗ 1000 + 100 ∗ 500)/(1000 + 500) ≈
66.67µs.

Finally, it is worth noting that our approach to gener-
ating average-case costs is only one way that such costs
could be generated. Determining the “average case” for
arbitrary task sets is difficult due to the subjective nature
of determining what is average for a particular class of
applications. However, we believe that our approach of
combining a frequency distribution of preemption peri-
ods and measured preemption and migration costs from
a simulated platform is general enough to provide a rea-
sonable estimate of average-case costs under a variety of
workloads and scheduling algorithms.

Results from these experiments, in the form of average
preemption and migration costs for all combinations, ap-
pear in Table 2. The notation H-EDF-Cx in the table indi-
cates the H-EDF scheduling algorithm with a cluster size
of x. There are several trends to note here. First, average
preemption and migration costs scale approximately lin-
early with WSS, as expected. Second, average preemp-
tion and migration costs increase significantly as cluster
sizes increase, since larger clusters share a larger, slower
cache than smaller clusters. The effect is particularly dra-
matic as cluster size increases from four to sixteen and
again from sixteen to 64. Third, note that system utiliza-
tion and maximum task utilization have little to no impact
on preemption and migration costs. Since these experi-
ments measured preemption and migration costs over a
wide range of system and task utilizations, we averaged
the costs across each column in the table, and used these
values in the schedulability experiments in Sec. 3.2.

Context-switching overhead. We measured context-
switching overhead by reading the time it took a SESC
thread to switch from one task to another. Each core ran
a single thread that was pinned to that core, and these
threads were responsible for executing tasks on that core.
Due to limitations of the SESC thread library, “real”

context switches could not be performed.1 Switching
from one task to another was relatively straightforward,
as it only involved the reassignment of several variables
and pointers. As a result, we never observed context-
switching overheads greater than one microsecond, and
the overhead was often negligible. These overheads are
similar to those measured on a real platform in [3], which
contains only slightly slower processors than the cores
in the platform simulated in this paper. We believe this
serves to validate our simulated measurements. In the
schedulability experiments that follow, we conservatively
assume that all context switches require exactly one mi-
crosecond.

Scheduling overhead. Due to SESC-related time con-
straints, we generated reasonable values for scheduling
overheads analytically, using some empirical data, rather
than through an entirely experimental procedure. We
are interested in average-case scheduling overheads rep-
resenting the average cost of a single scheduling deci-
sion. Consider first the cost of a scheduling decision
made between quantum boundaries. Assuming integral
periods, new jobs will only be released by (synchronous)
periodic tasks at quantum boundaries. Therefore, only
scheduling decisions resulting from job completions will
be made between quantum boundaries. As these job com-
pletions are typically distributed evenly over time, it is
unlikely that these scheduling decisions will result in con-
tention for run queues or other scheduler-related struc-
tures, which would result in additional overhead. More-
over, the scheduling decisions themselves are of negli-
gible cost individually, as they only involve a single de-
queue from the run queue. Thus, we considered the cost
of scheduling decisions made between quantum bound-
aries to be negligible (at most 1-2 µs).

On the other hand, scheduling decisions made at quan-
tum boundaries incur overheads that are not negligible,
because contention may occur, thus forcing cores to wait
to acquire a queue lock to access the task run queue. The
overhead (in ns) associated with these scheduling deci-
sions can be calculated as follows. Let γ represent the
kernel overhead of entering a queue lock, let c represent
the average number of jobs that are dequeued from the
run queue and scheduled at a quantum boundary within a
single cluster (or a single core for P-EDF or all cores for
G-EDF), and let α represent the cost of scheduling one
job. Then, at a quantum boundary, c cores will dequeue
and schedule one job, while the remaining cores find an
empty run queue. We assume that the cost of checking an
empty run queue should only involve checking a pointer

1If “real” context switches were performed, and tasks did not share
an address space, then some additional overhead may be incurred to
invalidate and repopulate the TLB, and to load into cache the page-table
entries of the task that is being switched to.



Sys. Util. Max. Task Util. P-EDF H-EDF-C4 H-EDF-C16 G-EDF
25% 1/10 0.00 0.07 3.63 6.88
50% 1/10 0.01 0.08 3.54 6.85
75% 1/10 0.03 0.09 3.74 6.64

100% 1/10 0.04 0.13 3.99 6.60
25% 1/5 0.00 0.09 3.89 6.78
50% 1/5 0.00 0.07 3.51 6.89
75% 1/5 0.01 0.07 3.56 6.72

100% 1/5 0.03 0.10 3.79 6.66
25% 1/3 0.00 N/A 3.85 6.74
50% 1/3 0.00 0.08 3.46 6.91
75% 1/3 0.01 0.08 3.52 6.84

100% 1/3 0.03 0.09 3.62 6.84
25% 1/2 0.00 N/A 3.65 6.70
50% 1/2 0.00 0.08 3.66 6.87
75% 1/2 0.01 0.07 3.46 6.88

100% 1/2 0.02 0.09 3.56 6.89
25% 1 0.00 N/A 3.80 6.86
50% 1 0.00 0.08 3.58 6.83
75% 1 0.01 0.08 3.71 6.82

100% 1 0.02 0.09 3.59 6.78
Averages 0.01 0.08 3.66 6.80

Sys. Util. Max. Task Util. P-EDF H-EDF-C4 H-EDF-C16 G-EDF
25% 1/10 17.98 21.27 37.38 72.06
50% 1/10 19.24 22.27 36.09 71.95
75% 1/10 19.67 23.35 38.09 71.53

100% 1/10 19.81 24.21 40.59 71.86
25% 1/5 17.55 21.50 39.96 72.18
50% 1/5 18.95 21.87 35.94 72.08
75% 1/5 19.71 22.81 36.26 71.71

100% 1/5 19.94 23.67 38.56 71.54
25% 1/3 18.06 N/A 39.43 72.23
50% 1/3 18.77 21.58 35.36 72.01
75% 1/3 19.19 22.50 35.84 71.91

100% 1/3 19.67 23.01 36.72 71.97
25% 1/2 17.62 N/A 37.44 72.21
50% 1/2 18.19 21.86 37.46 72.01
75% 1/2 19.16 21.94 35.56 71.90

100% 1/2 19.10 22.44 36.64 71.60
25% 1 17.12 N/A 38.70 71.65
50% 1 18.03 21.77 36.86 71.77
75% 1 17.73 22.95 37.83 71.85

100% 1 18.30 22.60 36.82 71.48
Averages 18.69 22.45 37.38 71.88

(a) (b)

Sys. Util. Max. Task Util. P-EDF H-EDF-C4 H-EDF-C16 G-EDF
25% 1/10 37.71 39.30 93.18 128.85
50% 1/10 34.18 38.42 92.86 130.81
75% 1/10 30.18 36.98 102.59 133.43

100% 1/10 27.80 34.94 110.36 132.21
25% 1/5 38.12 38.52 103.32 129.10
50% 1/5 35.51 38.65 90.44 130.01
75% 1/5 32.60 38.22 96.45 133.03

100% 1/5 29.12 36.40 103.86 133.23
25% 1/3 36.85 N/A 101.46 129.32
50% 1/3 35.75 39.02 88.07 129.83
75% 1/3 34.32 38.14 92.19 131.96

100% 1/3 30.99 37.07 96.12 131.05
25% 1/2 38.06 N/A 94.19 129.79
50% 1/2 36.60 38.65 95.39 129.50
75% 1/2 34.14 38.88 88.92 130.79

100% 1/2 32.43 38.00 92.77 130.25
25% 1 38.53 N/A 103.97 129.88
50% 1 36.85 38.68 93.82 130.52
75% 1 36.23 37.71 99.71 131.15

100% 1 33.91 37.73 95.07 132.00
Averages 34.49 37.96 96.74 130.84

(c)

Table 2: Average preemption/migration costs (in µs) for per-task WSSs of (a) 4KB; (b) 32KB; and (c) 64KB. An ”N/A” entry
indicates that after simulating 100 task sets given the specified system utilization, maximum task utilization, and cluster size, no
preemptions occurred—task utilizations were high enough, and system utilization low enough, that in most cases, there were fewer
tasks than cores. Thus, there was no way to generate average preemption and migration costs.

or flag, and therefore its cost is negligible. A core wait-
ing for the queue lock will, on average, have to wait for
approximately half of the cores in the cluster to acquire
the queue lock before acquiring it itself. As a result, it
will incur the cost of the scheduling decisions made by
half of the cores. Thus, the average scheduling overhead
at quantum boundaries is γ + cα/2.

When using this formula to calculate scheduling over-

heads, we set γ to 750ns and α to 1250 + 125 ·
log2(num tasks/num clusters) ns. These values are
based on overheads empirically measured on a real plat-
form in [4] (the same platform used in [3]). The proces-
sors of this platform have similar performance character-
istics to the cores in our platform, and therefore should
be valid for our purposes. The expression for α was de-
rived as follows. First, a constant base cost is incurred



when removing a job from the head of the run queue and
beginning its execution, which in this case takes 1250ns.
An additional cost is incurred when initially adding a job
to the run queue. This cost is logarithmically related to
the average number of tasks assigned to a given cluster, or
num tasks/num clusters, assuming an efficient bino-
mial help implementation of the needed priority queues.
The base cost of 1250ns and the multiplier of 125 were
both again determined by empirical measurements per-
formed as part of the work in [4].

Finally, we determined the value of c, or the average
number of jobs that are dequeued and scheduled at a
quantum boundary. Let j be the average number of jobs
released at a quantum boundary on a single cluster. Each
released job may preempt another job, which will then be
placed in the run queue, to be dequeued and rescheduled
at some later time. As a result, every released job ulti-
mately results in either one or two dequeue and schedul-
ing operations. Thus, j ≤ c ≤ 2 · j. We argue that
c lies considerably closer to j than 2 · j, as the major-
ity of preempted jobs will be rescheduled between quan-
tum boundaries. (Recall our earlier claim that scheduling
overheads are negligible between quantum boundaries.)
Therefore, we assumed the common case, i.e., c = j.

When generating random task sets as part of the
schedulability experiments in Sec. 3.2, we calculated j
as part of determining the scheduling overhead. The
value of j was calculated by dividing the total number of
jobs released by all tasks over a large time interval (e.g.,
1,000,000 quanta) by the number of quanta in that inter-
val. This provides us with an average number of jobs
released at each quantum boundary. We then divided this
value by the number of clusters to determine the average
number of jobs released on each cluster at each quantum
boundary. We initially sought to use task set hyperperiods
as our time interval; however, some of our task sets were
very large, resulting in a very large hyperperiod that was
prohibitive to calculate and use due to arithmetic over-
flow issues. We instead chose an interval of one million
quanta, which should produce very similar results.

The range of overheads generated (for randomly-
generated task sets) with this method are shown in Ta-
ble 3 for each cluster size. As expected, large cluster sizes
result in additional scheduling overhead, due both to in-
creased contention for the queue lock protecting each run
queue and an increase in the number of tasks that are as-
signed to each cluster.

3.2 Comparison of Schedulability

To assess differences in schedulability, we deter-
mined the schedulability of 100 randomly-generated
task sets for different {cluster size, per-task utiliza-

P-EDF H-EDF-C4 H-EDF-C16 G-EDF
Min. 1.38 1.38 1.50 1.63
Avg. 1.47 1.83 3.62 11.82
Max. 1.63 3.75 12.00 47.00

Table 3: The range of calculated scheduling overheads for each
cluster size, in µs.

tion, per-task WSS} combinations, using the over-
heads computed in Sec. 3.1. Cluster sizes were one
(P-EDF), four, sixteen, or 64 (G-EDF). In each ex-
periment, task utilizations were uniformly distributed
over the ranges [0.001, 0.05], [0.001, 0.1] [0.001, 0.6],
[0.001, 0.9], [0.4, 0.6], [0.51, 0.6] or [0.6, 0.9]; or bi-
modally distributed uniformly over [0.001, 0.05) with
probability 9/10, and over [0.95, 0.999] with probabil-
ity 1/10. Task periods were uniformly distributed over
[10, 100] (all units are in ms). Task execution costs
were calculated from periods and utilizations. This ap-
proach to task set generation is similar to that proposed
by Baker [2]. However, our utilization distributions are
somewhat different in order to investigate schedulabil-
ity over a broader range of distributions, including those
where the performance differences between P-EDF and
G-EDF would be particularly dramatic.

Finally, per-task WSSs were 4K, 32K, or 64K. All task
sets were generated to fully utilize the system, assuming
that system overheads were negligible. When overheads
are included, these task sets will require more than 64
cores.

The definition of a correct schedule for soft real-time
systems requires that deadline tardiness be bounded (re-
gardless of how high the bound may be), rather than that
all deadlines be met. We assessed differences in schedu-
lability for each (100-task) experiment by computing the
average minimum required number of processors (RNP)
for producing a correct schedule.

When determining schedulability under each algo-
rithm, we first inflated the execution cost of each task
to account for the overheads discussed in Sec. 3.1 us-
ing standard techniques. These techniques are described
at length in [4]. (Note that, even when RNP exceeds
64, we still only consider overheads as computed on our
64-core platform. This is perhaps one limitation of our
experimental methodology.) We determined whether a
task set could be scheduled on our platform as follows.
For G-EDF, since we are only concerned with soft real-
time schedulability in this paper, only a check that to-
tal utilization is at most M was required. For P-EDF,
we determined whether each task set could be partitioned
using the first-fit decreasing heuristic. (While a closed-
form test is available for P-EDF [7], our approach is less
pessimistic.) For H-EDF, we determined whether each
task set could be partitioned onto clusters, again using
the first-fit decreasing heuristic. In other words, this was



Task Util. Range P-EDF H-EDF-C4 H-EDF-C16 G-EDF
Bimodal Dist. 65.00 65.00 65.00 65.68

Unif. [0.001, 0.05] 65.00 65.00 66.00 71.00
Unif. [0.001, 0.1] 65.00 65.00 65.00 68.00
Unif. [0.001, 0.6] 65.00 65.00 65.00 65.00
Unif. [0.001, 0.9] 66.80 65.00 65.00 65.00

Unif. [0.4, 0.6] 68.50 66.88 65.17 65.00
Unif. [0.51, 0.6] 114.91 68.14 65.17 65.00
Unif. [0.6, 0.9] 85.36 68.47 65.73 65.00

(a)

Task Util. Range P-EDF H-EDF-C4 H-EDF-C16 G-EDF
Bimodal Dist. 65.00 65.00 65.05 66.40

Unif. [0.001, 0.05] 66.00 66.00 68.00 75.84
Unif. [0.001, 0.1] 65.00 66.00 67.00 70.00
Unif. [0.001, 0.6] 65.00 65.00 65.00 65.00
Unif. [0.001, 0.9] 66.94 65.00 65.00 65.00

Unif. [0.4, 0.6] 68.98 66.93 65.27 65.00
Unif. [0.51, 0.6] 114.99 68.21 65.19 65.00
Unif. [0.6, 0.9] 85.29 68.56 65.82 65.00

(b)

Task Util. Range P-EDF H-EDF-C4 H-EDF-C16 G-EDF
Bimodal Dist. 65.00 65.00 66.04 67.10

Unif. [0.001, 0.05] 67.00 67.05 72.06 79.93
Unif. [0.001, 0.1] 66.00 66.00 69.00 72.02
Unif. [0.001, 0.6] 65.00 65.00 65.00 65.98
Unif. [0.001, 0.9] 66.91 65.00 65.00 65.00

Unif. [0.4, 0.6] 69.47 66.91 65.59 65.00
Unif. [0.51, 0.6] 114.94 68.23 65.43 65.00
Unif. [0.6, 0.9] 85.37 68.55 65.88 65.00

(c)

Table 4: RNP for per-task WSSs of (a) 4KB; (b) 32KB; and
(c) 64KB.

similar to the approach used for P-EDF, but with fewer
larger bins. As the total utilization within each cluster
was at most the number of cores in the cluster, the soft
real-time schedulability of the workload on each cluster
was guaranteed, since G-EDF is used within each cluster
to schedule the tasks on that cluster.

Table 4 shows RNP results for soft real-time task sets
for all combinations of the parameters listed above. There
are several things to note here. First, when maximum
task utilizations are low, P-EDF performs the best and
G-EDF performs the worst, due both to a large number
of task migrations and high scheduling costs related to
a large number of tasks in each task set. As WSS in-
creases, the cost of each migration increases, resulting
in even higher RNP values for G-EDF when task uti-
lizations are low. When maximum task utilizations are
high, the situation is reversed—a decreasing number of
task migrations and tasks per task set combined with the
limitations of bin-packing when task utilizations are high
result in lower RNP values for G-EDF than P-EDF. This
result even holds for the 64K WSS case (inset (c)). Inter-
estingly, note that the [0.51, 0.6] range is even worse for

P-EDF than the [0.6, 0.9] range. This makes sense, since
these task sets contain, on average, the largest number
of tasks that require their own processor under P-EDF.
Third, note that H-EDF with a cluster size of four appears
to approach the performance of both P-EDF at low task
utilizations and G-EDF at high task utilizations. This is
because a cluster size of four results in lower schedul-
ing costs—due to a relatively small number of tasks to
consider for each scheduling decision—and lower mi-
gration costs—due to the presence of a high-level, fast
shared cache. Additionally, a cluster size of four results
in large enough bins to effectively avoid the limitations
of bin-packing, even for task utilization ranges that are
highly problematic under P-EDF. In the cases where
task utilizations are exclusively low or high, the perfor-
mance benefits are dramatic, and in all cases, H-EDF
with a cluster size of four performs similarly to the best-
performing algorithm. Note that H-EDF with a cluster
size of sixteen does not result in the same performance—
its cluster size is not small enough to keep migration and
scheduling costs low. However, it performs slightly bet-
ter than H-EDF with four-core clusters when task utiliza-
tions are high.

4 Cluster Size Guidelines
In this section, we state several guidelines when deter-
mining the cluster size for a system, given various char-
acteristics about the real-time workload, based on the ex-
periments performed in this paper.

Guideline 1. Unless task utilizations are very high,
H-EDF is the preferable scheme to use over G-EDF.
Even when cluster sizes are small, increasing bins to in-
clude several cores rather than just one is usually enough
to alleviate the limitations of bin packing. When task uti-
lizations are high, the performance of H-EDF is slightly
worse, but generally acceptable except when system uti-
lization is very high. When task utilizations are low,
H-EDF with a cluster size of four performs much better
than G-EDF.

Guideline 2. Only choose P-EDF if task utilizations
are very low and system utilization is very high. Other-
wise, H-EDF with a small cluster size (four in our experi-
ments) performs almost identically when task utilizations
are low, and much better than P-EDF when task utiliza-
tions are high.

Guideline 3. If tasks may change their utilizations at
run time, then H-EDF with a small cluster size is the
safest choice, since it has the most consistent perfor-
mance over all types of workloads, including those with
low-utilization tasks. It should perform comparably to



P-EDF at lower task utilizations and G-EDF at higher
task utilizations.

Guideline 4. In most cases, it is beneficial to choose a
cluster size equal to the number of cores that share the
first level of shared cache (usually an L2 cache). Doing
so keeps migration and scheduling costs low, and should
greatly alleviate bin-packing issues. Even if the first level
of shared cache is shared by only two cores, doubling
the bin size by using a cluster size of two would improve
bin-packings substantially, by ensuring that no task can
occupy more than half of a single bin. Note in Table 4
that, in some cases, H-EDF with a cluster size of four
had RNP values that were as much as 40% lower than
P-EDF, and as much as 16% lower than G-EDF.

5 Concluding Remarks
In this paper, we have proposed a hybrid approach called
H-EDF for scheduling real-time tasks on large-scale mul-
ticore platforms with hierarchical shared caches. This
approach exploits the natural groupings of cores around
different levels of shared caches, and avoids the funda-
mental limitations of both P-EDF and G-EDF on large-
scale multicore platforms with many simple cores. We
also determined the “ideal” cluster size for our platform,
given various characteristics of the real-time workload
such as task utilizations or WSSs. We regard the main
contribution of this paper to be the presentation of an al-
gorithm that both avoids the pitfalls of the less-flexible
P-EDF and G-EDF algorithms for large-scale multicore
platforms and can be adjusted to make the most efficient
use of a wide variety of such platforms running many dif-
ferent kinds of real-time workloads.

In producing these results, the development of a rea-
sonable methodology for assessing average-case costs
was by far the most demanding and time-consuming task
that we faced. We acknowledge that alternate methodolo-
gies that deal differently with some of the issues involved
could produce somewhat different results. Nevertheless,
we believe that the costs derived in this paper are rea-
sonable. This data might possibly be useful to other re-
searchers who are interested in the impact such overheads
have on schedulability.

There are numerous directions for future work.
First, we would like to extend our investigation to
other scheduling algorithms, particularly “semi-non-
preemptive” and static-priority algorithms. While we
had originally intended our study to include the non-
preemptive global EDF scheduling algorithm, the notion
of supporting tasks with average-case execution costs be-
comes more difficult with non-preemptive scheduling ap-
proaches, as discussed in Sec. 1. Instead, we need to
develop a “semi-non-preemptive” restricted migration al-

gorithm that can handle overruns while retaining some of
the benefits of not allowing job preemption in most cases.
Second, we want to re-assess the overheads considered in
this paper on other architectures, particularly platforms
with core or cache asymmetry. Third, we would like to
experiment with a greater variety of workloads than those
we have considered to date, and experiment with differ-
ent cache coherency protocols, perhaps including those
not supported by SESC. Fourth, we would like explore
the synchronization issues that occur when tasks are not
independent. Finally, in this paper, we have assumed that
bounded deadline tardiness is sufficient for supporting the
soft real-time applications of concern to us. We would
also like to investigate notions of soft real-time comput-
ing that take other factors into account, such as the per-
centage of deadlines missed, or a job’s “utility” after its
deadline.

References
[1] S. Bisson. Azul announces 192 core Java appli-

ance. http://www.itpro.co.uk/servers/news/99765/azul-
announces-192-core-java-appliance.html, 2006.

[2] T. Baker. A comparison of global and partitioned EDF
schedulability tests for multiprocessors. Technical Re-
port TR-051101, Department of Computer Science, Florida
State University, 2005.

[3] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-
derson. LITMUSRT: A testbed for empirically compar-
ing real-time multiprocessor schedulers. Proceedings of the
27th IEEE Real-Time Systems Symposium, 2006.

[4] U. Devi. Soft Real-Time Scheduling on Multiprocessors.
PhD thesis, University of North Carolina at Chapel Hill,
2006.

[5] U. Devi and J. Anderson. Tardiness bounds for global EDF
scheduling on a multiprocessor. In Proceedings of the 26th
IEEE Real-time Systems Symposium, pages 330–341, 2005.

[6] C. Farivar. Intel Developers Forum roundup: four cores
now, 80 cores later. http://www.engadget.com/2006/
09/26/intel-developers-forum-roundup-four-cores-now-80-
cores-later/, 2006.

[7] J. Lopez, M. Garcia, J. Diaz, and D. Garcia. Worst-case
utilization bound for edf scheduling on real-time multipro-
cessor systems. In Proceedings of the 12th Euromicro Con-
ference on Real-time Systems, pages 25–33, 2000.

[8] J. Renau. SESC website. http://sesc.sourceforge.net.
[9] Azul Systems. Azul compute appliances. http://www.azul

systems.com/products/compute appliance.htm, 2006.
[10] P. Valente and G. Lipari. An upper bound to the lateness

of soft real-time tasks scheduled by EDF on multiproces-
sors. In Proceedings of the 26th IEEE Real-time Systems
Symposium, pages 311–320, 2005.


