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Abstract

ger subsequent tasks implemented on other PEs. Different
PEs might be connected by communication buses (which

Many embedded platforms consist of a heterogeneous can be considered to be PEs as wellFtFO buffers. Ad-

collection of processing elements, memory modules, and

ditionally, different PEs might implement different scluéd

communication subsystems. These components often impleing/arbitration policies. Further, different PEs mighsase

ment different scheduling/arbitration policies, havdeliént

interfaces, and are supplied by different vendors. Hence,
compositional techniques for modeling and analyzing such
platforms are of interest. While a number of such tech-
niques have been recently proposed in the literature, none

different task triggering patterns or event models (e.g-, p
riodic, periodic with jitter, sporadic, etc.). While it isop-
sible to analyze each of the individual PEs in isolation us-
ing known results from the real-time systems literaturg.(e.
schedulability analysis of periodic tasks under fixed-gtyo

of them handle multiprocessor processing elements. On the or earliest-deadline first§DF) scheduling), it is not clear

other hand, within the real-time systems community, a num-
ber of scheduling algorithms and analysis techniques have
been proposed that directly target multiprocessors. I thi
paper, we present a compositional analysis framework that
is obtained by extending the real-time calculus framework
to incorporate multiprocessors in which tasks are schedlule
using well-known multiprocessor scheduling techniques. W
present the basic theory of the resulting extended framlewor
and show its utility using a case study.

1. Introduction

The increasing complexity and heterogeneity of modern
embedded platforms have led to a growing interest in com-
positional modeling and analysis techniques [9]. In devis-
ing such techniques, the goal is not only to analyze the
individual components of a platform in isolation, but also
to compose different analysis results to estimate the gmin
and performance characteristics of the entire platfornchSu
analysis should be applicable even if individual procegsin
and communication elements implement different schedul-
ing/arbitration policies, have different interfaces, aene
supplied by different vendors. These complicating factors
often cause standard event models (e.g., periodic, smoradi
etc.) and schedulability-analysis techniques to lead évlgv
pessimistic results.

To enable more accurate analysis, a compositional tech-
nique was proposed in [9], which relies on well-known
schedulability and timing-analysis results. As illustchin
Fig. 1(a), the system architecture considered in [9] is very

how to compose the results for different PEs to estimate the
timing properties of the full system.

To enable compositions of PEs with different event mod-
els, [9] proposed the use effent model interfac&MIFs).
An EMIF translates an event stream that conforms to one
event model so that it conforms to another event model. For
example, a periodic stream with peripénd jitterj can be
translated into a sporadic stream with a minimum event sep-
aration ofp — j. Some EMIFs are lossy (e.g., periodic to
sporadic), while others are not. If an EMIF does not exist
between a pair of event models (e.g., sporadic to periodic),
then [9] suggested the use of buffering éwent adaptation
functiong to physically change the timing properties of the
event stream to match the target event model.

An alternative composition technique — often referred
to asreal-time calculus— was proposed in [3] and then
subsequently extended in a number of papers (e.g., see [4]).
Here, the basic idea is to represent the timing properties of
event streams using upper and lower bounds on the number
of events that can arrive over any time interval of a speci-
fied length. These bounds are given by functioH§A) and
a!(A), which specify the maximum and minimum number
of events, respectively, that can arrive at a PE within any
time interval of lengthA (or the maximum/minimum num-
ber of possible task activations within ay). The service
offered by a PE is similarly specified using functigitg A)
andg!(A), which specify the maximum and minimum num-
ber of serviced events, respectively, within any interval o
lengthA. Given the functiona* anda! corresponding to an

general and consists of multiple processing elements (PEs) event stream arriving at a PE, and the seryi¢eand3* of-

that process streams of input data or events (or equivglentl

jobs generated by a task). The processed data/events trig-

fered by it, it is possible to compute the timing propertiés o
the processed stream and remaining processing capagity, i.
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Figure 1. (a) System architecture with multiple PEs implementing déferscheduling policiegb) Computing the timing properties
of the processed streaift) Scheduling networks.

(©

functionsa®’, a!’, 8, andﬁl/, as illustrated in Fig. 1(b), can in turn be used as input for other PEs thereby resulting
as well as the maximum backlog and delay experienced by in a compositional technique.

the stream. The computed function¥’ and o' can now The presented test is based upon multiprocessor schedu-
serve as input to the next PE on which this stream is pro- lability tests by Baruah [1] and Leontyev and Anderson [6].
cessed (see Fig. 1(a)). By repeating this procedure uhtil al In some aspects, the presented analysis is also similaf to re
PEs have been considered, timing properties of the fully pro  sults by Bertogna et al. [2], Shin et al. [10], and Zhang and
cessed stream can be determined, as well as the end-to-endBurns [12]. The main difference between our work and these

event delay and total backlog.

Similarly, for any PE with two or more tasks being sched-
uled according to some scheduling policy, it is also possi-
ble to compute service bounds*(A) and 3'(A)) avail-
able to its individual tasks. Fig. 1(c) shows how this is
done forfixed priority (FP) andtime division multiple ac-
cess(TDMA) policies. As shown in this figure, for FP,
the remainingservice after processing Stream A serves in
the input (or, is available) to Stream B. On the other hand,
for TDMA, the total service3 is split between the services
available to the two streams. Similar so calkzheduling
networks[4] can be constructed for other scheduling poli-
cies as well.

Our contribution.  None of the compositional techniques

described above can be used to analyze multiprocessor PE

wherethe constituent processors are managed according to
a global multiprocessor scheduling algorithniThere are
two reasons why existing compositional techniques need
to be extended to incorporate such configurations. First,
multicore chips are becoming increasingly common. Sec-
ond, viewing a multiprocessor system as a collection of
independent uniprocessors and applying partitioning-tech
niques is unnecessarily restrictive and precludes suipigort
workloads that fundamentally require global scheduling ap

%y

prior efforts is that we consider more general task arriadl a
execution models. Also, we consider the case when one or
more processors can be partially available, which is simila
to [10], where partial availability appears in the contekt o
hierarchical scheduling.

The rest of the paper is organized as follows. Sec. 2
presents our task model. In Sec. 3, the aforementionedtest i
presented. In Sec. 4, the test’s time complexity is disalisse
Sec. 5 presents a case study for our analysis. Sec. 6 con-
cludes by summarizing our contributions and listing some
directions for future work.

2. Task Model

In this paper, we consider a task set= {T3,75,
,Tn}. Each task has incoming jobs that are processed
a multiprocessor consisting of > 2 unit-speed proces-
sors. We assume that> m. We also assume that all time
guantities are integral.

The j'* job of T;, wherej > 1, is denotedl; ;. The
arrival (or releasg time of 7} ; is denotedr; ;. Thecom-
pletion timeof T; ; is denotedf; ; and the delay between its
start time and completiory; ; — 5 ;, is called itsresponse
time

Definition 1. E;(k) denotes an upper bound on the total

proaches. (SUCh a workload is considered in a case Study execution time of anjc consecutive jobs cﬂ17 (We assume

presented later.)

The main contribution of this paper is an extension of the
real-time calculus framework [3, 4] that incorporates sym-
metric globally-scheduled multiprocessors. In particuge

E;(k)=0forallk <0andE;(k) < E;(k+1).)

Example 1. If worst-case job execution times follow a re-
peating pattern as in the multiframe task model [7], then the

present a pseudo-polynomial procedure that can be used tofunction E;(k) can be derived from this pattern, e.g., using
test whether event delays on such a multiprocessor reside the RTC Toolbox [11]. Suppose that teEks worst-case job

within specified bounds. Using these bounds, the arrival

execution times follow a patterh 5,2,1,5,2,.... Then,

curves for processed streams can be computed; these curved’i(1) =5, E;(2) = 7, E;(3) = 8, E;(4) = 13, etc.



Definition 2. Thearrival functiona¥(A) (al(A)) provides
an upper (lower) bound on the number of jobgpthat can
arrive within any time intervalz, z + A], wherez > 0 and
A > 0. (We assumer¥(A) = 0 forall A < 0.) a;(A)
denotes the paie?(A), al(A)).

Definition 3. Leta; (A) = lim,_, 1o a¥(A+e¢). This func-

tion provides an upper bound on the number of jobs released
within any intervalz, z+ A}, wherez > 0 andA > 0. (We
assumey; (A) =0 forall A <0.)

Example 2. The widely-studied periodic and sporadic task
models are subcases of this more general task model. In
both models, consecutive job arrivalsBfare separated by

at leastp, time units, whereg; is theperiodof T;, and each

job requires at most*** execution units. Therefore, under

both modelsq(A) [pé] andE, (k) = k-e™>. The next
example illustrates the difference between the functighs
anda;’.

Example 3. Consider a taskl’;, whose jobs arrive peri-
odically with periodp;. The maximum number of jobs
that can arrive within an intervalz,z + 2 - p;] is thus

a(2 - p;) PT”-‘ = 2. However, the maximum num-
ber of jobs that can arrive within the interjal =+ 2 - p;], is
o (2 pi) = lime_, 10 a¥(2 - p; +€) = 3. In general, under

the sporadic task model,” (A) = L%J +1.

Definition 4. Let A; (k) = inf{Ala¥(A) > k}. This
function characterizes the minimum length of the time inter
val (z, z + A] during which jobsT; ;41,...,T; j+x can be
released for somg assumingd/; ; is released at time. We
require that there exist&; > 1 such that

At

(3

(Ki) > Ei(K;). 1)
Example 4. (1) is needed in order to prevent tagkfrom
overloading the system. Under the periodic and sporadic
modelsA; ! (k) = k - p; andE; (k) = k - e, If (1) does

not hold, therp; < e***, and thus, tasi{;'s jobs can have
unbounded response times.

We further require that there existg > 0 andB; > 0,

. a'f'(A)
whereR; = lima .4 =3, such that

(2)

Also, we assume that there exigts> 0 andv;, wheree;

Eik) | such that

E;(k)<e -k+wvforalk>1.

af (A) < R;-A+ B forall A >0.

hmk,—>+oo
3)

(2) and (3) are needed in order to bound the computation
time of the proposed schedulability test. In (R),character-
izes the long-term arrival rate of tagk’s jobs andB; char-
acterizes the degree of burstiness of the arrival sequémce.

(3), the parameteT; denotes the average worst-case job ex-
ecution time ofT;. These assumptions are not too restric-
tive because usually arrival curves are composed of aperi-
odic and periodic parts for which linear bounds are known
(see [11] for an example), and the execution times of con-
secutive jobs often follow a repeating pattern [7].

Definition 5. Let u; = R; - €. This quantity denotes the
average long-term utilization of task;. We require that
Ujg S 1.

Example 5. Under the sporadic task modelR;

limAH+oo (\‘ﬁJ + ].) /A = i ande_i = e?lax' SO wu;

_ {r\ax
Ri * €4

— i

pi

Definition 6. We assume that the available processing ca-
pacity is specified usingervice functions Specifically,
the guaranteed time that procesgorcan provide to the
tasks inT in any time interval of lengthA > 0 is within
[3,(A), B (A)], where

B(A) > max(0,a - (A —04)), 4

for uy, € (0,1] anday, > 0.

In the above definitiony;, is the total long-term utiliza-
tion available to the tasks inon processoh andoy, is the
maximum length of time when the processor can be unavail-
able. Note that, if processaris fully available to the tasks
in 7, thenB(A) = gL (A) = A.

We require that (5) below holds for otherwise the system
would be overloaded and job response times could be un-

bounded. .
Z u; < Z un
h=1

T; €T

We assume that released jobs are placed into a single
global ready queue. When choosing a new job to schedule,
the scheduler selects (and dequeues) the ready job of highes
priority. A job is readyif it is released and its predecessor
(if any) has completed execution. Note that, the jobs of each
task execute sequentially. Job priorities are determirsed a
follows.

(®)

Definition 7. (prioritization rules) Associated with each
job T; ; is a valuer; ; + D;, whereD; is a constant. |If
ri5+Di <rpp+Diorr;+D; =1+ Dp ANi < kor
rij +Di = ri,n + D A1 =k A j < h, then the priority of
T; ; is higher than that df, 5, whichis denoted; ; < T} .

If D; is thought of as the relative deadline of a job,
then the above prioritization simply defines a global eatdie
deadline first GEDF) scheduler. On the other hand, if
D, = 0 for each taskl;, then the scheduler is global
FIFO [5].



The technical contribution of this paper is the following.
Given a task set = {T1,...,7,,} and a multiprocessor
platform characterized by a collection of service funcsion
BL(A), we develop a sufficient test that verifies whether the
maximum job response time of a ta8k € 7, max;(f; ; —
ri,j), IS at mos©;, where

(6)

If ©; equals the relative deadline of a job, then the test will
check whether the system is hard-real-time schedulable. Al
ternatively, if deadlines are allowed to be missed @ndh-
cludes the maximum allowed deadline tardiness, then the
test will check soft-real-time schedulability.

Assuming that maximum job response times are known,
it is possible to characterize the sequences of job comple-
tion events for each task; in terms of arrival functions"’
andaﬁ', which then can serve as inputs to subsequent PEs,
thereby resulting in a compositional technique. (The de-
tails for doing this are straightforward and are omitted due
to space constraints.)

0; > E;(1).

3. Multiprocessor Schedulability Test

As noted earlier, the way jobs are prioritized according
to Def. 7 is similar toGEDF. A number of GEDF schedu-
lability tests have been developed assuming that jobsearriv
periodically or sporadically (e.g., [1, 2, 6]). In this papse
extend techniques from [1] and [6] in order to incorporate
more general job arrivals and execution models.

Similarly to [6], we derive our test by ordering jobs by
their priorities and assuming thdi , is the first job for
which fo 4 > 704 + ©,. We further assume that, for each
job T3 , such thatl, , < T¢ 4,

(7)

We consider an interval that includes the time whep
becomes ready and the latest time wlfén is allowed to
complete, which ig , + ©,. During this interval, we con-
sider demand due to competing higher-priority jobs that can
interfere withT, ,. We then perform the following three
steps:S1: Compute a lower boundB(r, m) on this demand
that is necessary fdfy ,'s response time to exceédy; S2:
given a finite upper boundB(r, m) on this competing de-
mand, define a sufficient test for checking whether a task’s
response-time bound is not violated by settig(r, m) <
LB(7,m); S3: estimatdJB(r, m) as used ir62

fa,,b < Ta,b + @a-

3.1. Steps S1and S2

We start the derivation by proving the following claims.
Claim 1 below follows from Def. 4.

Claim 1: rp g —r0q-; > Ay (3).

Claim2. Fori > 1. fpq—i <rgq+©p— A[_l(l)

Proof. By (7), fe,q—i <7eg—i+©Or =710g—i—Te,q+70,q+
{by Claim 1}
Oy <

Te,q + 60 — A7 (D). O

Claim 3: ff7(1—Ke < Te,q T O — Eg(Kg).

Proof. By (1), A; ' (K¢) > E¢(K;). Thus,—A; ' (K,) <
—E¢(K,). Setting this and = K/ into Claim 2, we get the
required result. O

JobT} , can violate its response-time bound for the fol-
lowing reasons. Iff; ,_; completes by time , + ©, —
E,(1), thenT, , may finish its execution aftet, , + Oy if,
after timemax(f,,q—1, 7¢,4), higher-priority jobs deprive it
of processor time or one or more processors are unavailable.

Alternatively, T; ,—1 may completeafter time r,, +
Oy — Ey(1), which can happen if the minimum job inter-
arrival time for Ty is less thanE,(1). In this situation,
Ty, could violate its response-time bound even if it ex-
ecutes uninterruptedly withifify —1,7¢,4 + ©¢). In this
case, y's response-time bound is violated becalsg_;
completes “late,” namely after time , (recall that, by (6),

Oy > FEy(1)). However, this implies thaf, is pending
continuously throughout the internvia ;1,7 , +©,), and
hence, we can examine the execution of jdhs_; andTy,,
together. In this case, we need to consider the completion
time of job Ty g—2. If fo,q—2 < req + O — E¢(2), then

job Ty ; may exceed its response-time bound if this job and
its predecessof, ,—1, experience interference from higher-
priority jobs or some processors are unavailable during the
time intervallmax(f¢ g—2,7¢,4—1), 72,4 + ©¢). On the other
hand, if fog—2 > 704 + ©¢ — E¢(2), thenTy,, can com-
plete after time, , + O, even ifT, executes uninterruptedly
within [fe q—2, 70,4 + ©¢). Continuing by considering pre-
decessor job%) ,_; in this manner, we will exhaust all pos-
sible reasons for the response-time bound violation. Note
that it is sufficient to consider only jol¥s 1, ..., 7%,4— K,
since, by Claim 3,f; ,—x, < 10,q + O¢ — E¢(Ky). As-
suming that, for joll; ,—;, fr.q—i < req + Op — Ee(i),

we define theproblem windowfor jobs Ty g—iy1,-.., 774
as[max(fo,g—i;Te,q—i+1),7e,q + Or).

Definition 8. Fori > 1, we sett,, (i) = max(min(ryq +
O¢ — Ee(i), fo.q—i), Te,q—i+1)- Letk > 1 be the minimum
number such thaf, ,—r < t, (k). Claim 4 below shows
that such & exists.

To avoid distracting “boundary cases,” we henceforth as-
sume that the schedule being analyzed is prepended with
a schedule in which response-time bounds are not violated
that is long enough to ensure that all predecessor jobs refer
enced in the proof exist.

Claim4: k < K,.



Proof. By Claim 3, f¢ ,—x, < re,q + ©¢ — E¢(K,). Setting
this inequality into the expression foy, (K,) in Def. 8, we
havet, (K;) = max(feq—K,,7e,q—K,+1), Which implies
fZ,q—Kg < tw(KE)- |

We call taskTy readyat timet if there is a ready job of
T, at timet.

Claim 5. T, is ready at each instant of the interval
[tw(k),Te,q + Op).

Proof. Consider a joldy ,—;, wherej € [1,k). By Def. 8,
feq—i > tw(j) = max(min(re g + O — Ee(j), fr.q—5),
T¢,q—j+1). Thisimpliesf, ,_; > rgq—j11. Thus, the inter-
vals(reg—j, fr.q—j) and[re g—jy1, fo,q—j+1), Where consec-
utive jobs ofT; are pending, overlap. Therefofg, is pend-
ing continuously withinr, —x+1, fe.q), Wherek is defined
in Def. 8. Also, if T, is pending at time, then there is an
unfinished job off; at timet, and the earliest released such
job is ready. ThusTy is ready throughoutre q—x+1, fr.q)-
The claim follows fromt,, (k), 70,4 +©¢) C [re.q—k+1, fo.q)
because,, (k) > r¢ q—k+1, by Def. 8, andf, ; > 14,4 + Oy,
sinceT} , violates its response-time bound. O

Becausdl; , violates its response-time bound, after time
t.,(k), there are other higher-priority jobs that deprieof
processor time or one or more processors are unavailable.

Ifjobs Ty g—k+1,-..,Tsq €Xecute fore, g—gi1,...,Teq
time units within the intervak., (k), r¢ ,+©.), wherez, ,_;
is the actual execution time @% ,_;, thenTy , cannot vio-
late its response-time bound. If jdb , executes for less
thanz, , time units within[t,, (k), . + ©¢), then it ex-
ecutes for at most,, — 1 time units within this inter-
val, as time is integral. Thus, the total time for which
jobs Ty g—k+1,...,Te,q do notexecute inft,(k),req +
©,) while being ready is at least,, + O, — t,,(k) —
(S (@eg) = 1) 2 g+ Op — tu(k) — (Ee(k) — 1) =
Te,q + Oy — tw(/ﬂ) — E[(k‘) +1

Definition 9. LetI';, be a subset of the set of intervals within
[tw(k), 70,4 + O), where taskl; does not execute while
being ready, such that the cumulative lengthi'gfis exactly

roq + O¢ — ty(k) — E¢(k) + 1. The total length of'y, is
denotedl'y| = r¢q + O — tw(k) — Ee(k) +1
Definition 10. We let 7,(t) = {7, | forsomey,

T, is pending at time andT,, , < Ty 4}

Definition 11. Letto(k) < t,, (k) be the earliest instant such
thatvt € [to(k), tw(k)), |7p(t)| > m or fewer than7,(¢)]
tasks fromr,(¢) execute at time. If such an instant does
not exist, then lety (k) = ¢, (k).

Def. 11 generalizes the well-known concept ofdle in-
stantin uniprocessor scheduling. We call an inter¢al ¢5)
busyif no available processor is idle within it.

Claim 6. The time intervalty(k), t,,(k)) is busy.

Proof. Suppose that an available processor is idle at time
t € [to(k),tw(k)). Because the scheduler being analyzed is
work-conserving, all tasks i, (¢) execute at timé and thus
|7»(t)| < m — 1, which violates Def. 11. O

Definition 12. Let §¢(k) = 74,4 — to(k). LetoPn(k) =
min(max(E, (k) — O, A; ' (k) — O0), A, (k —1)).

Claim 7: 6,(k) > 60 (k).

Proof. By Def. 12,0,(k) = rp q —to(k) > 1o q—tw(k). We
lower-bound-, , — t,,(k) as follows. By Def. 8,

- tw(k)
= ry,q — max(min(ry ; + Op —

Te,q
Eo(k), fo,g—k),T0,q—k+1)

= min(rg,q — min(rg,q + Oy — Eg(k), fz’q,k),
Te,q — ré,q—k—i—l)
= min(max(re,q — 70, — O+ E¢(k), 10,4 — fr.q—k),
Tt,q = Tlq—k+1)
= min(max(E;(k) — O, 70,q — fr.g—k),Te,qg — T0,g—k+1)
{by (")}
> min(max(E¢(k) — Op, 70 — ro,g—k — Or),
Tt,q = Tlq—k+1)
{by Claim 1}
> min(max(Ey(k) — 04, A, ' (k) — O0), A, (k — 1))
= opin(k). O

Definition 13. Let I(7;) be the total amount of time for
which jobs of taskl’; execute withinto(k), t,(k)) U Tk.

Definition 14. Let M*(6¢(k), ¢, k,m,7) be a finite func-
tion of &,(k), £, k, m, andt such thaty , . I(T;) <
M*(6¢(k), ¢, k,m, 7). (We will derive an expression for
M*(6¢(k), ¢, k,m, 7) later in Sec. 3.2.)

Definition 15. We require that there exist the constants-
0 andH, > 0 such that, for alb, (k) > o, (k),
M*(6e(k), €, k,m, ) < A-(5(k) + |65™(k)|) + Hy. (8)
Henceforth, we omit the last four argumentsiaf.
Definition 16. Let &mox(k) = [(He+ A-|0pn(k)|

m - (Bo(k) — 1) + 3230 h - on — O~ Y31 un)/
(Zh 1Uh A)l.

Theorem 1. If the response-time bourtd, is violated for
Ti,q, then, for some: € [1, K] and 6,(k) € [6/"(k),
max (83" (k), 05 (k))],

M*(6¢(k)) +m k) +0y). (9)
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Figure 2. Conditions for response-time bound
violation if £ = 1. (Recall that I'y, is a subsetof
the intervals where T; is ready but does not
execute.)

Proof. Consider jobT},,, constantk, and time instants
t, (k) andtg(k) as defined in Defs. 8 and 11. L&, (y)
be the amount of time that is not available on processair
time instants in the set of intervals The amount of avail-
able time on processarduring the intervalto (k), ¢ ,+©¢)
iS (re,q + ©¢ — to(k)) — Rn([to(k), e, + ©¢)), Which, by
Def. 6, is at leasB, (r¢,, + O, — to(k)). By Def. 12, we thus
have

(reg+ O —to(k)) — Ru([to(k), re,q + ©r)
> 35,(00(k) + ©y).

SinceTy,, does not execute at time instantslip (refer to

Def. 9), each processor at these time instants is either un-
available or executes a task different frafh as shown in

Fig. 2. Also, by Claim 6, no available processor is idle dur-
ing [to(k), t,(k)). By Def. 13, we thus have

Z —i—ZRh [to(k

(el + tuh) o)

(10)

(k) UTk)

U}

{by Def. 9}
m-(roq +Or — tw(k) — Ee(k) + 1+t (k) — to(k))
=m- (Tg’q + Oy — to(k) — Ez(k) + 1).

Rearranging the terms in the above inequality, we have

iI(T +m - (Ey(k) - 1)

Zm-(myq—i—@z—to ZRh to

C [to(k),7e,q +O0)}

- Z Ri([to(k)
h=1

=Y ((re.q+©¢ —to(k)) — Ru([to(k), 7.4 + ©0))).
h=1

(11)

(k) UT%)
{becauséto(k), t.,(k))

>m - (r¢,q +Op —to(k)) ;Te,g + Or))

Setting (10) into the right-hand side of (11), we have

By Def. 14,31 | I(T;) < M*(ég(k)). Setting this into
(12), we have (9). Our remaining proof obligation is to es-
tablish the stated range fér(k). By (8) and (9),

A (8(k) + |07 (k)]) + He +m - (Ee(k) —

> > BL(de(k)
h=1

Applying (4) to (13), we have
A (8g(k) + |8 (R)|) + Hy +m - (Eg(k) — 1)

> > R (0
h=1

Solving the latter inequality fob,(k) we haved (k) <
(Hy + A- |57 (k)| +m - (Be(k) = 1) + Sy @ - on —
Op- Y7 un)/ (>, un — A). Becauseé, (k) is integral,
Se(k) < 8@(k). By Claim 7,8¢(k) > 6"(k). The theo-
rem follows. O

+ @g) (12)

)

+ 0y). (13)

k) + O, — Uh).

Corollary 1. (Schedulability Test) If, for task Tp, (9)
does not hold for eachk € [1,K, and d,(k) €
[0 (), max(6 (k), 67**(k))], then the response-time
bound forT} is not violated.

We did not make any assumptions above about how
jobs are scheduled except that jobs of each task execute
sequentially. Therefore, Corollary 1 is applicable to all
fixed job-priority scheduling policies provided the furcti
M*(0¢(k)) and its linear upper bound are known. In the next
section, we derive the functiad * (6, (k)) for the case when
jobs are prioritized as in Def. 7.

3.2. Finding M*(6.(k))

To derive M*(d,(k)), we first identify the jobs that may
compete witHl; , or its predecessors for processor time.

Lemma 1. Only jobsTy, ;, such thatl}, , < T, , may execute
within [to(k), tw (k) U Tg.

Proof. Suppose to the contrary that a j@b, >~ Ty, ex-
ecutes at time < [to(k),tw(k)) UT,. Because the sets
[to(k), tw(k)) andT, are disjoint, we consider two cases.
Case 1:¢ € [to(k),tw(k)). SinceTy;, executes at time,
by Def. 10, each task in,(¢) also executes at time which
violates Def. 11.

Case 2:t € T'.. By the condition of the case and Def. 9, at
timet, ajobT}, ,_;, wherei > 0, is ready but not executing.
By Def. 7,7, 4 > To,q = T4,q—i, Where: > 0. Becausd,
executes at time, this is a contradiction. O



Definition 17. Let Ty ; be the earliest pending job @, at
time ¢y(k). Using Lemma 1, we separate the tasks that may
execute withinty (k), t., (k)) U T’y into two disjoint sets:

HC = {Ta i (Ta,b exists)A (TGJ, < to(k)) A (Ta,b =< Tg’q)};
NC = {T, :: (T, does not existy

[(rap = to(k)) A (Tap = Teg)]}-
Here,HC denotes “high-priority carry-in” antlC denotes
“non-carry-in”.
Claim 8. If 6,(k) < 0, thenT,; € HC.

Proof. By Def. 12,ty(k) = r¢,q — d¢(k). Assumingi, (k) <
0, this impliesto(k) > 4. Therefore, at timeg(k), T¢ 4
or its earliest unfinished predecessor is pending. By Def. 17

this impliesT, € HC. O
Claim9: |HC| <m — 1.
Proof. By Defs. 10 and 17HC C 7,(to(k) — 1). By

Def. 11, all tasks ir, (to (k) — 1) execute aty(k) — 1 and
|7p(to(k) — 1) <m — 1. Thus,|HC| <m — 1. O

We henceforth usénc (T3, 6¢(k)) and Iuc (T3, 6¢(k)) to
denote an upper-bound diiT;) for the case wheff; is in
NC andHC, respectively. With this notation, we have

STHT) < YT Inc(Tn6e(k) + D Inc(Ts, 6e(k))

T;eT T;eHC T;eNC
14)

The following two lemmas provide expressions for comput-
ing Inc (T3, 0¢(k)) and Inc (T3, 0¢(k)). Their proofs can be
found in an appendix.

Lemma 2:
Inc(T3, 0e(K))
mln( i (o] F(6¢(k) + Dy — Dy)),
()+9z Ey(k) +1) if i £ ¢,
= ¢ min(E;(a;) (0e(k) + D¢ — D;) — k),
5g(kj) s (k) if i =£2A8(k)>0
0 otherwise.

Lemma 3. Let G;(S5,X)
AN(S = 1) + Ei(S - 1),

Tnc (T, 00,1)

min(E;(S), max(0, X —

D, + ©,),

min

(Gi(of
Se(k)
)

+
)

)+ Dy —
D; +9)
Ey(k) +1)
D;+0,;) -k,

i (6e(k
Dz
+ 0O, —
#(0e(k) + Dy —
+ D/ D; +0,),

) 61]1111( ))

if i £ ¢,

de(k)

¢

(k
T ) min(Gy(a}
k
(k otherwise.

To continue our derivation af{*(d,(k)), we set

M*(0e(k))

= max( Z IHc(T“(S[(k‘)) + Z INC(Tuéi(k))) ,
T;€HC

T;eNC
(15)

wheremax is taken over each choice BIC andNC subject
to the following constraints.
} (16)

NCUHC C 1
oe(k) < 0= T, e HC

In (16), the constraind,(k) < 0 = T, € HC fol-
lows from Claim 8. The constraifHC| < m — 1 follows
from Claim 9. It is easy to check that < Inc(T3, de(k))
and0 < Inc(T;,60(k)) for eachd, (k) > §n(k). Thus,
the sets maximizing the valu&*(,(k)) can be found by
adding at mosin — 1 tasks with the largest positive value
of Inc (T3, 0e(k)) — Inc (T3, 0¢(k)) to HC and adding the re-
maining tasks tiNC.

By (14) and (15)M*(é,(k)) upper-bound$ . .. 1(T})
so it complies with Def. 14. In order to use Corollary 1, we
are left to find constantd andH, such that (8) holds so that
M*(64(k) given by (15) complies with Def. 15.

NCNHC =0
[HC| <m —1

Definition 18. Let L;(X)
forany X.

=max(0,u; - X + ¢ - B;) + v;

Lemma 4. (Proved in the appendix)For all d,(k) >
S (k), M*(6¢(k)) < A-(8¢(k) + |07 (k)|) + Hy, where
A = ETL'ET Uj, Hg = ZT,:ET Lz(D[ — D7) + U(m — 1) .
max(0;), andU (y) is the sum ofnin(y, |7|) largest utiliza-
tions.

Using the expressions fot and H, from Lemma 4, we
can compute;***(k) in Def. 16 for any giverk. Finally,
using the expressions féf*» (k), 6;°*<(k), andM* (5, (k))
as given by Defs. 12 and 16 and Equation (15), we can ap-
ply Corollary 1 to check that each ta§k € 7 meets its
response-time bound. In the next section, we identify condi
tions under which the test is applicable and discuss its time
complexity.

4. Computational Complexity of the Test

According to Corollary 1, (9) needs to be checked for vi-
olation for allk € [1, K,] and a set of integers ia}*»(k),
max (50 (k), 02 (k))]. We start with estimating the com-
plexity of checking (9).

The values of¥(A), E;(k), A; ' (k), andg! (A) can be
computed in constant time #}'(A) and E;(k) consist of
periodic and aperiodic piecewise-linear parts afdA) is
also piecewise-linear. These assumptions are used in prior
work on the Real-Time Calculus Toolbox [11] and are suffi-
cient for practical purposes.



Under these assumptions, by Lemmas 2 and 3,
Inc (T3, 6¢(k)) andInc (T3, 6¢(k)) can be computed i©(1)
time for each taskl;. Thus, by (15) and (16), comput-
ing M*(6,(k)) for a given value ob,(k) takesO(n) time,
wheren is the number of tasks, because at most1 largest
positive valuesiyc (T3, 9.(k)) — Inc(T3,¢(k)) can be se-
lected inO(n) steps [1].

The calculations
for all £ €
mln(k)7 5?1&)(

above need to be repeated
[1,K, and all integers in[é"(k),
max(J; (k)] By Def. 16, (k)

is finite if its denominator is nonzero. Because,
by Lemma 4, A >.rerwi, Dy (5), we have

A = Y ui < Yol un.  Therefore, (k) is
finite if (5) is strict. The time complexity of the pre-
sented test is thus pseudopolynomial if there exists
a constantc such that) . u; < ¢ < YU, up.
Checking that (9) is violated for each integral value in
[0 (), max (6 (k), 6% (k))] can be computationally
expensive. A fixed-point iterative technique can instead be
applied in order to check (9) for a (potentially small) subse
of [ (k), max (0™ (k), 02 (k))].

5. Response-Time Analysis: A Case Study

To illustrate the utility of the analysis just derived, we ap
plied it to a part of a video player application. Fig. 3(a)
shows an MPEG-2 decoder application that is partitioned
and mapped onto two PEs, PE1 and PE2. PE1 runs the
VLD and 1Q tasks, while PE2 runs the IDCT and MC tasks.
The (coded) input bit stream enters this system and is stored
in the input bufferB. The macroblocks irB are first pro-

cessed by PE1 and the corresponding partially decoded mac-

roblocks are stored in the buffé’ before being processed
by PE2. The resulting stream of fully decoded macroblocks
is written into a playout buffeB” prior to transmission by
the output video device. In the above system, the coded in-
put event stream arrives at a constant bit-rate. This system
has been previously studied extensively in [4, 8].

Experimental Setup. In our experiments, we consid-
ered variations of the previously-studied system shown
in Fig. 3(a) in which PE1 is a three-processor system run-
ning four identical VLD+IQ tasksl, 15, T3, andT, as

and assuming 800 MHz processor frequency. We found
that95% of macroblock execution times in the trace are un-
der E;(1) = 48us, which we set to be the maximum mac-
roblock execution time. The functiom}’(A) as in Def. 2
was obtained by examining macroblock arrival times. We
computedA; ! (k) andK; = 9,339 in Def. 4 as well as lin-
ear bounds for¥(A) and E; (k) as in (2) and (3) using the
RTC Toolbox [11].

Some of the properties of the input streams and the
VLD+IQ task need to be emphasized. First, the arrival curve
al(A) is bursty, i.e., several macroblocks can arrive at the
same time instant. Second, whilg= 17us, the maximum
execution time of a single macroblock48us, so assum-
ing that each job executes for its worst-case execution time
would result in heavy overprovisioning. Finally, the long-
term task utilization isi; = R; - & = 0.0417 - 17 = 0.7009,
and the total utilization i$/ = Zle u; = 2.84. Therefore,
the task sef{7y,..., T4} cannot be partitioned onto three
processors, so global scheduling is required.

The system shown in Fig. 3(c) is obtained from that in
Fig. 3(b) by introducing four greedy shaper components
(GSCs) that separate consecutive job arrivalspbyime
units and hence make¥(A) = [%1. We setp; = 24pus
in order to preserve the long-term job arrival radte =
0.0417 < 1/p,. In both setups, we sé?; = 0, so the sched-
uler is globalFIFO.

Results. We computed maximum task response times in
the systems shown in Fig. 3(b,c) using an iterative proce-
dure. We started with settirg; = E;(a; (0)) = 12, 7065

for each task. We then applied Corollary 1 to each of the
tasks. If the response-time boufq for taskT; could not

be guaranteed, we increas@gby 10*..s. We repeated this
procedure until all tasks could be guaranteed their regpons
time bounds. The bounds computed using Corollary 1 were
363 and313ms , for systems in Fig. 3(b) and (c), respec-
tively. For the system in Fig. 3(c), the maximum task re-
sponse time is comprised of the maximum waiting time in
the GSC (3ms) plus the maximum delay in the PE itself
(250ms). For the system in Fig. 3(b), the minimum job
inter-arrival time is zero. For the system in Fig. 3(c), hesma
the worst-case job execution tineg®* = E;(1) = 48us

and the minimum job inter-arrival timg, = 24, we have

shown in Fig. 3(b,c). We computed an upper bound on the e***/p; = 2 > 1. Therefore, the task systems shown in
response time for each task, i.e., the maximum delay be- Fig. 3(b,c) cannot be analyzed using prior results, whieh re
tween the time a macroblock is placed in the buffer and the quirep; > 0 ande**/p; < 1.

time it is passed downstream. We assumed zero scheduling The obtained response time bounds are quite large com-

overheads and zero memory bus contention.

In the analysis, we used a trace®f 105 macroblock
processing events obtained in prior work for the VLD+IQ
task during a simulation of the system in Fig. 3(a) using a
SimpleScalar architecture [4, 8]. We obtainBd k) as in
Def. 1 by examining a repeating pattern of 19,000 consecu-
tive macroblock instruction lengths in the middle of thetra

pared to the maximum response time for tdskunning on

an dedicated unit-speed processor, whicbis.s . We be-
lieve that such a discrepancy is mainly due to the fact that
multiple jobs of the same task arriving at the same time in-
stant can potentially occupy the processor for a significant
duration of time, causing jobs of non-executing tasks td wai
(or be queued). In the setup in Fig. 3(c), where job arrivals
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Figure 3. (a) A video-processing application. Experimental setup (b) without and (c) with GSCs.
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Lemma Al: I(T;) < 8¢(k) +©; — Eo(k)+1if i # ¢, and
I(T;) < &¢(k) — 6in(k) otherwise.

Proof. If i # ¢, then, by Def. 13/ (T;) cannot be larger than
the cumulative length oo (k), t.,(k)) U k. The latter, by
Def. 9, is(ty (k) — to(k)) + |Tk| = tw(k) — to(k) + req +
O — tw(k) — Eo(k) +1 ™23 5,(6) 1 0, — Ey(k) + 1.
Alternatively, ifi = ¢, thenI(T;) cannot exceed the length
of [to(k), tw(k)) becausd} does not execute withifi,.. We
can bound,, (k) — to(k) as follows.

tw (k) —to(k)
=ty(k) —Teq+70,q —to(k)
{by Def. 12
= 0¢(k) — (re,q — tw(k))
{by the proof of Claim 7y, — t,,(k) > 6;"(k)}
< So(k) — (k). O

Lemma A2. JobTy, ,—1+1 is not ready prior to time,, (k).

Proof. Job T, ,—x+1 is not ready prior to time
max(feq—k,Te,g—k+1) SiNCe it has to wait until its
predecessor finishes. By Def. 8,,_; < t,,(k). Consider
the following two cases.

By the condition of the case,

Case 1: frg—r = tu(k).
> tyw(k). The required result

max(fe.q—k, t.q—k+1)
trivially follows.

Case 2: f;q—r < tw(k). Based upon the relationship
betweenf, ,_ andry, + 0, — E,(k), we consider two
subcases.

Subcase 1: frqr < 749 + Of — Ei(k). By
Def. 8 and the condition of Subcase 1, we have
tw(k) = max(foq—x,re,q—r+1), Which, by the condition
of Case 2, implie§¢ q—r < r¢,q—k+1 = tw (k). Therefore,
by the condition of Case 2pax(fe,g—k, 7¢,g—k+1) = tw (k).

Subcase 2:fy q—r > 10,9 + ©1 — E¢(k). By Def. 8, we
havet,, (k) = max(rg,q + ©¢ — Ey(k), Tg’q,k+1). By the
condition of Case 2, this implieg ,—, < max(r¢,q + O —
Ey(k), 70 q—rx+1). By the condition of Subcase 2, from the
latter inequality, we havé ;1 < ¢ q—x4+1 and

Tq—k+1 > Te,q + O — Ey(k). (17)
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By Def. 8,

tw(k)
= max(min(fg’q,k, Te,q + O — Eg(k)), Tg7q,k+1)
{by the condition of Subcaseg 2

= max(req + O¢ — Eo(k),70,g—k+1)

{by (17)}
=T¢,q—k+1- (18)
We thus have max(frg k,70.q ki1) {by A8}
max(fg,q,k, tw(k)) {by the concition of Case2 tw(k). The

required result follows from the two subcases above.

Corollary Al. JobsTy g jy1,--
to t,, (k).
Lemma 2:

Inc (T3, 00(K))
min(E; (o (6,(k) + D¢ — D;)),

., Ty 4 do not execute prior

de(k) +©¢ — Eg(k) + 1) if i # 4,

= ¢ min(E;(af (0e(k) + D¢ — D;) — k),
Se(k) — opin(k)) ifi =2¢Ad(k)>0,
0 otherwise.

Proof. Case 1:i # (. Becausel; € NC, all of its jobs
released prior t@y (k) are completed by time (k). Thus,
the competing demand due 1§ is upper-bounded by the
demand due t@;’s jobs released at or afteg(k) that have
higher priority than7} ,. For such a joll; ;, by Def. 7,
rij + Di < req 4+ Dy, and hencer; ; < o4+ Dy —
D;. Therefore, the competing demand due to taskK (T;),

is upper-bounded by the total execution time7¢k jobs
released withirito (k), r¢q + D¢ — D;]. From Defs. 1 and 3,
we have

I(T;)
< Ei(af (re,g + Do — D; — to(k)))
{by Def. 12

= Ei(a; (3u(k) + Dy — Dy)). (19)

The stated expression for the case: ¢ therefore follows
from Lemma Al.

Case 2:i = ¢ A d¢(k) > 0. Applying the reasoning from
Case 1 tdl’;, we have

I(T;) < B (o (60,1 + Do — D;) — k). (20)
The only difference from (19) is that we exclude jobs
Ty.q—k+1,---,1¢,q from consideration because, by Corol-
lary Al, jobsTy q—k+1,...,1¢,4 do not execute prior to



time ¢,,(k) and, by Def. 9, tas; does not execute within

Proof. Suppose that > 1 is fixed. We computé&; (S +

T'x. By (20) and Lemma Al, the stated expression for this 1, X).

case follows.

Case 3:i = ¢ A d(k) < 0. In this case, by Claim 8,
taskT; = T, does not belong ttNC, and hence, we can
setInc(T;,00(k)) = 0. O

Claim AlL. If T; , <X Ty 4, thenr; y < ¢4+ Dy — D;, for
7 =0.

Proof. The claim immediately follows from Def. 7. O

Definition Al. LetT; , be the earliest job df; that executes
within [to(k), tw(k)) UT}).

Note that, ifT; , does not exist, thed(T;) = 0. We

henceforth assume thaf , exists.

Claim A2. If T; , is defined as in Def. A1, thefa, > to(k)
andr; , > to(k) — ©,.

Proof. If f; . < to(k), thenT; , does not execute within
[to(k),tw(k)) U Ty, which violates Def. Al. By (7)fi. >
to(k) impliesr; , + ©; > to(k). O

Definition A2. Letr; = {T5, : y > a A T;, executes in
[to(k‘), tw(k)) U Fk}-

ClaimA3. If T; , € k;, thenr; , € [ri 4,704+ D¢ — D;].

Proof. By Lemma 1 and Def. A2[; , < T} 4, holds if T ,

is in ;. The claim follows from Claim A1l. O
Definition A3. Let A(T;,,~) be the allocation off; ,
within the set of intervals.
Claim A4:

I(T) = Y ATy [to(k),tu(k)) UTR). (1)

TinyKq’,

Proof. The  claim  follows immediately  from
Defs. 13, A1, A2, and A3. O
Claim A5. Let G;(S,X) = min(E;(S), max(0,X —

(3

The functionG; (S, X) is a non-decreasing function of the

integral arguments.
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A71(S—1))+ E;(S—1)) be as defined in Lemma 3 below.

Gi(S+1,X)

= min(E;(S + 1), max(0, X — 4,(9)) + Ei(S))
{because;(S) is a non-decreasing functipn

> Ei(S)

> min(E;(S), max(0, X — A, (S — 1)) + E;i(S — 1))

=G;(5,X) O

Lemma 3. Let G;(S,X) =
ATH(S = 1) + Ei(S - 1)).

min(E;(S), max(0, X —

Tnc (T, 00,1)
min(G (o (0¢(k) + D¢ — D; 4 ©;),
d¢(k) + D¢ — D; + ©;),

. 5@(/€)+9z—E4(k)+1) ifi £ ¢,
o min(Gi (a;‘(&(k) +Dy—D; + @Z) —k,
0¢(k) + D¢ — D; + ©;),
Se(k) — 67m(k)) otherwise.

Proof. Consider two cases.
Case 1:i # (. LetT; , be as defined in Def. Al. We first
rewrite (21).

(1)
= A(T;,a, [to(k), tw (k) UT%))
+ D ATy [to(k),tu (k) UTR))  (22)

T;,y€ki\Ti,a

We now bound the individual terms in (22). By Claim A2,
T; . finishes its execution at timg , > to(k), and hence,

A(Tia, [to(k), tw (k) UT%)

= min(e; q, fi,e — to(k))
{by (7)}
< min(e; q, 74,0 + i — to(k)), (23)

wheree; , is the actual execution time df; ,. By (22) and
(23),



I(T;)
< min(e;q, 7,0 + i — to(k))
t

+ ) ATy, [to(k), tw (k) UTk)
T;,yEri\a

S min (61'7(1 + Z A(ﬂ,gﬂ [to(/f), tw(k)) U Fk)7

Tiy€ri\Ti,a
Tia + 0; — to(k)

+ ) ATy [tolk), tw(k) UTR) | . (24)
Ti,yEK/i\Ti,a
Let S; = |k;|. Because, by Def. A3, the processor allo-
cation of job7; , cannot be greater than its execution time,
by Def. 1, we have the following.

€i.a + Z

ATy, [to(k), tw (k) UTk)

Tiy€ri\Ti,a
< E;(S;) (25)
Y ATy, lto(k), tu (k) UTY)
Tiy€ri\Ti,a
< Bi(S; —1) (26)

By and (24), (25), and (26), we have

I(T;) < min(E;(S;), 7.6 + 0; — to(k) + E;(S; —1)).
(27)

By Claim A3, all jobsT; , such thatl; , € x; are re-
leased within[r; 4,70 4 + Dy — D;]. If Y > S; jobs of T;
are released withifr; ., ¢, + Dy — D;], thenr ; + Dy —
D; —ria > A7Y(Y — 1) by Claim 1, and hence;; , <
Tg,q-l—Dg—Di—Ai_l(Y—l) < T.Z’q—’_DZ_Di_Ai_l(Si_].).
We thus have

Tia + 0; — to(k)

< max(0,
T0,g+ Di— Di — A;7H(Si — 1) + ©; — to(k))
{by Def. 12
< max(0,8¢(k) + D¢ — D; + ©; — A;71(S; — 1)).

(28)
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By (27) and (28), we have

I(T3)
< min(E;(S;),
max(0,8¢(k) + Dy — D; + ©; — A71(S; — 1))
+ Ei(Si — 1))

= G;(S;,00(k) + Dy — D; + 0,), (29)

whereG, (S, X) is defined in the statement of the lemma.
By Claim A5, the funcionG;(S, X) is a non-decreasing
function of S. We thus can find an upper bound &(i;)

by setting an upper bound ¢ into (29).

By Claim A3, S; = |x;| is at most the number of jobs
released within the intervét; .,  + D¢ — D;], which, by
Claim A2, is contained withirtto (k) — ©;,7¢,4 + D¢ — D).
We thus upper-bounS; using Def. 2.

Si

S a;”(rg,q + Dz — Dl — to(k) + @z)
{by Def. 12

= ;' (0¢(k) + D¢ — D; + ©;)

Setting this upper bound o%} into (29), we have

I(Ty)
< Gl(a?(&(k) +Dy—D; + @i),
5@(/€) +Dy—D; + @l)

The stated expression for the case* ¢ therefore follows
from Lemma Al.

Case 2:i = /. Repeating the reasoning from the previous
case, we find that

I(T;)

< Gi(o' (0¢(k) + D — D; + ©;) — k,

Se(k) + D¢ — Di + ©;). (30)

The only difference with the previous case is that we ex-
clude jobsT k41, - ..,Ts,q from consideration because,
by Corollary Al, jobsT} ,—x+1,-..,1r,4 do not execute
prior to ¢,,(k) and, by Def. 9,T, does not execute within
T'x. The claimed bound for this case follows from (30) and
Lemma Al. o

The following claims and lemma are used to prove
Lemma 4.

ClaimA6: L;(X +Y) < Li(X) +u; - (Y + |a|) forall X
andY > a.

Proof. By Def. 5,u; > 0. We consider two cases.



Case 1. 'Y > 0. In this case, by Def. 18,
Li(X+Y) = max(0,u; - (X +Y)+7e B;)+v <
Becauséa| > 0, the required result follows.

Case 2:Y < 0. In this case, by Def. 18L;(X +Y) =
max(0,u; - (X +Y) +¢ - B;) +v; < max(0,u; - X +
e - B;) + vi = L;(X). From the statement of the claim
and the condition of Case 2, we hawe< Y < 0, and
henceY + |a| > 0. We thus have,;(X +Y) < L;(X) <
Li(X) +u; - (Y + |a)). O

Claim A7: E;(a¥

Proof. By Def. 2, a¥(A) is a non-decreasing function of
A. Thereforea¥(A) < al(A + ¢) for anye > 0, which
impliesa¥(A) < lim._,1o a(A + €). The right-hand side
of the latter inequality i} (A) by Def. 3. Thusp(A) <
o (A). The firstinequality of the claim follows from; (k)
being a non-decreasing function kfby Def. 1. We now
prove the second inequality. Becausg(X) > 0 by Def. 3,
we haveFE;(a; (X)) = E;(max(0,; (X))). By (3), we
have E; (max (0, o (X))) < & - (max(0, ;f (X))) + v;.
By (2), % - (max(0,a; (X))) +v; <& - (max(0, R; - X +
B))) +v; = max(0,¢; - R; - X +¢€; - B;) + v;. By Def. 5,
maX(O, 6_1R7X+6_137)+U7 = maX(O, U7X+€_7Bz)+’l)z
The latter isL;(X) by Def. 18. O

Lemma A3: IHc(T“(S ( )) <L ((5@( )—l—De—Dz)—F’U,z@z
and Inc (T3, de(k)) < Li(de(k) + Do — D;).

Proof. We prove the first inequality. The second inequal-
ity is proved similarly. By Lemma 3]uc(T;,00(k)) <
Ei(a}(d¢(k) + Dy — D; + ©;)). Note that this inequality
holds for bothi = ¢ andi # ¢ sincek > 1. By Claim A7,
Ei(ai (0e(k)+D¢—D;+0;)) < Li(de(k)+D¢— D; +6;).
Becaus®,; > 0, by Claim A6,L;(¢(k)+ D¢— D; +0;) <
Li(ég(k)—FDg—Di)—Fui-@i. O

Lemma 4. For all 6,(k) > & (k), M*(de(k)) < A-
(0e(K) + [67™(K)]) + Hy, where A = Y7, ui, Hp =
> rer Li(De — Di) + U(m — 1) - max(©;), andU (y) is
the sum ofnin(y, |7|) largest utilizations.

Proof. Suppose that the set4C and NC subject to (16)
maximize the value of the right-hand side of (15). By (15),
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we have
M (3, (k))
Z IH(:(T%,ég(k))—F Z INC(Tia(Sé(k))
T;€HC T;ENC
{by LemmaA:}
< ) (Li(e(k) + Dy — D) +u; - ©;)
T;€HC
+ Z k) + D¢ — D)
T;eNC

{sinceHC UNC C ’7'}

< > Li(de(k) + Dy —Di)+ Y ui-©;

T; €T T;eHC

{becaus¢HC| < m — 1 by (16) and by the

definition ofU( ) in the statement of the lemrha
< Z D)+ U(m — 1) - max(0;)

T;eT
{by Claim A6 (note that, by Claim B, (k) > 67 (k))}

< ) L ) i - (3e(k) + 167 (K)))]

k)+ Dy —

T, €T
+U(m —1) - max(0;)
{by the definition ofA andH,

in the statement of the lemrha
= A (de(k) + |6 (R)]) + Ho.



