
Multiprocessor Extensions to Real-Time Calculus

Hennadiy Leontyev1 Samarjit Chakraborty2 James H. Anderson1
1Department of Computer Science, University of North Carolina at Chapel Hill

2Department of Computer Science, National University of Singapore
E-mail: {leontyev, anderson}@cs.unc.edu, samarjit@comp.nus.edu.sg

Abstract

Many embedded platforms consist of a heterogeneous
collection of processing elements, memory modules, and
communication subsystems. These components often imple-
ment different scheduling/arbitration policies, have different
interfaces, and are supplied by different vendors. Hence,
compositional techniques for modeling and analyzing such
platforms are of interest. While a number of such tech-
niques have been recently proposed in the literature, none
of them handle multiprocessor processing elements. On the
other hand, within the real-time systems community, a num-
ber of scheduling algorithms and analysis techniques have
been proposed that directly target multiprocessors. In this
paper, we present a compositional analysis framework that
is obtained by extending the real-time calculus framework
to incorporate multiprocessors in which tasks are scheduled
using well-known multiprocessor scheduling techniques. We
present the basic theory of the resulting extended framework
and show its utility using a case study.

1. Introduction

The increasing complexity and heterogeneity of modern
embedded platforms have led to a growing interest in com-
positional modeling and analysis techniques [9]. In devis-
ing such techniques, the goal is not only to analyze the
individual components of a platform in isolation, but also
to compose different analysis results to estimate the timing
and performance characteristics of the entire platform. Such
analysis should be applicable even if individual processing
and communication elements implement different schedul-
ing/arbitration policies, have different interfaces, andare
supplied by different vendors. These complicating factors
often cause standard event models (e.g., periodic, sporadic,
etc.) and schedulability-analysis techniques to lead to overly
pessimistic results.

To enable more accurate analysis, a compositional tech-
nique was proposed in [9], which relies on well-known
schedulability and timing-analysis results. As illustrated in
Fig. 1(a), the system architecture considered in [9] is very
general and consists of multiple processing elements (PEs)
that process streams of input data or events (or equivalently,
jobs generated by a task). The processed data/events trig-

ger subsequent tasks implemented on other PEs. Different
PEs might be connected by communication buses (which
can be considered to be PEs as well) orFIFO buffers. Ad-
ditionally, different PEs might implement different schedul-
ing/arbitration policies. Further, different PEs might assume
different task triggering patterns or event models (e.g., pe-
riodic, periodic with jitter, sporadic, etc.). While it is pos-
sible to analyze each of the individual PEs in isolation us-
ing known results from the real-time systems literature (e.g.,
schedulability analysis of periodic tasks under fixed-priority
or earliest-deadline first (EDF) scheduling), it is not clear
how to compose the results for different PEs to estimate the
timing properties of the full system.

To enable compositions of PEs with different event mod-
els, [9] proposed the use ofevent model interfaces(EMIFs).
An EMIF translates an event stream that conforms to one
event model so that it conforms to another event model. For
example, a periodic stream with periodp and jitterj can be
translated into a sporadic stream with a minimum event sep-
aration ofp − j. Some EMIFs are lossy (e.g., periodic to
sporadic), while others are not. If an EMIF does not exist
between a pair of event models (e.g., sporadic to periodic),
then [9] suggested the use of buffering (orevent adaptation
functions) to physically change the timing properties of the
event stream to match the target event model.

An alternative composition technique — often referred
to as real-time calculus— was proposed in [3] and then
subsequently extended in a number of papers (e.g., see [4]).
Here, the basic idea is to represent the timing properties of
event streams using upper and lower bounds on the number
of events that can arrive over any time interval of a speci-
fied length. These bounds are given by functionsαu(∆) and
αl(∆), which specify the maximum and minimum number
of events, respectively, that can arrive at a PE within any
time interval of length∆ (or the maximum/minimum num-
ber of possible task activations within any∆). The service
offered by a PE is similarly specified using functionsβu(∆)
andβl(∆), which specify the maximum and minimum num-
ber of serviced events, respectively, within any interval of
length∆. Given the functionsαu andαl corresponding to an
event stream arriving at a PE, and the serviceβu andβl of-
fered by it, it is possible to compute the timing properties of
the processed stream and remaining processing capacity, i.e.,

1

(a) (b) (c)

Figure 1. (a) System architecture with multiple PEs implementing different scheduling policies.(b) Computing the timing properties
of the processed stream.(c) Scheduling networks.

functionsαu′, αl′, βu′, andβl′, as illustrated in Fig. 1(b),
as well as the maximum backlog and delay experienced by
the stream. The computed functionsαu′ andαl′ can now
serve as input to the next PE on which this stream is pro-
cessed (see Fig. 1(a)). By repeating this procedure until all
PEs have been considered, timing properties of the fully pro-
cessed stream can be determined, as well as the end-to-end
event delay and total backlog.

Similarly, for any PE with two or more tasks being sched-
uled according to some scheduling policy, it is also possi-
ble to compute service bounds (βu(∆) and βl(∆)) avail-
able to its individual tasks. Fig. 1(c) shows how this is
done forfixed priority (FP) andtime division multiple ac-
cess(TDMA) policies. As shown in this figure, for FP,
the remainingservice after processing Stream A serves in
the input (or, is available) to Stream B. On the other hand,
for TDMA, the total serviceβ is split between the services
available to the two streams. Similar so calledscheduling
networks[4] can be constructed for other scheduling poli-
cies as well.

Our contribution. None of the compositional techniques
described above can be used to analyze multiprocessor PEs
wherethe constituent processors are managed according to
a global multiprocessor scheduling algorithm. There are
two reasons why existing compositional techniques need
to be extended to incorporate such configurations. First,
multicore chips are becoming increasingly common. Sec-
ond, viewing a multiprocessor system as a collection of
independent uniprocessors and applying partitioning tech-
niques is unnecessarily restrictive and precludes supporting
workloads that fundamentally require global scheduling ap-
proaches. (Such a workload is considered in a case study
presented later.)

The main contribution of this paper is an extension of the
real-time calculus framework [3, 4] that incorporates sym-
metric globally-scheduled multiprocessors. In particular, we
present a pseudo-polynomial procedure that can be used to
test whether event delays on such a multiprocessor reside
within specified bounds. Using these bounds, the arrival
curves for processed streams can be computed; these curves

can in turn be used as input for other PEs thereby resulting
in a compositional technique.

The presented test is based upon multiprocessor schedu-
lability tests by Baruah [1] and Leontyev and Anderson [6].
In some aspects, the presented analysis is also similar to re-
sults by Bertogna et al. [2], Shin et al. [10], and Zhang and
Burns [12]. The main difference between our work and these
prior efforts is that we consider more general task arrival and
execution models. Also, we consider the case when one or
more processors can be partially available, which is similar
to [10], where partial availability appears in the context of
hierarchical scheduling.

The rest of the paper is organized as follows. Sec. 2
presents our task model. In Sec. 3, the aforementioned test is
presented. In Sec. 4, the test’s time complexity is discussed.
Sec. 5 presents a case study for our analysis. Sec. 6 con-
cludes by summarizing our contributions and listing some
directions for future work.

2. Task Model

In this paper, we consider a task setτ = {T1, T2,
. . . , Tn}. Each task has incoming jobs that are processed
by a multiprocessor consisting ofm ≥ 2 unit-speed proces-
sors. We assume thatn ≥ m. We also assume that all time
quantities are integral.

The jth job of Ti, wherej ≥ 1, is denotedTi,j . The
arrival (or release) time of Ti,j is denotedri,j . The com-
pletion timeof Ti,j is denotedfi,j and the delay between its
start time and completion,fi,j − ri,j , is called itsresponse
time.

Definition 1. Ei(k) denotes an upper bound on the total
execution time of anyk consecutive jobs ofTi. (We assume
Ei(k) = 0 for all k ≤ 0 andEi(k) ≤ Ei(k + 1).)

Example 1. If worst-case job execution times follow a re-
peating pattern as in the multiframe task model [7], then the
functionEi(k) can be derived from this pattern, e.g., using
the RTC Toolbox [11]. Suppose that taskTi’s worst-case job
execution times follow a pattern1, 5, 2, 1, 5, 2, Then,
Ei(1) = 5, Ei(2) = 7, Ei(3) = 8, Ei(4) = 13, etc.

2

Definition 2. Thearrival functionαu
i (∆) (αl

i(∆)) provides
an upper (lower) bound on the number of jobs ofTi that can
arrive within any time interval(x, x + ∆], wherex ≥ 0 and
∆ > 0. (We assumeαu

i (∆) = 0 for all ∆ ≤ 0.) αi(∆)
denotes the pair(αu

i (∆), αl
i(∆)).

Definition 3. Let α+
i (∆) = limǫ→+0 αu

i (∆+ǫ). This func-
tion provides an upper bound on the number of jobs released
within any interval[x, x+∆], wherex ≥ 0 and∆ ≥ 0. (We
assumeα+

i (∆) = 0 for all ∆ < 0.)

Example 2. The widely-studied periodic and sporadic task
models are subcases of this more general task model. In
both models, consecutive job arrivals ofTi are separated by
at leastpi time units, wherepi is theperiodof Ti, and each
job requires at mostemax

i execution units. Therefore, under

both models,αu
i (∆) =

⌈
∆
pi

⌉
andEi(k) = k·emax

i . The next

example illustrates the difference between the functionsαu
i

andα+
i .

Example 3. Consider a taskTi, whose jobs arrive peri-
odically with periodpi. The maximum number of jobs
that can arrive within an interval(x, x + 2 · pi] is thus

αu
i (2 · pi) =

⌈
2·pi

pi

⌉
= 2. However, the maximum num-

ber of jobs that can arrive within the interval[x, x+2 ·pi], is
α+

i (2 · pi) = limǫ→+0 αu
i (2 · pi + ǫ) = 3. In general, under

the sporadic task model,α+
i (∆) =

⌊
∆
pi

⌋
+ 1.

Definition 4. Let A−1
i (k) = inf{∆|αu

i (∆) > k}. This
function characterizes the minimum length of the time inter-
val (x, x + ∆] during which jobsTi,j+1, . . . , Ti,j+k can be
released for somej, assumingTi,j is released at timex. We
require that there existsKi ≥ 1 such that

A−1
i (Ki) ≥ Ei(Ki). (1)

Example 4. (1) is needed in order to prevent taskTi from
overloading the system. Under the periodic and sporadic
models,A−1

i (k) = k · pi andEi(k) = k · emax
i . If (1) does

not hold, thenpi < emax
i , and thus, taskTi’s jobs can have

unbounded response times.

We further require that there existsRi > 0 andBi ≥ 0,

whereRi = lim∆→+∞
α

+

i
(∆)

∆ , such that

α+
i (∆) ≤ Ri · ∆ + Bi for all ∆ ≥ 0. (2)

Also, we assume that there existsei > 0 andvi, whereei =
limk→+∞

Ei(k)
k

, such that

Ei(k) ≤ ei · k + vi for all k ≥ 1. (3)

(2) and (3) are needed in order to bound the computation
time of the proposed schedulability test. In (2),Ri character-
izes the long-term arrival rate of taskTi’s jobs andBi char-
acterizes the degree of burstiness of the arrival sequence.In

(3), the parameterei denotes the average worst-case job ex-
ecution time ofTi. These assumptions are not too restric-
tive because usually arrival curves are composed of aperi-
odic and periodic parts for which linear bounds are known
(see [11] for an example), and the execution times of con-
secutive jobs often follow a repeating pattern [7].

Definition 5. Let ui = Ri · ei. This quantity denotes the
average long-term utilization of taskTi. We require that
ui ≤ 1.

Example 5. Under the sporadic task model,Ri =

lim∆→+∞

(⌊
∆
pi

⌋
+ 1
)

/∆ = 1
pi

andei = emax
i , soui =

Ri · ei =
emax

i

pi
.

Definition 6. We assume that the available processing ca-
pacity is specified usingservice functions. Specifically,
the guaranteed time that processorh can provide to the
tasks inτ in any time interval of length∆ ≥ 0 is within
[βl

h(∆), βu
h (∆)], where

βl
h(∆) ≥ max(0, ûh · (∆ − σh)), (4)

for ûh ∈ (0, 1] andσh ≥ 0.

In the above definition,̂uh is the total long-term utiliza-
tion available to the tasks inτ on processorh andσh is the
maximum length of time when the processor can be unavail-
able. Note that, if processorh is fully available to the tasks
in τ , thenβu

h(∆) = βl
h(∆) = ∆.

We require that (5) below holds for otherwise the system
would be overloaded and job response times could be un-
bounded.

∑

Ti∈τ

ui ≤
m∑

h=1

ûh (5)

We assume that released jobs are placed into a single
global ready queue. When choosing a new job to schedule,
the scheduler selects (and dequeues) the ready job of highest
priority. A job is ready if it is released and its predecessor
(if any) has completed execution. Note that, the jobs of each
task execute sequentially. Job priorities are determined as
follows.

Definition 7. (prioritization rules) Associated with each
job Ti,j is a valueri,j + Di, whereDi is a constant. If
ri,j + Di < rk,h + Dk or ri,j + Di = rk,h + Dk ∧ i < k or
ri,j + Di = rk,h + Dk ∧ i = k ∧ j < h, then the priority of
Ti,j is higher than that ofTk,h, which is denotedTi,j ≺ Tk,h.

If Di is thought of as the relative deadline of a job,
then the above prioritization simply defines a global earliest-
deadline first (GEDF) scheduler. On the other hand, if
Di = 0 for each taskTi, then the scheduler is global
FIFO [5].

3

The technical contribution of this paper is the following.
Given a task setτ = {T1, . . . , Tn} and a multiprocessor
platform characterized by a collection of service functions
βl

k(∆), we develop a sufficient test that verifies whether the
maximum job response time of a taskTi ∈ τ , maxj(fi,j −
ri,j), is at mostΘi, where

Θi ≥ Ei(1). (6)

If Θi equals the relative deadline of a job, then the test will
check whether the system is hard-real-time schedulable. Al-
ternatively, if deadlines are allowed to be missed andΘi in-
cludes the maximum allowed deadline tardiness, then the
test will check soft-real-time schedulability.

Assuming that maximum job response times are known,
it is possible to characterize the sequences of job comple-
tion events for each taskTi in terms of arrival functionsαu

i
′

andαl
i

′
, which then can serve as inputs to subsequent PEs,

thereby resulting in a compositional technique. (The de-
tails for doing this are straightforward and are omitted due
to space constraints.)

3. Multiprocessor Schedulability Test

As noted earlier, the way jobs are prioritized according
to Def. 7 is similar toGEDF. A number ofGEDF schedu-
lability tests have been developed assuming that jobs arrive
periodically or sporadically (e.g., [1, 2, 6]). In this paper, we
extend techniques from [1] and [6] in order to incorporate
more general job arrivals and execution models.

Similarly to [6], we derive our test by ordering jobs by
their priorities and assuming thatTℓ,q is the first job for
which fℓ,q > rℓ,q + Θℓ. We further assume that, for each
job Ta,b such thatTa,b ≺ Tℓ,q,

fa,b ≤ ra,b + Θa. (7)

We consider an interval that includes the time whenTℓ,q

becomes ready and the latest time whenTℓ,q is allowed to
complete, which isrℓ,q + Θℓ. During this interval, we con-
sider demand due to competing higher-priority jobs that can
interfere withTℓ,q. We then perform the following three
steps:S1: Compute a lower boundLB(τ, m) on this demand
that is necessary forTℓ,q’s response time to exceedΘℓ; S2:
given a finite upper boundUB(τ, m) on this competing de-
mand, define a sufficient test for checking whether a task’s
response-time bound is not violated by settingUB(τ, m) <
LB(τ, m); S3: estimateUB(τ, m) as used inS2.

3.1. Steps S1 and S2

We start the derivation by proving the following claims.
Claim 1 below follows from Def. 4.

Claim 1: rℓ,q − rℓ,q−i ≥ A−1
ℓ (i).

Claim 2. For i ≥ 1. fℓ,q−i ≤ rℓ,q + Θℓ − A−1
ℓ (i).

Proof. By (7),fℓ,q−i ≤ rℓ,q−i +Θℓ = rℓ,q−i− rℓ,q + rℓ,q +

Θℓ

{by Claim 1}
≤ rℓ,q + Θℓ − A−1

ℓ (i).

Claim 3: fℓ,q−Kℓ
≤ rℓ,q + Θℓ − Eℓ(Kℓ).

Proof. By (1), A−1
ℓ (Kℓ) ≥ Eℓ(Kℓ). Thus,−A−1

ℓ (Kℓ) ≤
−Eℓ(Kℓ). Setting this andi = Kℓ into Claim 2, we get the
required result.

JobTℓ,q can violate its response-time bound for the fol-
lowing reasons. IfTℓ,q−1 completes by timerℓ,q + Θℓ −
Eℓ(1), thenTℓ,q may finish its execution afterrℓ,q + Θℓ if,
after timemax(fℓ,q−1, rℓ,q), higher-priority jobs deprive it
of processor time or one or more processors are unavailable.

Alternatively, Tℓ,q−1 may completeafter time rℓ,q +
Θℓ − Eℓ(1), which can happen if the minimum job inter-
arrival time for Tℓ is less thanEℓ(1). In this situation,
Tℓ,q could violate its response-time bound even if it ex-
ecutes uninterruptedly within[fℓ,q−1, rℓ,q + Θℓ). In this
case,Tℓ’s response-time bound is violated becauseTℓ,q−1

completes “late,” namely after timerℓ,q (recall that, by (6),
Θℓ ≥ Eℓ(1)). However, this implies thatTℓ is pending
continuously throughout the interval[rℓ,q−1, rℓ,q +Θℓ), and
hence, we can examine the execution of jobsTℓ,q−1 andTℓ,q

together. In this case, we need to consider the completion
time of job Tℓ,q−2. If fℓ,q−2 ≤ rℓ,q + Θℓ − Eℓ(2), then
job Tℓ,q may exceed its response-time bound if this job and
its predecessor,Tℓ,q−1, experience interference from higher-
priority jobs or some processors are unavailable during the
time interval[max(fℓ,q−2, rℓ,q−1), rℓ,q + Θℓ). On the other
hand, if fℓ,q−2 > rℓ,q + Θℓ − Eℓ(2), thenTℓ,q can com-
plete after timerℓ,q +Θℓ even ifTℓ executes uninterruptedly
within [fℓ,q−2, rℓ,q + Θℓ). Continuing by considering pre-
decessor jobsTℓ,q−i in this manner, we will exhaust all pos-
sible reasons for the response-time bound violation. Note
that it is sufficient to consider only jobsTℓ,q−1, . . . , Tℓ,q−Kℓ

since, by Claim 3,fℓ,q−Kℓ
≤ rℓ,q + Θℓ − Eℓ(Kℓ). As-

suming that, for jobTℓ,q−i, fℓ,q−i ≤ rℓ,q + Θℓ − Eℓ(i),
we define theproblem windowfor jobs Tℓ,q−i+1, . . . , Tℓ,q

as[max(fℓ,q−i, rℓ,q−i+1), rℓ,q + Θℓ).

Definition 8. For i ≥ 1, we settw(i) = max(min(rℓ,q +
Θℓ − Eℓ(i), fℓ,q−i), rℓ,q−i+1). Let k ≥ 1 be the minimum
number such thatfℓ,q−k ≤ tw(k). Claim 4 below shows
that such ak exists.

To avoid distracting “boundary cases,” we henceforth as-
sume that the schedule being analyzed is prepended with
a schedule in which response-time bounds are not violated
that is long enough to ensure that all predecessor jobs refer-
enced in the proof exist.

Claim 4: k ≤ Kℓ.

4

Proof. By Claim 3,fℓ,q−Kℓ
≤ rℓ,q + Θℓ −Eℓ(Kℓ). Setting

this inequality into the expression fortw(Kℓ) in Def. 8, we
havetw(Kℓ) = max(fℓ,q−Kℓ

, rℓ,q−Kℓ+1), which implies
fℓ,q−Kℓ

≤ tw(Kℓ).

We call taskTℓ readyat timet if there is a ready job of
Tℓ at timet.

Claim 5. Tℓ is ready at each instant of the interval
[tw(k), rℓ,q + Θℓ).

Proof. Consider a jobTℓ,q−j , wherej ∈ [1, k). By Def. 8,
fℓ,q−j > tw(j) = max(min(rℓ,q + Θℓ − Eℓ(j), fℓ,q−j),
rℓ,q−j+1). This impliesfℓ,q−j > rℓ,q−j+1. Thus, the inter-
vals[rℓ,q−j , fℓ,q−j) and[rℓ,q−j+1, fℓ,q−j+1), where consec-
utive jobs ofTℓ are pending, overlap. Therefore,Tℓ is pend-
ing continuously within[rℓ,q−k+1, fℓ,q), wherek is defined
in Def. 8. Also, if Tℓ is pending at timet, then there is an
unfinished job ofTℓ at timet, and the earliest released such
job is ready. Thus,Tℓ is ready throughout[rℓ,q−k+1, fℓ,q).
The claim follows from[tw(k), rℓ,q+Θℓ) ⊂ [rℓ,q−k+1, fℓ,q)
becausetw(k) ≥ rℓ,q−k+1, by Def. 8, andfℓ,q > rℓ,q + Θℓ,
sinceTℓ,q violates its response-time bound.

BecauseTℓ,q violates its response-time bound, after time
tw(k), there are other higher-priority jobs that depriveTℓ of
processor time or one or more processors are unavailable.

If jobs Tℓ,q−k+1, . . . , Tℓ,q execute forxℓ,q−k+1, . . . , xℓ,q

time units within the interval[tw(k), rℓ,q+Θℓ), wherexℓ,q−i

is the actual execution time ofTℓ,q−i, thenTℓ,q cannot vio-
late its response-time bound. If jobTℓ,q executes for less
thanxℓ,q time units within [tw(k), rℓ,q + Θℓ), then it ex-
ecutes for at mostxℓ,q − 1 time units within this inter-
val, as time is integral. Thus, the total time for which
jobs Tℓ,q−k+1, . . . , Tℓ,q, do not execute in[tw(k), rℓ,q +
Θℓ) while being ready is at leastrℓ,q + Θℓ − tw(k) −

(
∑k

i=1(xℓ,q) − 1) ≥ rℓ,q + Θℓ − tw(k) − (Eℓ(k) − 1) =
rℓ,q + Θℓ − tw(k) − Eℓ(k) + 1.

Definition 9. LetΓk be a subset of the set of intervals within
[tw(k), rℓ,q + Θℓ), where taskTℓ does not execute while
being ready, such that the cumulative length ofΓk is exactly
rℓ,q + Θℓ − tw(k) − Eℓ(k) + 1. The total length ofΓk is
denoted|Γk| = rℓ,q + Θℓ − tw(k) − Eℓ(k) + 1.

Definition 10. We let τp(t) = {Ta | for somey,
Ta,y is pending at timet andTa,y � Tℓ,q}.

Definition 11. Let t0(k) ≤ tw(k) be the earliest instant such
that∀t ∈ [t0(k), tw(k)), |τp(t)| ≥ m or fewer than|τp(t)|
tasks fromτp(t) execute at timet. If such an instant does
not exist, then lett0(k) = tw(k).

Def. 11 generalizes the well-known concept of anidle in-
stantin uniprocessor scheduling. We call an interval[t1, t2)
busyif no available processor is idle within it.

Claim 6. The time interval[t0(k), tw(k)) is busy.

Proof. Suppose that an available processor is idle at time
t ∈ [t0(k), tw(k)). Because the scheduler being analyzed is
work-conserving, all tasks inτp(t) execute at timet and thus
|τp(t)| ≤ m − 1, which violates Def. 11.

Definition 12. Let δℓ(k) = rℓ,q − t0(k). Let δmin
ℓ (k) =

min(max(Eℓ(k) − Θℓ,A
−1
ℓ (k) − Θℓ),A

−1
ℓ (k − 1)).

Claim 7: δℓ(k) ≥ δmin
ℓ (k).

Proof. By Def. 12,δℓ(k) = rℓ,q − t0(k) ≥ rℓ,q − tw(k). We
lower-boundrℓ,q − tw(k) as follows. By Def. 8,

rℓ,q − tw(k)

= rℓ,q − max(min(rℓ,q + Θℓ − Eℓ(k), fℓ,q−k), rℓ,q−k+1)

= min(rℓ,q − min(rℓ,q + Θℓ − Eℓ(k), fℓ,q−k),

rℓ,q − rℓ,q−k+1)

= min(max(rℓ,q − rℓ,q − Θℓ + Eℓ(k), rℓ,q − fℓ,q−k),

rℓ,q − rℓ,q−k+1)

= min(max(Eℓ(k) − Θℓ, rℓ,q − fℓ,q−k), rℓ,q − rℓ,q−k+1)

{by (7)}

≥ min(max(Eℓ(k) − Θℓ, rℓ,q − rℓ,q−k − Θℓ),

rℓ,q − rℓ,q−k+1)

{by Claim 1}

≥ min(max(Eℓ(k) − Θℓ,A
−1
ℓ (k) − Θℓ),A

−1
ℓ (k − 1))

= δmin
ℓ (k).

Definition 13. Let I(Ti) be the total amount of time for
which jobs of taskTi execute within[t0(k), tw(k)) ∪ Γk.

Definition 14. Let M∗(δℓ(k), ℓ, k, m, τ) be a finite func-
tion of δℓ(k), ℓ, k, m, and τ such that

∑
Ti∈τ I(Ti) ≤

M∗(δℓ(k), ℓ, k, m, τ). (We will derive an expression for
M∗(δℓ(k), ℓ, k, m, τ) later in Sec. 3.2.)

Definition 15. We require that there exist the constantsA ≥
0 andHℓ ≥ 0 such that, for allδℓ(k) ≥ δmin

ℓ (k),

M∗(δℓ(k), ℓ, k, m, τ) ≤ A · (δℓ(k)+ |δmin
ℓ (k)|) + Hℓ. (8)

Henceforth, we omit the last four arguments ofM∗.

Definition 16. Let δmax
ℓ (k) =

⌊
(Hℓ + A · |δmin

ℓ (k)|
+m · (Eℓ(k) − 1) +

∑m

h=1 ûh · σh − Θℓ ·
∑m

h=1 ûh)/
(
∑m

h=1 ûh − A)⌋.

Theorem 1. If the response-time boundΘℓ is violated for
Tℓ,q, then, for somek ∈ [1, Kℓ] and δℓ(k) ∈ [δmin

ℓ (k),
max(δmin

ℓ (k), δmax
ℓ (k))],

M∗(δℓ(k)) + m · (Eℓ(k) − 1) ≥
m∑

h=1

βl
h(δℓ(k) + Θℓ). (9)

5

timet0(k) Ql

job release

rl,q

tw(k)

Gk

Tl,qTl,qTl,q

m-1
Tl,q-1

Tl,q
competing jobs unavailable time

r +l,q Ql

Figure 2. Conditions for response-time bound
violation if k = 1. (Recall that Γk is a subsetof
the intervals where Tℓ is ready but does not
execute.)

Proof. Consider jobTℓ,q, constantk, and time instants
tw(k) and t0(k) as defined in Defs. 8 and 11. LetRh(γ)
be the amount of time that is not available on processorh at
time instants in the set of intervalsγ. The amount of avail-
able time on processorh during the interval[t0(k), rℓ,q+Θℓ)
is (rℓ,q + Θℓ − t0(k)) − Rh([t0(k), rℓ,q + Θℓ)), which, by
Def. 6, is at leastβl

h(rℓ,q +Θℓ− t0(k)). By Def. 12, we thus
have

(rℓ,q + Θℓ − t0(k)) − Rh([t0(k), rℓ,q + Θℓ)

≥ βl
h(δℓ(k) + Θℓ). (10)

SinceTℓ,q does not execute at time instants inΓk (refer to
Def. 9), each processor at these time instants is either un-
available or executes a task different fromTℓ as shown in
Fig. 2. Also, by Claim 6, no available processor is idle dur-
ing [t0(k), tw(k)). By Def. 13, we thus have

n∑

i=1

I(Ti) +

m∑

h=1

Rh([t0(k), tw(k)) ∪ Γk)

= m · (|Γk| + tw(k) − t0(k))

{by Def. 9}

= m · (rℓ,q + Θℓ − tw(k) − Eℓ(k) + 1 + tw(k) − t0(k))

= m · (rℓ,q + Θℓ − t0(k) − Eℓ(k) + 1).

Rearranging the terms in the above inequality, we have
n∑

i=1

I(Ti) + m · (Eℓ(k) − 1)

= m · (rℓ,q + Θℓ − t0(k)) −
m∑

h=1

Rh([t0(k), tw(k)) ∪ Γk)

{because[t0(k), tw(k)) ∪ Γk ⊆ [t0(k), rℓ,q + Θℓ)}

≥ m · (rℓ,q + Θℓ − t0(k)) −
m∑

h=1

Rh([t0(k), rℓ,q + Θℓ))

=

m∑

h=1

((rℓ,q + Θℓ − t0(k)) − Rh([t0(k), rℓ,q + Θℓ))) .

(11)

Setting (10) into the right-hand side of (11), we have

n∑

i=1

I(Ti) + m · (Eℓ(k) − 1) ≥
m∑

h=1

βl
h(δℓ(k) + Θℓ). (12)

By Def. 14,
∑n

i=1 I(Ti) ≤ M∗(δℓ(k)). Setting this into
(12), we have (9). Our remaining proof obligation is to es-
tablish the stated range forδℓ(k). By (8) and (9),

A · (δℓ(k) + |δmin
ℓ (k)|) + Hℓ + m · (Eℓ(k) − 1)

≥
m∑

h=1

βl
h(δℓ(k) + Θℓ). (13)

Applying (4) to (13), we have

A · (δℓ(k) + |δmin
ℓ (k)|) + Hℓ + m · (Eℓ(k) − 1)

≥
m∑

h=1

ûh(δℓ(k) + Θℓ − σh).

Solving the latter inequality forδℓ(k) we haveδℓ(k) ≤
(Hℓ + A · |δmin

ℓ (k)| + m · (Eℓ(k) − 1) +
∑m

h=1 ûh · σh −
Θℓ ·

∑m

h=1 ûh)/(
∑m

h=1 ûh − A). Becauseδℓ(k) is integral,
δℓ(k) ≤ δmax

ℓ (k). By Claim 7,δℓ(k) ≥ δmin
ℓ (k). The theo-

rem follows.

Corollary 1. (Schedulability Test) If, for task Tℓ, (9)
does not hold for eachk ∈ [1, Kℓ] and δℓ(k) ∈
[δmin

ℓ (k), max(δmin
ℓ (k), δmax

ℓ (k))], then the response-time
bound forTℓ is not violated.

We did not make any assumptions above about how
jobs are scheduled except that jobs of each task execute
sequentially. Therefore, Corollary 1 is applicable to all
fixed job-priority scheduling policies provided the function
M∗(δℓ(k)) and its linear upper bound are known. In the next
section, we derive the functionM∗(δℓ(k)) for the case when
jobs are prioritized as in Def. 7.

3.2. Finding M∗(δℓ(k))

To deriveM∗(δℓ(k)), we first identify the jobs that may
compete withTℓ,q or its predecessors for processor time.

Lemma 1. Only jobsTa,b such thatTa,b � Tℓ,q may execute
within [t0(k), tw(k)) ∪ Γk.

Proof. Suppose to the contrary that a jobTa,b ≻ Tℓ,q ex-
ecutes at timet ∈ [t0(k), tw(k)) ∪ Γk. Because the sets
[t0(k), tw(k)) andΓk are disjoint, we consider two cases.
Case 1: t ∈ [t0(k), tw(k)). SinceTa,b executes at timet,
by Def. 10, each task inτp(t) also executes at timet, which
violates Def. 11.
Case 2:t ∈ Γk. By the condition of the case and Def. 9, at
time t, a jobTℓ,q−i, wherei ≥ 0, is ready but not executing.
By Def. 7,Ta,b ≻ Tℓ,q � Tℓ,q−i, wherei ≥ 0. BecauseTa,b

executes at timet, this is a contradiction.

6

Definition 17. Let Ta,b be the earliest pending job ofTa at
time t0(k). Using Lemma 1, we separate the tasks that may
execute within[t0(k), tw(k)) ∪ Γk into two disjoint sets:

HC = {Ta :: (Ta,b exists)∧ (ra,b < t0(k)) ∧ (Ta,b � Tℓ,q)};

NC = {Ta :: (Ta,b does not exist)∨

[(ra,b = t0(k)) ∧ (Ta,b � Tℓ,q)]}.

Here,HC denotes “high-priority carry-in” andNC denotes
“non-carry-in”.

Claim 8. If δℓ(k) < 0, thenTℓ ∈ HC.

Proof. By Def. 12,t0(k) = rℓ,q −δℓ(k). Assumingδℓ(k) <
0, this impliest0(k) > rℓ,q. Therefore, at timet0(k), Tℓ,q

or its earliest unfinished predecessor is pending. By Def. 17,
this impliesTℓ ∈ HC.

Claim 9: |HC| ≤ m − 1.

Proof. By Defs. 10 and 17,HC ⊆ τp(t0(k) − 1). By
Def. 11, all tasks inτp(t0(k) − 1) execute att0(k) − 1 and
|τp(t0(k) − 1)| ≤ m − 1. Thus,|HC| ≤ m − 1.

We henceforth useINC(Ti, δℓ(k)) andIHC(Ti, δℓ(k)) to
denote an upper-bound onI(Ti) for the case whenTi is in
NC andHC, respectively. With this notation, we have
∑

Ti∈τ

I(Ti) ≤
∑

Ti∈HC

IHC(Ti, δℓ(k)) +
∑

Ti∈NC

INC(Ti, δℓ(k)).

(14)
The following two lemmas provide expressions for comput-
ing INC(Ti, δℓ(k)) andIHC(Ti, δℓ(k)). Their proofs can be
found in an appendix.

Lemma 2:

INC(Ti, δℓ(k))

=






min(Ei(α
+
i (δℓ(k) + Dℓ − Di)),

δℓ(k) + Θℓ − Eℓ(k) + 1) if i 6= ℓ,
min(Ei(α

+
i (δℓ(k) + Dℓ − Di) − k),

δℓ(k) − δmin
ℓ (k)) if i = ℓ ∧ δℓ(k) ≥ 0,

0 otherwise.

Lemma 3. Let Gi(S, X) = min(Ei(S), max(0, X −
A−1

ℓ (S − 1)) + Ei(S − 1)).

IHC(Ti, δℓ,k)

=






min(Gi(α
u
i (δℓ(k) + Dℓ − Di + Θi),

δℓ(k) + Dℓ − Di + Θi),
δℓ(k) + Θℓ − Eℓ(k) + 1) if i 6= ℓ,

min(Gi(α
u
i (δℓ(k) + Dℓ − Di + Θi) − k,

δℓ(k) + Dℓ − Di + Θi),
δℓ(k) − δmin

ℓ (k)) otherwise.

To continue our derivation ofM∗(δℓ(k)), we set

M∗(δℓ(k))

= max

(
∑

Ti∈HC

IHC(Ti, δℓ(k)) +
∑

Ti∈NC

INC(Ti, δℓ(k))

)
,

(15)

wheremax is taken over each choice ofHC andNC subject
to the following constraints.

NC ∪ HC ⊆ τ NC ∩ HC = ∅
δℓ(k) < 0 ⇒ Tℓ ∈ HC |HC| ≤ m − 1

}
(16)

In (16), the constraintδℓ(k) < 0 ⇒ Tℓ ∈ HC fol-
lows from Claim 8. The constraint|HC| ≤ m − 1 follows
from Claim 9. It is easy to check that0 ≤ INC(Ti, δℓ(k))
and0 ≤ IHC(Ti, δℓ(k)) for eachδℓ(k) ≥ δmin

ℓ (k). Thus,
the sets maximizing the valueM∗(δℓ(k)) can be found by
adding at mostm − 1 tasks with the largest positive value
of IHC(Ti, δℓ(k))− INC(Ti, δℓ(k)) to HC and adding the re-
maining tasks toNC.

By (14) and (15),M∗(δℓ(k)) upper-bounds
∑

Ti∈τ I(Ti)
so it complies with Def. 14. In order to use Corollary 1, we
are left to find constantsA andHℓ such that (8) holds so that
M∗(δℓ(k) given by (15) complies with Def. 15.

Definition 18. Let Li(X) = max(0, ui · X + ei · Bi) + vi

for anyX .

Lemma 4. (Proved in the appendix)For all δℓ(k) ≥
δmin
ℓ (k), M∗(δℓ(k)) ≤ A · (δℓ(k) + |δmin

ℓ (k)|) + Hℓ, where
A =

∑
Ti∈τ ui, Hℓ =

∑
Ti∈τ Li(Dℓ − Di) + U(m − 1) ·

max(Θi), andU(y) is the sum ofmin(y, |τ |) largest utiliza-
tions.

Using the expressions forA andHℓ from Lemma 4, we
can computeδmax

ℓ (k) in Def. 16 for any givenk. Finally,
using the expressions forδmin

ℓ (k), δmax
ℓ (k), andM∗(δℓ(k))

as given by Defs. 12 and 16 and Equation (15), we can ap-
ply Corollary 1 to check that each taskTℓ ∈ τ meets its
response-time bound. In the next section, we identify condi-
tions under which the test is applicable and discuss its time
complexity.

4. Computational Complexity of the Test

According to Corollary 1, (9) needs to be checked for vi-
olation for allk ∈ [1, Kℓ] and a set of integers in[δmin

ℓ (k),
max(δmin

ℓ (k), δmax
ℓ (k))]. We start with estimating the com-

plexity of checking (9).
The values ofαu

i (∆), Ei(k), A−1
i (k), andβl

h(∆) can be
computed in constant time ifαu

i (∆) andEi(k) consist of
periodic and aperiodic piecewise-linear parts andβl

h(∆) is
also piecewise-linear. These assumptions are used in prior
work on the Real-Time Calculus Toolbox [11] and are suffi-
cient for practical purposes.

7

Under these assumptions, by Lemmas 2 and 3,
IHC(Ti, δℓ(k)) andINC(Ti, δℓ(k)) can be computed inO(1)
time for each taskTi. Thus, by (15) and (16), comput-
ing M∗(δℓ(k)) for a given value ofδℓ(k) takesO(n) time,
wheren is the number of tasks, because at mostm−1 largest
positive valuesIHC(Ti, δℓ(k)) − INC(Ti, δℓ(k)) can be se-
lected inO(n) steps [1].

The calculations above need to be repeated
for all k ∈ [1, Kℓ] and all integers in [δmin

ℓ (k),
max(δmin

ℓ (k), δmax
ℓ (k))]. By Def. 16, δmax

ℓ (k)
is finite if its denominator is nonzero. Because,
by Lemma 4, A =

∑
Ti∈τ ui, by (5), we have

A =
∑

Ti∈τ ui ≤
∑m

h=1 ûh. Therefore,δmax
ℓ (k) is

finite if (5) is strict. The time complexity of the pre-
sented test is thus pseudopolynomial if there exists
a constantc such that

∑
Ti∈τ ui ≤ c <

∑m

h=1 ûk.
Checking that (9) is violated for each integral value in
[δmin

ℓ (k), max(δmin
ℓ (k), δmax

ℓ (k))] can be computationally
expensive. A fixed-point iterative technique can instead be
applied in order to check (9) for a (potentially small) subset
of [δmin

ℓ (k), max(δmin
ℓ (k), δmax

ℓ (k))].

5. Response-Time Analysis: A Case Study

To illustrate the utility of the analysis just derived, we ap-
plied it to a part of a video player application. Fig. 3(a)
shows an MPEG-2 decoder application that is partitioned
and mapped onto two PEs, PE1 and PE2. PE1 runs the
VLD and IQ tasks, while PE2 runs the IDCT and MC tasks.
The (coded) input bit stream enters this system and is stored
in the input bufferB. The macroblocks inB are first pro-
cessed by PE1 and the corresponding partially decoded mac-
roblocks are stored in the bufferB′ before being processed
by PE2. The resulting stream of fully decoded macroblocks
is written into a playout bufferB′′ prior to transmission by
the output video device. In the above system, the coded in-
put event stream arrives at a constant bit-rate. This system
has been previously studied extensively in [4, 8].

Experimental Setup. In our experiments, we consid-
ered variations of the previously-studied system shown
in Fig. 3(a) in which PE1 is a three-processor system run-
ning four identical VLD+IQ tasksT1, T2, T3, andT4 as
shown in Fig. 3(b,c). We computed an upper bound on the
response time for each task, i.e., the maximum delay be-
tween the time a macroblock is placed in the buffer and the
time it is passed downstream. We assumed zero scheduling
overheads and zero memory bus contention.

In the analysis, we used a trace of6 × 105 macroblock
processing events obtained in prior work for the VLD+IQ
task during a simulation of the system in Fig. 3(a) using a
SimpleScalar architecture [4, 8]. We obtainedEi(k) as in
Def. 1 by examining a repeating pattern of 19,000 consecu-
tive macroblock instruction lengths in the middle of the trace

and assuming a500 MHz processor frequency. We found
that95% of macroblock execution times in the trace are un-
derEi(1) = 48µs, which we set to be the maximum mac-
roblock execution time. The functionαu

i (∆) as in Def. 2
was obtained by examining macroblock arrival times. We
computedA−1

i (k) andKi = 9, 339 in Def. 4 as well as lin-
ear bounds forαu

i (∆) andEi(k) as in (2) and (3) using the
RTC Toolbox [11].

Some of the properties of the input streams and the
VLD+IQ task need to be emphasized. First, the arrival curve
αu

i (∆) is bursty, i.e., several macroblocks can arrive at the
same time instant. Second, whileei = 17µs, the maximum
execution time of a single macroblock is48µs, so assum-
ing that each job executes for its worst-case execution time
would result in heavy overprovisioning. Finally, the long-
term task utilization isui = Ri · ei = 0.0417 · 17 = 0.709,
and the total utilization isU =

∑4
i=1 ui = 2.84. Therefore,

the task set{T1, . . . , T4} cannot be partitioned onto three
processors, so global scheduling is required.

The system shown in Fig. 3(c) is obtained from that in
Fig. 3(b) by introducing four greedy shaper components
(GSCs) that separate consecutive job arrivals bypi time
units and hence makeαu

i (∆) = ⌈∆
pi
⌉. We setpi = 24µs

in order to preserve the long-term job arrival rateRi =
0.0417 ≤ 1/pi. In both setups, we setDi = 0, so the sched-
uler is globalFIFO.

Results. We computed maximum task response times in
the systems shown in Fig. 3(b,c) using an iterative proce-
dure. We started with settingΘi = Ei(α

+
i (0)) = 12, 706µs

for each task. We then applied Corollary 1 to each of the
tasks. If the response-time boundΘi for taskTi could not
be guaranteed, we increasedΘi by 104µs. We repeated this
procedure until all tasks could be guaranteed their response-
time bounds. The bounds computed using Corollary 1 were
363 and313ms , for systems in Fig. 3(b) and (c), respec-
tively. For the system in Fig. 3(c), the maximum task re-
sponse time is comprised of the maximum waiting time in
the GSC (63ms) plus the maximum delay in the PE itself
(250ms). For the system in Fig. 3(b), the minimum job
inter-arrival time is zero. For the system in Fig. 3(c), because
the worst-case job execution timeemax

i = Ei(1) = 48µs
and the minimum job inter-arrival timepi = 24µs, we have
emax

i /pi = 2 > 1. Therefore, the task systems shown in
Fig. 3(b,c) cannot be analyzed using prior results, which re-
quirepi > 0 andemax

i /pi ≤ 1.
The obtained response time bounds are quite large com-

pared to the maximum response time for taskTi running on
an dedicated unit-speed processor, which is62ms . We be-
lieve that such a discrepancy is mainly due to the fact that
multiple jobs of the same task arriving at the same time in-
stant can potentially occupy the processor for a significant
duration of time, causing jobs of non-executing tasks to wait
(or be queued). In the setup in Fig. 3(c), where job arrivals

8

VLD+IQ IDCT+MC

PE

B

T1 T2

B’ B’’

1 PE2

(a)

VLD+IQ

PE

VLD+IQ

VLD+IQ VLD+IQ

Three processors

T1
T2

T3 T4

(b)

VLD+IQ

PE

VLD+IQ

VLD+IQ VLD+IQ

Three processors

T1
T2

T3 T4

GSC1

GSC2

GSC3

GSC4

(c)

Figure 3. (a) A video-processing application. Experimental setup (b) without and (c) with GSCs.

are separated, the response times are smaller because main-
taining the separation between consecutive job arrivals leads
to more fair processor allocations among tasks.

The obtained results suggest that the presented analy-
sis can be used to derive response-time bounds for work-
loads that partitioning schemes cannot accommodate and for
workloads that cannot be efficiently analyzed under widely-
studied periodic and sporadic models. However, guaranteed
job response times under certain workloads may be large.

6. Conclusion

In this paper, we have presented an extension to the
real-time calculus framework. We considered a multipro-
cessor PE, where (partially available) processors are man-
aged by a global scheduling algorithm and jobs are trig-
gered by streams of external events. We designed a pseudo-
polynomial time procedure that can be used to test whether
job response times occur within specified bounds. Given
these bounds, upper and lower bounds on the number of job
completion events over any interval of length∆ can be com-
puted. These bounds can be used as input for other PEs
thereby resulting in a compositional technique.

In our analysis, we assumed that response-time bounds
are specified. In the future, we plan to extend the analysis
in order to explicitly derive upper bounds on job response
times from the parameters of the incoming streams, task
execution times, and service curves under preemptive and
non-preemptive scheduling. Our experimental results sug-
gest that, in the context of stream processing, multiprocessor
reservation-based schemes or a prioritization scheme thatis
cognizant of long-term task progress might be useful. We
intend to examine such schemes in future work.

Acknowledgment: Work supported by IBM, Intel, and Sun
Corps., NSF grants CNS 0834270, CNS 0834132, and CNS
0615197, and ARO grant W911NF-06-1-0425. We are
grateful to Linh Thi Xuan Phan for her help with experi-
mental data.

References

[1] S. Baruah. Techniques for multiprocessor global schedula-
bility analysis. InProc. of the 28th IEEE Real-Time Systems
Symposium, pages 119–128, December 2007.

[2] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability anal-
ysis of global scheduling algorithms on multiprocessor plat-
forms. IEEE Transactions on Parallel and Distributed Sys-
tems, 2008.

[3] S. Chakraborty, S. Kunzli, and L. Thiele. A general frame-
work for analysing system properties in platform-based em-
bedded system designs. InProc. of the conference on Design,
Automation and Test in Europe - Volume 1, 2003.

[4] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wan-
deler. Interface-based rate analysis of embedded systems.In
Proc. of the 27th IEEE Real-Time Systems Symposium, pages
25–34, December 2006.

[5] H. Leontyev and J. Anderson. Tardiness bounds for FIFO
scheduling on multiprocessors. InProc. of the 19th Euromi-
cro Conf. on Real-Time Systems, pages 71–80, July 2007.

[6] H. Leontyev and J. Anderson. A hierarchical multiproces-
sor bandwidth reservation scheme with timing guarantees.
In Proc. of the 20th Euromicro Conf. on Real-Time Systems,
pages 191–200, July 2008.

[7] A. K. Mok and D. Chen. A multiframe model for real-time
tasks. IEEE Transactions on Software Engineering, 23:635–
645, 1997.

[8] L. Phan, S. Chakraborty, and P. Thiagarajan. A multi-mode
real-time calculus. InProc. of the 29th IEEE Real-Time Sys-
tems Symposium, pages 59–69, December 2008.

[9] K. Richter, M. Jersak, and R. Ernst. A formal approach to
MpSoC performance verification.IEEE Computer, 36(4):60–
67, 2003.

[10] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. InProc.
of the 20th Euromicro Conf. on Real-Time Systems, pages
181–190, July 2008.

[11] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Tool-
box. http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[12] F. Zhang and A. Burns. Schedulability Analysis for Real-
Time Systems with EDF Scheduling. Technical Report YCS-
2008-426, University of York, Department of Computer Sci-
ence, 2008.

Appendix

In this appendix, we prove Lemmas 2, 3, and 4. To prove
Lemmas 2 and 3, we first establish some trivial bounds on
I(Ti).

9

Lemma A1: I(Ti) ≤ δℓ(k) + Θℓ − Eℓ(k) + 1 if i 6= ℓ, and
I(Ti) ≤ δℓ(k) − δmin

ℓ (k) otherwise.

Proof. If i 6= ℓ, then, by Def. 13,I(Ti) cannot be larger than
the cumulative length of[t0(k), tw(k)) ∪ Γk. The latter, by
Def. 9, is(tw(k) − t0(k)) + |Γk| = tw(k) − t0(k) + rℓ,q +

Θℓ − tw(k)−Eℓ(k)+ 1
{by Def. 12}

= δℓ(k)+ Θℓ −Eℓ(k)+ 1.
Alternatively, if i = ℓ, thenI(Tℓ) cannot exceed the length
of [t0(k), tw(k)) becauseTℓ does not execute withinΓk. We
can boundtw(k) − t0(k) as follows.

tw(k) − t0(k)

= tw(k) − rℓ,q + rℓ,q − t0(k)

{by Def. 12}

= δℓ(k) − (rℓ,q − tw(k))

{by the proof of Claim 7,rℓ,q − tw(k) ≥ δmin
ℓ (k)}

≤ δℓ(k) − δmin
ℓ (k).

Lemma A2. JobTℓ,q−k+1 is not ready prior to timetw(k).

Proof. Job Tℓ,q−k+1 is not ready prior to time
max(fℓ,q−k, rℓ,q−k+1) since it has to wait until its
predecessor finishes. By Def. 8,fℓ,q−k ≤ tw(k). Consider
the following two cases.

Case 1: fℓ,q−k = tw(k). By the condition of the case,
max(fℓ,q−k, rℓ,q−k+1) ≥ tw(k). The required result
trivially follows.

Case 2: fℓ,q−k < tw(k). Based upon the relationship
betweenfℓ,q−k and rℓ,q + Θℓ − Eℓ(k), we consider two
subcases.

Subcase 1: fℓ,q−k ≤ rℓ,q + Θℓ − Eℓ(k). By
Def. 8 and the condition of Subcase 1, we have
tw(k) = max(fℓ,q−k, rℓ,q−k+1), which, by the condition
of Case 2, impliesfℓ,q−k < rℓ,q−k+1 = tw(k). Therefore,
by the condition of Case 2,max(fℓ,q−k, rℓ,q−k+1) = tw(k).

Subcase 2:fℓ,q−k > rℓ,q + Θℓ − Eℓ(k). By Def. 8, we
havetw(k) = max(rℓ,q + Θℓ − Eℓ(k), rℓ,q−k+1). By the
condition of Case 2, this impliesfℓ,q−k < max(rℓ,q + Θℓ −
Eℓ(k), rℓ,q−k+1). By the condition of Subcase 2, from the
latter inequality, we havefℓ,q−k < rℓ,q−k+1 and

rℓ,q−k+1 > rℓ,q + Θℓ − Eℓ(k). (17)

By Def. 8,

tw(k)

= max(min(fℓ,q−k, rℓ,q + Θℓ − Eℓ(k)), rℓ,q−k+1)

{by the condition of Subcase 2}

= max(rℓ,q + Θℓ − Eℓ(k), rℓ,q−k+1)

{by (17)}

= rℓ,q−k+1. (18)

We thus have max(fℓ,q−k, rℓ,q−k+1)
{by (18)}

=

max(fℓ,q−k, tw(k))
{by the condition of Case 2}

= tw(k). The
required result follows from the two subcases above.

Corollary A1. JobsTℓ,q−k+1, . . . , Tℓ,q do not execute prior
to tw(k).

Lemma 2:

INC(Ti, δℓ(k))

=






min(Ei(α
+
i (δℓ(k) + Dℓ − Di)),

δℓ(k) + Θℓ − Eℓ(k) + 1) if i 6= ℓ,
min(Ei(α

+
i (δℓ(k) + Dℓ − Di) − k),

δℓ(k) − δmin
ℓ (k)) if i = ℓ ∧ δℓ(k) ≥ 0,

0 otherwise.

Proof. Case 1: i 6= ℓ. BecauseTi ∈ NC, all of its jobs
released prior tot0(k) are completed by timet0(k). Thus,
the competing demand due toTi is upper-bounded by the
demand due toTi’s jobs released at or aftert0(k) that have
higher priority thanTℓ,q. For such a jobTi,j, by Def. 7,
ri,j + Di ≤ rℓ,q + Dℓ, and hence,ri,j ≤ rℓ,q + Dℓ −
Di. Therefore, the competing demand due to taskTi, I(Ti),
is upper-bounded by the total execution time ofTi’s jobs
released within[t0(k), rℓ,q +Dℓ −Di]. From Defs. 1 and 3,
we have

I(Ti)

≤ Ei(α
+
i (rℓ,q + Dℓ − Di − t0(k)))

{by Def. 12}

= Ei(α
+
i (δℓ(k) + Dℓ − Di)). (19)

The stated expression for the casei 6= ℓ therefore follows
from Lemma A1.

Case 2: i = ℓ ∧ δℓ(k) ≥ 0. Applying the reasoning from
Case 1 toTi, we have

I(Ti) ≤ Eu
i (α+

i (δℓ,k + Dℓ − Di) − k). (20)

The only difference from (19) is that we exclude jobs
Tℓ,q−k+1, . . . , Tℓ,q from consideration because, by Corol-
lary A1, jobs Tℓ,q−k+1, . . . , Tℓ,q do not execute prior to

10

time tw(k) and, by Def. 9, taskTℓ does not execute within
Γk. By (20) and Lemma A1, the stated expression for this
case follows.

Case 3: i = ℓ ∧ δℓ(k) < 0. In this case, by Claim 8,
taskTi = Tℓ does not belong toNC, and hence, we can
setINC(Ti, δℓ(k)) = 0.

Claim A1. If Ti,y � Tℓ,q, thenri,y ≤ rℓ,q + Dℓ − Di, for
j ≥ 0.

Proof. The claim immediately follows from Def. 7.

Definition A1. LetTi,a be the earliest job ofTi that executes
within [t0(k), tw(k)) ∪ Γk).

Note that, ifTi,a does not exist, thenI(Ti) = 0. We
henceforth assume thatTi,a exists.

Claim A2. If Ti,a is defined as in Def. A1, thenfi,a > t0(k)
andri,a > t0(k) − Θi.

Proof. If fi,a ≤ t0(k), thenTi,a does not execute within
[t0(k), tw(k)) ∪ Γk, which violates Def. A1. By (7),fi,a >
t0(k) impliesri,a + Θi > t0(k).

Definition A2. Let κi = {Ti,y : y ≥ a ∧ Ti,y executes in
[t0(k), tw(k)) ∪ Γk}.

Claim A3. If Ti,y ∈ κi, thenri,y ∈ [ri,a, rℓ,q + Dℓ − Di].

Proof. By Lemma 1 and Def. A2,Ti,y � Tℓ,q holds if Ti,y

is in κi. The claim follows from Claim A1.

Definition A3. Let A(Ti,y, γ) be the allocation ofTi,y

within the set of intervalsγ.

Claim A4:

I(Ti) =
∑

Ti,y∈κi

A(Ti,y, [t0(k), tw(k)) ∪ Γk). (21)

Proof. The claim follows immediately from
Defs. 13, A1, A2, and A3.

Claim A5. Let Gi(S, X) = min(Ei(S), max(0, X −
A−1

i (S−1))+Ei(S−1)) be as defined in Lemma 3 below.
The functionGi(S, X) is a non-decreasing function of the
integral argumentS.

Proof. Suppose thatS ≥ 1 is fixed. We computeGi(S +
1, X).

Gi(S + 1, X)

= min(Ei(S + 1), max(0, X − A−1
ℓ (S)) + Ei(S))

{becauseEi(S) is a non-decreasing function}

≥ Ei(S)

≥ min(Ei(S), max(0, X − A−1
ℓ (S − 1)) + Ei(S − 1))

= Gi(S, X)

Lemma 3. Let Gi(S, X) = min(Ei(S), max(0, X −
A−1

i (S − 1)) + Ei(S − 1)).

IHC(Ti, δℓ,k)

=






min(Gi(α
u
i (δℓ(k) + Dℓ − Di + Θi),

δℓ(k) + Dℓ − Di + Θi),
δℓ(k) + Θℓ − Eℓ(k) + 1) if i 6= ℓ,

min(Gi(α
u
i (δℓ(k) + Dℓ − Di + Θi) − k,

δℓ(k) + Dℓ − Di + Θi),
δℓ(k) − δmin

ℓ (k)) otherwise.

Proof. Consider two cases.
Case 1: i 6= ℓ. Let Ti,a be as defined in Def. A1. We first
rewrite (21).

I(Ti)

= A(Ti,a, [t0(k), tw(k)) ∪ Γk))

+
∑

Ti,y∈κi\Ti,a

A(Ti,y, [t0(k), tw(k)) ∪ Γk)) (22)

We now bound the individual terms in (22). By Claim A2,
Ti,a finishes its execution at timefi,a > t0(k), and hence,

A(Ti,a, [t0(k), tw(k)) ∪ Γk)

= min(ei,a, fi,a − t0(k))

{by (7)}

≤ min(ei,a, ri,a + Θi − t0(k)), (23)

whereei,a is the actual execution time ofTi,a. By (22) and
(23),

11

I(Ti)

≤ min(ei,a, ri,a + Θi − t0(k))

+
∑

Ti,y∈κi\a

A(Ti,y, [t0(k), tw(k)) ∪ Γk)

≤ min



ei,a +
∑

Ti,y∈κi\Ti,a

A(Ti,y, [t0(k), tw(k)) ∪ Γk),

ri,a + Θi − t0(k)

+
∑

Ti,y∈κi\Ti,a

A(Ti,y, [t0(k), tw(k)) ∪ Γk)



 . (24)

Let Si = |κi|. Because, by Def. A3, the processor allo-
cation of jobTi,y cannot be greater than its execution time,
by Def. 1, we have the following.

ei,a +
∑

Ti,y∈κi\Ti,a

A(Ti,y, [t0(k), tw(k)) ∪ Γk)

≤ Ei(Si) (25)

∑

Ti,y∈κi\Ti,a

A(Ti,y, [t0(k), tw(k)) ∪ Γk)

≤ Ei(Si − 1) (26)

By and (24), (25), and (26), we have

I(Ti) ≤ min(Ei(Si), ri,a + Θi − t0(k) + Ei(Si − 1)).
(27)

By Claim A3, all jobsTi,y such thatTi,y ∈ κi are re-
leased within[ri,a, rℓ,q + Dℓ − Di]. If Y ≥ Si jobs ofTi

are released within[ri,a, rℓ,q + Dℓ − Di], thenrℓ,q + Dℓ −
Di − ri,a ≥ A−1

i (Y − 1) by Claim 1, and hence,ri,a ≤
rℓ,q+Dℓ−Di−A−1

i (Y −1) ≤ rℓ,q+Dℓ−Di−A−1
i (Si−1).

We thus have

ri,a + Θi − t0(k)

≤ max(0,

rℓ,q + Dℓ − Di −A−1
i (Si − 1) + Θi − t0(k))

{by Def. 12}

≤ max(0, δℓ(k) + Dℓ − Di + Θi −A−1
i (Si − 1)).

(28)

By (27) and (28), we have

I(Ti)

≤ min(Ei(Si),

max(0, δℓ(k) + Dℓ − Di + Θi −A−1(Si − 1))

+ Ei(Si − 1))

= Gi(Si, δℓ(k) + Dℓ − Di + Θi), (29)

whereGi(S, X) is defined in the statement of the lemma.
By Claim A5, the funcionGi(S, X) is a non-decreasing
function of S. We thus can find an upper bound onI(Ti)
by setting an upper bound onSi into (29).

By Claim A3, Si = |κi| is at most the number of jobs
released within the interval[ri,a, rℓ,q + Dℓ −Di], which, by
Claim A2, is contained within(t0(k)−Θi, rℓ,q +Dℓ −Di].
We thus upper-boundSi using Def. 2.

Si

≤ αu
i (rℓ,q + Dℓ − Di − t0(k) + Θi)

{by Def. 12}

= αu
i (δℓ(k) + Dℓ − Di + Θi)

Setting this upper bound onSi into (29), we have

I(Ti)

≤ Gi(α
u
i (δℓ(k) + Dℓ − Di + Θi),

δℓ(k) + Dℓ − Di + Θi).

The stated expression for the casei 6= ℓ therefore follows
from Lemma A1.

Case 2: i = ℓ. Repeating the reasoning from the previous
case, we find that

I(Ti)

≤ Gi(α
u
i (δℓ(k) + Dℓ − Di + Θi) − k,

δℓ(k) + Dℓ − Di + Θi). (30)

The only difference with the previous case is that we ex-
clude jobsTℓ,q−k+1, . . . , Tℓ,q from consideration because,
by Corollary A1, jobsTℓ,q−k+1, . . . , Tℓ,q do not execute
prior to tw(k) and, by Def. 9,Tℓ does not execute within
Γk. The claimed bound for this case follows from (30) and
Lemma A1.

The following claims and lemma are used to prove
Lemma 4.

Claim A6: Li(X + Y) ≤ Li(X) + ui · (Y + |a|) for all X
andY ≥ a.

Proof. By Def. 5,ui > 0. We consider two cases.

12

Case 1: Y ≥ 0. In this case, by Def. 18,
Li(X + Y) = max(0, ui · (X + Y) + ei · Bi) + vi ≤
max(0, ui · X + ei · Bi) + vi + ui · Y = Li(X) + ui · Y .
Because|a| ≥ 0, the required result follows.

Case 2: Y < 0. In this case, by Def. 18,Li(X + Y) =
max(0, ui · (X + Y) + ei · Bi) + vi ≤ max(0, ui · X +
ei · Bi) + vi = Li(X). From the statement of the claim
and the condition of Case 2, we havea ≤ Y < 0, and
hence,Y + |a| ≥ 0. We thus haveLi(X + Y) ≤ Li(X) ≤
Li(X) + ui · (Y + |a|).

Claim A7: Ei(α
u
i (X)) ≤ Ei(α

+
i (X)) ≤ Li(X).

Proof. By Def. 2, αu
i (∆) is a non-decreasing function of

∆. Therefore,αu
i (∆) ≤ αu

i (∆ + ǫ) for any ǫ > 0, which
impliesαu

i (∆) ≤ limǫ→+0 αu
i (∆ + ǫ). The right-hand side

of the latter inequality isα+
i (∆) by Def. 3. Thus,αu

i (∆) ≤
α+

i (∆). The first inequality of the claim follows fromEi(k)
being a non-decreasing function ofk by Def. 1. We now
prove the second inequality. Becauseα+

i (X) ≥ 0 by Def. 3,
we haveEi(α

+
i (X)) = Ei(max(0, α+

i (X))). By (3), we
haveEi(max(0, α+

i (X))) ≤ ei · (max(0, α+
i (X))) + vi.

By (2), ei · (max(0, α+
i (X))) + vi ≤ ei · (max(0, Ri ·X +

Bi)) + vi = max(0, ei · Ri · X + ei · Bi) + vi. By Def. 5,
max(0, ei·Ri ·X+ei·Bi)+vi = max(0, ui·X+ei·Bi)+vi.
The latter isLi(X) by Def. 18.

Lemma A3: IHC(Ti, δℓ(k)) ≤ Li(δℓ(k)+Dℓ−Di)+ui ·Θi

andINC(Ti, δℓ(k)) ≤ Li(δℓ(k) + Dℓ − Di).

Proof. We prove the first inequality. The second inequal-
ity is proved similarly. By Lemma 3,IHC(Ti, δℓ(k)) ≤
Ei(α

u
i (δℓ(k) + Dℓ − Di + Θi)). Note that this inequality

holds for bothi = ℓ andi 6= ℓ sincek ≥ 1. By Claim A7,
Ei(α

u
i (δℓ(k)+Dℓ−Di+Θi)) ≤ Li(δℓ(k)+Dℓ−Di+Θi).

BecauseΘi ≥ 0, by Claim A6,Li(δℓ(k)+Dℓ−Di+Θi) ≤
Li(δℓ(k) + Dℓ − Di) + ui · Θi.

Lemma 4. For all δℓ(k) ≥ δmin
ℓ (k), M∗(δℓ(k)) ≤ A ·

(δℓ(k) + |δmin
ℓ (k)|) + Hℓ, whereA =

∑
Ti∈τ ui, Hℓ =∑

Ti∈τ Li(Dℓ − Di) + U(m − 1) · max(Θi), andU(y) is
the sum ofmin(y, |τ |) largest utilizations.

Proof. Suppose that the setsHC and NC subject to (16)
maximize the value of the right-hand side of (15). By (15),

we have

M∗(δℓ(k))

=
∑

Ti∈HC

IHC(Ti, δℓ(k)) +
∑

Ti∈NC

INC(Ti, δℓ(k))

{by Lemma A3}

≤
∑

Ti∈HC

(Li(δℓ(k) + Dℓ − Di) + ui · Θi)

+
∑

Ti∈NC

Li(δℓ(k) + Dℓ − Di)

{sinceHC ∪ NC ⊆ τ}

≤
∑

Ti∈τ

Li(δℓ(k) + Dℓ − Di) +
∑

Ti∈HC

ui · Θi

{because|HC| ≤ m − 1 by (16) and by the

definition ofU(y) in the statement of the lemma}

≤
∑

Ti∈τ

[Li(δℓ(k) + Dℓ − Di)] + U(m − 1) · max(Θi)

{by Claim A6 (note that, by Claim 7,δℓ(k) ≥ δmin
ℓ (k))}

≤
∑

Ti∈τ

[Li(Dℓ − Di) + ui · (δℓ(k) + |δmin
ℓ (k)|)]

+ U(m − 1) · max(Θi)

{by the definition ofA andHℓ

in the statement of the lemma}

= A · (δℓ(k) + |δmin
ℓ (k)|) + Hℓ.

13

