
Supporting Pipelines in Soft Real-Time Multiprocessor Systems∗

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

In work on multiprocessor real-time systems, processing
pipelines have received little attention. In this paper, soft
real-time periodic task systems are considered that include
such pipelines. Conditions are presented for guaranteeing
bounded deadline tardiness in such systems under global
EDF or FIFO multiprocessor scheduling.

1 Introduction

With the advent of multicore technologies, it is impor-
tant that real-time scheduling theory be extended so that
commonly-used multiprocessor programming techniques
can be supported in systems with timing constraints. One
technique of particular utility is pipelined execution, which
is used to increase throughput by leveraging the parallelism
inherent on multiprocessor platforms. In this paper, we con-
sider the problem of supporting such pipelines on a multi-
processor where the workload is specified as a periodic task
system with implicit deadlines (relative deadlines equal pe-
riods). If all deadlines in such a task system are considered
to be hard, then pipelines can be easily supported by assign-
ing a common period to all tasks in a pipeline and by adjust-
ing job releases so that successive pipeline stages execute
in sequence. Fig. 1 shows an example, where an ordinary
periodic task T1 executes on a two-processor system with
three other tasks, T 1

2 , T 2
2 , and T 3

2 , which form a three-stage
pipeline (the kth job of T 1

2 , T 2
2 , and, T 3

2 , respectively, must
execute in sequence). As seen in this example, as long as no
deadlines are missed, the timing guarantees provided by the
periodic model ensure that any pipeline executes correctly.

Unfortunately, for multiprocessor systems, if all dead-
lines must be viewed as hard, then significant process-
ing capacity must be sacrificed, due to either inherent
schedulability-related utilization loss—which is unavoid-
able under most scheduling schemes [1]—or high runtime
overheads—which typically arise in optimal schemes that
avoid schedulability-related loss [2, 3]. In systems where
less stringent notions of real-time correctness suffice, such
capacity loss can be avoided by viewing deadlines as soft.
This follows from recent work on global scheduling algo-

∗Work supported by IBM, Intel, and Sun Corps.; NSF grants CNS
0834270, CNS 0834132, and CNS 0615197; and ARO grant W911NF-
06-1-0425.

Job release Job deadline

1
2T
2

2T
3
2T

1T

Figure 1. Example task system.

rithms that has shown that bounded deadline tardiness can
be ensured with no utilization loss under a wide variety of
such algorithms, including algorithms that are less costly to
implement than optimal algorithms [4, 5]. Unfortunately, if
deadlines can be missed, then pipelines are not as easy to
support. For example, if the first job of T 1

2 in Fig. 1 were
to miss its deadline, then its execution might overlap that
of the first job of T 2

2 . This violates the requirement that
successive pipeline stages must execute in sequence.

Motivated by the observations above, we consider in
this paper the problem of supporting pipelined execution
on a multiprocessor platform in systems where bounded
deadline tardiness is acceptable. Our goal is to deter-
mine whether such a system can be scheduled without
significant utilization loss. We focus specifically on two
global scheduling algorithms that are capable of ensuring
bounded deadline tardiness for ordinary periodic task sys-
tems (i.e., systems without pipelined tasks) with no utiliza-
tion loss [4, 5], namely, the global earliest-deadline-first
(GEDF) algorithm and the global first-in first-out (GFIFO)
algorithm. We wish to know whether these algorithms can
also ensure bounded deadline tardiness if pipelined tasks are
present with no utilization loss; if this is not always possi-
ble, then we would like to know the conditions under which
bounded tardiness can be guaranteed.

Related work. To our knowledge, pipelined execution
under global scheduling algorithms has not been consid-
ered before. However, distributed systems (which must
be scheduled by partitioning approaches) have been con-
sidered. For example, Jayachandran and Abedelzaher have
presented delay composition rules that provide a bound on
the end-to-end delay of jobs in partitioned distributed sys-
tems that include pipelines [6] or more general (acyclic)
precedence constraints [7]. These rules permit a pipelined
system to be transformed so that uniprocessor schedulabil-
ity analysis can be applied.

1

Several off-line algorithms have also been proposed
for scheduling tasks with precedence constraints in dis-
tributed real-time systems comprised of periodic tasks
[7,8,9]. Schedulability test for pipelined distributed systems
have also been proposed in which end-to-end deadlines
are supported by deriving deadlines for individual pipeline
stages [8, 9].

Contributions. We show that the ability to support
pipelines with bounded deadline tardiness hinges upon a
pipeline parameter that we call “stretch,” with range [0, 1].
We present a general tardiness bound, which is applicable to
either GEDF or GFIFO, that expresses tardiness as a func-
tion of stretch and other parameters. This bound shows that
pipelines can be supported with bounded tardiness and no
utilization loss if each pipelined task’s stretch is less than

1− U

m
, where m is the number of processors and U is sum

of them(m−1) largest subtask utilizations, where by “sub-
task,” we mean a task corresponding to one pipeline stage.
In other cases, utilization loss is inherent. We prove this by
presenting a counterexample with unbounded tardiness in
which two two-stage pipelines execute on three processors.

Organization. The remainder of this paper is organized
as follows. Sec. 2 describes the system model. In Sec. 3,
the tardiness bound derivation that is our main result is pre-
sented. Sec. 4 concludes.

2 System Model

We consider the problem of scheduling a set τ =
{T1, ..., Tn} of n independent periodic pipeline tasks on
m ≥ 2 identical processors. An h-stage pipeline task Tl,
where 1 ≤ h ≤ m, consists of h subtasks, T 1

l , ...T
h
l . (If

h = 1, then Tl is an ordinary periodic task.) Each subtask
is released repeatedly, with each such invocation called a
job. We assume that each job of Thl executes for exactly
ehl time units. This assumption can be eased to treat ehl as
an upper bound, at the expense of more cumbersome no-
tation. For the class of scheduling algorithms we consider,
reducing a job’s execution cost cannot increase any job’s
tardiness. The jth job of Thl , denoted Thl,j , is released at
time rhl,j and has a deadline at time dhl,j . Associated with
each pipeline task Tl is a period pl, which specifies both
the time between two consecutive job releases of any sub-
task of Tl and the relative deadline of each such job (i.e.,
dhl,j = rhl,j + pl). The utilization of a subtask Thl is defined
as uhl = ehl /pl, and the utilization of the task system τ as
Usum =

∑
Ti∈τ

∑
T j

i
∈Ti

uji .
To ease the reasoning in our tardiness-bound derivation,

we assume that each subtask Thl releases a job every pl time
units, starting at time 0. Note that this is different from the
release pattern suggested by Fig. 1. This can be seen in

Job release Job deadline

1
2T
2

2T
3
2T

1T

Figure 2. Modified example task system.

Fig. 2, which is a modification of Fig. 1, in which some “ex-
tra” initial jobs have been introduced, so that each subtask
starts at time 0. Note that removing these “extra” jobs can-
not increase any job’s tardiness. Thus, it suffices to bound
tardiness assuming each subtask begins at time 0.

Successive jobs of the same subtask are required to exe-
cute in sequence. Also, for j, h > 1, job Thl,j cannot com-
mence execution until job Th−1

l,j−1 completes. To avoid con-
fusion when discussing these precedence constraints, we
will refer to Thl,j−1 as the L-predecessor of Thl,j (assuming
j > 1), and Th−1

l,j−1 as the U-predecessor of Thl,j (assuming
j, h > 1). (“L” and “U” stand for “left” and “upper”, respec-
tively). For example, in Fig. 2, T 1

2,1 is the L-predecessor of
T 1

2,2 and the U-predecessor of T 2
2,2.

If a job T ki,j completes at time t, then its tardiness is de-
fined as max(0, t− dki,j). A pipeline task’s tardiness is the
maximum of the tardiness of any job of any of its subtasks.
We require uki ≤ 1 and Usum ≤ m; otherwise, tardiness
can grow unboundedly. Note that, when a job of a subtask
misses its deadline, the release time of the next job of that
task is not altered. Despite this, it is still required that a job
cannot execute in parallel with either of its predecessors.

Under GEDF (GFIFO), released jobs are prioritized by
their deadlines (release times). So that our results can be
applied to both algorithms, we consider a generic schedul-
ing algorithm (GSA) where each job is prioritized by some
time point between its release time and deadline. For
any job Twi,k, its prioritization function, ρwi,k, is defined as:
ρwi,k = rwi,k + κ · pi, where 0 ≤ κ ≤ 1. We assume that for
subtasks belonging to the same task, ties are broken in favor
of earlier stages, and any remaining ties are broken by task
ID. Note that GEDF and GFIFO are special cases of GSA
where κ is set to 1 and 0, respectively.

3 A Tardiness Bound for GSA

We derive a tardiness bound for GSA by comparing the
allocations to a pipelined task system τ in a processor shar-
ing (PS) schedule and an actual GSA schedule of interest for
τ , both on m processors, and quantifying the difference be-
tween the two. We analyze task allocations on a per-subtask
basis. According to our system model, each subtask can be
treated as a periodic task.

2

The time interval [t1, t2), where t2 > t1, consists of all
time instances t, where t1 ≤ t < t2, and is of length t2− t1.
For any time t > 0, the notation t− is used to denote the
time t− ε in the limit ε → 0+, and the notation t+ is used
to denote the time t+ ε in the limit ε→ 0+

Definition 1. A subtask Twi is active at time t if there exists
a job Twi,v such that rwi,v ≤ t < dwi,v . By our task model,
every subtask has one active job at any time.

Definition 2. Job Twi,v is pending at time t if rwi,v ≤ t and
Twi,v has not completed execution by t.

Definition 3. Job Twi,v is ready at t if t ≥ rwi,v and its L-
predecessor (if any) has completed execution at t. Twi,v is
enabled if it has been released and both its U-predecessor
(if any) and L-predecessor (if any) have completed.

LetA(T ki,j , t1, t2, S) denote the total allocation to the job
T ki,j in an arbitrary schedule S in [t1, t2). Then, the total
time allocated to all jobs of T ki in [t1, t2) in S is given by

A(T ki , t1, t2, S) =
∑
j≥1

A(T ki,j , t1, t2, S).

Consider a PS schedule PS. In such a schedule, T ki ex-
ecutes with the rate uki at each instant when it is active in
[t1, t2). Thus,

A(T ki,j , t1, t2, PS) = (t2 − t1)uki . (1)

The difference between the allocation to a job T ki,j up to
time t in a PS schedule and an arbitrary schedule S, denoted
the lag of job T ki,j at time t in schedule S, is defined by

lag(T ki , t, S) =
∑
j≥1 lag(T ki,j , t, S)

= A(T ki,j , 0, t, PS)−A(T ki,j , 0, t, S). (2)

The concept of lag is important because, if it can be
shown that lags remain bounded, then tardiness is bounded
as well. The LAG for a finite job set J at time t in the sched-
ule S is defined by

LAG(J, t, S) =
∑
Tk

i,j
∈J lag(T ki,j , t, S)

=
∑
Tk

i,j
∈J(A(T ki,j , 0, t, PS)−A(T ki,j , 0, t, S)). (3)

Our tardiness-bound derivation focuses on a given task
system τ . We order the jobs in τ based on their priorities:
Twi,v ≺ T ca,b iff ρwi,v < ρca,b or (ρwi,v = ρca,b)∧(i = a)∧(w <

c) or (ρwi,v = ρca,b) ∧ (i < a). Let Thl,j be a job of a subtask
Thl in τ , td = dhl,j , and S be a GSA schedule for τ with the
following property.

(P) The tardiness of every job Twi,k such that Twi,k ≺ Thl,j
is at most x+ ewi in S, where x ≥ 0.

Our objective is to determine the smallest x such that the
tardiness of Thl,j is at most x+ ehl . This would by induction
imply a tardiness of at most x + eki for all jobs of every
subtask T ki of Ti ∈ τ . We assume that Thl,j finishes after
td, for otherwise, its tardiness is trivially zero. The steps for
determining the value for x are as follows.

1. Determine an upper bound on the work pending for
tasks in τ that can compete with Thl,j after td. This is
dealt with in Lemmas 1, 2, and 3 in Sec. 3.1.

2. Determine a lower bound on the amount of work pend-
ing for tasks in τ that can compete with Thl,j after td,
required for the tardiness of Thl,j to exceed x+ehl . This
is dealt with in Lemma 4 in Sec. 3.2.

3. Determine the smallest x such that the tardiness of Thl,j
is at most x + ehl , using the above upper and lower
bounds.

Definition 4. We categorize jobs based on the relationship
between their priorities and deadlines and those of Thl,j :

d = {Twi,v : (Twi,v � Thl,j) ∧ (dwi,v ≤ td)}

D = {Twi,v : (Twi,v ≺ Thl,j) ∧ (dwi,v > td)}.

d is the set of jobs with deadlines at most td with priority
at least that of Thl,j . These jobs do not execute beyond td in
the PS schedule. Note that Thl,j is in d. D is the set of jobs
that have higher priorities than Thl,j and deadlines greater
than td. Let DH be the set of subtasks with jobs in D. D
consists of carry-in jobs, which have a release time before
td and a deadline after td. Exactly one such job exists for
each subtask in DH . Note that D is empty under GEDF
because jobs with later deadlines have lower priorities.

Definition 5. A time interval [t1, t2) is defined to be busy
for any job set θ if all m processors are executing some job
in θ at each instant in the interval. An interval [t1, t2) that
is not busy for θ is defined to be non-busy for θ.

The following claim follows from the definition ofLAG.

Claim 1. If LAG(d, t2, S) > LAG(d, t1, S), then [t1, t2)
is non-busy for d. In other words, LAG for d can increase
only throughout a non-busy interval.

An interval could be non-busy for d for two reasons:

1. There are not enough enabled jobs in d to occupy all
available processors. Such an interval is called non-
busy non-displacing.

2. Jobs in D occupy one or more processors and there are
enabled jobs in d. Such an interval is called non-busy
displacing.

3

Definition 6. Let δwk be the amount of work performed by
a carry-in job Twk,v by time td.

Definition 7. LetB(D, td, S) be the amount of work due to
jobs in D that can compete with Thl,j after td.

Definition 8. If Twi,v first starts execution at time t, then t
is called its start time, denoted S(Twi,v). If Twi,v completes
execution at time t′, then t′ is called its finish time, denoted
F (Twi,v).

Definition 9. Let maxk = max{j | 1 ≤ j ≤ k ≤ m ∧
(∀w : 1 ≤ w ≤ k : eji ≥ ewi)}. That is, subtask Tmaxk

i

(where maxk ≤ k) has the maximum execution cost among
the subtasks {T 1

i , T
2
i , ..., T

k
i }.

Definition 10. Let swi =
emaxw
i − ewi
emaxw
i

. swi is called the

subtask stretch of Twi . Let si = max{s1i , s2i , ..., smi }.
si is called the task stretch of Ti. Let smax =
max{s1, s2, ..., sn}. si is called the maximum stretch.

Since d∪D includes all jobs of higher priority than Thl,j ,
the competing work for Thl,j is given by the sum of (i) the
amount of work pending at td for jobs in d, and (ii) the
amount of work B(D, td, S) demanded by jobs in D that
competes with Thl,j after td. Since jobs from d have dead-
lines at most td, they do not execute in the PS schedule
beyond td. Thus, the work pending for them is given by
LAG(d, td, S). Therefore, the competing work for Thl,j af-
ter td is given by LAG(d, td, S) +B(D, td, S). Let

Z = LAG(d, td, S) +B(D, td, S). (4)

Note that jobs not in d∪D have lower priority than those
in d ∪ D and thus do not affect the scheduling of jobs in
d ∪ D. For simplicity, we will henceforth assume that no
job not in d ∪ D executes beyond td.

3.1 Upper Bound

In this section, we determine an upper bound on Z in
terms of the parameters of the tasks in τ .

Definition 11. Let tn be the end of the latest non-busy non-
displacing interval for d before td, if any; otherwise, tn = 0.

The following two lemmas have been proved previously
for both GEDF [4] and GFIFO [5]. Their proofs depend
only on Property (P) and are not affected by precedence
constraints, so they also hold for pipelined task systems.
For completeness, proofs in our framework are given in an
appendix.

Lemma 1. LAG(d, td, S) ≤ LAG(d, tn, S) +∑
Tw

k
∈DH

δwk (1− uwk), where t ∈ [0, td].

J
t

J’s U-predecessor J’s L-predecessor

Figure 3. Job J is blocked at time t.

Lemma 2. lag(Twk , t, S) ≤ uwk ·x+ewk for any subtask Twk
and t ∈ [0, td].

Lemma 3 below upper bounds LAG(d, tn, S).

Definition 12. Let U(τ, y) (E(τ, y)) be the set of min(y, b)
subtasks of highest utilization (execution cost) in τ , where
b is the number of subtasks in τ . Define U and Γ as follows.

U =
∑
Tw

i
∈U(τ,m(m−1)) u

w
i

Γ =
∑
Tw

i
∈E(τ,m(m−1)) e

w
i

Definition 13. If a released job’s L-predecessor has com-
pleted, but its U-predecessor has not, then it is said to be
blocked. Note that the first job of any subtask cannot be
blocked because it has no L-predecessor or U-predecessor.
Blocking is illustrated in Fig. 3.

Lemma 3. LAG(d, tn, S) ≤ U · x+ Γ.

Proof. By summing individual subtask lags at tn, we can
bound LAG(d, tn, S). If tn = 0, then LAG(d, tn, S) = 0,
so assume that tn > 0. Consider the set of subtasks
β = {Twi : ∃Twi,v in d such that Twi,v is pending at t−n . Given
that the instant t−n is non-busy non-displacing, at mostm−1
subtasks in β have jobs executing at t−n . Due to the exis-
tence of blocked jobs, as defined in Def. 13, β may contain
more than m − 1 subtasks. In the worst case, a subtask
in β that is executing at t−n could be a first-stage subtask,
T 1
i , and it may cause jobs of subtasks in {T 2

i , T
3
i , ..., T

m
i }

to be blocked at t−n so that all m subtasks of the corre-
sponding pipeline task have pending jobs at t−n . Since there
are at most m − 1 subtasks in β that are executing at t−n ,
|β| ≤ m(m− 1). If subtask Twi does not have pending jobs
at t−n , then lag(Twi , tn, S) ≤ 0. Therefore, by (3), we have

LAG(d, tn, S) =
∑

Tw
i

:Tw
i,v
∈d

lag(Twi , tn, S)

≤
∑
Tw

i
∈β

lag(Twi , tn, S)

{by Lemma 2}

≤
∑
Tw

i
∈β

(uwi · x+ ewi)

{because |β| ≤ m(m− 1)}
≤ U · x+ Γ.

4

The demand placed by jobs in D after td isB(D, td, S) =∑
Tw

i
∈DH

(ewi − δwi). Thus, by (4) and Lemmas 1 and 3, we
have the following upper bound:

Z ≤ U · x+ Γ +
∑

Tw
i
∈DH

(δwi (1− uwi) + (ewi − δwi))

≤ U · x+ Γ +
∑
Ti∈τ

∑
Tw

i
∈Ti

ewi . (5)

3.2 Lower Bound

In the following lemma, we determine a lower bound on
Z that is necessary for the tardiness of Thl,j to exceed x +
ehl . Let emax be the maximum execution time among all
subtasks.

Lemma 4. If the tardiness of Thl,j exceeds x+ehl , then Z >

(1− smax) ·mx− (m− 1)ehl −memax.

Proof. We prove the contrapositive: we assume that

Z ≤ (1− smax) ·mx− (m− 1)ehl −memax (6)

holds and show that the tardiness of Thl,j cannot exceed x+
ehl . Let ηhl be the amount of work Thl,j performs by time td
in S. Define y as follows.

y = (1− smax) · x+
ηhl
m

(7)

Let W be the amount of work due to jobs in d ∪ D that can
compete with Thl,j after td + y, including the work due for
Thl,j . Let tf = F (Thl,j). We consider two cases.

Case 1. [td, td + y) is a busy interval for d ∪ D. In this
case, by (6) and (7), W = Z −my ≤ (1 − smax) ·mx −
(m − 1)ehl − memax − my = (1 − smax) · mx − (m −
1)ehl −memax − (1− smax) ·mx− ηhl = −(m− 1)ehl −
memax − ηhl < 0. Because GSA is work-conserving (i.e.,
GSA idles a processor only when there is no enabled job),
at least one processor is busy until Thl,j completes. Thus, the
amount of work performed by the system for jobs in d ∪ D
during the interval [td+y, tf) is at least tf − td−y. Hence,
tf − td − y ≤ W < 0. Therefore, the tardiness of Thl,j is

tf − td < y = (1− smax) · x+
ηhl
m
≤ x+ ehl .

Case 2. [td, td + y) is a non-busy interval for d∪D. Let
ts ≥ td be the earliest non-busy instant in [td, td + y). Job
Thl,j cannot start execution before its predecessors complete.
Let tp be the latest finish time of Thl,j’s predecessors. We
consider three subcases.

Subcase 2.1. tp ≤ ts and Thl,j is not preempted before
its completion. In this case, Thl,j can start execution at ts
because ts is non-busy. Thus, because ts < td + y, by (7),
Thl,j finishes by time ts + ehl − ηhl < td + y + ehl − ηhl =

td ts t1

Busy

t2

Busy interval
where gets

preempted

tf

Work performed during [td,td+y) is
at least: my-(m-1)eh

l

y+td

Busy Bu-
sy h

jlT ,
h
jlT ,

h
jlT ,

h
jlT ,

h
jlT ,

Figure 4. Subcase 2.2

td + (1− smax) · x+
ηhl
m

+ ehl − ηhl ≤ td + x+ ehl .

Subcase 2.2 tp ≤ ts and Thl,j is preempted before its
completion. Let t1 > ts be the earliest time when Thl,j is
preempted. As shown in Fig. 4, by the definition of ts and
t1, Thl,j executes continuously within [ts, t1). Because Thl,j
is preempted at t1, t1 is busy with respect to d∪D. Let t2 be
the last time Thl,j resumes execution after being preempted.
(Since a finite number of jobs have higher priority than Thl,j ,
t2 exists.) Within [t1, t2), Thl,j could be preempted multiple
times. All such intervals during which Thl,j is preempted
must be busy in order for the preemption to happen. Given
that tf ≤ t2 + ehl − ηhl , if t2 ≤ y + td, then tf ≤ y +
td + ehl − ηhl , in which case, by (7), the tardiness of Thl,j is
tf − td ≤ y + ehl − ηhl ≤ (1 − smax) · x + ehl ≤ x + ehl ,
as required. If t2 > td + y, then the amount of work due to
d ∪ D performed within [td, td + y) is at least my − (m −
1) · min(ehl , y) because all intervals during which Thl,j is
preempted are busy, and Thl,j can execute for at most ehl time
in [td, y+ td). (Within such intervals, at least one processor
is occupied by Thl,j .) Thus, the amount of work that can
compete with Thl,j after td + y is

W ≤ Z − (my − (m− 1) ·min(ehl , y))
{by (6)}

≤ (1− smax) ·mx− (m− 1)ehl −memax
−(my − (m− 1) ·min(ehl , y))

≤ (1− smax) ·mx−memax −my
{by (7)}

= −memax − ηhl
< 0.

Therefore, the tardiness of Thl,j is tf − td ≤ y + W <

y = (1− smax) · x+
ηhl
m
≤ x+ ehl .

Subcase 2.3: tp > ts. The earliest time Thl,j can com-
mence execution is tp, as shown in Fig. 5. If fewer than
m subtasks have ready jobs in d ∪ D at any time instant
within [ts, tp), then Thl,j will start execution at tp and finish

5

td ts tp

Busy Busy: is
preempted

Busy
due to
preem
ption

Busy
due to
preem
ption

Work performed during
is at least:

)(,
h
jlTS)(,

h
jlTF

h
jlT ,

h
jlT ,

h
jlT ,h

jlT ,

h
l

h
jl

h
jl emTSTFm)1())(()((,, −−−

))(),([,,
h
jl

h
jl TFTS

Figure 5. Subcase 2.3

at tp + ehl . (Note that the number of ready jobs in d ∪ D
after td is non-increasing as time increases.) According to
Property (P), tp ≤ td− pl + x+max{ehl , e

h−1
l } ≤ td + x.

Thus, the tardiness of Thl,j is tf−td = tp+ehl −td ≤ x+ehl .

The remaining possibility (which requires a much
lengthier argument) is: tp > ts and at least m subtasks
have ready jobs in d∪D at each time instant within [ts, tp).
Our initial goal in this case is to prove that the amount
of work performed within [ts, tp) due to d ∪ D is at least
(1− smax) ·m(tp − ts)−memax (see Claim 3 below).

In this case, given that at least m subtasks have ready
jobs in d ∪ D at ts, ts is non-busy due to the existence of
blocked jobs, as defined in Def. 13.

Definition 14. If Twi,v is enabled at time t but does not exe-
cute at t, then it is preempted at t. The total time for which
Twi,v is preempted is called its preemption time.

Definition 15. We define the set of U-jobs of any job
Twi,v to be Tw−1

i,v−1, T
w−2
i,v−2, ..., T

1
i,v−w+1, if v ≥ w. Oth-

erwise, if w > v, then the set of U-jobs of Twi,v is
Tw−1
i,v−1, T

w−2
i,v−2, ..., T

w−v+1
i,1 .

A U-job of Twi,v is a job of the same pipeline task that
may impact the scheduling of Twi,v , directly or indirectly,
through precedence constraints.

Definition 16. If Twi,v is blocked at time t and none of Twi,v’s
U-jobs is preempted at t, then Twi,v is idle blocked at t. The
total time for which Twi,v is idle blocked within a time inter-
val [t, t′) is called its idle blocking time within [t, t′).

Note that, if some of Twi,v’s U-jobs are preempted while
Twi,v is blocked, then there can be no idle processors. Thus,
Twi,v’s idle blocking time upper-bounds the total time for
which some processor is idle while Twi,v is blocked that
could otherwise execute Twi,v if it had not been blocked.

Claim 2. The total idle blocking time of T ki,v is at most
emaxw
i − eki .

Proof. We prove the claim by induction on k. The base
case is trivial: T 1

i,v has no U-predecessor and thus is not
blocked. We shall now prove the induction step, k > 1. For

k
viTJ ,=

)(LJSt =)(' LJFt =

1
2,

1 −
−

− = k
viU TJ 1

1,
−
−= k

viU TJ

k
viL TJ 1, −= …

Figure 6. Upper bounding idle blocking time.

simplicity, let J denote T ki,v , JL denote T ki,v−1, JU denote
T k−1
i,v−1, and J−1

U denote T k−1
i,v−2. Let t = S(JL) and t′ =

F (JL), as shown in Fig. 6. Note that if JL does not exist,
then J is released at time zero and will not be blocked, by
Def. 13. So, assume that JL exists.

Case 1: JU ’s U-predecessor is complete at t (or, it does
not exist). Observe that J−1

U (if it exists) is complete by
time t (otherwise, JL could not execute). Thus, JU is en-
abled at or before t, which implies that all U-jobs of J other
than JU complete at or before t. If JU does not complete
by time t′, then in [t, t′), by our priority definition, JU exe-
cutes whenever JL does, and JL is preempted whenever JU
is. Therefore, after t′, JU has at most max(0, ek−1

i − eki)
computation time left, which is at most emaxw

i − eki . Given
that JU is the only U-job of J that may not have completed
by time t′, by Def. 16, T ki,v’s total idle blocking time is at
most emaxw

i − eki .
Case 2: JU ’s U-predecessor is not complete at t. Then,

JU is blocked at or after t. By the induction hypothesis,
JU idle blocks for at most emaxw

i − ek−1
i time at or af-

ter t. Thus, the amount of work due to JU and its U-
jobs performed in [t, F (JU)) is at most JU ’s idle block-
ing time plus an additional ek−1

i (for JU), which is at most
emaxw
i − ek−1

i + ek−1
i = emaxw

i . During [t, t′], if JL ex-
ecutes, then one of JU ’s U-jobs (if JU is blocked) or JU
(if JU is not blocked) execute as well, because such jobs
have higher priority than JL. Thus, the amount of work due
to JU and its U-jobs performed in [t′, F (JU)) is at most
emaxw
i − eki . Therefore, by Def. 16, the total idle blocking

time for J is at most emaxw
i − eki .

Definition 17. The pre-stage subtasks of any subtask T ki
are T 1

i , T
2
i , ..., T

k
i (note that T ki itself is included).

Let W ′ be the amount of work due to d ∪ D performed
during [ts, tp). Let I be the total idle time in [ts, tp), where
the idle time at each instant is the number of idle processors
at that instant. Then, W ′+I = m · (tp− ts). The following
claim will be used to complete the proof of Subcase 2.3.1.

Claim 3. W ′ ≥ (1− smax) ·m(tp − ts)−memax.

Proof. We prove the claim by constructing m disjoint sets
of jobs, denoted λ(1), λ(2), ..., λ(m), that execute (at least
partially) in [ts, tp). The construction method is described
by the algorithm Schedule-scan in Fig. 7. The jobs added

6

Algorithm 1 Schedule-scan
1: Let λ(1), λ(2), ..., λ(m) be m disjoint job sets, initially empty
2: t := ts
3: Select m jobs, T (1)

1 , T
(2)
1 , ..., T

(m)
1 , that are ready at t

4: for k := 1 to m do
5: qk := 1
6: IT (T

(k)
1) := ts

7: Add T (k)
1 , where 1 ≤ k ≤ m, to set λ(k)

8: end for
9: for t := ts + ε to t−p do

10: for k := 1 to m do
11: if T (k)

qk completes at t then
12: qk := qk + 1
13: Select a job not in λ(1) ∪ ... ∪ λ(m) that is ready at t
14: Let T (k)

qk be this job and add it to λ(k)

15: ET (T
(k)
qk−1) := IT (T

(k)
qk) := t

16: end if
17: end for
18: end for
19: for k = 1 to m do
20: ET (T

(k)
qk) := tp

21: end for

12

Figure 7. Psuedocode of Schedule-scan.

to each λ(k) are selected at lines 3 and 12 in Schedule-
scan. Each selected job exists because at least m jobs in
d ∪ D are ready at each time instant within [ts, tp). For
each selected job T

(k)
i , an initial time, IT (T (k)

i), and an
end time, ET (T (k)

i), are computed. The corresponding in-
tervals [IT (T (k)

i), ET (T (k)
i)), where T (k)

i ∈ λ(k), satisfy∑
T

(k)
i
∈λ(k)(ET (T (k)

i) − IT (T (k)
i)) = tp − ts, as illus-

trated in Fig. 8. We call the interval [IT (T (k)
i), ET (T (k)

i))
the presence interval for T (k)

i .

Note that a job T (k)
i may execute before IT (T (k)

i), and
in addition, if T (k)

i is the last selected job for λ(k), it may
complete execution after ET (T (k)

i). We are primarily in-
terested in the computation T (k)

i performs in its presence
interval. As such intervals do not overlap for different jobs
in λ(k), we assume, without loss of generality, that each job
in λ(k) executes on processor k during its presence interval.

We now upper-bound the idleness within [ts, tp) on pro-
cessor k. Consider a job J in λ(k). We first upper bound the
idle time on processor k within [IT (J), ET (J)), and then
sum over all such intervals as defined in constructing λ(k).

If processor k is idle at any time in [IT (J), E(J)),
then J is blocked at that time. By the discussion fol-
lowing Def. 16, it follows that J’s idle blocking time in
[IT (J), ET (J)), denoted I(J), upper-bounds the actual
idle time on processor k in [IT (J), ET (J)). By Claim 2,
I(J) ≤ emax(J) − e(J), where emax(J) is the maximum
execution time among all pre-stage subtasks of J , and e(J)
is J’s execution time.

T1
i

.
.

.
.

T2
i

T3
i

.
.

.

.Tw
i

)(
1

kT

s
k tTIT =)()(

1

………...

………...

)(
2

kT)(
1

k
qk

T −

)()()(
2

)(
1

kk TITTET =

)(k
q k

T

)()()()(
1

k
q

k
q kk

TITTET =− p
k

q tTET
k

=)()(

Figure 8. Job intervals within [ts, tp] defined
by schedule-scan.

Because each selected job may execute partially in its
presence interval (as discussed above), jobs in λ(k) can be
classified into three sets: (i) IN, which consists of jobs that
execute fully within their presence intervals; (ii) BE (for Be-
fore), which consists of jobs that execute partially in their
presence intervals but complete before tp (and also the end
of their presence intervals); and (iii) AF (for After), which
consists of jobs that execute partially in their presence in-
tervals but complete after tp. Note that AF consists of at
most one job, which is the last selected job in λ(k). In or-
der to upper-bound the idleness within [ts, tp) on processor
k, we prove that for any job J in IN and BE, the idleness
within [IT (J), ET (J)) is at most smax ·(ET (J)−IT (J)),
and for the (at most) one job J in AF, the idleness within
[IT (J), ET (J)) is at most smax·(ET (J)−IT (J))+emax.
Since each job in λ(k) belongs to one of the above three sets,
we consider three cases.

Case 1: J ∈ IN. If J is idle blocked at t ∈
[IT (J), ET (J)), then by Def. 16, J and J’s U-jobs are
not preempted at t. Similarly, if J or one of J’s U-
jobs is preempted at t, then J is not idle blocked at t.
Thus, because J executes fully during its presence inter-
val, ET (J) − IT (J) = I(J) + ∆(J) + e(J), where
I(J) is J’s idle blocking time in [IT (J), ET (J)), ∆(J)
is the total preemption time of J and J’s U-jobs within
[IT (J), ET (J)), and e(J) is J’s execution time. Thus,

I(J) =
I(J)

ET (J)− IT (J)
· (ET (J)− IT (J))

=
I(J)

I(J) + ∆(J) + e(J)
· (ET (J)− IT (J))

≤ I(J)
I(J) + e(J)

· (ET (J)− IT (J))

{by Claim2}

≤ emax(J) − e(J)
emax(J)

· (ET (J)− IT (J))

≤ smax · (ET (J)− IT (J)).

Case 2: J ∈ BE. In this case J starts execution be-
fore IT (J). Thus, J either executes or is preempted during
[IT (J), ET (J)]. Therefore, I(J) = 0.

Case 3: J ∈ AF. In this case J may not have completed
execution at tp, or may not even start execution at tp. We
prove that I(J) ≤ smax · (ET (J) − IT (J)) + emax. Let

7

e′(J) denote the amount of execution J performs within
[IT (J), ET (J)). Thus, ET (J)−IT (J) = I(J)+∆(J)+
e′(J), where I(J) and ∆(J) are as defined in Case 1. We
consider two subcases.

Subcase 3.1: ∆(J) ≥ e(J) − e′(J). In this case,
ET (J)−IT (J) = I(J)+∆(J)+e′(J) ≥ I(J)+(e(J)−
e′(J)) + e′(J) = I(J) + e(J). Thus, we have

I(J) =
I(J)

ET (J)− IT (J)
· (ET (J)− IT (J))

≤ I(J)
I(J) + e(J)

· (ET (J)− IT (J))

{reasoning as in Case 1}
≤ smax · (ET (J)− IT (J))
< smax · (ET (J)− IT (J)) + emax.

Subcase 3.2: ∆(J) < e(J) − e′(J). In this case, given
that I(J) ≤ emax(J)−e(J), by Claim 2, we haveET (J)−
IT (J) = I(J) + ∆(J) + e′(J) < (emax(J) − e(J)) +
(e(J)− e′(J)) + e′(J) = emax(J) ≤ emax. Thus, we have
I(J) ≤ ET (J) − IT (J) < emax ≤ smax · (ET (J) −
IT (J)) + emax.

Because there is at most one job in AF, the idleness
within [ts, tp) on processor k, denoted Ik, satisfies

Ik ≤
∑
J∈λ(k)

smax · (ET (J)− IT (J)) + emax

= smax · (tp − ts) + emax

Given that there are m λ sets, the idleness within [ts, tp)
on allm processors, I , is at mostm·max{Ik} ≤ m·(smax ·
(tp − ts) + emax) = smax ·m(tp − ts) + memax. Thus,
W ′ = m(tp− ts)− I ≥ (1− smax) ·m(tp− ts)−memax.
This completes the proof of Claim 3.

We now complete the proof of Subcase 3.2 (and thereby
Lemma 4).

As shown in Fig. 5, [td, ts) and [tp, S(Thl,j)) are busy
for d ∪ D. By Claim 3, the amount of work due to d ∪ D
performed in [ts, tp) is at least (1−smax) ·m(tp− ts)−m ·
emax. Also, the amount of work due to d ∪ D performed in
[S(Thl,j), F (Thl,j)) is at least m(F (Thl,j)− S(Thl,j))− (m−
1)ehl (see Subcase 2.2). Thus, we have

Z ≥ m(ts − td) + (1− smax) ·m(tp − ts)
−m · emax +m(S(Thl,j)− tp)
+ m(F (Thl,j)− S(Thl,j))− (m− 1)ehl .

By (6), we therefore have

(1− smax) ·mx− (m− 1) · ehl −memax
≥ m(ts − td) + (1− smax) ·m(tp − ts)
−m · emax +m(S(Thl,j)− tp)
+ m(F (Thl,j)− S(Thl,j))− (m− 1)ehl ,

which gives,

F (Thl,j)− td ≤ (1− smax) · x+ smax · (tp − ts).

According to Property (P), tp − ts ≤ tp − td ≤ x − pl +
max{ehl , e

h−1
l } ≤ x. Therefore, F (Thl,j)−td ≤ (1−smax)·

x+ smax · x < x+ ehl .

3.3 Determining x

Setting the upper bound on LAG(d, td, S)+B(D, td, S)
in (5) to be at most the lower bound in Lemma 4 will ensure
that the tardiness of Thl,j is at most x+ehl . By solving for the
minimum x that satisfies the resulting inequality, we obtain
a value of x that is sufficient for ensuring a tardiness of at
most x+ ehl . By (5) and Lemma 4, this inequality is

U · x+ Γ +
∑
Ti∈τ

∑
Tk

i
∈Ti

eki

≤ (1− smax) ·mx− (m− 1)ehl −memax.

Solving for x, we have

x ≥
Γ +

∑
Ti∈τ

∑
Tk

i
∈Ti

eki + (m− 1)ehl +memax

(1− smax) ·m− U
.

(8)
If x equals the right-hand side of (8), then the tardiness

of Thl,j will not exceed x + ehl . A value for x that is
independent of the parameters of Thl can be obtained by
replacing (m− 1)ehl with maxl,h((m− 1)ehl) in (8).

Theorem 1. With x as defined above, the tardiness for any
subtask Thl scheduled under GSA is at most x+ehl , provided
U < (1−smax)·m, where U is sum of them(m−1) largest
subtask utilizations.

For GFIFO, the bound in Theorem 1 can be improved
slightly.

Corollary 1. The tardiness for any subtask Thl sched-
uled under GFIFO is at most x + ehl , where x =
Γ + (m− 1)ehl +memax +

∑
pk

i
>ph

l
eki

(1− smax) ·m− U
, provided U <

(1− smax) ·m.

Proof. Under GFIFO, DH consists of carry-in jobs that
are released before rhl,j and have deadlines later than td,
which implies that these jobs have periods greater than
pl. Thus, an upper bound on the LAG possible for τ at
td under GFIFO becomes LAG (d, td, S) +B(D, td, S) ≤
U ·x+Γ+

∑
pk

i
>ph

l
eki . Using this upper bound to solve for

x, the corollary follows.

For GEDF, the bound in Corollary 1 can be further im-
proved.

8

Corollary 2. The tardiness for any subtask Thl sched-
uled under GEDF is at most x + ehl , where x =
Γ + (m− 1)ehl +memax

(1− smax) ·m− U
, provided U < (1− smax) ·m.

Proof. Under GEDF, the demand placed by jobs in D af-
ter td is zero because D = ∅. Thus, an upper bound
on the LAG possible for τ at td under GEDF becomes
LAG (d, td, S) +B(D, td, S) ≤ U ·x+Γ.Using this upper
bound to solve for x, the corollary follows.

Definition 18. A pipeline task Tl with h stages is monoton-
ically increasing if (∀j : 1 ≤ j < h :: ejl ≤ e

j+1
l).

Corollary 3. If all pipeline tasks are monotonically in-
creasing, then the tardiness for any subtask Thl sched-
uled under GSA is at most x + ehl , where x =
Γ +

∑
Ti∈τ

∑
Tk

i
∈Ti

eki + (m− 1)ehl +memax

m− U
. In this

case, because U ≤ Usum, we only need to constrain total
utilization by Usum < m.

Proof. By Defs. 10 and 18, smax = 0 in this case.

Corollary 4. For two-processor systems, the
tardiness for any subtask Thl scheduled un-
der GSA is at most x + ehl , where x =
Γ +

∑
Ti∈τ

∑
Tk

i
∈Ti

eki + (m− 1)ehl +memax

m− U
(again,

only Usum < m is required).

Proof. If m = 2, then the lower bound as stated in
Lemma 4 becomes mx − (m − 1)ehl − memax. In this
case, Lemma 4 holds trivially because [td, td + y) is a busy
interval for d∪D (details are left to the reader). By solving
x using this lower bound, the corollary holds.

3.4 A Counterexample

Previous research has shown that every periodic task sys-
tem under GFIFO or GEDF scheduling has bounded tardi-
ness [5]. We show that it is possible for a pipeline task sys-
tem to have unbounded tardiness under GFIFO or GEDF
scheduling, if the utilization cap in Theorem 1 is violated.

Consider a task set τ , to be scheduled under GFIFO or
GEDF on three processors, that consists of two two-stage
pipeline tasks: T 1

1 = (9, 10), T 2
1 = (7, 10), T 1

2 = (5, 5),
and T 2

2 = (2, 5). For this task system, smax = 0.6 and
U = 3, which violates the condition stated in Theorem 1.
Fig. 9 shows the tardiness of both pipeline tasks scheduled
under GFIFO by job instance. These graphs were obtained
by simulating the execution of this system. We have veri-
fied analytically that the tardiness growth rate seen in these
graphs continues indefinitely (this is also true for GEDF).

Tardiness for T2

0 200 400 600 800 1000 Number of
job instances

Tardiness

100

200

300

400

500

600

700

800

900

1000 Tardiness for T1

Figure 9. Tardiness growth rates for coun-
terexample under GFIFO.

This counterexample shows that, on three or more pro-
cessors, overall utilization must (generally) be constrained.
As seen in Corollary 4, on two-processor systems, only
Usum < m is required.

3.5 Experimental Evaluation

In this section, we describe the results of two sets of ex-
periments conducted using randomly-generated task sets to
evaluate the accuracy and the applicability of the tardiness
bounds for GFIFO and GEDF derived in Sec. 3.3.

The goal of the first set of experiments is to exam-
ine how restrictive the utilization cap stated in Theorem 1
is. Task sets were generated as follows. The maximum
per-subtask utilization umax was chosen uniformly over
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. smax
varied over {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and was determined
by setting emax = 10, where emax is the maximum per-
subtask execution cost. We selected each subtask’s execu-
tion cost uniformly over [µ · emax, emax], where µ is a co-
efficient with range {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For each
combination of parameters (umax, smax), 1,000 task sets
were generated for a four-processor system.

As seen in Fig. 10, when umax < 0.3, all task sets have
bounded tardiness. This is because when per-subtask uti-
lizations are not high, U becomes small even if total uti-
lization is m. When umax exceeds 0.5 (note that 0.5 is a
very high per-subtask utilization, given that each pipeline
task may contain four subtasks), approximately 80% of all
task sets are still schedulable with bounded tardiness if
smax < 0.5. Even when smax = 0.6 and umax = 0.5,
approximately 65% of all task sets have bounded tardiness.

The second set of experiments was conducted to com-
pare computed and observed tardiness for both ordinary
and pipelined task systems under both GFIFO and GEDF.
We used the same method as used in the first experiment
to generate task systems. (By simply removing all prece-
dence constraints, we obtain ordinary task systems.) 1,000

9

m=4 1000 task sets
u_max 0.05 0.1 0.15 0.2 0.25 0.3 0.35_

s_max
0.1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
0.2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 98.1%
0.3 100.0% 100.0% 100.0% 100.0% 100.0% 99.3% 96.2%
0.4 100.0% 100.0% 100.0% 100.0% 100.0% 96.4% 93.3%
0.5 100.0% 100.0% 100.0% 100.0% 94.3% 89.0% 85.1%
0 6 100 0% 100 0% 100 0% 99 3% 93 4% 87 2% 77 2%0.6 100.0% 100.0% 100.0% 99.3% 93.4% 87.2% 77.2%

90%

100%

70%

80%

90%
s_max=0.1
s_max=0.2
s_max=0.3
s_max=0.4
s_max=0.5

Sc
he

du
la
bi
lit
y

60%

0 0.1 0.2 0.3 0.4 0.5

s_max=0.6

u_max

Figure 10. Applicability.

task sets were generated for a four-processor system with
umax = 0.1 and µ = 0.8. When generating task sets, we
dropped any task set that violates the condition as stated in
Thereom 1 (and those for which bounded tardiness cannot
be guaranteed). As shown in Fig. 11, the tardiness bound
of pipeline task systems scheduled under GEDF (denoted
GEDF-P) or GFIFO (denoted GFIFO-P) is much higher
than that of ordinary task systems. This is due to the de-
nominator (1 − smax)m − U in the derived bound, which
is smaller than that appearing in the bound for ordinary task
systems [4, 5]. However, the observed tardiness of pipeline
task systems under GEDF or GFIFO is fairly close to that
of ordinary task systems. These results (which for lack of
space are all that we can present) suggest that GEDF and
GFIFO are reasonable global scheduling options to consider
for pipeline task systems.

4 Conclusion

We have derived a tardiness bound that can be applied
to globally-scheduled periodic pipeline task systems. This
bound is applicable to a class of global algorithms that
includes GEDF and GFIFO. The derived tardiness bound
requires overall utilization to be constrained in some sys-
tems. However, only Usum < m is required for any two-
processor system or for any system where all pipeline tasks
are monotonically increasing. For other systems, utilization
constraints are fundamental, as we have shown via a coun-
terexample. Nonetheless, for these systems, the required
constraint is quite liberal.

The results of this paper are not applicable to sporadic
task systems. Our tardiness proof relies crucially on the
tie-breaking rule we assumed concerning subtasks within
the same pipeline task. In a sporadic task system, job re-
leases can be slightly jittered to produce a schedule that is
“almost” periodic in which no two jobs have the same pri-
ority. In such cases, tie-breaking rules are of no utility. By
exploiting this fact, we have been able to derive a number
of counterexamples in which tardiness grows unboundedly
in sporadic systems. However, in recent work [10], we have

m=4 u_max=0.1 s_max=0.1 e_max=10

Thus, around 40 subtasks are generated, with execution cost around 9.5, utilization around 0.1.
U should be around 12*0.1=1.2, and (1‐s_max)*m=3.6, thus the denominator should be around: 3.6‐1.

here is the randomly generated execution cost for 40 subtasks:
3 9 1.0% 2.0% 5.0% 4.0% 7.0% 6.0% 8.0%
1 4 1.0% 1.0% 8.0% 9.0% 4.0% 9.0% 4.0%
3 4 5 0% 6 0% 8 0% 2 0% 5 0% 2 0% 7 0%3 4 5.0% 6.0% 8.0% 2.0% 5.0% 2.0% 7.0%
8 1 5.0% 8.0% 1.0% 1.0% 7.0% 7.0% 2.0%

80

100

Tardiness bound

b d d

40

60

Observed tardiness

A
vg
.T
ar
di
ne

ss

0

20

GEDF‐P GFIFO‐P GEDF GFIFO

Figure 11. Tardiness.

shown that such systems can be dealt with by using periodic
server tasks to service sporadic workflows.

References

[1] J. Carpenter, S. Funk, P. Holman, J. H. Anderson, and
S. Baruah. Handbook on Scheduling Algorithms, Methods,
and Models. Chapman Hall/CRC, Boca, 2004.

[2] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate progress: A notion of fairness in resource al-
location. In Algorithmica, Vol.15, pp. 600-625, 1996.

[3] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-
time scheduling algorithm for multiprocessors. In Proc. of
the 27th IEEE Int’l Real-Time Systems Symp., pp. 101-110,
2006.

[4] U. C. Devi and J. H. Anderson. Tardiness bounds un-
der global edf scheduling on a multiprocessor. In Proc. of
the 26th IEEE Int’l Real-Time Systems Symp., pp. 330-341,
2005.

[5] H. Leontyev and J. H. Anderson. Tardiness bounds for fifo
scheduling on multiprocessors. In Proc. of the 19th Euromi-
cro Conf. on Real-Time Systems, pp. 71-80, 2007.

[6] P. Jayachandran and T. Abdelzaher. A delay composition the-
orem for real-time pipelines. In Proc. of the 19th Euromicro
Conf. on Real-Time Systems, pp. 29-38, 2007.

[7] P. Jayachandran and T. Abdelzaher. Transforming distributed
acyclic systems into equivalent uniprocessors under preemp-
tive and non-preemptive scheduling. In Proc. of the 20th
Euromicro Conf. on Real-Time Systems, pp. 233-242, 2008.

[8] J.C. Palencia and M.G. Harbour. Offset-based response time
analysis of distributed systems scheduled under edf. In Proc.
of the 15th Euromicro Conf. on Real-Time Systems, pp. 3-12,
2003.

[9] R. Pellizzoni and G. Lipari. Improved schedulability analysis
of real-time transactions with earliest deadline scheduling.
In Proc. of the 11th IEEE Int’l Real Time and Embedded
Technology and Applications Symp., pp. 66-75, 2005.

[10] C. Liu and J. H. Anderson. Supporting sporadic pipelined
tasks with early-releasing in soft real-time multiprocessor
systems. In Submission. Available at:http://www.cs.unc.edu/
∼anderson/papers.

10

5 Appendix

Let A(χ, t1, t2, S) denote the total time allocated to all
jobs in the job set χ in [t1, t2) in S.

Lemma 1. LAG(d, td, S) ≤ LAG(d, tn, S) +∑
Tw

k
∈DH

δwk (1− uwk), where t ∈ [0, td].

Proof. By (3), we have

LAG (d, td, S) ≤ LAG(d, tn, S) +A (d, tn, td, PS)
−A (d, tn, td, S) . (9)

We split [tn, td) into z non-overlapping intervals
[tpi , tqi), 1 ≤ i ≤ z such that tn = tp1 , tqi−1 = tpi ,
and tqz

= td. Each interval [tpi
, tqi

) is either busy or non-
busy displacing for d, by the selection of tn. We assume
that the intervals are defined so that for each non-busy
displacing interval [tpi , tqi), if a subtask in DH executes in
[tpi , tqi) then it executes continuously throughout [tpi , tqi);
we let αi denote the set of such subtasks.

We now bound the difference between the work per-
formed in the PS schedule and the GSA schedule S across
each of these intervals [tpi

, tqi
). The sum of these bounds

will give us a bound on the total allocation difference
throughout [tn, td). Depending on the nature of the interval
[tpi , tqi), two cases are possible.

Case 1. [tpi , tqi) is busy. Since in S all processors
are occupied by jobs in d, we have A(d, tpi

, tqi
, PS) −

A(d, tpi
, tqi

, S) ≤ Usum(tqi
, tpi

)−m(tqi
− tpi

) ≤ 0.

Case 2. [tpi
, tqi

) is non-busy displacing. The cumula-
tive utilization of all subtasks Twk ∈ αi is

∑
Tw

k
∈αi

uwk . The
carry-in jobs of these subtasks do not belong to d, by the
definition of d. Therefore, the allocation of jobs in d dur-
ing [tpi

, tqi
) in PS is A(d, tpi

, tqi
, PS) ≤ (tqi

− tpi
)(m−∑

Tw
k
∈αi

uwk). All processors are occupied at every time in-
stant in the interval [tpi , tqi), because it is displacing. Thus,
A(d, tpi

, tqi
, S) = (tqi

− tpi
)(m − |αi|). Therefore, the

allocation difference for jobs in d thoughout the interval is

A(d, tpi
, tqi

, PS)−A(d, tpi
, tqi

, S)

≤ (tqi − tpi) ((m−
∑

Tw
k
∈αi

uwk)− (m− |αi|))

= (tqi
− tpi

)
∑

Tw
k
∈αi

(1− uwk) . (10)

For each subtask Twk inDH , the sum of the lengths of the
intervals [tpi

, tqi
) in which the carry-in job of Twk executes

continuously is at most δwk . Thus, summing the allocation
differences for all the intervals [tpi , tqi) given by (10), we

have

A(d, tn, td, PS)−A(d, tn, td, S)

≤
z∑
i=1

∑
Tw

k
∈DH

(tqi
− tpi

)(1− uwk)

≤
∑

Tw
k
∈DH

δwk (1− uwk). (11)

Setting this value into (9), we get LAG(d, td, S) ≤
LAG(d, tn, S) + A(d, tn, td, PS) − A(d, tn, td, S) ≤
LAG(d, tn, S) +

∑
Tw

k
∈DH

δwk (1− uwk).

Lemma 2. lag(Twk , t, S) ≤ uwk ·x+ewk for any subtask Twk
and t ∈ [0, td].

Proof. Let dwk,j be the deadline of the earliest pending job of
Twk , Twk,j , in the schedule S at time t. If such a job does not
exist, then lag(Twk , t, S) ≤ 0, and the lemma holds trivially.
Let γwk be the amount of work Twk,j performs before t.

By the selection of Twk,j , we have

lag(Twk , t, S) =
∑
h≥j

lag(Twk,h, t, S)

=
∑
h≥j

(A(Twk,h, 0, t, PS)−A(Twk,h, 0, t, S))

Given that no job executes before its release time,
A(Twk,h, 0, t, S) = A(Twk,h, r

w
k,h, t, S). Thus,

lag(Thk , t, S) = A(Twk,j , r
w
k,h, t, PS)−A(Twk,j , r

w
k,j , t, S)

+
∑
h>j

(A(Twk,h, r
w
k,h, t, PS)

−A(Twk,h, r
w
k,h, t, S)). (12)

By the definition of PS, A(Twk,j , r
w
k,h, t, PS) ≤ ewk ,

and
∑
h>j A(Twk,h, r

w
k,h, t, PS) ≤ uwk · (t − dwk,j). By

the selection of Twk,j , A(Twk,j , r
w
k,j , t, S) = γwk , and∑

h>j A(Twk,h, r
w
k,h, t, S) = 0. By setting these values into

(12), we have

lag(Twk , t, S) ≤ ewk − γwk + uwk · (t− dwk,j). (13)

There are two cases to consider.

Case 1. dwk,j ≥ t. In this case, (13) be-
comes lag(Twk , t, S) ≤ ewk − γwk , which implies
lag(Twk , t, S) ≤ uwk · x+ ewk .

Case 2. dwk,j < t. By Property (P), Twk,j has tardiness
at most x + ewk , so t + ewk − γwk ≤ dwk,j + x + ewk . Thus,
t − dwk,j ≤ x + γwk . Setting this value into (13), we have
lag(Twk , t, S) ≤ uwk · x+ ewk .

11

