
A Hierarchical Multiprocessor Bandwidth Reservation Scheme with Timing

Guarantees∗

Hennadiy Leontyev and James H. Anderson

Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

A multiprocessor scheduling scheme is presented for

supporting hierarchical containers that encapsulate spo-

radic soft and hard real-time tasks. In this scheme, each

container is allocated a specified bandwidth, which it uses

to schedule its children (some of which may also be con-

tainers). This scheme is novel in that, with only soft real-

time tasks, no utilization loss is incurred when provisioning

containers, even in arbitrarily deep hierarchies. Presented

experiments show that the proposed scheme performs well

compared to conventional real-time scheduling techniques

that do not provide container isolation.

1 Introduction

In the Linux community, two recent developments have

occurred that are of relevance to real-time software design

processes. The first is the introduction of “real-time” fea-

tures such as high-resolution timers, priority inheritance,

and shortened non-preemptable sections in mainline Linux

(in versions 2.6.16 to 2.6.22). The second is the upcom-

ing introduction (in version 2.6.24) of mechanisms for sup-

porting container hierarchies [14, 10, 13]. Containers are

an abstraction that allows different task groups to be iso-

lated from one another (mainly, by providing different name

spaces to different task groups for referring to tasks, files,

etc.). Containers are seen as a lightweight way to achieve

many of the benefits provided by virtualization, without the

expense of hosting multiple operating systems. From the

standpoint of scheduling, containers are similar to various

“server” abstractions considered in the real-time-systems

literature.

These Linux-related developments are happening at a

time when multiprocessor platforms are becoming increas-

ingly common. This is partly due to the advent of multi-

core technologies as an alternative to single-core chip de-

signs. Additionally, reasonably-priced “server class” mul-

tiprocessors have been available for some time now. These

hardware-related developments are profound, because they

∗Work supported by grants from Intel and IBM Corps., by NSF grants

CNS 0408996, CCF 0541056, and CNS 0615197 and by ARO grant

W911NF-06-1-0425.

C1

w(C)=4/31

H w(H)=4

T (1,3)1 T (2,3)2

T (1,4)3 T (2,4)4

Figure 1. A host container H that encapsu-
lates another container C1 and four real-time
tasks T1, . . . , T4. Some of the notation used in
this figure is explained in later sections.

mean that multiprocessors are now a “common-case” plat-

form that software designers must deal with.

Motivated by these trends, we consider in this paper the

problem of efficiently scheduling arbitrary real-time con-

tainer hierarchies on a multiprocessor platform. Unlike

most prior related efforts (see below), we are mainly in-

terested in supporting soft timing constraints. This is partly

due to our interest in Linux: while there is much interest

in using Linux to support soft real-time workloads, Linux

is not a real-time operating system and thus cannot be used

to support “true” hard timing constraints. In addition, there

is growing awareness in the real-time-systems community

that, in many settings, soft constraints are far more common

than hard constraints [19]. If hard constraints do exist, then

ensuring them efficiently on most multiprocessor platforms

is problematic anyway, due to a lack of effective timing-

analysis tools for determining task execution costs. (While

timing analysis is needed for soft real-time systems as well,

less-accurate empirically-derived costs often suffice in such

systems.)

The problem. For our purposes, a container is a schedul-

ing abstraction. Containers are organized hierarchically in

a tree. A container may have as children other containers or

tasks, as seen in the example in Fig. 1. (In Linux, the con-

tainer hierarchy may change dynamically; we defer consid-

eration of dynamic changes to future work.) Each real-time

task is assumed to be sporadic (see Sec. 2) and is either

hard or soft: hard tasks cannot miss their deadlines, while

soft tasks can. However, misses in the latter case may be by

bounded amounts only. Associated with each container is a

specified bandwidth, which denotes the fraction of the over-

all (multiprocessor) system’s capacity to which it is entitled.

When a container receives processor time, it allocates that

time to one of its children. Our goal is to devise a scheme

for performing such allocations throughout the containment

hierarchy. Although we do allow for the presence of hard

real-time tasks, we implicitly assume that they are few in

number. That is, our main objective is to ensure that alloca-

tions are performed efficiently when most (or all) tasks are

soft.

Of course, one way to meet this objective is by sim-

ply viewing all timing constraints as hard. However, in a

container hierarchy, this will result in significant utilization

loss. In particular, the schedulability of the tasks within

a container depends on the processing capacity allotted to

that container—the supply—and the processing capacity re-

quired by the tasks within the container—the demand. Very

loosely speaking, verifying schedulability involves showing

that demand (over some time interval of interest) cannot ex-

ceed supply. When timing constraints are hard, supply and

demand are characterized using functions that cause sup-

ply to be under-estimated and demand to be over-estimated.

The net effect is that, at each level of a containment hier-

archy, some non-negligible amount of overall utilization is

lost. The deeper the containment hierarchy, the greater the

loss. In fact, the overall loss can be so great, unrestricted

hierarchical containment simply becomes untenable.

Prior work. As noted earlier, the notion of a “container”

as considered in this paper is more commonly called a

“server” in the real-time-systems literature. Server-based

abstractions were first considered in the context of unipro-

cessor systems, and a number of schemes intended for such

systems have been proposed (too many for us to cite, due

to a lack of space). Several multiprocessor schemes that

are extensions of prior uniprocessor schemes have also been

proposed [4, 5, 18]. However, in all of these schemes, it is

assumed that all task deadlines are hard. Systems that may

also have tasks with soft deadlines have been considered

very recently [6]. In addition, several Pfair-based multipro-

cessor server schemes have been proposed, again, mostly

for systems with only hard deadlines [1, 11, 17, 21]. In all

of the work cited so far, only two-level containment hier-

archies are considered. Moreover, the Pfair-based schemes

just cited are subject to higher runtime overheads than other

schemes, due to the fact that Pfair scheduling algorithms

may preempt and migrate tasks often. The only prior work

of which we are aware in which multi-level containment hi-

erarchies are considered on multiprocessor platforms is a

recent paper by Shin et al. [20]. However, as with most

other prior work, only hard deadlines are considered in this

paper. To the best of our knowledge, soft deadlines have

not been considered before in scheduling-related research

on supporting multi-level containment hierarchies on mul-

tiprocessors.

In the approach of Shin et al. [20], the global earliest-

deadline-first algorithm (GEDF) is used as the per-

container scheduler. Under GEDF, tasks are scheduled

from a single run queue and their jobs are prioritized on an

earliest-deadline-first (EDF) basis. One interesting prop-

erty of GEDF is that, under it, bounded deadline tardi-

ness can be ensured for sporadic tasks without severely con-

straining overall utilization [8]. In recent work, we showed

that the same is true for a wider class of global scheduling

algorithms [12]. In this paper, we exploit these results to

obtain a hierarchical scheme in which deadline tardiness is

bounded for soft real-time tasks.

Contributions. Our main contribution is a new multipro-

cessor scheduling approach for multi-level container hierar-

chies in which both hard and soft sporadic real-time tasks

can be supported. With hard real-time tasks, some utiliza-

tion loss is incurred (which seems inevitable). However, in

a system with only soft real-time tasks, no utilization loss is

incurred (assuming that system overheads are negligible—

such overheads will cause some loss in any scheme in prac-

tice). This statement is true, provided the goal is to sched-

ule soft real-time tasks so that their tardiness is bounded,

no matter how great the bound may be. Tardiness bounds

can be reduced by constraining overall utilization, and such

tradeoffs are discussed herein. In addition to presenting our

overall scheme, we also present the results of experiments

conducted to assess its usefulness. In these experiments, our

scheme exhibited performance—in terms of both necessary

processing capacity and tardiness—comparable to that of

schemes that exhibit good performance but are oblivious to

containers (and hence, do not provide any container isola-

tion).

The rest of this paper is organized as follows. In Sec. 2,

we present our system model. In Sec. 3, we formally char-

acterize the “supply” available to a container and propose a

container scheduling scheme. In Secs. 4 and 5, we present

methods for checking the schedulability of real-time tasks

within a container and for computing the supply available

to its child containers (if any). In Sec. 6, we present our

experimental results. We conclude in Sec. 7.

2. System Model

In order to support the scheduling of containers within

an arbitrary hierarchy, it suffices to consider the problem

of scheduling a single container H on a set ofM(H) unit-
speed processors, where some processors may not be avail-

able for execution during certain time intervals. The set of

child containers and real-time tasks encapsulated in H is
referred to as succ(H). (Non-real-time tasks could be con-
tained as well, but we do not consider such tasks in this

paper.) At any time, the container may be scheduled on

several available processors. When the container is sched-

uled, some of its children are selected for execution using

some internal scheduling policy.

2.1. Sporadic Task Model

The set of real-time tasks encapsulated in the container

H is denoted τ = {T1, . . . , Tn}. In this paper, we assume
such tasks are sporadic. Each sporadic task is invoked or

released repeatedly, with each such invocation called a job.

Associated with each such task Ti are two parameters, ei

and pi: ei gives the maximum execution time of one job

of Ti, while, pi, called the period of Ti, gives the minimum

time between consecutive job releases of Ti. For brevity, we

often use the notation Ti = (ei, pi) to specify task parame-
ters. The utilization of task Ti is defined as ui = ei/pi, and

the utilization of the task system τ as Usum(τ)=
∑

Ti∈τ ui.

The jth job of task Ti, where j ≥ 1, is denoted Ti,j . A

task’s first job may be released at any time t ≥ 0. The re-
lease time of job Ti,j is denoted ri,j and its (absolute) dead-
line di,j is defined as ri,j + pi (implicit deadlines). If Ti,j

completes at time t, then its tardiness is max(0, t − di,j).
A task’s tardiness is the maximum of the tardiness of any

of its jobs. When a job of a task misses its deadline, the

release time of the next job of that task is not altered. How-

ever, at most one job of a task may execute at any time,

even if deadlines are missed. Given these assumptions, if a

task has bounded deadline tardiness, then its long-term al-

location is proportional to its utilization. For hard real-time

(HRT) tasks, we require that all deadlines are met, while for

soft real-time (SRT) tasks, we require that deadline tardi-

ness to be bounded (regardless of how high the bound may

be).

In that which follows, we find it convenient to view a

real-time task as a specialized container with no nested chil-

dren that can be scheduled on at most one processor at any

time and that has hard or soft deadlines.

2.2. Container Bandwidth

Each container H is characterized by its bandwidth

w(H) ≥ 0, which specifies the processing capacity to
which it is entitled. For a real-time task Ti, we define

w(Ti)
∆
= ui. Since the containers in succ(H) are scheduled

when the parent container is scheduled, their allocation time

cannot exceed that of H . Therefore, we require

w(H) ≥
∑

Cj∈succ(H)

w(Cj). (1)

Example 1. In Fig. 1, a host container H with bandwidth
w(H) = 4 encapsulates a child container C1 with band-

width w(C1) = 4/3, two HRT tasks T1(1, 3) and T2(2, 3),
and two SRT tasks T3(1, 4) and T4(2, 4).

Overview of our approach. In the following sections, we

solve the problem described at the beginning of Sec. 2 via a

decomposition into two subproblems, each of which can be

solved by extrapolating from previously-published results.

First, we split the bandwidth of each container, parent and

child, into integral and fractional parts and argue that the

integral parts can easily be dealt with. The fractional part

of each child container is then handled by creating a spe-

cial SRT server task with utilization equal to that fractional

portion. This leads to our first subproblem, which is that of

scheduling within the parent container, using the “supply”

available to it, all child HRT and SRT tasks (where some

of the SRT tasks may be server tasks). We then deal with

any HRT tasks by encapsulating them within a new child

container that schedules these tasks on an integral number

of processors via a prior HRT scheduling scheme. This

leaves us with our second subproblem, which is to sched-

ule within the parent container a collection of SRT tasks.

We solve this problem by exploiting prior results on using

global scheduling algorithms to ensure bounded tardiness.

So that our overall scheme can be applied inductively in a

container hierarchy, we finish our analysis by characterizing

the supply available to each child container.

3. Container Scheduling

The host container H receives processor time from

M(H) individual processors. We now further constrain the
manner in which any container C receives processor time
by assuming the following.

(P) At any time, a container C can be scheduled on

m(C)
∆
= ⌊w(C)⌋ orM(C)

∆
= ⌈w(C)⌉ processors.

This restriction minimizes the execution parallelism avail-

able to C so that, for any interval of length ∆, C’s alloca-
tion is within [⌊w(C)⌋∆, ⌈w(C)⌉∆]. For real-time tasks,
this restriction holds implicitly, because a real-time task

Ti is scheduled on at most one processor at any time and

w(Ti) = ui ≤ 1, so ⌈w(Ti)⌉ = 1 and ⌊w(Ti)⌋ = 0. We
say that a processor is fully available to C, if it is dedicated
exclusively to C. Given Restriction (P), we can assume that
m(C) processors are fully available to C.
As explained in detail later, there are two reasons for in-

troducing Restriction (P). First, increasing the amount of

supply parallelism (the number of available processors) re-

stricts the maximum per-task utilization and the total system

utilization if the long-term supply remains fixed. Second,

maximizing the number of processors fully dedicated to C
lessens deadline tardiness for any child real-time task. In-

tuitively, this is because such tasks are sequential and thus

may leave processors unused if parallelism is increased too

much.

Example 2. Consider a container H with bandwidth

w(H) = 4/3 that encapsulates a task T1(5, 6), as shown in
Fig. 2(a). Suppose that processor time is supplied as shown

in Fig. 2(b) so that H occupies two processors for two time

H w(H)=4/3

T (2,3)1 T (2,3)2

T1,1 T1,1 T1,1 T1,2

0 1 2 3 4 5 6 7 8 9 t

T1,1
T1 T1,1

0 1 2 3 4 5 6 7 8 9 t

T1,2

job release job deadline H

T1 T1,1 T1,2

0 1 2 3 4 5 6 7 8 9 t

T1,3

T2 T2,1 T2,2 T2,3

T1 T1,1 T1,2

0 1 2 3 4 5 6 7 8 9 t

T1,3

T2 T2,1 T2,2 T2,3

H w(H)=4/3

T (5,6)1

(a) (b) (c)

(d) (e) (f)

Figure 2. Comparison of supply parallelism in Examples 2 and 3.

units every three time units. The supply available to H
is approximately 4·∆

3 for any sufficiently long interval ∆.
However, H does not execute during the interval [2, 3), so
Restriction (P) is violated, because ⌊w(H)⌋ = ⌊4/3⌋ = 1.
Task T1’s jobs demand five execution units every six time

units, but because they must execute sequentially, they can

execute for only four time units every six time units. Thus,

task T1’s tardiness can be unbounded. In the schedule in

Fig. 2(c), containerH also receives four execution units ev-
ery three time units, but in contrast to Fig. 2(b), (P) is satis-

fied. Because one processor is fully available to H , task T1

meets all of its deadlines.

As one may suspect, enforcing Restriction (P) may

sometimes have negative consequences. Indeed, a task set

with a large number of tasks may benefit from a larger num-

ber of available processors if all deadlines have to be met.

Example 3. Consider the container H from the previous
example, except that it now encapsulates two real-time tasks

T1(2, 3) and T2(2, 3), as shown in Fig. 2(d). In the sched-
ule shown in Fig. 2(e), which is equivalent from container’s

perspective to that in Fig. 2(b), jobs of T1 and T2 meet their

deadlines. However, in the schedule in Fig. 2(f), where Re-

striction (P) is enforced as in Fig. 2(c), job T2,1 misses its

deadline at time three because it cannot execute on two pro-

cessors simultaneously during the time interval [2, 3). Still,
in this schedule, T2’s tardiness is only one time unit.

The two examples above illustrate that, while minimiz-

ing supply parallelism may negatively impact timeliness,

it allows the widest range of loads to be scheduled with

bounded deadline tardiness, which is in accordance with our

focus on SRT tasks. In [20], mentioned earlier, the objec-

tive is instead to schedule HRT tasks. There, the alternative

approach of maximizing supply parallelism is used.

We now develop a scheduling policy that enforces Re-

striction (P) for child containers assuming that it holds for

the host container H . Given the latter, H is supplied time
from M(H) processors, where m(H) processors are al-
ways available for scheduling succ(H) and at most one pro-
cessor is partially available.

A child container Ci ∈ succ(H) must occupy at
least m(Ci) processors at any time. By (1), w(H) ≥∑

Ci∈succ(H) w(Ci), and hence, m(H) = ⌊w(H)⌋ ≥

⌊
∑

Ci∈succ(H) w(Ci)⌋ ≥
∑

Ci∈succ(H)⌊w(Ci)⌋ =∑
Ci∈succ(H)m(Ci). Therefore, we can make m(Ci)

processors fully available to each child container Ci ∈
succ(H) by using the m(H) processors fully available to
H . Note that, for containers with w(Ci) < 1 (including
real-time tasks), m(Ci) = ⌊w(Ci)⌋ = 0. In any event,
given this design decision, each child container Ci receives

at leastm(Ci)∆ units of time over an interval of length ∆.
If a child container Ci is not a real-time task and

m(Ci) < w(Ci), then it occasionally needs supply from
an additional processor. For this, we construct a SRT peri-

odic server task Si(ei, pi), where ui = ei/pi = w(Ci) −
m(Ci) < 1. (A periodic task is a special case of a sporadic
task for which the parameter pi represents an exact spacing

between job releases.)

We denote the set of server tasks as τS = {S1, . . . , Sn}.
Jobs of these tasks are scheduled together with the jobs of

encapsulated real-time tasks using the remaining m(H) −∑
Cj∈succ(H)m(Cj) fully available processors and at most

one partially available processor. When task Si’s jobs are

scheduled, an additional processor is available to container

Ci. Because server task Si is constructed only if w(Ci) >
m(Ci) = ⌊w(Ci)⌋, ⌈w(Ci)⌉ = m(Ci) + 1 = M(Ci).
Thus, container Ci always occupiesm(Ci) processors, and
M(Ci) processors are occupied when task Si’s job is sched-

uled. Thus, Restriction (P) is ensured for each child con-

tainer.

Example 4. Consider container H from Example 1. For
containerC1, one processor is reserved because ⌊w(C1)⌋ =

⌊4/3⌋ = 1. For this container, we also construct a SRT
server task S1(1, 3), so that ⌊w(C1)⌋+ e1/p1 = 1 + 1/3 =
w(C1). When jobs of S1 are scheduled, an additional pro-

cessor is available to container C1, as shown in Fig. 3(b).

Let HRT(H) (respectively, SRT(H)) be the set of HRT
(respectively, SRT) tasks encapsulated inH . The remaining
problem at hand, referred to as Subproblem 1, is that of

scheduling tasks from the sets HRT(H), SRT(H), and τS

on some number of fully available processors and at most

one partially available processor.

4. Subproblem 1

To schedule the tasks in HRT(H), we encapsulate
them into a child container Chrt with integral bandwidth

w(Chrt) = m(Chrt) = M(Chrt). Applying (P) to Chrt,

m(Chrt) processors must be reserved for this container.
The tasks in HRT(H) can be scheduled within Chrt us-

ing a variety of approaches. Given our emphasis on SRT

tasks, we simply use the partitioned EDF (PEDF) algo-

rithm for this purpose, deferring consideration of other ap-

proaches to future work. Under PEDF, tasks are statically

assigned to processors and each processor schedules its as-

signed tasks independently on an EDF basis. Assume that

processor k is among the m(Chrt) processors reserved for
container Chrt and let τk denote the set of sporadic tasks
assigned to that processor. All task deadlines will be met on

processor k if

Usum(τk) =
∑

Ti∈τk

ui ≤ 1, (2)

which is a well-known uniprocessor EDF schedulability

test [16]. This test, when applied in a multiprocessor sys-

tem, presumes a given assignment of tasks to processors.

Such an assignment (and correspondingly, the number of

processors required for Chrt) can be determined using any

of various bin-packing heuristics. Further results concern-

ing PEDF schedulability tests can be found in [3, 7, 16].

As mentioned earlier, HRT policies may introduce uti-

lization loss. For PEDF, there exist task sets, for which

the reserved processors could be underutilized. However, if

HRT tasks are relatively few in number, such loss will likely

be small, compared to the total utilization of SRT tasks.

Loss is incurred when creating Chrt if its bandwidth

(given by the number of processors required for it) exceeds

the sum of the utilizations of the HRT tasks it contains. If

this is the case, then (1) must be validated with the tasks

in HRT(H) replaced by the container Chrt. Note that, if

we have a system with small number of processors, then

it may not be possible to dedicate a processor for an HRT

container as described above. In this case, it might be neces-

sary for HRT and SRT tasks to execute on the same proces-

sor, which would require different analysis from that in this

C1

w(C)=4/31

H w(H)=4

T (1,3)1 T (2,3)2

T (1,4)3 T (2,4)4

Chrt
w(C)=1hrt

(a)

job release job deadline C1

T1 T1,1

0 1 2 3 4 5 6 7 8 9 t

T1,2

T2 T2,1 T2,2

T1,3

T2,3

T3
T3,1 T3,2

T4,1 T4,2 T4,3
T4

S1

Chrt

S1,1 S1,2 S1,3

C1

(b)

Figure 3. (a) Isolating HRT tasks. (b) A sched-
ule with HRT in a separate container in Exam-
ple 5.

paper. Given our focus on SRT tasks, such analysis is be-

yond the scope of this paper. However, if a system is purely

SRT, an arbitrarity deep hierarchy of SRT containters can

be maintained even in the uniprocessor case.

Example 5. Consider again container H from Example 1.
In our approach, we encapsulate the two HRT tasks T1(1, 3)
and T2(2, 3) into a container Chrt, as shown in Fig. 3(a).

The total utilization of these two tasks is Usum = u1 +
u2 = 1/3 + 2/3 = 1. By (2), these two tasks will meet
their deadlines if scheduled using uniprocessor EDF. We

set w(Chrt) = 1, so the container Chrt will require one

processor. The total bandwidth of container H’s children
is

∑
Ci∈succ(H) w(Ci) = w(C1) + w(Chrt) + w(T3) +

w(T4) = 4/3 + 1 + 1/4 + 2/4 = 37/12 < 4 = w(H), so
(1) is satisfied. When scheduling the modified container H
on ⌈w(H)⌉ = 4 processors, as shown in Fig. 3(b), one pro-
cessor is reserved for the HRT container Chrt, so that tasks

T1 and T2 are scheduled on that processor. In Example 4,

we reserved one processor for container C1 and constructed

the server task S1(1, 3). Jobs of this server task are sched-
uled with the jobs of tasks T3 and T4 on the two remaining

fully available processors.

Having dispensed with any HRT tasks, we can com-

plete our solution to Subproblem 1 by devising a schedul-

ing policy that ensures bounded tardiness for the remain-

ing SRT tasks, some of which may be server tasks. These

tasks are scheduled on Ms processors, of which m(H) −∑
Cj∈succ(H)m(Cj) are fully available and at most one is

partially available. We refer to this last remaining subprob-

lem as Subproblem 2.

5. Subproblem 2

In solving Subproblem 2, restrictions on supplied pro-

cessor time are of relevance. Such restrictions can be

dealt with using per-processor supply or availability func-

tions [7].

Definition 1. (supply functions) The supply (or availabil-

ity) function βl
k(∆),R→ R, provides a lower bound on the

amount of processor time processor k can guarantee during
any time interval of length ∆. This function is defined as

βl
k(∆) = max(0, ûk · (∆ − σk)), (3)

where ûk ∈ (0, 1] and σk ≥ 0. ûk is called the processor

bandwidth and σk the maximum blackout time, because σk

is the maximum interval when processor k may not provide
any supply [9].

The following property is a straightforward application

of the above definition.

(F) If processor k is fully available, then βl
k(∆) = ∆,

ûk = 1, and σk = 0.

From the earlier statement of Subproblem 2, of the

Ms processors under consideration, at most one is par-

tially available. Thus, the supply from these processors

can be described using Ms supply functions: β
l
1(∆) =

max(0, û1(∆ − σ1)), where 0 < û1 ≤ 1, σ1 ≥ 0, and
βl

k(∆) = ∆, for 2 ≤ k ≤ Ms. We say that such a collec-

tion of functions is in Minimum Parallelism (MP) form.

Before continuing, note that ifMs = 1, i.e., all remain-
ing SRT tasks are to be scheduled on one processor, then

EDF can be used on that processor. If this processor is fully

available, then tardiness will be zero for these tasks (due

to the optimality of EDF), and if it is partially available,

then it can be easily shown to be bounded, using real-time

calculus [7], provided Usum(SRT(H) ∪ τS) ≤ û1. In the

remainder of this section, we concentrate on the more inter-

esting case, Ms ≥ 2. In this case, our approach leverages
some recent theoretical results, which we describe next.

5.1. Window-Constrained Scheduling

The problem of scheduling a set of sporadic SRT tasks

on multiple processors with restricted supply was consid-

ered by us in [12]. In this work, a class of global scheduling

policies that ensure bounded deadline tardiness was consid-

ered. This class of algorithms is described next.

Let τ be a set of sporadic SRT tasks scheduled onM ≥ 2
processors, with supply functions βl

k(∆) = max(0, ûk(∆−
σk)), where 1 ≤ k ≤M . Assume

Usum(τ) ≤
M∑

k=1

ûk, (4)

i.e., the total system utilization is at most the total supplied

bandwidth. Released jobs are placed into a single global

ready queue. When choosing a new job to schedule, the

scheduler selects (and dequeues) the ready job of highest

priority. Priorities are determined as follows assuming that

any ties are broken arbitrarily but consistently.

Definition 2. (prioritization functions) Associated with

each released job Ti,j is a function of time χi,j(t), called
its prioritization function. If χi,j(t) < χk,h(t), then the
priority of Ti,j is higher than the priority of Tk,h at time t.

Definition 3. (window-constrained priorities) A schedul-

ing algorithm’s prioritization functions are window-

constrained iff, for each task Ti, there exist constants φi ≥
0 and ψi ≥ 0 such that, for each job Ti,j of Ti,

ri,j − φi ≤ χi,j(t) ≤ di,j + ψi (5)

holds at each time t where Ti,j is pending.

GEDF is an example of a global algorithm with window-

constrained priorities. In [12], a tardiness bound is es-

tablished that applies to any window-constrained global

scheduling algorithm. To state this bound, let

ρ = max
Ti∈τ

(φi) + max
Ti∈τ

(ψi). (6)

Further, let U(τ, y) (E(τ, y)) be the set of at most y tasks
from τ of highest utilization (execution cost), and let

EL =
∑

Ti∈E(τ,M−1)

ei and UL =
∑

Ti∈U(τ,M−1)

ui. (7)

Theorem 1. (Proved in [12]) The tardiness of any task

Tk ∈ τ under a window-constrained scheduling policy on
M ≥ 2 processors is at most max(x, ρ) + ek, where

x =
EL + max(A(ℓ))

∑M

k=1 ûk − max(H − 1, 0) · max(uℓ) − UL

, (8)

A(ℓ) = eℓ · (

M∑

k=1

(1 − ûk) − 1) +

M∑

k=1

ûk · (σ + σk)

+
∑

Tk∈τ\Tℓ

(⌈
ψℓ + φk

pk

⌉
+ 1

)
· ek

+(M − 1 −max(H − 1, 0) · uℓ) · ρ, (9)

σ = maxk∈[1..M](σk), and H is the number of processors

with βl
k(∆) 6= ∆, provided the denominator of x is positive.

5.2. Minimizing the Tardiness Bound

Given the theorem stated above, we now argue in favor

of Restriction (P) and show how enforcing this restriction

affects the tardiness bound in the theorem. Consider the

denominator of (8):

M∑

k=1

ûk − max(H − 1, 0) · max(uℓ) − UL. (10)

The requirement for (10) to be positive implicitly restricts

the maximum per-task utilization if H > 1, i.e., if two
or more processors are partially available. Note also that

the value of x is minimized if (10) is maximized. Suppose
that the total supplied bandwidth W =

∑M

k=1 ûk is fixed.

Then, (10) will be maximized if either max(H − 1, 0) ·
max(uℓ) or UL or both are minimized. The value of UL

depends exclusively on task utilizations and the total num-

ber of processors M , as (7) suggests. Therefore, UL will

be minimized if the total number of processorsM is mini-
mized. The expression max(H − 1, 0) · max(uℓ) is mini-
mized if H ≤ 1, that is, at most one processor is partially
available. Thus, if the total processor bandwidthW is fixed,
then (10) is maximized by setting M = ⌈W ⌉ and having
⌊W ⌋ processors fully available. The bandwidth of at most
one partially available processor (if any) is û1 = W −⌊W ⌋.
Referring back to Subproblem 2, we have the following.

Corollary 1. Let τ = SRT(H) ∪ τS be a set of spo-

radic SRT tasks scheduled onMs ≥ 2 processors with sup-
ply in MP form. Then, the tardiness of any task Tk ∈ τ
under a window-constrained scheduling policy is at most

max(x, ρ) + ek, where

x =
EL + max(A(ℓ))

Ms − 1 + û1 − UL

, (11)

A(ℓ) = eℓ · (−û1) + (2û1 +Ms − 1)σ1

+
∑

Tk∈τ\Tℓ

(⌈
ψℓ + φk

pk

⌉
+ 1

)
· ek + (Ms − 1) · ρ.

Proof. In the case of supply in MP form, at most one supply

function βl
1(∆) may differ from∆. Thus, H ≤ 1. By (F),

∀2 ≤ k ≤Ms : σk = 0, ûk = 1. (12)

Thus,

σ = max
k∈[1..Ms]

(σk) = σ1, (13)

(

Ms∑

k=1

(1 − ûk) − 1) = (1 − û1 − 1) = −û1, (14)

Ms∑

k=1

ûk · (σ + σk) = û1(σ + σ1) +

Ms∑

k=2

ûk · (σ + σk)

= {by (12) and (13)}

2û1σ1 + (Ms − 1)σ1

= (2û1 +Ms − 1)σ1. (15)

Setting H ≤ 1 and (12)–(15) into (8) and (9), we get

x =
EL + max(A(ℓ))

Ms − 1 + û1 − UL

,

A(ℓ) = eℓ · (−û1) + (2û1 +Ms − 1)σ1

+
∑

Tk∈τ\Tℓ

(⌈
ψℓ + φk

pk

⌉
+ 1

)
· ek + (Ms − 1) · ρ.

The denominator of x in (11) is always positive, because
UL < Usum ≤

∑Ms

k=1 ûk = Ms − 1 + û1. The corollary

immediately follows.

If GEDF is used for SRT tasks, then the tardiness

bound can be further tightened by setting A(ℓ) in (11) to
eℓ · (−û1) + (2û1 + (Ms − 1))σ1. Further, if allMs ≥ 2
processors are fully available, a HRT GEDF schedulabil-

ity test [2] can be applied to τ before calculating tardiness
bounds. If this test passes, then maximum tardiness is zero.

Note that Corollary 1 only requires that (4) holds (with

M replaced byMs). That is, bounded tardiness can be en-

sured with no utilization loss.

5.3. Computing Next-Level Supply

The remaining issue is to compute the supply of each

child container in MP form, so that our analysis can be

applied inductively in a container hierarchy. If a server

task Si(ei, pi) has bounded deadline tardiness, then the total
guaranteed long-term supply to containerCi will be propor-

tional to the long-term supply ofm(Ci) fully available pro-
cessors, which can be described by a set of m(Ci) supply
functions equal to ∆, plus that of a partially available pro-
cessor with bandwidth ui = ei/pi. We are left with charac-

terizing the processor time that is available to Ci when the

server task Si is scheduled.

The amount of supply guaranteed to the server task Si

will depend on its parameters, ei and pi, the parameters of

other SRT tasks, and the scheduling policy Q employed by
the parent containerH .

Lemma 1. Let A(Si, t1, t2,Q) be the total allocation of
task Si during the interval [t1, t2) in the schedule Q and
let Θi be the maximum deadline tardiness of task Si’s jobs

in Q. Then, the allocation A(Si, 0, t,Q) satisfies the fol-
lowing.

A(Si, 0, t,Q) ≤ ui · t+ ei(1 − ui) (16)

A(Si, 0, t,Q) ≥ ui · t− ui · Θi − ei(1 − ui) (17)

The proof of this lemma is straightforward and thus is

omitted due to space constraints. Instead, we illustrate (16)

using an example.

0 2 4 6 8 10
0

1

2

3

4

t

A(S ,0,t,Q)1

G(t)=t/3 2/3+

Figure 4. Server task allocation A(S1, 0, t,Q)
in Example 6 and its linear upper bound G(t).

Example 6. Consider the scheduleQ shown in Fig. 3(b). In
this schedule, jobs of the server task S1(1, 3) execute in the
intervals [0, 1), [3, 4), and [6, 7). By time 1, S1 has received

one allocation unit, by time 4, its allocation is two units, and

so on. The allocation A(S1, 0, t,Q) is shown in Fig. 4 as a
function of t. The figure also shows the upper bound (16),

which isG(t)
∆
= ui · t+ei(1−ui) = 1/3 · t+1(1−1/3) =

1/3 · t+ 2/3. It is easy to see that A(S1, 0, t,Q) ≤ G(t).

We now can find guarantees on the supplied processor

time for server tasks for an arbitrary time interval.

Theorem 2. Suppose that the scheduling algorithm used by

the container H ensures a deadline tardiness bound of Θi

for the server task Si(ei, pi). Then Si is guaranteed at least

φl
i(∆) = max(0, ui ·∆− 2ei(1− ui)− ui ·Θi) time units
during an interval of length ∆.

Proof. Our goal is to bound the allocation of Si during an

interval [t1, t2) by a function of the length of the interval
∆ = t2 − t1.

A(Si, t1, t2,Q)

= A(Si, 0, t2,Q) − A(Si, 0, t1,Q)

≥ {by (16) and (17)}

ui · t2 − ui · Θi − ei(1−ui) − (ui · t1+ei(1−ui))

= ui · (t2 − t1) − 2ei(1 − ui) − ui · Θi

= ui · ∆ − 2ei(1 − ui) − ui · Θi.

The allocationA(Si, t1, t2,Q) cannot be less than zero, thus
A(Si, t1, t2,Q) ≥ max(0, ui ·∆−2ei(1−ui)−ui ·Θi).

Corollary 2. The supply to container Ci, as defined above,

is described byM(Ci) = ⌈w(Ci)⌉ availability functions in
MP form, where m(Ci) = ⌊w(Ci)⌋ supply functions sat-
isfy βl

j(∆) = ∆ and at most one supply function satisfies

βl
1(∆) = φl

i(∆) as given by Theorem 2. The total supplied
bandwidth for Ci is w(Ci).

Applying Corollaries 1 and 2 recursively, we can analyze

the properties of a container hierarchy. In the case when

there are no HRT tasks in the system, no utilization loss

is incurred. However, the tardiness of SRT tasks may be

higher as compared to a corresponding non-hierarchical ap-

proach, where all tasks are scheduled at the same level. This

is the price for having temporal isolation among containers.

6. Experiments

We now present the results of experiments conducted

to compare our container-aware scheduling scheme with

conventional scheduling techniques. In these experiments,

performance was compared using randomly-generated task

sets, which have both HRT and SRT tasks.

Task generation procedure. We generated tasks for a

single container by generating a set of HRT tasks τhrt and

a set of SRT tasks τsrt. Randomly-generated tasks were

added to these sets while U(τhrt) ≤ 1 and U(τsrt) ≤ 8.5,
so that the size of the HRT component is small. Task uti-

lizations were taken randomly from [0, 0.15) for HRT tasks
and from [umin, umax) for SRT tasks. We examined four
SRT utilization ranges, as described later. Integral task pe-

riods were taken randomly from [10, 50] for HRT tasks and
from [10, 100] for SRT tasks. Integral execution times were
computed using periods and utilizations.

In order to gain intuition about the properties of a large

multiprocessor platform running multiple isolated compo-

nents, each generated container was replicated four times,

giving a three-level hierarchy: a root container C0, four

next-level containers, and then the contained tasks. The i-
th second-level container is denoted C

[i]
sys and its contained

tasks as τ
[i]
hrt and τ

[i]
srt.

We compared our container-aware scheduling scheme

(CA) with PEDF and a hybrid EDF-based scheme (HS),

both of which are oblivious to containers. The HS scheme,

which is described later in this section, is a naı̈ve combi-

nation of PEDF and GEDF. PEDF was selected because

it exhibits good timeliness, and HS was selected because

it can satisfy the requirements of HRT and SRT tasks us-

ing relatively few processors. However, HS and PEDF do

not provide any isolation among containers. In our exper-

iments, we compared the tested schemes based on the re-

quired number of processors (RNP) and deadline tardiness

bound (TB). Due to a lack of space, we did not consider

any system overheads, and are unable to present results for

other container hierarchies.

Defining RNP. Under PEDF, RNP was defined as the

minimum number of processors required to partition all

real-time tasks using the first-fit heuristic. Under PEDF,

all tasks have zero tardiness.

Under HS, HRT and SRT tasks run on disjoint processor

sets, with all HRT tasks scheduled together using PEDF

with the first-fit heuristic, and all SRT tasks scheduled to-

gether usingGEDF.RNP for the SRT tasks is thusMsoft =

⌈
∑4

i=1 Usum(τ
[i]
srt)⌉. LettingMhard denote the HRT RNP,

overall RNP under HS is simplyMhard +Msoft.

Under CA, we set container C
[i]
sys’s bandwidth as fol-

lows. Because U(τ
[i]
hrt) ≤ 1, the HRT tasks of each replica

require one processor. According to our scheme, HRT tasks

that belong to different replicas will always execute on dif-

ferent processors and meet their deadlines. Because the

container C
[i]
sys needs a dedicated processor for its HRT

tasks, its bandwidth was set to

w(C [i]
sys) = 1+

{
⌊U(τ

[i]
srt)⌋ + 1

πi
if ⌊U(τ

[i]
srt)⌋ 6= U(τ

[i]
srt)

U(τ
[i]
srt) otherwise,

where πi is the period of a server task S
[i]
srt(1, πi) defined so

that w(C
[i]
sys) ≥ U(τ

[i]
srt), if πi > 1. Choosing the container

bandwidth this way instead of w(C
[i]
sys) = 1 +U(τ

[i]
srt) may

introduce utilization loss in addition to the loss in the encap-

sulated HRT container because the reserved bandwidth for

SRT tasks may be greater than their total utilization. How-

ever, choosing the execution time of the server task S
[i]
srt

equal to one effectively reduces its maximum tardiness, and

correspondingly, the supply blackout time, as (11) and The-

orem 2 suggest. Overall, RNP for CA is simply the band-

width of the root container C0, w(C0) = ⌈
∑4

i=1 w(C
[i]
sys)⌉.

RNP results. Fig. 5(a) shows RNP results for PEDF,

HS, and CA, for the cases when SRT tasks have low,

medium, and high per-task utilizations, as given by the

ranges [0.01, 0.1), [0.1, 0.5), and [0.5, 1), respectively. We
also examined the SRT utilization range [0.6, 0.8) as well,
as it is an extreme case where PEDF shows poor perfor-

mance. For each utilization range, 100 task sets were gen-

erated and their RNP averaged. The figure also shows the

average total system utilization, so that we can estimate the

utilization overhead associated with each scheme.

As SRT per-task utilization increases, RNP for PEDF

also increases because more processors are needed to bin-

pack SRT tasks. The extreme case is the utilization range

[0.6, 0.8), where each SRT task requires a separate proces-
sor.

When SRT per-task utilizations are low, PEDF exhibits

the best performance, since it can partition all tasks using a

minimal number of processors. UnderCA, the four replicas

of the HRT task set require four processors, while under

HS, all HRT tasks may be packed onto a smaller number of

processors.

When SRT per-task utilizations are medium and high,

the difference between HS and CA is minimal, with RNP

for CA slightly higher, due to the utilization loss associ-

ated with the selection of container bandwidths. PEDF re-

quires the largest number of processors because each SRT

task with utilization exceeding 0.5 requires a separate pro-

cessor.

Tardiness. Fig. 5(b) shows the average of the per-task-set

tardiness bounds under HS and CA for the task set cate-

gories discussed above (underPEDF, tardiness is zero). For

these two schemes, these tardiness bounds are comparable.

Overall, these experiments show that there is a price to

be paid for temporal isolation among containers, in the form

of more required processors (if HRT tasks are present) or

higher tardiness. However, in our proposed scheme, this

price is reasonable, when considering the performance of

schemes that ensure no isolation.

7. Conclusion

We have presented a multiprocessor bandwidth-

reservation scheme for hierarchically organized real-time

containers. Under this scheme each real-time container can

reserve any fraction of processor time (even the capacity of

several processors) to schedule its children. The presented

scheme provides temporal isolation among containers so

that each container can be analyzed separately.

Our scheme is novel in that soft real-time components

incur no utilization loss. This stands in sharp contrast to hi-

erarchical schemes for hard (only) real-time systems, where

the loss per level can be so significant, arbitrarily deep hier-

archies simply become untenable.

Several interesting avenues for further work exist. The

most important open problem is to enable dynamic con-

tainer creation and the joining/leaving of tasks. Also of

importance is the inclusion of support for synchroniza-

tion. It would also be interesting to investigate other

global scheduling algorithms such as Pfair algorithms to

see whether a more accurate analysis can be established for

them. Finally, the new scheduling policy needs to be imple-

mented on a real multiprocessor platform so that overheads

associated with the hierarchical nature of the system could

be determined. Given that work on Linux containers par-

tially motivated our research, a Linux-based system such as

LITMUSRT [15], whereGEDF is implemented along with

other global scheduling algorithms, would be desirable to

use in such an effort.

References

[1] J. Anderson, J. Calandrino, and U. Devi. Real-time schedul-

ing on multicore platforms. In Proceedings of the 12th IEEE

Real-Time and Embedded Technology and Applications Sym-

posium, pages 179–190, April 2006.

[2] S. Baruah. Techniques for multiprocessor global schedula-

bility analysis. In Proceedings of the IEEE Real-Time Sys-

tems Symposium, pages 119–128, December 2007.

[3] S. Baruah and N. Fisher. The partitioned multiprocessor

scheduling of sporadic task systems. In Proceedings of the

 34

 36

 38

 40

 42

 44

 46

 48

[0.01, 0.1) [0.1, 0.5) [0.5, 1) [0.6, 0.8)

A
v
e

ra
g

e
 R

N
P

SRT Per-Task Utilization Range

Required Number of Processors (RNP)

HS RNP
CA RNP

PEDF RNP
Total Util

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

[0.01, 0.1) [0.1, 0.5) [0.5, 1) [0.6, 0.8)

A
v
g

.
M

a
x
 t

a
rd

in
e

s
s

SRT Per-Task Utilization Range

Maximum tardiness bound (TB)

HS TB
CA TB

(b)

Figure 5. (a) Required number of processors and (b) maximum tardiness bounds for randomly gen-
erated task sets (with 95% confidence intervals).

IEEE Real-Time Systems Symposium, pages 321–329, De-

cember 2005.

[4] S. Baruah, J. Goossens, and G. Lipari. Implementing

constant-bandwidth servers upon multiprocessor platforms.

In Proceedings of the IEEE International Real-Time and

Embedded Technology and Applications Symposium, pages

154–163, September 2002.

[5] S. Baruah and G. Lipari. A multiprocessor implementation

of the total bandwidth server. In Proceedings of 18-th In-

ternational Parallel and Distributed Processing Symposium,

page 40, April 2004.

[6] B. Brandenburg and J. Anderson. Integrating hard/soft real-

time tasks and best-effort jobs on multiprocessors. In Pro-

ceedings of the 19th Euromicro Conference on Real-Time

Systems, pages 61–70, July 2007.

[7] S. Chakraborty and L. Thiele. A new task model for stream-

ing applications and its schedulability analysis. In Proceed-

ings of the IEEE Design Automation and Test in Europe

(DATE), pages 486–491, March 2005.

[8] U. Devi and J. Anderson. Tardiness bounds for global

EDF scheduling on a multiprocessor. Real-Time Systems,

38(2):133–189, February 2008.

[9] A. Easwaran, M. Anand, and I. Lee. Compositional analysis

framework using EDP resource models. In Proceedings of

the 28th IEEE Real-Time Systems Symposium, pages 129–

138, 2007.

[10] M. Eriksson and S. Palmroos. Comparative study of contain-

ment strategies in solaris and security enhanced Linux. June

2007. http://opensolaris.org/os/community/security/news/

20070601-thesis-bs-eriksson-palmroos.pdf.

[11] P. Holman and J. Anderson. Group-based Pfair scheduling.

Real-Time Systems, 32(1-2):125–168, February 2006.

[12] H. Leontyev and J. Anderson. Tardiness bounds for FIFO

scheduling on multiprocessors. In Proceedings of the 19th

Euromicro Conference on Real-Time Systems, July 2007. 71-

80.

[13] P. Lessard. Linux process containment: A practical

look at chroot and user mode Linux. 2003. http://

www.sans.org/reading room/whitepapers/linux/1073.php.

[14] Linux vserver documentation. September 2007. http://linux-

vserver.org/Documentation.

[15] LITMUSRT homepage. http://www.cs.unc.edu/˜anderson/

litmus-rt.

[16] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000.

[17] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and

migrating periodic tasks on multiple resources. In Proceed-

ings of the 20th IEEE Real-Time Systems Symposium, pages

294–303, December 1999.

[18] R. Pellizzoni and M. Caccamo. The M-CASH resource re-

claiming algorithm for identical multiprocessor platforms.

Technical Report UIUCDCS-R-2006-2703, University of

Illinois at Urbana-Champaign, March 2006.

[19] R. Rajkumar. Resource Kernels: Why Resource Reservation

should be the Preferred Paradigm of Construction of Em-

bedded Real-Time Systems. Keynote talk, 18th Euromicro

Conference on Real-Time Systems, Dresden, Germany, July

2006.

[20] I. Shin, A. Easwaran, and I. Lee. Compositional analysis of

hierarchical multiprocessor scheduling frameworks. Private

communication, 2007.

[21] A. Srinivasan, P. Holman, and J. Anderson. Integrating ape-

riodic and recurrent tasks on fair-scheduled multiprocessors.

In Proceedings of the 14th Euromicro Conference on Real-

Time Systems, pages 19–28, June 2002.

