
On the Design and Implementation of a Cache-Aware Multicore
Real-Time Scheduler∗

John M. Calandrino and James H. Anderson
Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

Multicore architectures, which have multiple processing
units on a single chip, have been adopted by most chip man-
ufacturers. Most such chips contain on-chip caches that are
shared by some or all of the cores on the chip. Prior work has
presented methods for improving the performance of such
caches when scheduling soft real-time workloads. Given
these methods, two additional research issues arise: (1) how
to automatically profile the cache behavior of real-time tasks
within the scheduler; and (2) how to implement scheduling
methods efficiently, so that scheduling overheads do not off-
set any cache-related performance gains. This paper ad-
dresses these two issues in an implementation of a cache-
aware soft real-time scheduler within Linux, and shows that
the use of this scheduler can result in performance improve-
ments that directly result from a decrease in shared cache
miss rates.

1 Introduction

Multicore architectures, which contain multiple processing
cores on a single chip, have been adopted by most chip man-
ufacturers. Dual-core chips are commonplace, and numer-
ous four- and eight-core options exist. In the coming years,
per-chip core counts will continue to increase—for example,
Sun plans to ship its 16-core “Rock” processor by the end of
2009 [24], and Intel has claimed that it will release 80-core
chips as early as 2013 [1]. The shift to multicore technolo-
gies is a watershed event, as it fundamentally changes the
“standard” computing platform in many settings to be a mul-
tiprocessor.

In most multicore platforms, different cores share on-
chip caches. Without effective management by the sched-
uler, such caches can cause thrashing that severely degrades
system performance. In fact, the issue of efficient cache
usage on multicore platforms is one of the most impor-
tant problems with which chip makers are currently grap-
pling. In this paper, we address this issue in the context
of soft real-time systems implemented on a multicore plat-
form where all cores are symmetric and share the lowest-

∗Work supported by IBM, Intel, and Sun Corps., NSF grants CNS
0834270, CNS 0834132, and CNS 0615197, and ARO grant W911NF-06-1-
0425. The first author was also supported by a University of North Carolina
Dissertation Completion Fellowship.

Core 1

L1

L2

L1

Core M

Figure 1: Multicore architecture.

level cache, as shown in
Fig. 1, where all cores
share an L2 cache. This
architecture is fairly
common—the Sun Ul-
traSPARC T1 and T2
processors contain L2
caches shared by eight
cores, and the recently-
released Intel Core i7 chip contains an L3 cache shared by
four cores (all higher-level caches in both chips are per-core
and therefore not shared).

In this paper, we assume that systems are organized into
multithreaded tasks (MTTs), where each MTT consists of
periodic (sequential) tasks, which may have different execu-
tion costs but a common period. MTTs are useful for spec-
ifying groups of cooperating tasks that reference a common
set of data. (Note that an ordinary periodic task is just a
“single-threaded” MTT.) MTTs arise naturally in many set-
tings. For example, multiple threads could perform different
functions on the same video frame with a common period im-
plied by the desired frame rate. Abstractions such as MTTs
allow concurrency within task models that typically handle
only the sequential execution of tasks. This is important be-
cause as per-chip core counts increase, the processing power
of individual cores is likely to remain the same (or decrease
if cores become simpler); thus, MTTs should be useful for
achieving performance gains.

In prior work [7], we explored methods for improving the
performance of shared caches when scheduling soft real-time
workloads by influencing co-scheduling choices. Namely,
co-scheduling is encouraged for tasks within the same MTT,
and discouraged for tasks (within different MTTs) when it
would cause shared cache thrashing. Co-scheduling is in-
fluenced through job promotions, wherein a job is given a
temporary increase in priority by moving its deadline to the
current time. As determining how and when to promote jobs
to improve cache performance is not straightforward, a large
number of heuristics, representing different sets of schedul-
ing policies, were evaluated in [7] within an architecture sim-
ulator. One of these heuristics was found to be particularly
effective at improving system performance for a wide variety
of task sets. This heuristic is of primary concern to us in this
paper, and is discussed in detail in Sec. 3.

Contributions. This paper complements the work in [7]
by addressing two issues: (1) how to automatically pro-
file the cache behavior of real-time tasks within the sched-
uler, so that offline profiling tools are not required; and (2)
how to implement the aforementioned heuristic efficiently,
so that scheduling overheads do not offset any cache-related
performance gains. We address these issues in an imple-
mentation of a cache-aware scheduler within Linux, which
allows the heuristic to work well in practice. Our sched-
uler often achieves substantially better cache performance
than global earliest-deadline-first (G-EDF) scheduling, and
this translates into better overall system performance. Note
that partitioned scheduling approaches, wherein tasks are
statically assigned to processors, and scheduling is per-
formed independently at each processor, are not considered
in this paper—achieving system-wide control over a global
resource (such as a shared cache) is quite difficult when each
processor is scheduled independently.

Our results, presented in Sec. 4, suggest that cache per-
formance should be treated as a first-class concern when de-
signing both real-time scheduling algorithms for multicore
platforms with shared caches, and the multicore hardware
on which such algorithms run. Cache performance improve-
ments may reduce task execution costs or allow more use-
ful computation to be performed. This could be beneficial
in many settings. For example, within a multimedia server
that encodes live media streams, higher-quality video, or a
greater selection of videos, could be supported without up-
grading hardware. Alternately, the cost of specially-designed
hardware (e.g., within video game consoles) could be re-
duced, as a smaller cache or a less powerful processor may
be acceptable when they are better utilized. As interest in
providing real-time support within general-purpose operat-
ing systems (e.g., Linux) increases, and multicore platforms
become increasingly ubiquitous within many of the hardware
domains on which such operating systems run, a state-of-
the-art real-time scheduler will have to address the needs of
multicore platforms to remain relevant.

Related work. Prior work has explored issues related to
cache-aware real-time scheduling and WCET analysis (e.g.,
in [10, 11, 3, 15, 20, 21, 22, 19]). None of this work ad-
dresses the question of how to efficiently profile the cache
behavior of real-time tasks during execution. Also closely
related is work on symbiotic scheduling [14, 18, 23], which
concerns scheduling when multiple hardware threads con-
tend for shared resources within the same core; however,
such work lacks analysis for validating real-time constraints.

Organization. The rest of this paper is organized as fol-
lows. Sec. 2 presents an overview of our task model and
other background information. Sec. 3 introduces our cache
profiler and the details of our implementation, and the heuris-
tic from [7] considered herein. Sec. 4 presents an evalua-

tion of our scheduler in terms of cache performance, pro-
filer accuracy, and overheads for a variety of workloads, and
presents a study that explores multimedia application perfor-
mance. Sec. 5 concludes.

2 Background
In this section, we briefly introduce our task model as related
to MTTs and other background information. For simplicity,
we consider only periodic task systems, though our results
apply to sporadic task systems as well.∗

In a periodic task system τ , each task T releases succes-
sive jobs T1, T2, . . ., and is characterized by a worst-case per-
job execution cost e(T) and a period p(T). Every p(T) time
units, starting at time 0, T releases a new job with an execu-
tion cost of e(T) time units. In this paper, all task periods are
an integral multiple of the quantum length, as job releases are
handled by our scheduler at quantum boundaries. The quan-
tity e(T)/p(T) is called the utilization of T , denoted u(T).

The deadline d(Tk) of a job Tk coincides with the release
time of job Tk+1. If job Tk completes its execution after time
d(Tk), then it is tardy. For some scheduling algorithms, tar-
diness may be bounded by some amount B, meaning that any
job Tk will complete execution no later than time d(Tk)+B.

Our goal is to schedule on M processors (or cores) a set
of periodic tasks of total utilization at most M , where some
tasks correspond to threads within an MTT. We assume that
each MTT has at most M threads, the maximum parallelism
achievable on M cores.

G-EDF scheduling. In this paper, G-EDF scheduling is
used as a baseline for evaluating the performance of our
cache-aware scheduler in Sec. 4. In G-EDF scheduling, jobs
are scheduled in order of increasing deadlines, with ties bro-
ken arbitrarily. We use G-EDF since prior work has shown
that it results in better schedulability for soft real-time sys-
tems than other approaches [8]. G-EDF is not optimal, so
tasks may miss their deadlines; however, deadline tardiness
under G-EDF is bounded [9].

Tardiness bounds under global scheduling. In recent
work [17], the G-EDF tardiness-bound proof in [9] was ex-
tended to apply to a wide variety of global scheduling algo-
rithms. In this work, priority points are assigned to every eli-
gible job, with earlier priority points denoting higher priority.
For example, under G-EDF, the priority point of each job is
its deadline. If the priority point of every job is within a win-
dow bounded by its release time and deadline, then job prior-
ities are window-constrained. It is shown in [17] that under
any global scheduling algorithm with window-constrained
priorities, deadline tardiness is bounded provided the system
is not over-utilized, even if the priority point of a job moves

∗In sporadic task systems, task periods within an MTT must coincide.
We consider this to be reasonable since we intend an MTT to represent a
single recurrent real-time computation.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0 1 2 4 5 6 7 83
(a)

768K
(e(T),p(T)) = (1,2)

(e(U),p(U)) = (1,4)
512K

W

512K

MTT:
(e(W),p(W)) = (2,8)

768K

T

U

V

X

(e(V),p(V)) = (1,4)

(e(X),p(X)) = (2,8)

0 1 2 4 5 6 7 83
(b)

T

U

V

W

X

1 2 43

2

2

1

1

1

1 1

1

1

21 3 4

2

2

1

1

Figure 2: Two-core schedules for a set of five tasks. Tasks are
scheduled using (a) G-EDF and (b) the heuristic studied herein.
WSSs are shown along with task execution costs and periods.
Thrashing occurs during “hatched” quanta, assuming a shared
cache size of 1 MB. The number within each scheduled piece of
work denotes the corresponding job index.

arbitrarily within its window. (Such a guarantee is not possi-
ble under partitioned scheduling.) This result guarantees that
the heuristic considered herein, which promotes jobs to influ-
ence co-scheduling, ensures bounded deadline tardiness.

3 Cache-Aware Scheduler
In this section, we describe each component of our cache-
aware real-time scheduler. Our target operating system is
Linux, as it has become increasingly popular for supporting
soft real-time applications. Our implementation efforts were
conducted within LITMUSRT [8], a Linux-based testbed
produced by our research group at UNC that supports multi-
processor real-time scheduling policies within the Linux op-
erating system. The most recent publicly-available version is
a patch against Linux 2.6.24 [25].

The rest of this section is organized as follows. Sec. 3.1
presents an overview of the scheduling heuristic that we im-
plement in this paper, including a discussion of its benefits
over other heuristics from [7]. Sec. 3.2 presents our cache
profiler, which collects data about tasks during execution.

3.1 Scheduling Heuristic

As stated earlier, one of the heuristics in [7] was found to
improve system performance over G-EDF for a wide vari-
ety of task sets, and it is this heuristic that we implement
in our scheduler. We introduce this heuristic with an exam-
ple, shown in Fig. 2—the schedule generated by the heuris-
tic is shown in inset (b). In the heuristic, cache impact is
determined by examining per-job working set sizes (WSSs),
which are specified for each MTT. The per-job WSS of an
MTT indicates the amount of memory referenced by all tasks
of that MTT while executing one “job” of the MTT, where
the ith job of an MTT consists of the ith jobs of all tasks in

the MTT. Shared cache thrashing is assumed to occur dur-
ing a quantum if the sum of the WSSs of all MTTs with jobs
scheduled in that quantum exceeds the shared cache size. For
the time being, we simply assume that the heuristic has ac-
curate WSS information—the profiler described in Sec. 3.2
is responsible for providing this information. In the example
considered here, tasks W and X belong to the same MTT, so
for every i, jobs Wi and Xi reference the same working set
and would benefit from being co-scheduled. Also, a shared
cache size of 1 MB is assumed.

Cache performance is improved by influencing co-
scheduling choices through job promotions that move the
deadline of a job to the current time—these promotions are
indicated by black triangles in Fig. 2(b). The heuristic makes
scheduling decisions iteratively over all cores at every quan-
tum boundary—even when jobs are promoted, jobs that have
already been scheduled are unaffected. Decisions are made
by promoting the eligible job with the smallest WSS, as indi-
cated by the WSS of its respective MTT, and then scheduling
jobs in EDF order. This is first shown at time 0 in Fig. 2(b),
where jobs U1 and V1, each with a 512K WSS, are promoted
and scheduled.

At time 1, job T1 is scheduled. If we chose to also sched-
ule either job W1 or X1, then thrashing would occur. We
avoid thrashing in this case by idling the second core, which
reduces parallelism. The number of times that we can safely
idle cores (so that bounded deadline tardiness can be ensured
by applying the results in [17]) is a function of the total uti-
lization of the task set. At time 2, job T2 is scheduled, and
the second core is idled again. At time 3, jobs W1 and X1,
both belonging to the same MTT, are scheduled. Since they
share the same working set, thrashing does not occur.

Cache affinity. At time 4 in Fig. 2(b), jobs W1 and X1 are
again scheduled, even though jobs U2 and V2, which have
smaller WSSs, were released. This demonstrates a change
that we made to the heuristic from [7]—a job remains pro-
moted until it has finished execution, rather than being imme-
diately demoted when it is scheduled. This policy maintains
cache affinity by strongly encouraging both non-preemptive
execution and MTT co-scheduling. Only tardy jobs can
cause preemptions or interfere with co-scheduling. This is
necessary to ensure bounded deadline tardiness. This change
also makes it easier to implement the heuristic efficiently.

Tardy jobs. At time 5, jobs U2 and V2 are promoted and
scheduled, and job T3 misses its deadline as a result. Jobs
are only scheduled using their deadlines when they become
tardy. Tardy jobs are not promoted, but always have priority
over all non-tardy jobs, including promoted jobs. This en-
sures that tardy jobs are scheduled first, in EDF order, and
non-tardy jobs are then scheduled in the order that they are
promoted (i.e., smallest WSS first). Our scheduler ensures
bounded tardiness for any task set with utilization at most

the number of cores—the same guarantee is provided under
G-EDF. At time 6, the tardy job T3 is scheduled, and would
have had priority over any promoted job at that time, had
such a job existed.

Finally, at time 7, the remaining job T4 is scheduled. We
can see from comparing insets (a) and (b) in Fig. 2 that the
heuristic results in improved cache performance—thrashing
occurs 62.5% of the time under G-EDF, and is eliminated
entirely by the heuristic.

Implementation efficiency. Interestingly, this heuristic is
one of the easiest to implement efficiently in practice, by
maintaining two separate run queues for eligible jobs: one
that is EDF-ordered, and a promotion queue in which eli-
gible jobs are arranged in the order that they would be pro-
moted. Jobs in the promotion queue are ordered from small-
est to largest WSS, with promoted jobs remaining “pinned”
at the front of the queue regardless of their WSS and future
job releases. The heuristic schedules the job at the head of
the EDF-ordered queue if it is tardy; otherwise, it peeks at
the job at the head of the promotion queue and determines
whether scheduling it will cause thrashing. This requires
maintaining a running total of the WSSs of all MTTs with
jobs scheduled thus far in the quantum—this total is referred
to as the amount of utilized cache. If the amount of uti-
lized cache plus the WSS of the job to schedule exceeds the
shared cache size, then it is assumed that thrashing would
occur. (Note that the job WSS is zero if a job from its MTT
is already scheduled.) If thrashing would occur, and we can
safely idle a core,† then the core is idled; otherwise, the job
is scheduled. As both the “real” deadline and WSS of each
job is fixed over its entire execution, the overhead incurred
to maintain these run queues is relatively small.

Other heuristics in [7] are considerably less feasible to im-
plement, since the ordering of the promotion queue depends
on factors that change as scheduling decisions are made. As
a result, jobs in the queue may need to be frequently re-
ordered, resulting in high queue-maintenance overheads. For
example, most of the remaining heuristics in [7] choose a job
to promote based on the amount of utilized cache, defined
earlier. Scheduling decisions typically cause the amount of
utilized cache to change, requiring the promotion queue to
be reordered. The higher overheads associated with these
heuristics make them less practical from an implementation
standpoint, and they are not considered further in this paper.

3.2 Cache Profiler

Our profiler provides a per-job WSS estimate for each MTT,
which is required when making scheduling decisions using

†We can idle a core if an eligible phantom task exists. Phantom tasks
are an abstraction from [7] that allows cores to be idled in a controlled way,
so that bounded deadline tardiness can be ensured by applying the results
in [17].

the heuristic described above. We profile MTTs rather than
tasks since MTTs share a common working set. The profil-
ing occurs during job execution, eliminating the need for an
offline profiling tool; however, as the profiler is essentially
part of the scheduler, it must be efficient.

WSS as a cache behavior metric. WSS may be seen as
an oversimplification of cache behavior; however, we have
found it to work well for small intervals (e.g., the execution
time of a job). Further, it is usually the easiest metric to ap-
proximate efficiently given current hardware. Assuming a
fully-associative cache (or high set-associativity, i.e., eight
ways or more—see [12]) so that conflict misses are avoided,
the profiler, described next, can result in significant improve-
ments in cache performance over G-EDF when used within
our cache-aware scheduler, as we will see in Sec. 4.

Performance counters. Shared cache misses for each
MTT are recorded by the profiler using performance coun-
ters. Performance counters are available in many processors
today, and can be programmed to monitor a wide variety
of events. For example, Intel has specified a set of seven
architectural performance events that can be monitored us-
ing performance counters in most current and future Intel
processors [13]. These events allow core clock cycles, re-
tired instructions, lower-level cache misses and references,
and events related to branching to be counted. (Many more
events also exist that are specific to a particular type of pro-
cessor.)

Typically, a separate set of performance counters is avail-
able for each core, and can be programmed to track events
originating from that core. We programmed a counter at
each core to track lower-level (shared) cache misses. Since
jobs execute sequentially, we can measure the number of
cache misses incurred for a job by resetting the counter to
zero at the start of execution, and recording the total misses
observed by the counter upon completion. The observed
misses can then be used to calculate a per-job WSS esti-
mate. Since accessing program counters and recording data
are low-overhead operations, and computed WSS estimates
are cached to minimize computation, the overhead of the pro-
filer is relatively low.

Assumptions. The profiler as stated requires several as-
sumptions.

(1) Each job of the same task is assumed to perform roughly
the same operations on different (but similarly-sized)
sets of data. This has two implications: (a) the ith job of
task T and the jth job of task U , where T and U belong
to the same MTT, do not share significant data unless
i = j (even if T = U); and (b) the per-job WSS of an
MTT remains approximately the same over all jobs.

(2) Profiled jobs are not preempted and do not cause shared
cache thrashing.

We consider assumption (1) to be in line with other work
(e.g., [22]), and natural for certain types of (multimedia) ap-
plications. To ensure assumption (2), we discard measure-
ments obtained for jobs that are preempted, or for which
cache thrashing occurred at some time during their execu-
tion. Thrashing is assumed to have occurred if for some
quantum in which a job is scheduled, the sum of the WSSs
of all MTTs with jobs scheduled in that quantum exceeds the
shared cache size (the same approach taken in the heuristic).
For MTTs, measurements for the ith job of all tasks in the
MTT must be discarded if the ith job of any task in the MTT
was preempted or caused thrashing. Assumption (2) also im-
plies that we are not interested in profiling MTTs with per-
job WSSs greater than the size of the shared cache, which
would thrash the shared cache even if scheduled in isolation.
Further, assumption (2) ensures that the number of capacity
misses observed over non-discarded jobs is negligible.

Estimating MTT WSS. The above assumptions allow us
to compute over all (non-discarded) jobs an average per-job
MTT WSS, which we use as our per-job WSS estimate for
an MTT. This can be computed by dividing the total cache
misses observed over all profiled jobs by the total number of
profiled jobs for an MTT, and multiplying the result by the
cache line size. (Profiling the ith job of an MTT requires pro-
filing the ith job of all tasks in the MTT, and recording the
total misses observed for all jobs.) We can conclude from
our assumptions that the first reference to a particular line of
data by a job will almost always be the only reference that re-
sults in a cache miss, and that miss will be compulsory, since
data brought into the cache should not be evicted during job
execution. Thus, the aforementioned computation results in
an estimate of the cache “footprint” of an MTT, which we
use as a first approximation of WSS.

As an example, consider an MTT with two tasks that pro-
cess video frames (loaded into main memory), each of which
is 128K in size. We would expect a per-job WSS for this
MTT that is slightly greater than 128K (to account for in-
structions, loop variables, etc.). When job 1 of the MTT is
profiled, cache miss counts of 997 and 1,242 are recorded
for each task, for a total miss count of 2,239. Next, job
2 of the MTT is discarded due to preemptions or thrash-
ing. Finally, when job 3 of the MTT is profiled, counts of
1,072 and 1,203 are recorded for each task, bringing the to-
tal miss count to 4,514 over both profiled jobs. As a result,
assuming a 64-byte cache line size, the WSS estimate that
our profiler would produce before job 4 begins execution is
(4, 514/2) ·64 = 144, 448 bytes, or a WSS of roughly 141K,
which seems reasonable.

A more accurate WSS estimate would require information
about cache reuse, which could be provided online with ad-
ditional hardware support. If cache reuse is high, then our
profiler will overestimate the MTT WSS. This is undesirable,
but such an estimate can still be used to prevent thrashing. In

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0 1 2 4 5 6 73

zero for all MTTs
Initial WSSs are Two 768K estimates recorded,

converges on 768K WSS

9 10 12 13 14 15 16118

768K
(e(T),p(T)) = (1,2)

(e(U),p(U)) = (1,4)
512K

W

512K

MTT:
(e(W),p(W)) = (2,8)

768K

T

U

V

X

(e(V),p(V)) = (1,4)

(e(X),p(X)) = (2,8)

Thrashing results in
1MB WSS estimates

for all MTTs
by 512K WSS estimates,
1MB estimates replaced

then converges on 512K

1MB estimate replaced
by 768K WSS estimate,

schedule repeats and
will converge on 768K

1 2 3 4 5 6 7 8

2

2

4

43

32

21

1

1

1

Figure 3: Two-core example schedule generated using the heuris-
tic and task set from Fig. 2 when our profiler is used. As before,
thrashing occurs during “hatched” quanta, assuming a shared cache
size of 1 MB. WSS estimates over time for each MTT are noted.

fact, the cache footprint of an MTT may be more useful than
WSS in preventing thrashing, as cache interference may oc-
cur whenever a line is brought into the cache, regardless of
whether that line is truly part of the working set of an MTT.

Bootstrapping the profiler. Before any measurements
have been obtained for an MTT, it is impossible to know
when to discard job measurements due to thrashing, since
we do not have the data necessary to compute a WSS esti-
mate. This makes it difficult to guarantee assumption (2). To
circumvent this issue, profiling begins with a bootstrapping
process, illustrated with an example in Fig. 3 (which uses the
same task set from Fig. 2). Assume for the sake of simplic-
ity that a job that causes thrashing results in a WSS estimate
of exactly 1 MB being generated by the profiler (for cor-
rect operation of the heuristic, all WSS estimates are capped
at the size of the shared cache), while a job that does not
cause thrashing results in an accurate estimate being gener-
ated, which is equal to its MTT WSS specified in Fig. 3.

In Fig. 3, all MTTs have a WSS of zero at time 0, which
is the WSS assigned to an MTT until measurements are
recorded for its first profiled job. At time 0, the heuristic
(which is not very effective when all WSSs are zero) co-
schedules jobs T1 and U1, resulting in thrashing; at time 1,
thrashing also occurs when jobs V1 and W1 are scheduled.
The promotion and scheduling of job W1 also causes job X1

to be promoted by the heuristic; both jobs remain promoted
until they complete execution. Job W1 completes execution
at time 3, allowing job T2 to be scheduled. By time 4, thrash-
ing has occurred during the execution of all profiled jobs, re-
sulting in a 1 MB WSS estimate being generated for every
MTT.

This WSS overestimation causes MTTs to be scheduled in
isolation from time 4 until time 8. When jobs are profiled

during this time, thrashing does not occur, and we would
expect accurate WSS estimates from our profiler. Due to
this expectation, we initially only use measurements from the
most recently profiled job to compute WSS estimates during
bootstrapping, instead of computing an average WSS over all
profiled jobs in the way described earlier. Thus, at times 5, 6,
and 8, the profiler computes WSS estimates for tasks T , U ,
and V using measurements from completed jobs T3, U2, and
V2, respectively, and discards earlier measurements. This
results in accurate WSS estimates for tasks T , U , and V .

WSS estimates for an MTT continue to be based solely on
the most recently profiled job until its estimates have con-
verged. This occurs when the difference between the esti-
mates for two consecutive profiled jobs of an MTT drops be-
low some threshold level. This first occurs at time 7 for task
T , when the profiler generates the same 768K WSS estimate
for jobs T3 and T4. From time 7 onward, WSS estimates for
task T are computed as averages over all successive profiled
jobs. Note that if WSS estimates are capped for consecu-
tive jobs (e.g., due to thrashing), we do not consider such
estimates to have converged—this is why the WSS estimates
converged for task T at time 7 instead of time 4.

The last eight time units of the schedule are identical to the
schedule in Fig. 2(b). At time 9, jobs U3 and V3 complete ex-
ecution, and since thrashing does not occur, the correct WSS
estimates are generated a second time for both tasks U and
V , resulting in converging estimates. At time 13, jobs W2

and X2, both from the same MTT, complete without thrash-
ing, which allows the first accurate WSS estimate for that
MTT to be generated. The last eight time units of the sched-
ule repeat indefinitely; thus, thrashing is avoided from time 4
onwards. As a result, the WSS estimates of the MTT contain-
ing tasks W and X converge at time 21 (not shown), after the
completion of jobs W3 and X3, at which time all WSS esti-
mates have converged.

Related profiling work. Prior work has investigated the
use of performance counters to improve cache performance
for throughput-oriented tasks [16]. Additionally, other re-
search in the real-time domain [19] has used performance
counters to record per-task cache misses during execution;
however, the results were used for WCET analysis rather
than to evaluate the cache behavior of tasks for the purposes
of online scheduling, as is the case in this paper.

4 Experimental Results

We now evaluate our cache-aware scheduler in terms of
both profiler accuracy and its performance as compared to
G-EDF. Our experimental platform consists of one quad-
core Intel Core i7 processor running at 2.66 GHz. The Core
i7 currently represents the state-of-the-art for released Intel
multicore chips (it became publicly available in November

2008), and is the first general-purpose chip by Intel where
four cores share a single low-level cache.

The Core i7 processor contains four cores. Each core con-
tains private 32K L1 instruction and data caches, and a uni-
fied private 256K L2 cache. All cores also share an 8 MB
on-chip L3 cache. The L1 instruction, L1 data, L2, and L3
caches are 4-way, 8-way, 8-way, and 16-way set associative,
respectively, and all caches have a 64-byte line size. Hyper-
threading is supported, but disabled in our experiments as
it may result in timing anomalies related to when each hard-
ware thread is allowed access to core resources. The machine
has 4 GB of main memory.

As stated in Sec. 3, we implemented our scheduler within
LITMUSRT. LITMUSRT contains a G-EDF implementa-
tion, which was used in these experiments. Also, the de-
fault quantum length in LITMUSRT is 1 ms, which we
did not change. In both G-EDF and our scheduler, perfor-
mance counters were programmed so that the total number
of shared cache misses and references could be recorded for
each MTT; this allowed cache miss rates to be determined.

The rest of this section is organized as follows. In
Sec. 4.1, we determine the accuracy of our profiler for
MTTs with known memory reference patterns and WSSs.
Then, in Sec. 4.2, we compare our cache-aware scheduler to
G-EDF in terms of cache performance, deadline tardiness,
and scheduling overheads. Finally, in Sec. 4.3, we evaluate
the performance of our scheduler as compared to G-EDF for
a multimedia server workload.

4.1 Accuracy of WSS Estimates

We first determine how well our profiler estimates MTT
WSSs. In these experiments, the per-job WSS is known for
each MTT. To determine profiler accuracy for a given MTT,
we compared the WSS estimate generated by our profiler to
its known WSS. Since the known WSS does not account for
instructions and bookkeeping variables, we would expect our
estimates to be slightly higher than the known WSS values.
(Similar reasoning was applied in an example in Sec. 3.2.)

We generated task sets with the following parameters.

• System utilization: Between 55% and 65%, assuming
negligible scheduling overheads.

• MTT periods: Between 20 and 2,400 ms (some values
removed to avoid arithmetic overflow). Larger periods
were necessary to allow large per-job WSSs under cer-
tain memory reference patterns.

• MTT utilizations: Uniform over [0.01, 0.1], [0.1, 0.4],
[0.5, 0.9], or [0.01, 0.9]; or bimodal, with a 50% proba-
bility of being distributed over [0.01, 0.1] or [0.5, 0.9].
Each task set generated with the bimodal distribution
was required to have at least one MTT from each of the
two utilization ranges.

0 1 2 3 4 5 6 7 8

x 10
6

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Accuracy of WSS Estimates

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

Random Reference Pattern
Sequential Reference Pattern

Figure 4: Profiler accuracy as a function of MTT WSS for random
and sequential memory reference patterns, expressed as the propor-
tionate error in the WSS estimates generated by the profiler.

• MTT execution costs: Derived from periods and uti-
lizations. All tasks within an MTT have the same exe-
cution cost, which is at least 3 ms. Jobs are not back-
logged, making exactly three passes over their working
sets.

• MTT thread counts: Uniform over [1, 4].

• MTT per-job data WSSs: Generated as a function of
execution cost. For an MTT with execution cost e, its
WSS was set to min(�e/3� · 128K, 7.5 MB). Due to
the lower bound on execution cost, the minimum MTT
WSS was 128K.

For each combination of the above parameters, we scheduled
and profiled 100 task sets, where either a sequential or ran-
dom memory reference pattern was employed by all jobs. All
task sets were executed for one minute, and for each MTT,
the WSS estimate produced at the end of the minute was
compared to the known WSS. Overall, this resulted in 2,700
MTTs being profiled under each memory reference pattern.

Results. Fig. 4 shows the proportionate error in the WSS
estimates generated by the profiler, when compared to the
known WSS of each MTT. Since we found little difference
in profiler accuracy when varying MTT utilizations, results
are presented as a function of the actual WSS of each MTT.

For random reference patterns, our profiler is typically ac-
curate. Exceptions are clearly shown in Fig. 4, and become
more frequent at larger WSSs. This is because, as WSS in-
creases, it becomes more difficult for the bootstrapping pro-
cess (from Sec. 3.2) to result in WSS estimates that con-
verge, due to the large number of discarded measurements
resulting from shared cache thrashing; however, note that er-
ror again decreases as WSSs approach the shared cache size,
since WSS estimates are capped at that size by the profiler.

In any case, the exceptions are extreme outliers; the maxi-
mum observed error is under 10% and 5% for over 91% and
78%, respectively, of the MTTs that were profiled.

Hardware limitations. For sequential reference patterns,
our profiler is extremely inaccurate, producing estimates that
are close to zero for all profiled MTTs. This suggests that
cache misses are being underreported by the performance
counters. This is due to the hardware prefetcher, which
attempts to anticipate the data needs of a core and fetch
data earlier than it is needed; this reduces the perceived la-
tency of referencing data and improves core utilization. The
prefetcher is very likely to be triggered frequently by a se-
quential memory reference pattern, while a random pattern
will trigger it rarely. Per-core shared cache misses related to
this prefetcher are not included as part of any performance
event in the Core i7, and the prefetcher cannot be disabled
for experimental purposes. Thus, such underreporting can-
not be avoided on our Core i7 processor.

Interestingly, both the ability to count prefetching-related
events (via a non-architectural performance event) and dis-
able the prefetcher were available in most Core 2 chips,
which preceded the Core i7. (The ability to disable prefetch-
ing is also available in some in-house versions of the Core i7
at Intel, but the feature has been locked, if present at all, in
the commercial versions of the chip.) The existence of these
features in earlier Intel processors suggests that it is not un-
reasonable to expect them. We believe that the loss of these
features is a step in the wrong direction, as it makes shared
cache management more difficult (and not just for real-time
applications).

Regardless of these hardware limitations, the experimental
results for random reference patterns show that our concepts
are sound—given sufficient hardware support to accurately
count shared cache misses, our profiler is often quite accu-
rate. We shall see next that system performance can be im-
proved over G-EDF when our cache-aware scheduler, which
includes the profiler, is used.

4.2 Performance Versus G-EDF

In this next set of experiments, the same task sets gener-
ated in Sec. 4.1 were scheduled under both our scheduler
and G-EDF, again for one minute. In these experiments,
only the random reference pattern was employed, since the
profiler was inaccurate for sequential reference patterns due
to the hardware limitations described earlier. MTTs were
compared on the basis of several performance metrics under
both our scheduler and G-EDF. These performance metrics
are: cache miss rate, deadline tardiness, and scheduling over-
heads. Results related to each metric are presented next.

Average-case cache performance. Fig. 5 presents differ-
ences in cache performance under G-EDF and our sched-

−0.4 −0.2 0 0.2 0.4 0.6
0

200

400

600

800

1000
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.1]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.2 0 0.2 0.4 0.6
0

50

100

150

200

250

300
Miss Rate Decrease versus G−EDF, Util. [0.1, 0.4]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.2 0 0.2 0.4 0.6
0

20

40

60

80

100
Miss Rate Decrease versus G−EDF, Util. [0.5, 0.9]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(a) (b) (c)

−0.2 0 0.2 0.4 0.6
0

50

100

150

200
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.9]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.2 0 0.2 0.4 0.6
0

50

100

150

200
Miss Rate Decrease versus G−EDF, Util. Bimodal

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.308 0.013 0.470
[0.1, 0.4] -0.196 0.016 0.570
[0.5, 0.9] -0.017 0.015 0.491

[0.01, 0.9] -0.061 0.019 0.475
Bimodal -0.169 0.016 0.506

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 5.41% 61.39% 33.20%
[0.1, 0.4] 8.45% 65.46% 26.09%
[0.5, 0.9] 4.83% 74.48% 20.69%

[0.01, 0.9] 8.21% 65.30% 26.49%
Bimodal 9.22% 60.06% 30.73%

(d) (e) (f)

Figure 5: The decrease in the shared cache miss rate over each utilization distribution, as compared with G-EDF. A positive value
indicates a performance increase over G-EDF, whereas a negative value indicates a decrease. Insets (a) through (e) present histograms for
each distribution, while inset (f) presents statistics for each histogram.

uler, for each utilization distribution. Insets (a) through (e)
present histograms for each distribution indicating the (abso-
lute, not relative) improvement in the average cache miss rate
for all MTTs—thus, a miss rate decrease of 1.0 would imply
a 100% cache miss rate under G-EDF and a 0% cache miss
rate under our scheduler. Inset (f) presents additional statis-
tics for each histogram: the minimum, average, and maxi-
mum miss rate decrease observed under our scheduler (with
respect to G-EDF), and the percentage of MTTs that were
positively impacted, not impacted, and negatively impacted
by our scheduler (x represents the amount by which the miss
rate decreased). Note that, under all distributions, our sched-
uler tends to outperform G-EDF, sometimes by a large mar-
gin, and rarely underperforms G-EDF. This is more easily
observed in Fig. 5(f): cache performance improved for as
many as 33.20% of MTTs, and worsened for at most 9.22%
of MTTs. The impact of our scheduler is slightly higher
when lower-utilization MTTs exist. This is because lower-
utilization MTTs tend to have smaller WSSs, meaning that
they execute less frequently and reference memory less fre-
quently during execution, making it more difficult for their
jobs to retain their working sets in the cache when thrashing
occurs. This provides increased opportunities for our sched-
uler to improve performance by reducing thrashing.

Worst-case cache performance. Fig. 6 presents differ-
ences in cache performance, this time with respect to the

maximum observed (i.e., worst-case) per-job cache miss rate
for every MTT. The differences are relative to G-EDF for
each utilization distribution, and insets (a) through (f) present
the results identically to Fig. 5. The results in this case are
very similar to those in Fig. 5, except that the performance
improvements are typically more significant, and our sched-
uler had a substantial impact on worst-case cache perfor-
mance for the majority of MTTs in every distribution. This
result has one important implication: under our scheduler,
worst-case cache performance is generally better, which can
directly result in a decrease in worst-case execution times.
As a result, our scheduler has a much greater potential than
G-EDF to efficiently utilize the system.

Algorithm Avg. Max.
G-EDF 0.00 18.76

CA-SCHED 12.26 1037.69

Table 1: Deadline tardiness
results (in ms).

Deadline tardiness. Ta-
ble 1 shows the actual
deadline tardiness of jobs
executing under both G-EDF
and our scheduler (denoted
CA-SCHED). Our scheduler
results in higher tardiness than G-EDF, but the difference is
not substantial (well under the smallest period of any MTT),
with the exception of the worst case, which is artificially
inflated by our large task periods. Nevertheless, if buffering
can be employed to “hide” tardiness from an end user by
shifting job releases and deadlines similarly to how it is
done in [2, 7], then these values are reasonable, as a buffer

−1 −0.5 0 0.5 1
0

50

100

150

200

250
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.1]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−1 −0.5 0 0.5 1
0

10

20

30

40
Miss Rate Decrease versus G−EDF, Util. [0.1, 0.4]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.5 0 0.5 1
0

5

10

15
Miss Rate Decrease versus G−EDF, Util. [0.5, 0.9]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(a) (b) (c)

−1 −0.5 0 0.5 1
0

5

10

15

20

25
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.9]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−1 −0.5 0 0.5 1
0

10

20

30

40
Miss Rate Decrease versus G−EDF, Util. Bimodal

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.754 0.023 0.930
[0.1, 0.4] -0.536 0.110 0.748
[0.5, 0.9] -0.273 0.167 0.633

[0.01, 0.9] -0.532 0.122 0.626
Bimodal -0.616 0.102 0.814

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 27.19% 8.84% 63.96%
[0.1, 0.4] 14.98% 5.07% 79.95%
[0.5, 0.9] 4.14% 4.83% 91.03%

[0.01, 0.9] 11.94% 4.85% 83.21%
Bimodal 16.76% 3.35% 79.89%

(d) (e) (f)

Figure 6: The decrease in the maximum (worst-case) per-job shared cache miss rate for each MTT over each utilization distribution, as
compared with G-EDF. The insets are laid out identically to those in Fig. 5.

of roughly one second could be typical for many multimedia
applications. Naturally, such a buffer should be designed to
have minimal cache impact.

Scheduling overhead. Finally, we used Feather-Trace [5]
to measure scheduling-related overheads under both G-EDF
and our scheduler during the execution of a subset of the
generated task sets. This subset consisted of five task sets
from each of the five distributions: two containing the low-
est and highest number of MTTs for that distribution, re-
spectively, and the remaining three chosen randomly. We
collected nearly five million overhead measurements (over
1 GB of raw data) during these experiments. Table 2 presents
average- and worst-case overheads, discarding the top 1%
of measurements for reasons discussed in [6]. Tick over-
head represents the overhead of scheduling activities that oc-
cur during periodic timer interrupts (at quantum boundaries),
scheduling overhead is the time to make a scheduling de-
cision (that is not made within the timer interrupt), context
switch overhead measures the cost of a context switch not
including the cost of a preemption or migration, and release
overhead is the cost of releasing a job (again, not within the
timer interrupt). (A more detailed discussion of overheads
is also available in [6].) Release overhead and scheduling
overhead are both part of the tick overhead for our scheduler,
as releases and most scheduling decisions occur at quantum
boundaries. This is not true in G-EDF, where the times at

Algorithm Tick AVG Sched. AVG Context Sw. AVG Release AVG
G-EDF 0.916 3.358 0.953 4.592

CA-SCHED 9.221 2.052 0.972 —

Algorithm Tick WC Sched. WC Context Sw. WC Release WC
G-EDF 1.498 11.478 1.532 8.922

CA-SCHED 17.547 6.278 1.507 —

Table 2: Average and worst-case kernel overheads, in µs.

which jobs are released, and scheduling decisions are made,
are independent of when timer interrupts occur—timers are
armed to release jobs, and scheduling decisions occur as a
result of both job releases and completions. Note that our
scheduler does not result in significantly larger combined
overheads than G-EDF, implying that overheads will not off-
set cache-related performance gains.

4.3 Multimedia Application Performance

We next present the results of an experiment conducted to
compare our cache-aware scheduler to G-EDF in terms of
job execution times when executing a multimedia server
workload. This workload was simulated with multiple in-
stances of the mplayer application, modified so that one
frame is processed per job. Thus, the period of the mplayer
application, as specified to LITMUSRT, determined the
frame rate.

Multiple copies of the same segment of high-quality video

(taken from [4]) were processed by different applications so
that they appeared to be from different sources. All copies
were resident in main memory using RAM disks, to avoid
issues with hard disk accesses. The resolution of the video
is 1920x1080 with a 24 fps frame rate, resulting in a period
of 41 ms. Based on our observations, the execution cost that
we specified for an application processing this video is about
14 ms (though execution costs vary widely per frame), and
we expected up to a 2.5 to 3 MB WSS per frame. Each ap-
plication was represented as a single-threaded MTT.

Algorithm 1 Video 6 videos 12 videos
G-EDF 14.004 14.947 14.956

CA-SCHED 13.771 13.935 13.972

Table 3: Worst-case execution times for
mplayer applications (in ms).

In our experi-
ments, we ran one,
six, and twelve
mplayer applica-
tions under both
G-EDF and our
scheduler. Table 3 shows the measured worst-case job
execution times for each case. (Note that, in the case of
twelve applications, the system is technically overloaded,
and due to RAM disk space constraints, pairs of mplayer
applications were forced to share the same video copy.)
When one video is scheduled in isolation, the execution
time under both algorithms is about 14 ms. Under G-EDF,
this increases to roughly 15 ms when scheduling six and
twelve applications, while it remains about 14 ms under
our scheduler. Thus, through the use of our cache-aware
scheduler, we are able to ensure that worst-case execution
costs do not increase as a result of thrashing. In doing so,
the worst-case cost is roughly 6-7% less than G-EDF in the
case of six and twelve applications. In the case of twelve
applications, this allows about 30% of the utilization of one
core to be recovered, which may be used to support one
additional mplayer application.

Interestingly, the memory reference patterns of these
mplayer applications are arguably more sequential than ran-
dom, yet we still see a significant performance improvement
when using our scheduler. We would expect that, if suffi-
cient hardware support was available to allow more accurate
profiling for sequential reference patterns, the performance
benefit of our scheduler would be even greater.

5 Concluding Remarks

In this paper, we have presented the design and implemen-
tation of a cache-aware real-time scheduler for multicore
platforms within the Linux kernel. Our specific focus has
been to overcome two major obstacles to using cache-aware
real-time schedulers in practice: automatic cache profiling
and implementation efficiency. Our results show that MTTs
can be automatically and accurately profiled to determine
their per-job WSSs at run time, with reasonable overhead.
Further, we have shown that by allowing the scheduler to
take profiling information into consideration, performance in

practice can be substantially improved.
To enable such performance improvements to be attained

across a wide spectrum of applications, chip makers must
provide needed hardware support. The support required by
our profiler is not complex: we merely need performance
counters that can be used to accurately count shared cache
misses. As remarked earlier, the effectiveness of such coun-
ters has declined in moving from the Intel Core 2 chips to
the new i7 chip. We view this as a serious mistake. If chip
makers are really serious about tackling the issue of effective
shared cache usage, then they need to re-think which perfor-
mance monitoring hardware features they provide, and de-
termine a standard set of supported features—this set should
remain stable as chip architectures evolve, regardless of pro-
duction deadline pressures. (The same can be said more gen-
erally for hardware support related to managing caches.)

Our results suggest a number of avenues for further re-
search. First, we want to determine if cache reuse can be bet-
ter estimated through the use of more sophisticated hardware
monitoring features, such as Precise Event-Based Sampling
on Intel platforms. Second, we want to extend our sched-
uler so that preemption overheads are minimized when a
task resumes, by looking into ways of preventing preempted
jobs from losing cache affinity while they are not executing.
Third, we want to design more scalable run queue data struc-
tures that make frequent job priority changes more feasible;
doing so would enable results such as [17] to have a greater
practical impact, and would make a greater set of the policies
from [7] feasible in practice. Finally, we want to provide bet-
ter support for handling hierarchies of shared caches.

References

[1] F. Abazovic. Intel showcases 80-core CPU. http://www.
fudzilla.com/index.php?option=com content&task=view&id=
10107&Itemid=1, 2008.

[2] J. Anderson and J. Calandrino. Parallel real-time task schedul-
ing on multicore platforms. Proceedings of the 27th IEEE
Real-Time Systems Symposium, pp. 89–100. IEEE, 2006.

[3] G. Blelloch and P. Gibbons. Effectively sharing a cache
among threads. Proceedings of the Sixteenth ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 235–244.
ACM, 2004.

[4] Blender Foundation. Big Buck Bunny. http://www.bigbuck
bunny.org/.

[5] B. Brandenburg and J. Anderson. Feather-Trace: A light-
weight event tracing toolkit. Proceedings of the Third Inter-
national Workshop on Operating Systems Platforms for Em-
bedded Real-Time Applications, pp. 19–28. IEEE, 2007.

[6] B. Brandenburg, J. Calandrino, and J. Anderson. On the scal-
ability of real-time scheduling algorithms on multicore plat-
forms: A case study. Proceedings of the 29th IEEE Real-Time
Systems Symposium, pp. 157–169. IEEE, 2008.

[7] J. Calandrino and J. Anderson. Cache-aware real-time
scheduling on multicore platforms: Heuristics and a case
study. Proceedings of the 20th Euromicro Conference on
Real-Time Systems, pp. 299–308. IEEE, 2008.

[8] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Ander-
son. LITMUSRT: A testbed for empirically comparing real-
time multiprocessor schedulers. Proceedings of the 27th IEEE
Real-Time Systems Symposium, pp. 111–123. IEEE, 2006.

[9] U. Devi and J. Anderson. Tardiness bounds under global
EDF scheduling on a multiprocessor. Real-Time Systems,
38(2):133–189, 2008.

[10] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Throughput-oriented scheduling on chip multithreading sys-
tems. Technical Report TR-17-04, Division of Engineering
and Applied Sciences, Harvard University, 2004.

[11] A. Fedorova, M. Seltzer, and M. Smith. Cache-fair thread
scheduling for multicore processors. Technical Report TR-17-
06, Division of Engineering and Applied Sciences, Harvard
University, 2006.

[12] J. Hennessy and D. Patterson. Memory hierarchy design.
Computer Architecture: A Quantitative Approach, pp. 390–
525. Morgan Kaufmann Publishers, 2003.

[13] Intel Corporation. Intel 64 and IA-32 architectures software
developer’s manuals. http://www.intel.com/products/proces
sor/manuals/, 2009.

[14] R. Jain, C. Hughs, and S. Adve. Soft real-time scheduling
on simultaneous multithreaded processors. Proceedings of
the 23rd IEEE Real-Time Systems Symposium, pp. 134–145.
IEEE, 2002.

[15] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing
and partitioning on a chip multiprocessor architecture. Pro-
ceedings of the 13th International Conference on Parallel Ar-
chitecture and Compilation Techniques, pp. 111–122. IEEE,
2004.

[16] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Us-
ing OS observations to improve performance in multicore sys-
tems. IEEE Micro, 28(3):54–66, 2008.

[17] H. Leontyev and J. Anderson. Generalized tardiness bounds
for global multiprocessor scheduling. Proceedings of the 28th
IEEE Real-Time Systems Symposium, pp. 413–422. IEEE,
2007.

[18] S. Parekh, S. Eggers, H. Levy, and J. Lo. Thread-sensitive
scheduling for SMT processors. http://www.cs.washington.
edu/research/smt/.

[19] R. Pellizzoni, B. Bui, M. Caccamo, and L. Sha. Coschedul-
ing of CPU and I/O transactions in COTS-based embedded
systems. Proceedings of the 29th IEEE Real-Time Systems
Symposium, pp. 221–231. IEEE, 2008.

[20] L. Peng, J. Song, S. Ge, Y.-K. Chen, V. Lee, J.-K. Peir, and
B. Liang. Case studies: Memory behavior of multithreaded
multimedia and AI applications. Proceedings of Seventh

Workshop on Computer Architecture Evaluation using Com-
mercial Workloads, pp. 33–40. IEEE, 2004.

[21] P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, and
E. Hagersten. Modeling cache sharing on chip multiprocessor
architectures. Proceedings of the IEEE International Sym-
posium on Workload Characterization, pp. 160–171. IEEE,
2006.

[22] H. Ramaprasad and F. Mueller. Tightening the bounds on fea-
sible preemptions. IEEE Transactions on Embedded Comput-
ing Systems. To appear.

[23] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job
scheduling with priorities for a simultaneous multithreading
processor. SIGMETRICS Performance Evaluation Review,
30(1):66–76. ACM, 2002.

[24] J. Stokes. Sun: Can you smell what the Rock is
cookin’? http://arstechnica.com/news.ars/post/20080204-
sun-can-you-smell-what-the-rock-is-cookin.html, 2008.

[25] UNC Real-Time Group. LITMUSRT project. http://www.cs.
unc.edu/˜anderson/litmus-rt/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

