
Real-Time Resource-Sharing under Clustered Scheduling:
Mutex, Reader-Writer, and k-Exclusion Locks∗

Björn B. Brandenburg and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
This paper presents the first suspension-based real-time lock-
ing protocols for clustered schedulers. Such schedulers pose
challenges from a locking perspective because they exhibit
aspects of both partitioned and global scheduling, which
seem to necessitate fundamentally different means for bound-
ing priority inversions. A new mechanism to bound such in-
versions, termed priority donation, is presented and used to
derive protocols for mutual exclusion, reader-writer exclu-
sion, and k-exclusion. Each protocol has asymptotically op-
timal blocking bounds under certain analysis assumptions.
The latter two protocols are also the first of their kind for the
special cases of global and partitioned scheduling.

1 Introduction
Recent experimental work has demonstrated the effective-
ness of clustered scheduling on large multicore, multi-chip
platforms [4]. Clustered scheduling [2, 9] is a generaliza-
tion of both partitioned scheduling (one ready queue per
processor) and global scheduling (all processors serve a sin-
gle ready queue), where tasks are partitioned onto clusters
of cores and a global scheduling policy is used within each
cluster. Because partitioning requires a bin-packing-like task
assignment problem to be solved, global scheduling offers
some theoretical advantages over partitioning, but does so at
the expense of higher runtime costs. Clustered scheduling
is an attractive compromise between these two extremes be-
cause it both simplifies the task assignment problem (there
are fewer and larger bins) and incurs less overhead (by align-
ing clusters with the underlying hardware topology). Conse-
quently, clustered scheduling is likely to grow in importance
as multicore platforms become ever larger and less uniform.

To be practical, a scheduler must support locking proto-
cols that allow tasks predictable access to shared resources
such as I/O devices. One possibility is spin-based proto-
cols, in which jobs wait for resources by executing a delay
loop. While existing spin-based protocols [5, 8] are largely
scheduler-agnostic, they suffer from the disadvantage that
waiting jobs waste processor cycles. In contrast, waiting

∗Work supported by AT&T and IBM Corps.; NSF grants CNS 0834270
and CNS 0834132; ARO grant W911NF-09-1-0535; and AFOSR grant FA
9550-09-1-0549.

jobs relinquish their processors in suspension-based proto-
cols, which are hence generally preferable. Unfortunately,
no such protocols have been proposed for clustered schedul-
ing to date. Worse, the established mechanisms for bounding
priority inversions do not transfer to clustered scheduling.

Priority inversion. Minimizing the duration of priority in-
versions, which (intuitively) occur when a high-priority job
must wait for a low-priority one, is the main concern in the
design of real-time locking protocols. Under global schedul-
ing, this is commonly achieved using priority inheritance,
whereas priority boosting is employed under partitioning
(see Sec. 2 for definitions). However, as shown later, neither
mechanism works under clustered scheduling: priority in-
heritance is ineffective across cluster boundaries and priority
boosting allows high-priority jobs to be blocked repeatedly.

In this paper, we tackle this troublesome situation by de-
veloping a new mechanism to bound priority inversions—
termed “priority donation”—that causes jobs to be blocked
at most once. Based on “priority donation,” we design
novel suspension-based locking protocols that work under
any clustered job-level static-priority (JLSP) scheduler for
three common resource-sharing constraints: (i) mutual ex-
clusion (mutex), where every resource access must be exclu-
sive; (ii) reader-writer (RW) exclusion, where only updates
must be exclusive and reads may overlap with each other;
and (iii) k-exclusion, where there are k replicas of a resource
and tasks require exclusive access to any one replica.

Related work. Most prior work has been directed at
earliest-deadline first (EDF) and static-priority (SP)
scheduling, which are both JLSP policies, as well as at
their partitioned and global multiprocessor extensions (de-
noted as PSP, PEDF, GSP, and GEDF, resp.). The classic
uniprocessor stack resource policy (SRP) [1] and the prior-
ity ceiling protocol (PCP) [17, 19] both support multi-unit
resources, which is a generalized resource model that can be
used to realize mutex, RW, and k-exclusion constraints.

Work on multiprocessor protocols has mostly focused on
mutex constraints to date. The first such protocols were pro-
posed by Rajkumar et al. [16, 17, 18], who designed two
suspension-based PCP extensions for PSP-scheduled sys-
tems that augment priority inheritance with priority boost-
ing. In later work on PEDF-scheduled systems, suspension-
and spin-based protocols were presented by Chen and Tri-

1

pathi [11] and Gai et al. [14]. Block et al. [5] recently pre-
sented the flexible multiprocessor locking protocol (FMLP),
which can be used under GEDF, PEDF, and PSP [6] and
supports both spin- and suspension-based waiting. More re-
cently, Easwaran and Andersson [12] considered suspension-
based protocols for GSP-scheduled systems. Finally, Faggi-
oli et al. [13] presented a scheduler-agnostic spin-based pro-
tocol for mixed real-time/non-real-time environments.

In [8], we presented the first spin-based real-time multi-
processor RW protocol. We showed that existing non-real-
time RW locks are undesirable for real-time systems and pro-
posed phase-fair RW locks, under which readers incur only
constant blocking, as an alternative.

In other recent work [7], we investigated asymptotic
bounds on priority-inversion blocking (pi-blocking) in the
context of mutex constraints. We found that the definition
of pi-blocking is actually analysis-dependent, as schedul-
ing analysis may be either suspension-aware (suspension
times are dealt with directly) or suspension-oblivious (sus-
pension times are modeled as computation). For suspension-
oblivious analysis, we established a lower bound of Ω(m) on
pi-blocking (per resource request) for any m-processor lock-
ing protocol (under any JLSP scheduler). We also devised
a new mutex protocol for global and partitioned schedul-
ing, the O(m) locking protocol (OMLP), that has O(m)
suspension-oblivious pi-blocking and is thus asymptotically
optimal. For the case of suspension-aware analysis, we es-
tablished a lower bound of Ω(n) on pi-blocking, where n is
the number of tasks in the system, and argued that certain
FMLP variants are asymptotically optimal.

To the best of our knowledge, k-exclusion and suspension-
based RW protocols have not been considered in prior work
on real-time multiprocessors. While PCP variants could
conceivably be used, we are not aware of relevant analysis.
Contributions. In this paper, we consider locking protocols
for clustered JLSP schedulers. We focus on the suspension-
oblivious case because virtually all current global schedul-
ing analysis results (which are needed to analyze each clus-
ter) are suspension-oblivious (this restriction is revisited in
Sec. 4.4). We demonstrate that neither priority inheritance
nor priority boosting can be used as a foundation for asymp-
totically optimal locking protocols (Sec. 3.1) and present
a novel priority boosting variant, “priority donation,” that
causes only O(m) pi-blocking (Sec. 3.2). Using priority
donation, we design the first mutex protocol for clustered
JLSP scheduling (Sec. 4.1). We then show that priority do-
nation is a general mechanism that can also be used to design
suspension-based phase-fair RW (Sec. 4.2) and k-exclusion
locks (Sec. 4.3). All three protocols are asymptotically opti-
mal with regard to maximum pi-blocking under suspension-
oblivious schedulability analysis. The presented protocols
are the first of their kind for clustered scheduling; since clus-
tered scheduling is a generalization of both global and parti-
tioned scheduling, our RW and k-exclusion protocols are the
first of their kind in these categories as well.

2 Background and Definitions
We consider the problem of scheduling a set of n implicit-
deadline1 sporadic tasks τ = {T1, . . . , Tn} on m processors
P1, . . . , Pm. We let Ti(ei, pi) denote a task with a worst-case
per-job execution time ei and a minimum job separation pi.
Ji,j denotes the jth job (j ≥ 1) of Ti. Ji,j is pending from its
arrival (or release) time ai,j ≥ 0 until it finishes execution.
If j > 1, then ai,j ≥ ai,j−1 + pi. Ti is schedulable if it can
be shown that each Ji,j completes within pi time units of its
release. We omit the job index j if it is irrelevant and let Ji
denote an arbitrary job.

A pending job can be in one of two states: a ready job
is available for execution, whereas a suspended job cannot
be scheduled. A job resumes when its state changes from
suspended to ready. We assume that pending jobs are ready
unless suspended by a locking protocol.

Scheduling. Under clustered scheduling [2, 9], processors
are grouped into m

c non-overlapping sets (or clusters) of c
processors each, which we denote as C1, . . . , Cm

c
.2 Global

and partitioned scheduling are special cases of clustered
scheduling, where c = m and c = 1 (resp.). Each task is stat-
ically assigned to a cluster. Jobs may migrate freely within
clusters, but not across cluster boundaries.

We assume that, within each cluster, jobs are scheduled
from a single ready queue using a work-conserving JLSP
policy [10]. A JLSP policy assigns each job a fixed base
priority. However, a job’s effective priority may temporar-
ily exceed its base priority when raised by a locking protocol
(see below). Within each cluster, at any point in time, the c
ready jobs (if that many exist) with the highest effective pri-
orities are scheduled. In comparing priorities, we assume that
ties are broken in favor of lower-index tasks, i.e., priorities
are unique. We consider global, partitioned, and clustered
EDF (GEDF, PEDF, and CEDF, resp.) as representative
algorithms of this class.

Resources. The system contains r shared resources `1,
. . . , `r (such as shared data objects and I/O devices) besides
the m processors. When a job Ji requires a resource `q , it
issues a request R for `q . R is satisfied as soon as Ji holds
`q , and completes when Ji releases `q . The request length is
the time that Ji must execute3 before it releases `q . We let
Ni,q denote the maximum number of times that any Ji re-
quests `q , and let Li,q denote the maximum length of such a
request, where Li,q = 0 if Ni,q = 0.

We assume that jobs request at most one resource at any
time (nesting can be supported with group locks as in the
FMLP [5], albeit at the expense of reduced parallelism) and
that tasks do not hold resources across job boundaries.

1The presented results do not depend on the choice of deadline con-
straint. Implicit deadlines were chosen to avoid irrelevant detail.

2Without loss of generality, we assume m
c

∈ N.
3We assume that Ji must be scheduled to complete its request. This is

required for shared data objects, but may be pessimistic for I/O devices. The
latter can be accounted for at the expense of more verbose notation.

2

without resource

with resource
3

scheduled on processor
release completion

deadline suspended
41 2

Figure 1: The notation used in subsequent example schedules.

Locking protocols. Each resource is subject to a sharing
constraint. Mutual exclusion of requests is required for
serially-reusable resources, which may be held by at most
one job at any time. Reader-writer exclusion is sufficient
if a resources’s state can be observed without affecting it:
only write requests (i.e., state changes) must be exclusive and
multiple read requests may be satisfied simultaneously. Re-
sources of which there are k identical replicas (e.g., graphics
processing units (GPUs)) are subject to a k-exclusion con-
straint: each replica is only serially reusable and thus requires
mutual exclusion,4 but up to k requests may be satisfied si-
multaneously by delegating them to different replicas. We let
kq denote the number of replicas of resource `q .

In each case, a locking protocol must be employed to order
conflicting requests. If a requestR of a job Ji cannot be sat-
isfied immediately, then Ji incurs acquisition delay and can-
not proceed with its computation while it waits for R to be
satisfied. In this paper, we focus on protocols in which wait-
ing jobs relinquish their processor and suspend. The request
span ofR starts whenR is issued and lasts until it completes,
i.e., it includes the request length and any acquisition delay.

Locking protocols may temporarily raise a job’s effective
priority. Under priority inheritance [17, 19], the effective
priority of a job Ji holding a resource `q is the maximum
of Ji’s priority and the priorities of all jobs waiting for `q .
Alternatively, under priority boosting [6, 7, 15, 16, 17, 18],
a resource-holding job’s priority is unconditionally elevated
above the highest-possible base (i.e., non-boosted) priority to
expedite the request completion.

Pi-blocking. When locking protocols are used, bounds on
priority inversion blocking (pi-blocking) are required during
schedulability analysis. Pi-blocking occurs when a job is de-
layed and this delay cannot be attributed to higher-priority
demand (formalized below). We let bi denote a bound on the
total pi-blocking incurred by any Ji.

As noted in [7], there are two notions of “priority inver-
sion” on a multiprocessor. The reason is that multiproces-
sor schedulability analysis has not yet matured to the point
that suspensions can be analyzed under all schedulers. In
particular, none of the major GEDF hard real-time schedu-
lability tests inherently accounts for suspensions (see [3] for
a recent overview). Such analysis is suspension-oblivious (s-
oblivious): jobs may suspend, but each ei must be inflated
by bi prior to applying the test to account for all additional
delays. This approach is safe—converting execution time to
idle time does not increase response times—but pessimistic,

4One could also consider replicated resources with RW constraints, but
we are not aware of any practical application where such constraints arise.

50

J1

J2

J3

both s-oblivious and
s-aware pi-blocking

only s-aware
pi-blocking

Figure 2: Example of s-oblivious and s-aware pi-blocking of three
jobs sharing one resource on two GEDF-scheduled processors. J1

suffers acquisition delay during [1, 3), and since no higher-priority
jobs exist it is pi-blocked under either definition. J3, suspended dur-
ing [2, 4), suffers pi-blocking under either definition during [3, 4)
since it is among the m highest-priority pending jobs, but only s-
aware pi-blocking during [2, 3) as J1 is pending but not ready then.

as even suspended jobs are (implicitly) considered to pre-
vent lower-priority jobs from being scheduled. In contrast,
suspension-aware (s-aware) schedulability analysis that ex-
plicitly accounts for bi is available for select schedulers (e.g.,
PSP [15, 17]). Notably, suspended jobs are not considered
to occupy a processor under s-aware analysis.

Consequently, priority inversion is defined differently un-
der s-aware and s-oblivious analysis: since suspended jobs
are counted as demand under s-oblivious analysis, the mere
presence of m higher-priority jobs rules out a priority inver-
sion, whereas at leastm ready higher-priority jobs are needed
to nullify a priority inversion under s-aware analysis.

Def. 1. Under s-oblivious (s-aware) schedulability analysis,
a job Ji incurs s-oblivious (s-aware) pi-blocking at time t
if Ji is pending but not scheduled and fewer than c higher-
priority jobs are pending (ready) in Ti’s assigned cluster.

In both cases, “higher-priority” is interpreted with respect to
base priorities. The difference between s-oblivious and s-
aware pi-blocking is illustrated in Fig. 2 (see Fig. 1 for a sum-
mary of our notation). In this paper, we focus on s-oblivious
pi-blocking since we are most interested in CEDF [4, 9], for
which no s-aware analysis has been developed to date.

Blocking complexity. In [7], we introduced maximum pi-
blocking, maxTi∈τ{bi}, as a measure of a protocol’s block-
ing behavior. Maximum pi-blocking reflects the per-task
bounds that are required for schedulability analysis. Con-
crete bounds on pi-blocking must necessarily depend on each
Li,q—long requests will cause long priority inversions under
any protocol. Similarly, bounds for any reasonable proto-
col grow linearly with the total number of requests per job.
Thus, when deriving asymptotic bounds, we consider, for
each Ti,

∑
1≤q≤rNi,q and each Li,q to be constants and as-

sume n ≥ m. All other parameters are considered variable.

3 Resource-Holder Progress
The main purpose of a real-time locking protocol is to pre-
vent maximum pi-blocking from becoming unbounded or
very large (i.e., bounds should not include execution costs
in addition to request lengths). This requires that resource-

3

P2

P1

5 10 150

J1

J2

J3

Figure 3: Example schedule of three tasks on two processors un-
der PEDF scheduling (c = 1). The example shows that priority
inheritance is ineffective when applied across cluster boundaries.

holding jobs progress in their execution when high-priority
jobs are waiting, i.e., low-priority jobs must be scheduled in
spite of their low base priority when they cause other jobs
to incur pi-blocking. A real-time locking protocol thus re-
quires a mechanism to raise the effective priority of resource
holders, either on demand (when a job is pi-blocked) or un-
conditionally. As mentioned in Sec. 1, all prior protocols em-
ploy priority inheritance and priority boosting to this end—
unfortunately, neither generalizes to clustered scheduling.

3.1 Limits of Priority Inheritance and Priority Boosting
Priority inheritance was originally developed for uniproces-
sor locking protocols [17, 19], but also generalizes to global
scheduling [5, 7, 12]. It is a powerful aid for worst-case anal-
ysis because it yields the following property (under global
scheduling): if a job Ji incurs pi-blocking (either s-oblivious
or s-aware), and Jh holds the resource that Ji requested, then
Jh is scheduled [17, 19]. Progress is thus guaranteed.

Unfortunately, priority inheritance is ineffective across
cluster boundaries. For example, suppose that requests are
satisfied in FIFO order and priority inheritance is employed
(this is essentially the global FMLP [5]). Fig. 3 depicts a
schedule that may arise when this protocol is applied across
clusters (where c = 1). J3 misses its deadline because it
incurs pi-blocking (both s-oblivious and s-aware) for virtu-
ally the entire duration of J1’s execution despite priority in-
heritance since J1’s deadline precedes J3’s deadline. Thus,
even with priority inheritance, total pi-blocking cannot be
bounded solely in terms of request lengths.

Consequently, protocols for partitioned scheduling rely
on priority boosting instead of [5, 6, 7] or in addition
to [15, 16, 17, 18] priority inheritance. The root cause for ex-
cessive pi-blocking is later-arriving higher-priority jobs (like
J1 above) that preempt resource-holding jobs (like J2). Pri-
ority boosting avoids this by unconditionally raising the ef-
fective priority of resource-holding jobs above that of non-
resource-holding jobs: as newly-released jobs do not yet hold
resources, they cannot preempt resource-holding jobs.

While conceptually simple, the unconditional nature of
priority boosting may itself cause pi-blocking. Under par-
titioning (c = 1), this effect can be controlled such that
jobs incur at most O(m) s-oblivious pi-blocking [7], but
this approach does not extend to c > 1. For example, sup-
pose that requests are satisfied in FIFO order, and that a re-
source holder’s priority is boosted (as under the partitioned

C1

C2

5 10 150

�1

�2

�1

�2

�1

�2

�1

�2

�1

�2

�1

�2

repeatedly pi-blocked

J1

J2

J3

J4

J7,j

J6,j

J5

Figure 4: Example schedule of seven tasks sharing two resources
(`1, `2) across two two-processor clusters under CEDF scheduling.
The example shows that priority boosting may cause jobs to incur
pi-blocking repeatedly if c > 1. If c = 1, then lower-priority jobs
cannot issue requests while higher-priority jobs execute [7].

FMLP [5]). A possible result is shown in Fig. 4: jobs in clus-
ter C2 repeatedly request `1 and `2 in a pattern that causes
low-priority jobs (J2, . . . , J5) in C1 to be priority-boosted
simultaneously, which causes J1 to be pi-blocked repeatedly.
In general, as c jobs must be priority-boosted to force a pre-
emption, priority boosting may cause Ω(nc) pi-blocking.

3.2 Priority Donation
The partitioned OMLP [7], which uses priority boosting, re-
lies on the following two progress properties (for c = 1):

P1 A resource-holding job is always scheduled.
P2 The duration of s-oblivious pi-blocking caused by the

progress mechanism (i.e., the rules that maintain P1) is
bounded by the maximum request span (w.r.t. any job).

Priority boosting unconditionally forces resource holders to
be scheduled (Property P1), but it does not specify which
job will be preempted as a result. As Fig. 4 shows, if c >
1, this is problematic since an “unlucky” job (like J1) can
repeatedly be a preemption “victim,” thereby invalidating P2.

Priority donation is a form of priority boosting in which
the “victim” is predetermined such that each job is preempted
at most once. This is achieved by establishing a donor rela-
tionship when a potentially harmful job release occurs (i.e.,
one that could invalidate P1). In contrast to priority boosting,
priority donation only takes effect when needed.
Request rule. In the following, let Ji denote a job that re-
quires a resource `q at time t1, as illustrated in Fig. 5. In the
examples and the discussion below, we assume mutex locks
for the sake of simplicity; however, the proposed protocol
applies equally to RW and k-exclusion locks. Priority dona-
tion achieves P1 and P2 for 1 ≤ c ≤ m in two steps: it first
requires that Ji has a high base priority, and then ensures that
Ji’s effective priority remains high until Ji releases `q .

D1 Ji may issue a request only if it is among the c highest-
priority pending jobs in its cluster (w.r.t. base priorities).
If necessary, Ji suspends until it may issue a request.

4

t1 t2 t3 t4
time

base priority
too low

acquisition
delay

job holds
 �q

 job needs request issued request satisfied job releases �q�q

Figure 5: Illustration of the request phases under priority donation.
A job Ji requires a resource `q at time t1. Ji suspends until time
t2, when it becomes one of the c highest-priority pending jobs in its
assigned cluster (Rule D1). Ji remains suspended while it suffers
acquisition delay from t2 until its request is satisfied at t3. Priority
donation ensures that Ji is continuously scheduled in [t3, t4).

Rule D1 ensures that a job has sufficient priority to be sched-
uled without delay at the time of request, i.e., Property P1
holds at time t2 in Fig. 5. However, some—but not all—later
job releases during [t2, t4] could preempt J1.

Consider a list of all pending jobs in Ji’s cluster sorted by
decreasing base priority, and let x denote Ji’s position in this
list at time t2, i.e., Ji is the xth highest-priority pending job at
time t2. By Rule D1, x ≤ c. If there are at most c−x higher-
priority jobs released during [t2, t4], then Ji remains among
the c highest-priority pending jobs and no protocol interven-
tion is required. However, when Ji is the cth highest-priority
pending job in its cluster, a higher-priority job release may
cause Ji to be preempted or to have insufficient priority to
be scheduled when it resumes, thereby violating P1. Priority
donation intercepts such releases.
Donor rules. A priority donor is a job that suspends to allow
a lower-priority job to complete its request. Each job has
at most one priority donor at any time. We define how jobs
become donors and when they suspend next and illustrate the
rules with an example thereafter. Let Jd denote Ji’s priority
donor (if any), and let ta denote Jd’s release time.

D2 Jd becomes Ji’s priority donor at time ta if (a) Ji was
the cth highest-priority pending job prior to Jd’s release
(w.r.t. its cluster), (b) Jd has one of the c highest base
priorities, and (c) Ji has issued a request that is incom-
plete at time ta, i.e., ta ∈ [t2, t4] w.r.t. Ji’s request.

D3 Ji inherits the priority of Jd (if any) during [t2, t4).

The purpose of Rule D3 is to ensure that Ji will be scheduled
if ready. However, Jd’s relative priority could decline due to
subsequent releases. In this case, the donor role is passed on.

D4 If Jd is displaced from the set of the c highest-priority
jobs by the release of Jh, then Jh becomes Ji’s priority
donor and Jd ceases to be a priority donor. (By Rule D3,
Ji thus inherits Jh’s priority.)

Rule D4 ensures that Ji remains among the c highest-priority
pending jobs (w.r.t. its cluster). The following two rules en-
sure that Ji and Jd are never ready at the same time, thereby
freeing a processor for Ji to be scheduled on.

D5 If Ji is ready when Jd becomes Ji’s priority donor (by
either Rule D2 or D4), then Jd suspends immediately.

D6 If Jd is Ji’s priority donor when Ji resumes at time t3,
then Jd suspends (if ready).

C1

C2

5 10 150

priority donor

priority recipient

J1

J2

J3

J4

J5

J6

�1

�2

�2

�1

�2

Figure 6: Schedule of six tasks sharing two serially-reusable re-
sources (`1, `2) across two two-processor clusters under CEDF
scheduling. Under the clustered OMLP, progress is ensured with
priority donation (Sec. 3) and jobs wait in FIFO order (Sec. 4.1).

Further, a priority donor may not execute a request itself and
may not prematurely exit.

D7 A priority donor may not issue requests. Jd suspends if
it requires a resource while being a priority donor.

D8 If Jd finishes execution while being a priority donor,
then its completion is postponed, i.e., Jd suspends and
remains pending until it is no longer a priority donor.

Jd may continue once its donation is no longer required, or
when a higher-priority job takes over.

D9 Jd ceases to be a priority donor as soon as either (a) Ji
completes its request (i.e., at time t4), (b) Ji’s base pri-
ority becomes one of the c highest (w.r.t. pending jobs
in Ji’s cluster), or (c) Jd is relieved by Rule D4. If Jd
suspended due to Rules D5–D7, then it resumes.

Under a JLSP scheduler, Rule D9b can only be triggered
when higher-priority jobs complete.

Example. Fig. 6 shows a resulting schedule assuming jobs
wait in FIFO order. Priority donation occurs first at time 1.5,
when the release of J1 displaces J3 from the set of the c
highest-priority jobs in C1. Since J3 holds `1, J1 becomes
J3’s priority donor (Rule D2) and suspends immediately
since J3 is ready (Rule D5). J1 resumes when its duties cease
at time 3 (Rule 9a). If J1 would not have donated its priority
to J3, then it would have preempted J3, thereby violating P1.

At time 1.5, J6 also requests `1 and suspends as `1 is un-
available. It becomes a priority recipient when J4 is released
at time 2 (Rule D2). Since J6 is already suspended, Rule D5
does not apply and J4 remains ready. However, at time 2.5,
J4 requires `2, but since it is still a priority donor, it may not
issue a request and must suspend instead (Rule D7). J4 may
resume and issue its request at time 3.5 since J5 finishes,
which causes J6 to become one of the two highest-priority
pending jobs inC2 (Rule 9b). If priority donors were allowed
to issue requests, then J4 would have been suspended while
holding `2 when J6 resumed at time 3, thereby violating P1.

Analysis. Taken together, Rules D1–D9 ensure resource-
holder progress under clustered scheduling (1 ≤ c ≤ m).

5

Lemma 1. Priority donation satisfies Property P1.

Proof. Rule D7 prevents Rules D5 and D6 from suspending
a resource-holding job. Rule D1 establishes Property P1 at
time t2. If Ji’s base priority becomes insufficient to guaran-
tee P1, its effective priority is raised by Rules D2 and D3.
Rules D4 and D8 ensure that the donated priority is always
among the c highest (w.r.t. pending jobs in Ji’s cluster),
which, together with Rules D5 and D6, effectively reserves a
processor for Ji to run on when ready.

By establishing the donor relationship at release time, pri-
ority donation ensures that a job is a “preemption victim” at
most once, even if c > 1.

Lemma 2. Priority donation satisfies Property P2.

Proof. A job incurs s-oblivious pi-blocking if it is among the
c highest-priority pending jobs in its cluster and either (i) sus-
pended or (ii) ready and not scheduled (i.e., preempted). We
show that (i) is bounded and that (ii) is impossible.

Case (i). Only Rules D1 and D5–D8 cause a job to sus-
pend. Rule D1 does not cause s-oblivious pi-blocking: the
interval [t1, t2) ends as soon as Ji becomes one of the c
highest-priority pending jobs. Rules D5–D8 apply to priority
donors. Jd becomes a priority donor only immediately upon
release or not at all (Rules D2 and D4), i.e., each Jd donates
its priority to some Ji only once. By Rule D2, the donor rela-
tionship starts no earlier than t2, and, by Rule D9, ends at the
latest at time t4. By Rules D8 and D9, Jd either resumes or
completes when it ceases to be a priority donor. Jd suspends
thus for the duration of at most one entire request span.

Case (ii). Let Jx denote a job that is ready and among the c
highest-priority pending jobs (w.r.t. base priorities) in cluster
Cj , but not scheduled. Let A denote the set of ready jobs in
Cj with higher base priorities than Jx, and let B denote the
set of ready jobs in Cj with higher effective priorities than
Jx that are not in A. Only jobs in A and B can preempt Jx.
Let D denote the set of priority donors of jobs in B.

By Rule D3, every job in B has a priority donor that
is, by construction, unique: |B| = |D|. By assumption,
|A| + |B| ≥ c (otherwise Jx would be scheduled), and thus
also |A| + |D| ≥ c. By definition of B, every job in D
has a base priority that exceeds Jx’s base priority. Rules D5
and D6 imply that no job in D is ready (since every job in B
is ready): A ∩D = ∅. Every job in D is pending (Rule D8),
and every job in A is ready and hence also pending. Thus,
there exist at least c pending jobs with higher base priority
than Jx in Cj . Contradiction.

Priority donation further limits maximum concurrency,
which is key to the analysis in the remainder of this paper.

Lemma 3. Let Rj(t) denote the number of requests issued
by jobs in cluster Cj that are incomplete at time t. Under
priority donation, Rj(t) ≤ c at all times.

Proof. Similar to Case (ii) above. Suppose Rj(t) > c at time
t. LetH denote the set of the c highest-priority jobs in Cj (at
time t w.r.t. base priorities), and let I denote the set of jobs

in Cj that have issued a request that is incomplete at time t.
Let A denote the set of high-priority jobs with incomplete

requests, i.e., A = H ∩ I , and let B denote the set of low-
priority jobs with incomplete requests, i.e., B = I \A.

Let D denote the set of priority donors of jobs in B. To-
gether, Rules D2, D4, D8, and D9 ensure that every job in B
has a unique priority donor. Therefore |B| = |D|.

By definition, |A| + |B| = |I| = Rj(t). By our initial
assumption, this implies |A|+|B| > c and thus |A|+|D| > c.

By Rules D2 and D4, D ⊆ H (only high-priority jobs are
donors). By Rule D7, A ∩ D = ∅ (donors may not issue
requests). Since, by definition, A ⊆ H , this implies |H| ≥
|A|+ |D| > c. Contradiction.

In the following, we show that Lemmas 1–3 provide a
strong foundation that enables the design of simple, yet
asymptotically optimal, locking protocols.

4 The OMLP for Clustered Scheduling
The O(m) locking protocol (OMLP) [7] is a family of asymp-
totically optimal suspension-based multiprocessor locking
protocols for JLSP schedulers, i.e., member protocols cause
jobs to incur only O(m) pi-blocking under s-oblivious anal-
ysis. In [7], we proposed two OMLP mutex protocols for
global and partitioned scheduling. In this section, we aug-
ment the OMLP family with priority-donation-based mutex,
reader-writer, and k-exclusion locks for clustered scheduling,
and discuss how and when to combine OMLP variants.

4.1 Mutex Locks
Priority donation is a powerful aid for worst-case analysis.
This is witnessed by the simplicity of the following mu-
tex protocol for clustered scheduling, which relies on simple
FIFO queues. In contrast, the global and partitioned OMLP
mutex protocols, which are based on priority inheritance and
priority boosting (resp.), each require a combination of pri-
ority and FIFO queues to achieve an O(m) bound.
Structure. There is a FIFO queue FQq for each serially-
reusable resource `q . The job at the head of FQq holds `q .
Rules. Jobs that issue conflicting requests are serialized with
FQq . Let Ji denote a job that issues a requestR for `q .

X1 Ji is enqueued in FQq when it issues R. Ji suspends
untilR is satisfied (if FQq was non-empty).

X2 R is satisfied when Ji becomes the head of FQq .
X3 Ji is dequeued from FQq whenR is complete. The new

head of FQq (if any) is resumed.

Rules X1–X3 correspond to times t2–t4 in Fig. 5.
Example. Fig. 6 depicts an example of the clustered OMLP
for serially-reusable resources. J3 requests `1 at time 1
and is enqueued in FQ1 (Rule X1). Since FQ1 was previ-
ously empty, J3’s request is satisfied immediately (Rule X2).
When J6 requests the same resource at time 1.5, it is ap-
pended to FQ1 and suspends. When J3 releases `1 at time 3,
J6 becomes the new head of FQ1 and resumes (Rule X3).

6

At time 3.5, J4 acquires `2 and enqueues in FQ2, which
causes J2 and J1 to suspend when they, too, request `2 at
times 4 and 4.5. Importantly, priorities are ignored in each
FQq: when J4 releases `2 at time 5, J2 becomes the resource
holder and is resumed, even though J1 has a higher base pri-
ority. While using FIFO queues instead of priority queues in
real-time systems may seem counterintuitive, priority queues
are in fact problematic in a multiprocessor context since they
allow starvation, which may yield Ω(mn) pi-blocking [7].5

Analysis. Priority donation is crucial in two ways: requests
complete without delay and maximum contention is limited.

Lemma 4. At most m jobs are enqueued in any FQq .

Proof. By Lemma 3, at most c requests are incomplete at any
point in time in each cluster. Since there are m

c clusters, no
more than m

c · c = m jobs are enqueued in some FQq .

Lemma 5. A job Ji that requests a resource `q incurs acqui-
sition delay for the duration of at most m− 1 requests.

Proof. By Lemma 4, at most m − 1 other jobs precede Ji
in FQq . By Lemma 1, the job at the head of FQq is always
scheduled. Therefore, Ji becomes the head of FQq after the
combined length of m− 1 requests.

This property suffices to prove asymptotic optimality.

Theorem 1. The clustered OMLP for serially-reusable re-
sources causes a job Ji to incur at most bi = m · Lmax +∑r
q=1Ni,q ·(m−1)·Lmax = O(m) s-oblivious pi-blocking.

Proof. By Lemma 2, the duration of s-oblivious pi-blocking
caused by priority donation is bounded by the maximum re-
quest span. By Lemma 5, maximum acquisition delay per
request is bounded by (m−1) ·Lmax . The maximum request
span is thus bounded by m · Lmax . Recall from Sec. 2 that∑r
q=1Ni,q and Lmax are constant. The bound follows.
The protocol for serially-reusable resources is thus asymp-

totically optimal w.r.t. maximum s-oblivious pi-blocking.

4.2 Reader-Writer Locks
In throughput-oriented computing, RW locks are attractive
because they increase average concurrency (compared to mu-
tex locks) if read requests occur more frequently than write
requests. In a real-time context, RW locks should also aid
in lowering pi-blocking for readers, i.e., the higher degree
of concurrency must be reflected in the a priori worst-case
analysis and not just in observed average-case delays.

Unfortunately, many RW lock types commonly in use
in throughput-oriented systems provide only little analytical
benefits because they either allow starvation or serialize read-
ers [8]. As an example for the former, consider reader prefer-
ence RW locks, under which write requests are only satisfied
if there are no unsatisfied read requests. Such locks have the
advantage that a read request incurs only O(1) acquisition

5[7] shows Ω(mn) s-aware pi-blocking, but it is trivial to extend this
bound to s-oblivious pi-blocking by isolating a task in a dedicated cluster.

delay, but they also expose write requests to potentially un-
bounded acquisition delays. In contrast, task-fair RW locks,
in which requests (either read or write) are satisfied strictly
in FIFO order, are an example for the latter case: in the worst
case, read requests and write requests are interleaved such
that read requests incur Ω(m) acquisition delay (assuming
priority donation), just as they would under a mutex lock.

In [8], we introduced phase-fair RW locks as an alterna-
tive, under which reader phases and writer phases alternate
(unless there are only requests of one kind). At the beginning
of a reader phase, all incomplete read requests are satisfied,
whereas one write request is satisfied at the beginning of a
writer phase. This results in O(1) acquisition delay for read
requests without starving write requests. We presented spin-
based phase-fair RW locks in [8]. With priority donation as a
base, we can transfer the concept to suspension-based locks.
Structure. For each RW resource `q , there are three queues:
a FIFO queue for writers, denoted WQq , and two reader
queues RQ1

q and RQ2
q . Initially, RQ1

q is the collecting and
RQ2

q the draining reader queue. The roles, denoted as CQq
and DQq , switch as reader and writer phases alternate, i.e.,
the designations “collecting” and “draining” are not static.
Reader rules. Let Ji denote a job that issues a read request
R for `q . The distinction between CQq and DQq serves to
separate reader phases. Readers always enqueue in the (at
the time of request) collecting queue. If queue roles change,
then a writer phase starts when the last reader releases `q .

R1 Ji is enqueued in CQq when it issues R. If WQq is
non-empty, then Ji suspends.

R2 R is satisfied either immediately if WQq is empty when
R is issued, or when Ji is subsequently resumed.

R3 Let RQyq denote the reader queue in which Ji was en-
queued due to Rule R1. Ji is dequeued from RQyq when
R is complete. If RQyq is DQq and Ji is the last job to be
dequeued from RQyq , then the current reader phase ends
and the head of WQq is resumed (WQq is non-empty).

Writer rules. Let Jw denote a job that issues a write request
R for `q . Conflicting writers wait in FIFO order. The writer
at the head of WQq is further responsible for starting and
ending reader phases by switching the reader queues.

W1 Jw is enqueued in WQq when it issuesR. Jw suspends
untilR is satisfied unless WQq and CQq are both empty
at the time of request. If WQq is empty and CQq is not,
then the roles of CQq and DQq are switched.

W2 R is satisfied either immediately if WQq and CQq are
both empty whenR is issued, or when Jw is resumed.

W3 Jw is dequeued from WQq when R is complete. If
CQq is empty, then the new head of WQq (if any) is
resumed. Otherwise, each job in CQq is resumed and,
if WQq remains non-empty, the roles of CQq and DQq
are switched.

Rules R1–R3 and W1–W3 correspond to times t2–t4 in
Fig. 5 (resp.), and are illustrated in Fig. 7.

7

C1

C2

5 10 150

reader queue role
switch (W1, W3)

last reader resumes
next writer (R3)

J1

J2

J3

J4

J5

J6

read

read

read

write

write

read

Figure 7: Schedule of six tasks sharing one RW resource across two
two-processor clusters under CEDF scheduling.

Example. The resource `1 is first read by J5, which is en-
queued in RQ1

q , the initial collecting queue, at time 0.5
(Rule R1). When J2 issues a read request at time 1, it is
also enqueued and its request is satisfied immediately since
WQ1 is still empty (Rule R2). J1 issues a write request
at time 2. Since CQ1 is non-empty, the roles of CQ1 and
DQ1 are switched, i.e., RQ1

q becomes the draining reader
queue, and J1 suspends (Rule W1). J4 issues another read
request soon thereafter and is enqueued in RQ2

q (Rule R1),
which is the collecting queue after the role switch. J4 sus-
pends since WQ1 is not empty (Rule R2), even though J2
is still executing a read request. This is required to ensure
that write requests are not starved. The reader phase ends
when J2 releases `1 at time 3, and the next writer, J1, is re-
sumed (Rules R3 and W2). J1 releases `1 and resumes all
readers that have accumulated in RQ2

q (J3 and J4). Since
WQ1 is non-empty (J6 was enqueued at time 3), RQ2

q be-
comes the draining reader queue (Rule W3). Under task-fair
RW locks, J3 would have remained suspended since it re-
quested `1 after J6. In contrast, J6 must wait until the next
writer phase at time 6.5 and all waiting readers are resumed
at the beginning of the next reader phase at time 5 (Rule W3).
Analysis. Together with priority donation, the reader and
writer rules above realize a phase-fair RW lock. Due to the
intertwined nature of reader and writer phases, we first con-
sider the head of WQq (a writer phase), then CQq (a reader
phase), and finally the rest of WQq .

Lemma 6. Let Jw denote the head of WQq . Jw incurs ac-
quisition delay for the duration of at most one read request
length before its request is satisfied.
Proof. Jw became head of WQq in one of two ways: by
Rule W1 (if WQq was empty prior to Jw’s request) or by
Rule W3 (if Jw had a predecessor in WQq). In either case,
there was a reader queue role switch when Jw became head
of WQq (unless there were no unsatisfied read requests, in
which case the claim is trivially true). By Rule R3, Jw is
resumed as soon as the last reader in DQq releases `q . By
Rule R1, no new readers enter DQq . Due to priority donation,
there are at mostm−1 jobs in DQq (Lemma 3), and each job
holding `q is scheduled (Lemma 1). The claim follows.

Lemma 7. Let Ji denote a job that issues a read request for
`q . Ji incurs acquisition delay for the combined duration of
at most one read and one write request.
Proof. If WQq is empty, then Ji’s request is satisfied imme-
diately (Rule R2). Otherwise, it suspends and is enqueued
in CQq (Rule R1). This prevents consecutive write phases
(Rule W3). Ji’s request is thus satisfied as soon as the cur-
rent head of WQq releases `q (Rule W3). By Lemma 6, the
head of WQq incurs acquisition delay for no more than the
length of one read request (which transitively impacts Ji).
Due to priority donation, the head of WQq is scheduled when
its request is satisfied (Lemma 1). Therefore, Ji waits for the
duration of at most one read and one write request.

Lemma 7 shows that readers incur O(1) acquisition delay.
Next, we derive that writers incur O(m) acquisition delay.

Lemma 8. Let Jw denote a job that issues a write request
for `q . Jw incurs acquisition delay for the duration of at most
m−1 write andm read requests before its request is satisfied.
Proof. It follows from Lemma 3 that at most m − 1 other
jobs precede Jw in WQq (analogously to Lemma 4). By
Lemma 1, Jw’s predecessors together hold `q for the dura-
tion of at most m− 1 write requests. By Lemma 6, each pre-
decessor incurs acquisition delay for the duration of at most
one read request once it has become the head of WQq . Thus,
Jw incurs transitive acquisition delay for the duration of at
most m − 1 read requests before it becomes head of WQq ,
for a total of at most m− 1 + 1 = m read requests.

These properties suffice to prove asymptotic optimality
w.r.t. maximum s-oblivious pi-blocking.

Theorem 2. The clustered OMLP for RW resources causes
a job Ji to incur at most bi = 2 ·m ·Lmax +

∑r
q=1Ni,q · (2 ·

m− 1) · Lmax = O(m) s-oblivious pi-blocking.
Proof. By Lemma 2, the duration of s-oblivious pi-blocking
caused by priority donation is bounded by the maximum re-
quest span. By Lemma 8, maximum acquisition delay per
write request is bounded by (2m− 1) · Lmax ; by Lemma 7,
maximum acquisition delay per read request is bounded by
2 · Lmax . The maximum request span is thus bounded by
2m ·Lmax . Recall from Sec. 2 that

∑r
q=1Ni,q and Lmax are

constant. The bound follows.
Since priority inheritance is sufficient for the global

OMLP mutex protocol from [7], one might wonder if it is
possible to apply the same design using priority inheritance
instead of priority donation to obtain an O(m) RW protocol
under global scheduling. Unfortunately, this is not the case.
The reason is that the analytical benefits of priority inheri-
tance under s-oblivious analysis do not extend to RW exclu-
sion. When using priority inheritance with mutual exclusion,
there is always a one-to-one relationship: a priority is in-
herited by at most one ready job at any time. In contrast, a
single high-priority writer may have to “push” multiple low-
priority readers. In this case, the high priority is “duplicated”
and used by multiple jobs on different processors at the same

8

time. This significantly complicates the analysis. In fact,
simply instantiating Rules R1–R3 and W1–W3 with priority
inheritance may cause Ω(n/c) s-oblivious pi-blocking since
it is possible to construct schedules that are conceptually sim-
ilar to the one shown in Fig. 4. This demonstrates the power
of priority donation, and also highlights the value of the clus-
tered OMLP even for the special cases c = m and c = 1.

4.3 k-Exclusion Locks
For some resource types, one option to reduce contention is
to replicate them. For example, if potential overload of a
co-processor for digital signal processing (DSP) is found to
pose a risk in the design phase, the system designer could
introduce additional instances to improve response times.

As with multiprocessors, there are two fundamental ways
to allocate replicated resources: either each task may only
request a specific instance, or every task may request any
instance. The former approach, which corresponds to par-
titioned scheduling, has the advantage that a mutex proto-
col suffices, but it also implies that some instances may idle
while jobs wait to acquire their designated instance. The lat-
ter approach, equivalent to global scheduling, avoids such
bottlenecks, but needs a k-exclusion protocol to do so. Prior-
ity donation yields such a protocol for clustered scheduling.

Recall that kq is the number of replicas of resource `q . In
the following, we assume 1 ≤ kq ≤ m. The case of kq > m
is discussed in Sec. 4.4 below.
Structure. Jobs waiting for a replicated resource `q are kept
in a FIFO queue denoted as KQq . The replica set RSq con-
tains all idle instances of `q . If RSq 6= ∅, then KQq is empty.
Rules. Let Ji denote a job that issues a requestR for `q .
K1 If RSq 6= ∅, then Ji acquires an idle replica from RSq .

Otherwise, Ji is enqueued in KQq and suspends.
K2 R is satisfied either immediately (if RSq 6= ∅ at the time

of request) or when Ji is removed from KQq .
K3 If KQq is non-empty when R completes, the head of

KQq is dequeued, resumed, and acquires Ji’s replica.
Otherwise, Ji’s replica is released into RSq .

As it was the case with the definition of the previous proto-
cols, Rules K1–K3 correspond to times t2–t4 in Fig. 5.
Example. Fig. 8 depicts an example schedule for one re-
source (`1) with k1 = 2. J5 obtains a replica from RS1 at
time 1 (Rule K1). The second instance of `1 is acquired by J2
at time 2. As RS1 is now empty, J1 is enqueued in KQ1 and
suspends when it requests `1 at time 2.5. However, it is soon
resumed when J5 releases its replica at time 3 (Rule K3).
This illustrates one advantage of using k-exclusion locks: if
instead one replica would have been statically assigned to
each cluster (which reduces to a mutex constraint), then J1
would have continued to wait whileC2’s instance would have
idled. This happens again at time 5.5: since no job in C1 re-
quires `1 at the time, both instances are used by jobs in C2.
Analysis. As with the previous protocols, priority donation
is essential to ensure progress and to limit contention.

C1

C2

5 10 150

both replicas held by
jobs in the same cluster

J1

J2

J3

J4

J5

J6

Figure 8: Schedule of six tasks sharing two instances of one re-
source across two two-processor clusters under CEDF scheduling.

Lemma 9. At most m− kq jobs are enqueued in KQq .

Proof. Lemma 3 implies that there are at most m incomplete
requests. Since only jobs waiting for `q are enqueued in KQq ,
at most m− kq jobs are enqueued in KQq .

Lemma 10. Let Ji denote a job that issues a request R for
`q . Ji incurs acquisition delay for the duration of at most
d(m− kq)/kq)e maximum request lengths.

Proof. By Lemma 9, at most m− kq requests must complete
before Ji’s request is satisfied (m − kq − 1 for Ji to be-
come the head of KQq , and one more for Ji to be dequeued).
Rules K1 and K3 ensure that all replicas are in use when-
ever jobs wait in KQq . Since resource holders are always
scheduled due to priority donation (Lemma 1), requests are
satisfied at a rate of at least kq requests per maximum request
length untilR is satisfied. The stated bound follows.

Lemma 10 shows that Ji incurs at mostO(mkq) pi-blocking
per request (and none if kq = m), which implies asymptotic
optimality w.r.t. maximum s-oblivious pi-blocking.

Theorem 3. The clustered OMLP for replicated resources
causes a job Ji to incur at most bi = m ·Lmax +

∑r
q=1Ni,q ·

d(m− kq)/kq)e · Lmax = O(m) s-oblivious pi-blocking.

Proof. By Lemma 10, maximum acquisition delay per re-
quest for `q is bounded by d(m − kq)/kq)e · Lmax . Since
min1≤q≤r kq ≥ 1, the maximum request span is thus
bounded by (d(m−1)/1)e+1)·Lmax = m·Lmax . Lemma 2
limits the duration of s-oblivious pi-blocking due to priority
donation to the maximum request span. The bound follows
since

∑r
q=1Ni,q and Lmax are constant (see Sec. 2).

4.4 Combinations, Limitations, and Open Questions
The clustered mutex protocol (Sec. 4.1) generalizes the par-
titioned OMLP from [7] in terms of blocking behavior; there
is thus little reason to use both in the same system.

The global OMLP from [7] cannot be used with the pro-
tocols in this paper since priority inheritance is incompati-
ble with priority donation (from an analytical point of view).
Both mutex protocols have an O(m) s-oblivious pi-blocking
bound, but differ in constant factors and w.r.t. which jobs in-
cur pi-blocking. Specifically, only jobs that request resources

9

risk s-oblivious pi-blocking under the global OMLP, while
even otherwise independent jobs may incur s-oblivious pi-
blocking if they serve as a priority donor. The global OMLP
may hence be preferable for c = m if only few tasks share
resources; we plan to explore this tradeoff in future work.

The protocols presented in this paper can be freely com-
bined since they all rely on priority donation and because
their protocol rules do not conflict. However, care must be
taken to correctly identify the maximum request span.
Optimality of relaxed-exclusion protocols. Under phase-
fair RW locks (Sec. 4.2), read requests incur at most O(1)
acquisition delay. Similarly, requests incur only O(m/kq)
acquisition delay under the k-exclusion protocol (Sec. 4.2).
Yet, we only prove O(m) maximum s-oblivious pi-blocking
bounds—since both relaxed-exclusion constraints generalize
mutual exclusion, this is unavoidable [7].

However, as noted above, any job may become a priority
donor and thus suspend (at most once) for the duration of the
maximum request span. This seems undesirable for tasks that
do not partake in mutual exclusion. For example, why should
“pure readers” (i.e., tasks that never issue write requests) not
have an O(1) bound on pi-blocking? It is currently unknown
if this is even possible in general, as lower bounds for specific
task types (e.g., “pure readers,” “DSP tasks”) are a virtually
unexplored topic that warrants further attention.
Highly replicated resources. Our k-exclusion protocol as-
sumes 1 ≤ kq ≤ m since additional replicas would remain
unused as priority donation allows at most m incomplete re-
quests. This has little impact on resources that require jobs
to be scheduled (e.g., shared data structures), but it may be a
severe limitation for resources that do not require the proces-
sors (e.g., there could be more than m DSP co-processors).

However, would a priority donation replacement that al-
lows more than c jobs in a cluster to hold a replica be a
solution? Surprisingly, the answer is no. This is because
s-oblivious schedulability analysis (implicitly) assumes the
number of processors as the maximum degree of parallelism
(since all pending jobs cause processor demand under s-
oblivious analysis). S-aware analysis is essential to derive
analytical benefits from highly replicated resources.

5 Conclusion
We have identified that existing global and partitioned
suspension-based real-time locking protocols do not gener-
alize to clustered scheduling due to the unique combination
of both global and partitioned aspects. To overcome this, we
designed priority donation, a novel mechanism for ensuring
resource-holder progress that works for 1 ≤ c ≤ m.

Using priority donation as a foundation, we augmented the
OMLP family of locking protocols with three suspension-
based real-time locking protocols for clustered JLSP sched-
ulers that realize mutex, RW, and k-exclusion constraints.
The two latter relaxed-exclusion protocols have the desir-
able property that the reduction in contention is reflected an-

alytically in improved worst-case acquisition delays (O(1)
for readers and O(mkq) in the k-exclusion case, compared
to O(m) for all jobs under mutex locks). Each protocol
is asymptotically optimal w.r.t. maximum s-oblivious pi-
blocking. The mutex protocol is the first of its kind for clus-
tered scheduling with 1 < c < m; the RW and k-exclusion
protocols are further the first of their kind for the special
cases of partitioned and global scheduling as well.

In future algorithmic work, we would like to extend our
work to s-aware schedulability analysis and explore the op-
timality of relaxed-exclusion protocols. In future empirical
work, we plan to evaluate the OMLP family in LITMUSRT.
Acknowledgement. We thank Glenn Elliott for inspiring
discussions concerning k-exclusion constraints and GPUs.

References
[1] T. Baker. Stack-based scheduling for realtime processes. Real-Time

Sys., 3(1):67–99, 1991.
[2] T. Baker and S. Baruah. Schedulability analysis of multiprocessor

sporadic task systems. In Handbook of Real-Time and Embedded Sys.,
Chapman Hall/CRC, Boca Raton, Florida, 2007.

[3] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. Im-
proved multiprocessor global schedulability analysis. Real-Time Sys.,
46(1):3–24, 2010.

[4] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical com-
parison of global, partitioned, and clustered multiprocessor real-time
schedulers. In Proc. RTSS, 2010.

[5] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In Proc. RTCSA, 2007.

[6] B. Brandenburg and J. Anderson. An implementation of the PCP,
SRP, D-PCP, M-PCP, and FMLP real-time synchronization protocols
in LITMUSRT. In Proc. RTCSA, 2008.

[7] B. Brandenburg and J. Anderson. Optimality results for multiprocessor
real-time locking. In Proc. RTSS, 2010.

[8] B. Brandenburg and J. Anderson. Spin-based reader-writer syn-
chronization for multiprocessor real-time systems. Real-Time Sys.,
46(1):25–87, 2010.

[9] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time
scheduling approach for large-scale multicore platforms. In Proc.
ECRTS, 2007.

[10] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. Chapman and Hall/CRC, 2004.

[11] C. Chen and S. Tripathi. Multiprocessor priority ceiling based proto-
cols. Technical Report CS-TR-3252, Univ. of Maryland, 1994.

[12] A. Easwaran and B. Andersson. Resource sharing in global fixed-
priority preemptive multiprocessor scheduling. In Proc. RTSS, 2009.

[13] Dario Faggioli, Giuseppe Lipari, and Tommaso Cucinotta. The multi-
processor bandwidth inheritance protocol. In Proc. ECRTS, 2010.

[14] P. Gai, M. di Natale, G. Lipari, A. Ferrari, C.Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the
Janus multiple processor on a chip platform. In Proc. RTAS, 2003.

[15] K. Lakshmanan, D. Niz, and R. Rajkumar. Coordinated task schedul-
ing, allocation and synchronization on multiprocessors. In Proc. RTSS,
2009.

[16] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. Proc. ICDCS, 1990.

[17] R. Rajkumar. Synchronization In Real-Time Sys.—A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[18] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization pro-
tocols for multiprocessors. Proc. RTSS, 1988.

[19] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
an approach to real-time synchronization. IEEE Trans. on Computers,
39(9):1175–1185, 1990.

10

