
A Server-Based Multiprocessor Scheduling Approach for
Stochastic Soft Real Time Systems

Alex F. Mills
Department of Statistics and Operations Research

University of North Carolina

James H. Anderson
Department of Computer Science

University of North Carolina

Abstract
We introduce a server-based approach to schedule a gen-
eral class of multiprocessor soft real-time systems with
stochastic execution times, when bounded average-case
tardiness is sufficient for schedulability. A key feature
of this approach is that the stochastic execution-time de-
mands can have arbitrary amounts of dependence within
prespecified time intervals of bounded length. This is an
important practical step forward from requiring complete
independence of execution times between successive jobs
of the same task. Our main result requires only average-
case utilization to be bounded by the number of processors.
This constraint is mild compared to constraints on worst-
case utilization because in multiprocessor systems, worst-
case execution times may be orders of magnitude higher
than average-case execution times.

1 Introduction
Previous work on scheduling soft real-time workloads has
focused almost exclusively on allocating processing ca-
pacity to jobs based on deterministic worst-case execution
times. This is a particular impediment in the implementa-
tion of soft real-time systems, where some deadline tardi-
ness is acceptable and therefore the pessimistic assumption
that every job may require its worst-case execution time is
unnecessary.

In multiprocessor systems, Leontyev and Anderson
showed that a number of global scheduling algorithms en-
sure bounded tardiness without utilization loss [6]; thus,
soft real-time workloads for which bounded tardiness is
sufficient can be supported on such systems. This re-
sult extended an earlier proof by Devi and Anderson
that showed the same of the global earliest-deadline-first
(GEDF) scheduling algorithm [3]. In these results, utiliza-
tions are defined by assuming worst-case execution costs.

In previous work, we questioned whether using a de-
terministic worst-case execution time to compute utiliza-
tion always makes sense in the realm of soft real-time
systems [10]. The actual worst-case execution time of a
task may be observed so infrequently that it may not be

worth dedicating such a large amount of processing time
to that task if bounded tardiness is acceptable. More-
over, timing analysis tools may add additional pessimism
to the calculation of worst-case execution times. These
problems are exacerbated on a multiprocessor, where the
worst-case scenario may be even less likely but even more
costly. In [10], we showed that processing capacity could
be allocated based on average-case execution times, with
the result that the expected (mean) tardiness of a task is
bounded when the system is scheduled using GEDF.1 Un-
fortunately, the expected tardiness bound we derived still
depends on worst-case execution times, and the task model
also requires job execution times to be completely inde-
pendent of one another.

In this paper, we consider a new task model that gener-
alizes the model used in [10], but also generalizes other
types of task models, including the traditional sporadic
task model and a stochastic or deterministic multiframe
task model. We analyze such tasks when scheduled on a
system of simple sporadic servers. Each server is a deter-
ministic soft real-time task. By applying existing analysis
of soft real-time tasks that comprise the server system, we
prove a tardiness bound that has two special cases: a deter-
ministic, worst-case tardiness bound (when the underlying
system has worst-case utilization bounded by the number
of processors), and an expected, or average-case, tardiness
bound (when the underlying system has average-case uti-
lization bounded by the number of processors).

In this work, a job may only run when its task’s server
executes. This is a similar idea to that proposed but not
formalized by Calandrino et al. [2], where jobs that did
not complete by the time their execution budget ran out
could “steal” from the budget of the next job of the same
task. Not only do we formalize this concept, but our ap-
proach is also more sophisticated, because the server bud-
gets may be replenished more often than the jobs are re-
leased. Hence, if an over-running job has enough sepa-
ration from its successor, it may not be necessary for the

1The published version of [10] contains a small error in the tardiness-
bound derivation; a corrected version can be found at http://cs.
unc.edu/˜anderson/papers.html.

1

http://cs.unc.edu/~anderson/papers.html
http://cs.unc.edu/~anderson/papers.html

over-running job to steal its successor’s execution budget,
but rather to simply consume the budget of another in-
stance of the server task in the interim time. In this paper,
we derive expected tardiness bounds under this schedul-
ing approach; such bounds were not considered in [2]. A
similar approach was devised for uniprocessors by Abeni
and Buttazzo in [1], where a bandwidth reservation strat-
egy was used to schedule soft real-time task systems where
successive jobs of the same task have independent ran-
domly distributed execution times. However, only the case
where worst-case utilization is less than one was consid-
ered. In contrast, this paper requires only a constraint on
average-case utilization.

In [10], jobs of every task could potentially be affected
by a single job with a much longer-than-average execu-
tion time. In this paper, because the servers have a limited
budget in each period, only jobs of the same task can be
affected by such overruns. There are potential disadvan-
tages in this case, but the result is that sporadic stochastic
tasks have bounded expected tardiness. Moreover, unlike
our previous work, the expected tardiness bounds do not
depend on worst-case execution times—in fact, tasks that
do not have a worst-case execution time can still be sched-
uled. The resulting bounds also lead to an interesting deci-
sion problem in allocating execution budgets to the servers.

Main Contribution. We derive expected tardiness
bounds for tasks whose execution costs are stochastic, un-
der the scenario where those tasks are executed on simple
sporadic servers. While we require some independence in
these stochastic execution times, our task system specifica-
tion is general enough that certain types of dependence can
be modeled within its framework. Our tardiness bounds
are applicable if the average-case total utilization is less
than the system’s capacity, even if the system is over-
utilized in the worst case or does not have a worst case.
We also separate the deterministic tardiness analysis from
the stochastic analysis in such a way that if better deter-
ministic tardiness analysis becomes available in the future,
the results of this paper can immediately be applied with-
out having to repeat any of the stochastic analysis.

Organization. The remainder of this paper is organized
as follows. In Sec. 2, we give a formal definition of the
system model. Sec. 3 consists of a number of technical
results that deal with the uncertainty in a stochastic system.
Sec. 4 derives the multiprocessor tardiness bounds. These
bounds are the main results of the paper. In Sec. 5, we
consider the problem of how to allocate execution budgets
to the sporadic servers. This discussion is followed by an
example in Sec. 6.

2 System Model
We consider a system τ = {τ1, τ2, . . . , τn} consisting of n
tasks. A task is a possibly infinite sequence of jobs. Jobs

are demands for processing time, each with an associated
deadline. Jobs of the same task must be executed sequen-
tially and in FIFO order. However, in this paper, we do not
assume that successive jobs of the same task are identical.

We consider the above system under different combi-
nations of the following assumptions, which are illustrated
below via several examples.

Assumption G. Assume that for each task τi ∈ τ , we can
find a set of time points {ti,0, si,1, ti,1, si,2, ti,2, . . .}
(which may be finite or countably infinite) and a con-
stant pi such that for all j ≥ 1 the following three
conditions hold:
• ti,j − si,j ≤ pi,
• si,j+1 − si,j ≥ pi,
• no job of τi is released in [ti,j−1, si,j), and

• no job of τi released in [si,j , ti,j) has a deadline
later than ti,j .

Assumption D. Denote the total amount of processing
time demanded by jobs of τi released in [si,j , ti,j) by
Xi,j . There exists a constant ei such that for all tasks
τi ∈ τ , and for all j = 1, 2, . . ., Xi,j ≤ ei.

Assumption S. DefineXi,j as above. For all tasks τi ∈ τ ,
the sequence {Xi,j , j = 1, 2, . . .} is a sequence of
independent and identically distributed random vari-
ables with mean ēi and variance σ2

i .

We will assume that Assumption G (a general assumption
about the analyzed task system) holds throughout the pa-
per. When Assumption D (the deterministic case) or As-
sumption S (the stochastic case) are needed, this will be
stated explicitly. Note that the major contribution of this
paper is the set of results for the stochastic case; the re-
sults for the deterministic case are included as a basis for
comparison and for the sake of completeness.

To illustrate the types of task systems that satisfy these
assumptions, we provide a few examples.

Sporadic Task System. Consider the typical
constrained-deadline sporadic task system where each
τi ∈ τ has period Ti and worst-case execution time Ci.
We can see that this system satisfies Assumptions G and
D by setting si,j to be the release time of the jth job of
sporadic task τi, setting ti,j to be the deadline of the jth
job of τi, setting pi = Ti, and setting ei = Ci.

Sporadic Stochastic Task System. Consider the task
system introduced in [10], where each τi ∈ τ has a period
Ti and an execution time that is independent and identi-
cally distributed with mean ēi and variance σ2

i . The defi-
nition of this task system makes no assumption that there is
a worst-case execution time, so Assumption D is not sat-
isfied; however, we can see that this system satisfies As-
sumption G by setting si,j to be the release time of the jth

2

job of sporadic task τi, setting ti,j to be the deadline of the
jth job of τi (which must be implicit or constrained), and
setting pi = Ti. Because the execution times of succes-
sive jobs are independent and identically distributed ran-
dom variables, and only one job is released between si,j−1

and si,j , for all j, ēi and σ2
i satisfy Assumption S.

Multiframe Task System. Consider a task system
where successive jobs of τi cycle deterministically through
Ki different execution modes. Let Ti denote the period
of the cycle, and let all deadlines be constrained to be
at most periods. Furthermore, suppose that each execu-
tion mode is characterized by a worst-case execution time
Ci,k, k = 1, 2, . . . ,Ki. We can see that this system sat-
isfies Assumptions G and D by setting si,j to the release
time of the (jKi)th job (that is, the release time of the
first job in the cycle), setting ti,j to be the deadline of the
((j + 1)Ki − 1)th job of τi (that is, the deadline of the
last job in the cycle), setting pi equal to Ti, and setting
ei =

∑Ki

k=1 Ci,k (that is, the worst-case execution time of
the entire cycle).

Stochastic Multiframe Task System. Consider a multi-
frame system like that above, but where each execution
mode is characterized by a different random execution
time (that is, the execution time is drawn from a different
distribution for each mode), such that the execution time in
mode k in one cycle is independent of the execution time
in any mode in any other cycle. Note that execution times
may be dependent within a cycle; for example, the execu-
tion time in mode k may be correlated with the execution
time in mode k − 1 within the same cycle.

We can see that this system satisfies Assumption G by
setting si,j to be the release time of the jKith job (that is,
the release time of the first job in the cycle), setting ti,j to
be the deadline of the ((j + 1)Ki − 1)th job of τi (that
is, the deadline of the last job in the cycle), and setting pi
equal to Ti. To show that this system satisfies Assump-
tion S, note that the assumption of independence between
cycles guarantees that the total execution time of one cy-
cle is independent of the total execution time of any other
cycle, and the fact that execution times in each mode are
identically distributed guarantees that the total execution
time of the cycle is identically distributed. Furthermore,
the variance of the total execution time of the cycle can be
written as a function of the variance of the execution time
of each mode and the covariance between execution times
of different modes (see, e.g., [11] for details).

2.1 Independence

In order for Assumption S to be satisfied, execution time
demands in successive [s, t) time intervals must be inde-
pendent from one another. Many applications of real-time
systems have jobs with clear dependence on one another.
Such dependence may result explicitly from the type of ap-

plication (e.g., in a video decoding application, if a frame
takes a long time to decode because it is part of a scene
with a lot of movement, its successor is more likely to
also take a long time to decode) or they may result from
characteristics of the system (e.g., if a job runs quickly
due to a warm cache, its successor is more likely to also
run quickly if it requires access to the same set of data).
We note that our system definition does not require execu-
tion times of each job to be independent of one another.
However, allowing arbitrary dependence would result in
completely intractable analysis—in fact, complete inde-
pendence is commonly assumed in many queueing appli-
cations (for example, independence of successive service
times) for the purpose of tractability. The system model
presented in this paper lies somewhere between the most
true-to-life model (which would be intractable), and the
somewhat unrealistic model that calls for independence of
every job’s execution time (which was used in prior work
on real-time systems [1, 10]). Moreover, because the in-
tervals in which dependence is permitted can be set by the
user, there is an interesting design trade-off: longer in-
tervals result in a more accurate model at the expense of
larger tardiness bounds (as we shall see). In some appli-
cations, these intervals may occur naturally, e.g., between
I-frames in MPEG decoding. In other cases these intervals
may have to be imposed by the system designer: e.g., for
dependencies arising from cache affinity, the beginning of
a new independent interval corresponds in practical terms
to a cold cache. In the latter case, the system designer
would need to calculate the execution time demand by as-
suming a cold cache at the beginning of each interval.

2.2 Simple Sporadic Servers

The scheduling scheme we will use in this paper involves
a server abstraction. Each task τi ∈ τ will run on a unique
simple sporadic server Ti, which will carefully control the
amount of time that τi is allowed to execute. This will
therefore ensure that worst-case execution times do not ap-
pear in the average-case tardiness bound.

Let T = {T1, T2, . . . , Tn} be a system of simple spo-
radic servers. Each simple sporadic server Ti has period pi
and execution budget bi. We will discuss conditions that
must be satisfied by bi in the next section. The budget of
Ti is replenished whenever Ti is eligible and backlogged.
Ti is eligible if and only if it has never had its budget re-
plenished or at least pi time units have elapsed since its
last replenishment (recall that pi was defined in Assump-
tion G). Ti is backlogged if and only if there is pending
work of τi. We call Ti,j the jth instance of Ti. The re-
plenishment time of Ti,j is denoted by Ri,j . The deadline
of Ti,j , denoted Di,j , is the earliest time at which Ti,j+1

could be replenished, which isDi,j = Ri,j+pi (i.e., server
deadlines are implicit).

3

1,1

1T

0

2,1 3,1

4 8 12

0 4 8 12

2T

0 4 8 12

0 4 8 12

2

1

1,2 2,2

Execution Suspension

(a)

(b)

Figure 1: Example servers and sporadic stochastic tasks
on a uniprocessor. (a) For servers T1 and T2, ↑ denotes
replenishment time and ↓ denotes deadline; the budget is
shaded for each server. T1 and T2 are scheduled using
EDF. (b) For the sporadic stochastic tasks τ1 and τ2, ↑ de-
notes release time and ↓ denotes deadline; the actual ex-
ecution times are shaded, while suspensions are shown in
white.

The budget of Ti is consumed whenever it has the high-
est priority according to the scheduling algorithm in use.
For example, if the scheduling algorithm is GEDF, then
the budget of Ti is consumed whenever it has one of the m
earliest deadlines.

2.3 Scheduling Example

Fig. 1(b) shows an example with sporadic stochastic tasks
τ1, with period 5 and execution cost drawn from some dis-
tribution with mean 2, and τ2, with period 3 and execution
cost drawn from some distribution with mean 0.75. τ1,1 is
released at time 0 and has execution cost 4, τ1,2 is released
at time 6.3 and has execution cost 1.5, and τ1,3 is released
at time 11.3 and has execution cost 2. τ2,1 is released at
time 0 and has execution cost 0.8, and τ2,2 is released at
time 3 and has execution cost 1.7. The schedule is not

shown after time 13. As we discussed above, the sporadic
stochastic task model satisfies the assumptions required for
task systems in our paper. In this model, we let τi,j denote
the jth job of task τi.

Fig. 1(a) shows two servers. T1 corresponds to τ1. It has
period 5.0 (the same as τ1), and budget 3. T2 corresponds
to τ2. It has period 3 and budget 1. We can verify that T
is schedulable by EDF on a uniprocessor because 3/5 +
1/3 ≤ 1.

We will use the example given in Fig. 1 to illustrate
some important properties of the considered scheduling
approach.

Initial Replenishment. Both servers are replenished at
time 0 because they are both eligible (having never been
replenished before) and backlogged (because both τ1 and
τ2 release jobs at that time). The deadlines are set to 5 (for
T1) and 3 (for T2).

Consumption Rule. Budgets are consumed according to
how the server instances of T are scheduled. In the ex-
ample, T is scheduled using EDF on a uniprocessor. For
example, T2 begins consuming its budget first at time 0
because T2,1 has a higher priority (earlier deadline) than
T1,1.

Idleness. T is scheduled without regard for idleness in
τ . Although τ2,1 finishes executing at 0.8, T2 continues its
consumption, even though this means that the processor
is idle. This prevents server instances from experiencing
self-suspensions. Such self-suspensions potentially could
be allowed, at the expense of needing to impose utilization
constraints to bound server tardiness [8]. However, we do
not consider that possibility in this paper.

Suspensions. At time 4, the budget of T1,1 has been con-
sumed, so τ1,1 suspends its execution. At time 5, T1 is el-
igible, so its budget is replenished, even though τ1,2 has
not yet been released. τ1,1 resumes executing and contin-
ues executing until time 6, when it completes.

Replenishment Rule. The budget of a server is replen-
ished only when it is eligible and backlogged. Therefore, a
replenishment will not necessarily occur at the next server
deadline. For example, T1 becomes eligible for replen-
ishment at time 10 but is not replenished until time 11.3
because no job of τ1 can execute until that time.

2.4 Remaining Work Process

We define the remaining work process Wi,j to be the
amount of work of τi due to jobs with deadline at most ti,j
that has not completed by the time the budget of server in-
stance Ti,(j)+1 has been exhausted, where (j) = min{k :
Ri,k < ti,j}. That is, (j) is the index of the last server
instance that replenishes Ti before ti,j . We will use the
parenthetical function in conjunction with all other server-

4

Table 1: Summary of Notation

Notation Definition
[si,j , ti,j) jth interval during which dependence

is allowed for τi
Xi,j execution requirement for τi over [si,j , ti,j)
bi budget of server Ti
Ti,j jth instance of Ti
Ri,j jth replenishment time of Ti
Di,j deadline of Ti,j
(j) largest index k such that Ri,k < ti,j
Wi,j remaining work of τi with deadline ≤ ti,j

not completed by Di,(j)+1

related notation. For example, Ri,(j) is the replenishment
time of Ti,(j) and Di,(j) is the deadline of Ti,(j).

To maintain consistency in the analysis, we define
Wi,0 = 0 because no work of τ is released prior to ti,0,
which is defined to be time 0.

Note that in general Ti,(j) is not the jth replenishment
of Ti, because replenishment of Ti may occur more fre-
quently than time points in the set {si,j , j = 0, 1, . . .}.
This will happen if the interval (ti,j−1, si,j) is long enough
and Ti is backlogged during that interval.

A full summary of notation is given in Table 1.

Lemma 1. Any job of τi with a deadline no later than ti,j
completes no later than the actual time at which the server
instance Ti,k completes, where k = (j) + 1 + dWi,j/bie.

Proof. Take an arbitrary job with deadline no later than
ti,j . Either τi,j completes by the time Ti,(j)+1 completes,
or it does not. If it does, the result is immediate, because
Ti,(j)+1 completes before any later instance of Ti (in par-
ticular, Ti,k).

Otherwise, there is some work remaining for our job
when Ti,(j)+1 completes. The amount of such work is no
more than Wi,j , because Wi,j by definition includes all
work due to jobs of τi released prior to ti,j that did not
complete by the time Ti,(j)+1 completed.

Because all work of τi is completed sequentially, we
can guarantee that the remaining work of τi,j is completed
once Ti has executed for at least Wi,j additional time units
following the completion of Ti,(j)+1. Because each in-
stance of Ti completes bi time units of work on τi when
there is pending work of τi, this means that the remaining
work of τi,j will complete no later than the time when Ti,k
completes.

3 Analysis of the Remaining Work Process
This section consists of technical results that lead to a
bound on the expected value of the remaining work pro-
cess.

Lemma 2. The remaining work process satisfies

Wi,0 = 0 (1)
Wi,j = max{0,Wi,j−1 +Xi,j − Yi,jbi}, for k = 1, 2, . . .

(2)

where Yi,j is the number of times Ti is replenished in
[ti,j−1, ti,j).

Proof. First, observe that prior to the first release, there is
clearly no remaining work, so (1) holds.

Next, by definition,Xi,j is the amount of work that may
add to the remaining work that is counted inWi,j but not in
Wi,j−1, because it is the amount of work that is demanded
by τi in [si,j , ti,j) (remember that no jobs are released in
[ti,j−1, si,j)). Finally, observe that by the time Ti,(j)+1

completes, either an additional Yi,jbi units of work will
have been allocated to τi, or there will be no more remain-
ing work of τi; hence, either we subtract Yi,jbi from the
remaining work and are left with positive remaining work,
or else we subtract all the remaining work, and are left with
zero (justifying the max operation).

Define the process Zi,j as follows:

Zi,0 = 0 (3)
Zi,j = max{0, Zi,j−1 +Xi,j − bi}, for k = 1, 2, . . .

(4)

The next lemma relates this new process with the re-
maining work process. Note that when we describe the
relationship between two random quantities as A ≤ B, we
mean “the probability that A is at most B is 1.”

Lemma 3. Wi,j ≤ Zi,j for all i, j.

Proof. First, Wi,0 = Zi,0 = 0. Now, proceed by induc-
tion. Suppose that Wi,j−1 ≤ Zi,j−1. Now, observe that
if Wi,j > 0 then Yi,j ≥ 1, because Ti will be replenished
at least once in [ti,j−1, ti,j) when there is any remaining
work of τi. Then

Wi,j = max{0,Wi,j−1 +Xi,j − Yi,jbi}
≤ max{0,Wi,j−1 +Xi,j − bi}
≤ max{0, Zi,j−1 +Xi,j − bi}
= Zi,j .

By induction, the result holds.

Lemma 4. If E (Xi,j) < bi, then {Zi,j , j = 1, 2, . . .} has
a limit Zi, as j →∞.

Proof. In [7], analytical results are presented concerning
processes having the form of Zi,j . It is shown there that as
j increases, the distribution of Zi,j has a limit if and only
if E (Xi,j − bi) < 0.

5

Lemma 5. [5, p. 474] Suppose that An, n = 1, 2, . . . is
drawn independently from a distribution with mean µA
and variance σ2

A, and Bn, n = 1, 2, . . . is drawn in-
dependently from a distribution with mean µB and vari-
ance σ2

B . Assume µA > µB . Let V0 = 0, and Vn =
max{0, Vn−1 +Bn −An}. Let V = lim

n→∞
Vn be the limit

(in distribution) of Vn. Then

E (V) ≤ σ2
A + σ2

B

2µA(1− µB/µA)
.

Lemma 6. If E (Xi,j) < bi, then E (Zi) ≤ σ2
i

2(bi−ēi) .

Proof. (4) is an example of Lindley’s recursion, which de-
scribes the waiting time in a queue: the waiting time of the
jth customer is equal to the waiting time of the (j − 1)st
customer, plus the service time of the (j − 1)st customer,
minus the amount of time between the two customers’ ar-
rivals (because the jth customer does not wait before he
arrives, while the (j−1)st customer does). In other words,
if there were a queueing system where service times were
{Xi,1, Xi,2, . . .} and customers arrived every bi time units,
then the waiting time of the jth customer would be Zi,j .
By applying the known upper bound given in Lemma 5 to
the limiting distribution of this process, we find that the
expected value of Zi is at most

b−1
i σ2

i

2(1− ēib−1
i)

, (5)

which after simplifying yields the result (note that, in ap-
plying Lemma 5, σ2

A = 0 because bi is a constant).

We now use Lemma 4, i.e., the fact that Zi has a lim-
iting distribution. This distribution will be important from
a theoretical standpoint because it will allow us to create
yet another process, which will still upper-bound Wi,j but
which behaves like Zi for all j, not just as j →∞.
{Zi,j , k = 1, 2, . . .} is a Markov process because its

future evolution depends on its history only through its
present state. Zi,j depends only on Zi,j−1, and Xi,j ,
which is independent of everything else. Therefore, Zi,j
does not depend on Zi,j−2, Zi,j−3, etc.

Let πi,j(x) be the probability density function of Zi,j .
The kernel ofZi,k [9, p. 59] is a probability transition func-
tion K(·) that satisfies

πi,j(x) =

∫
Ki(x, y)πi,j−1(y)dy. (6)

As k increases, Zi,k approaches its limit Zi. Zi has proba-
bility density function πi(x), which does not depend on j.
Therefore, πi(x) satisfies

πi(x) =

∫
Ki(x, y)πi(y)dy. (7)

This leads us to the formulation of a process {Z̃i,j , j =
1, 2, . . .}, which has distribution πi(x) for all j:

Z̃i,0 is distributed according to the pdf πi(x) (8)

Z̃i,j = max{0, Z̃i,j−1 +Xi,j − bi}, for j = 1, 2,
(9)

Lemma 7. Zi,k ≤ Z̃i,k, for all i, k.

Proof. First, observe that Zi,0 = 0, while Z̃i,0 is
drawn from the non-negative probability distribution πi(·).
Therefore, Zi,0 ≤ Z̃i,0, so the lemma holds for k = 0.

Now, suppose that the lemma holds for some arbitrary
k− 1, i.e., Zi,k−1 ≤ Z̃i,j−1. We will show that the lemma
holds for j.

Z̃i,j = max{0, Z̃i,j−1 +Xi,j − bi}
≥ max{0, Zi,j−1 + Vi,j − bi}
= Zi,j .

The result follows by induction.

Lemma 8. E
(
Z̃i,j

)
= E (Zi) for all j.

Proof. We show that Z̃i,j has distribution πi(·) for all j.
The result immediately follows, because Zi has the same
distribution.

First observe that Z̃i,0 is drawn from the distribution
πi(·), by definition, so the claim holds for j = 0. Now,
suppose that Z̃i,j−1 has distribution πi(·) for some arbi-
trary k − 1. Then the same holds for j:

πi,j(x) =

∫
Ki(x, y)πi,j−1(y)dy

=

∫
Ki(x, y)πi(y)dy

= πi(x).

Here, the first equality is simply a restatement of (6), the
second equality is a result of the inductive hypothesis, and
the third equality follows from (7). The result follows by
induction.

By combining Lemmas 3, 6, 7, and 8, we have the fol-
lowing result, which is the main result of this section.

Theorem 1. If E (Xi,j) < bi, then

E (Wi,j) ≤
σ2
i

2(bi − ēi)
.

The result of Theorem 1 makes intuitive sense: as the
variance in execution time demand increases, on average
there will be more work that “spills over” into the next in-
stance of Ti; moreover, as the budget bi gets larger relative
to ēi, there would be more “room for error” to accommo-
date jobs of τi that run longer than average.

6

4 Tardiness Bounds for Multiprocessor
Scheduling

A number of global scheduling algorithms, such as GEDF,
can schedule the system of servers T on a multiprocessor
with bounded tardiness, under the mild conditions that

bi ≤ pi ∀i, and
n∑
i=1

bi/pi ≤ m,

where m is the number of processors. In particular,
any global scheduling algorithm with window-constrained
priorities has bounded tardiness under these two condi-
tions [6]. Let A be such a global scheduling algorithm.
Then the task system T can be scheduled using A on a
multiprocessor with bounded tardiness, i.e.,

∃B(T,A) = {B1(T,A), B2(T,A), . . . , Bn(T,A)}

such that the tardiness of an arbitrary instance Ti,j is at
most Bi(T,A). For example, when m ≥ 2,

Bi(T,GEDF) =

∑
Tk∈Emax

ek − emin

m−
∑

Tk∈Umax

ek
pk

+ ei,

where Emax is the set of m − 1 servers with largest ex-
ecution budgets, Umax is the set of m − 1 servers with
largest utilization (ei/pi), and emin is the smallest bud-
get of any server (note that somewhat tighter bounds for
GEDF have been proved [3, 4]). In the special case
where m = 1, earliest-deadline-first (EDF) is optimal, and
Bi(T,EDF) = 0. Note that we do not claim that GEDF
is the best way to schedule the server instances in every
case; it is simply an example of a scheduling algorithm
that could be used.

Lemma 9. When T is scheduled on a multiprocessor using
algorithm A, the completion time of Ti,d(j)+1+Wi,j/bie is
no later than Di,(j)+1 + dWi,j/biepi +Bi(T,A).

Proof. In the case where Wi,j = 0, the lemma simply
states that Ti,(j)+1 completes by timeDi,(j)+1+Bi(T,A),
which is true by definition.

In the case where Wi,j > 0, we have Ri,(j)+2 =
pi +Ri,(j)+1 (because Ti is eligible and backlogged), and
successive instances of Ti are released pi time units apart
until all the remaining work of τi, including the work in
Wi,j , is completed. Therefore, Ti,d(j)+1+Wi,j/bie is re-
leased dWi,j/bi + 1epi time units after Ti,(j)+1 is, i.e., at
time Ri,(j)+1 + (dWi,j/bie) pi.

Because T is scheduled using an algorithm with
bounded tardiness, Ti,d(j)+1+Wi,j/bie completes no later
than its deadline plus Bi(T,A). Since its deadline is pi
time units later than its release time, the instance completes
no later than timeDi,(j)+1 +dWi,j/biepi+Bi(T,A).

Lemma 10. When Wi,j > 0, Di,(j)+1 < ti,j + 2pi.

Proof. Wi,j > 0 means that some work of τi with deadline
at most ti,j remains when Ti,(j) completes. Hence, by the
replenishment rule, Ti,(j)+1 is replenished at time Ri,(j) +
pi (as soon as it is eligible). Then, because server deadlines
are implicit, Di,(j)+1 = Ri,(j)+1 + pi = Ri,(j) + 2pi. By
the definition of (j), Ri,(j) < ti,j , so the result follows.

Lemmas 9 and 10 lead to the three main results of this
section. Theorem 2 gives an upper bound on the actual re-
sponse time of a job given all the execution demands are
known; Theorem 3 gives an upper bound on the actual re-
sponse time of a job under Assumption D; Theorem 4 (the
major result of this paper) gives an upper bound on the
expected response time of a job under Assumption S.

The first result is a response time bound, expressed in
terms of the remaining work; that is, if we calculate the
values of {Wi,j , j = 1, 2, . . .}, which requires knowing
the values of {Xi,j , j = 1, 2, . . .}, we can calculate an
upper bound on the response time of any job of τi.

Theorem 2. If τi runs on the server task Ti and T is sched-
uled on a multiprocessor using algorithm A, which has
bounded tardiness, then the response time of any job re-
leased in [si,j , ti,j) is less than(⌈

Wi,j

bi

⌉
+ 3

)
pi +Bi(T,A).

Proof. From Lemma 1, we know that any job of τi with
deadline no later than ti,j completes no later than the ac-
tual time at which the server instance Ti,(j)+1+dWi,j/bie
completes. Lemma 9 tells us that Ti,(j)+1+dWi,j/bie fin-
ishes no later than time Di,(j)+1 + dWi,j/biepi, which by
Lemma 10 is less than ti,j + 2pi + dWi,j/biepi. Because
any job released in [si,j , ti,j) was released no earlier than
si,j , and because ti,j − si,j ≤ pi, the result follows.

The result of Theorem 2 is not particularly useful in a
practical sense unless all execution times are known. How-
ever, we can use Assumption D, Assumption S, and the
result of Theorem 1 to obtain two useful response time
bounds.

Theorem 3. Suppose τ satisfies Assumption D. If there
exists a set of budgets {b1, b2, . . . , bn} such that ei ≤ bi for
all τi ∈ τ , and such that T is multiprocessor schedulable
using some algorithm A that ensures bounded tardiness,
and if τi runs on the server task Ti, then the response time
of any job of τi released during [si,j , ti,j) is less than

3pi +Bi(T,A).

7

Proof. This theorem follows immediately from Theorem 2
and the observation that in (2), if Assumption D holds, then
Xi,j ≤ ei and Wi,j = 0 for all j.

Theorem 4. Suppose τ satisfies Assumption S. If there ex-
ists a set of budgets {b1, b2, . . . , bn} such that ēi < bi for
all τi ∈ τ , and such that T is multiprocessor schedulable
using some algorithm A that ensures bounded tardiness,
and if τi runs on the server task Ti, then the response time
of any job of τi released during [si,j , ti,j) is less than(

σ2
i

2bi(bi − ēi)
+ 4

)
pi +Bi(T,A).

Moreover, the q-quantile of the response time distribution
is less than

1

1− q

(
σ2
i

2bi(bi − ēi)
+ 4

)
pi +Bi(T,A).

Proof. We simply take the expected value of the response
time bound given in Theorem 2, using the result of The-
orem 1. Hence, the expected response time of τi,j is less
than

E

((⌈
Wi,j

bi

⌉
+ 3

)
pi +Bi(T,A)

)
≤E

((
Wi,j

bi
+ 4

)
pi

)
+Bi(T,A)

=

(
E (Wi,j)

bi
+ 4

)
pi +Bi(T,A)

=

(
σ2
i

2bi(bi − ēi)
+ 4

)
pi +Bi(T,A).

Note that while we can remove Bi(T,A) from the ex-
pected value because it is deterministic, we cannot bring
the expected value inside the ceiling operator because the
ceiling operator is non-linear, so we must upper bound it
by adding one.

The quantile result follows from the fact that re-
sponse times are non-negative; it is a direct application of
Markov’s inequality [11, p. 400].

In the expected response time bound of Theorem 4, the
termBi(T,A) will not include worst-case execution times,
because T consists of servers with defined execution bud-
gets {bi, i = 1, 2, . . . , n} that depend on ēi. In fact, worst-
case execution costs never enter into our analysis in The-
orem 4. This is a huge practical advantage: even if worst-
case execution costs exist (which is not required), we do
not have to know them in order to compute the bound. The
bound depends on the distribution of execution times only
through mean and variance.

Corollary 1. Suppose τ is a sporadic stochastic task sys-
tem with implicit deadlines (that is, pi is also the relative
deadline of all jobs of τi). Then the expected tardiness of
any job of τi is less than(

σ2
i

2bi(bi − ēi)
+ 3

)
pi +Bi(T,A).

Corollary 1 follows immediately from Theorem 4 by
subtracting the relative deadline from the response time
bound.

Remark. In the special case where τ is a system where all
the demand from jobs of τi in the interval [si,j , ti,j) occurs
exactly at si,j , for all j, the analysis can be improved by
pi; that is, the bound given by Theorem 2 is becomes(⌈

Wi,j

bi

⌉
+ 2

)
pi +Bi(T,A).

Hence, the corresponding response time bounds given by
Theorems 4 and Theorem 3, and the tardiness bound given
by Corollary 1 are also decreased by pi. This special case
encompasses, for example, the sporadic task model and the
sporadic stochastic task model used as examples in Sec. 2.
We omit the proof of this result due to space considera-
tions; however, it follows the same analysis, with Ti,(j)
replacing Ti,(j)+1 throughout.

5 Allocation of Server Budgets
In this section, we address the selection of server budgets
{bi, i = 1, 2, . . . , n}. Due to space constraints, we con-
sider only sporadic stochastic task systems. In the analysis,
we assumed that there exist budgets {bi, i = 1, 2, . . . , n}
such that ēi < bi for all i; however, there is certainly not a
unique choice of such values. The tardiness bounds given
in Theorems 2 and 4 both depend on the values of {bi, i =
1, 2, . . . , n} in a nonlinear way. Moreover, if A is an al-
gorithm with window-constrained priorities, as defined in
[6], then Bi(T,A) depends on {bi, i = 1, 2, . . . , n} in a
way that is nonlinear, because Bi(T,A) depends on the
m− 1 or m− 2 largest values in {bi, i = 1, 2, . . . , n}. For
these algorithms there is little hope for finding an optimal
choice of {bi, i = 1, 2, . . . , n} to minimize the tardiness
bound. Hence, we will instead present two heuristic meth-
ods to determine values of {bi, i = 1, 2, . . . , n} that will
give good tardiness bounds.

Proportional Execution Heuristic. A simple heuristic
for assigning server task execution times uses the proposi-
tion that a server’s execution budget should be proportional
to its assigned sporadic stochastic task’s average execution
time. To determine the server execution budgets, we sim-
ply let bi = min{pi, αēi} for some

1 < α ≤ m

ūsum

.

8

The first inequality is necessary because we must have
bi > ēi for all i for expected tardiness to be finite, and the
second inequality is sufficient to guarantee

∑
i bi/pi ≤ m,

which is needed for T to be schedulable.
The proportional execution heuristic is simple but it

does not account for why we even need to have bi > ēi
in the first place—variance in execution times. If a certain
sporadic stochastic task has little variation in its execution
time from one job to the next, its corresponding server task
may need to have an execution time that is only slightly
larger than what the sporadic stochastic task requires on
average; on the other hand, another sporadic stochastic
task whose execution times vary wildly from job to job
will require a server task with longer execution times in
order to have a low tardiness bound. This intuition leads
us to the variance-based heuristic.

Variance Based Heuristic. To determine server execu-
tion budgets, set bi = min{pi, ēi + βσi}, with

0 < β ≤ m− ūsum∑
i
σi

pi

.

Here, the first inequality is necessary because we must
have bi > ēi for all i for the expected tardiness to be fi-
nite, and the second inequality is sufficient to guarantee∑
i bi/pi ≤ m, which is needed for T to be schedulable.
To see why the two different heuristics might be useful

for different types of task systems, we examine the im-
pact of the variability of execution times on the expected
tardiness bounds for the uniprocessor case. Specifically,
we look at the relationship between the mean and variance
of execution times, treating other parameters as if they
are constant. If we examine the expected tardiness bound
given in Theorem 4, we notice that with the variance-based
heuristic, assuming ēi + βσi ≤ pi, the expected tardiness
bound given in Theorem 4 is(

σ2
i

2(ēi + βσi)(ēi + βσi − ēi)
+ 2

)
pi,

which reduces to(
1

2β(ēiσi
+ β)

+ 2

)
pi.

Therefore, if we treat pi as a constant, the size of this
bound will be on the order of σi

ēi
. This ratio is known as

the coefficient of variation of the execution times.
On the other hand, with the proportional execution

heuristic, assuming αēi ≤ pi, we have(
σ2
i

2αēi(αēi − ēi)
+ 2

)
pi,

which reduces to(
σ2
i

2αē2
i (α− 1)

+ 2

)
pi.

Table 2: Example Sporadic Stochastic Task System τ .
Task pi ēi WCET σ2

i ūi

τ1 4 3 25 1 0.75
τ2 4 3 20 1 0.75
τ3 5 3 30 4 0.60
τ4 5 3 20 1 0.60
τ5 8 2 15 1 0.25
τ6 20 3 35 2 0.15
τ7 20 2 25 1 0.10

If we treat pi as a constant, the size of this bound will be on
the order of σ

2
i

ē2i
, or the square of the coefficient of variation.

This analysis suggests that when the coefficient of vari-
ation is less than one (indicating low variability in execu-
tion times), the proportional execution heuristic is likely
to perform better; on the other hand, when the coefficient
of variation is more than one (indicating high variability
in execution times), the variance-based heuristic is likely
to perform better. For comparison, an exponential distri-
bution has a coefficient of variation of one. These conclu-
sions fit with our intuition that as variance gets larger, it
would be more important to include information about the
variance in determining server budgets.

In the multiprocessor case, these results are less clear:
Bi(T,A) will often depend on {bi, i = 1, 2, . . . , n} in
ways that are hard to analyze. Nonetheless, intuition leads
us to believe that it may still be useful to have more than
one heuristic for determining {bi, i = 1, 2, . . . , n}.

6 Example
Consider the sporadic stochastic task system in Table 2 on
a four-core platform. This same example was used to illus-
trate the results in [10]. Each task has a worst-case execu-
tion time greater than its period, so it would be considered
unschedulable by [3, 6]. However, since the total expected
utilization is 3.2, which is less than 4.0, and each task’s
expected utilization is less than one, τ is schedulable as a
sporadic stochastic task system.2

The results of applying Theorem 4 are shown in Tables
3 and 4 for {bi} values determined with the proportional
execution heuristic and the variance-based heuristic, re-
spectively, with GEDF as the scheduling algorithm for T .
These tardiness bounds are clearly superior to those given
in [10], which are also shown in Tables 3 and 4. Under ex-
ecution budgets assigned by the variance-based heuristic,
the task with the largest expected tardiness, τ6, is guaran-
teed not to miss its deadline by more than 56.67 time units
on average; in [10], no task in τ could be proved to have
an expected tardiness bound of less than 68.88 time units,
plus its worst case execution time. This contrast empha-

2Note that, in this example, worst-case execution times are roughly
an order of magnitude greater than average-case times. In reality, such
differences could be much more extreme.

9

Table 3: Expected tardiness bounds from this paper and
[10] for tasks from Table 2. Server budgets based on pro-
portional execution heuristic with α = 1.25 (the largest
value possible for T to be schedulable).

Bi(T, Expected Expected
Task bi GEDF) Tardiness Tardiness [10]
τ1 3.75 10.11 18.82 93.88
τ2 3.75 10.11 18.82 88.88
τ3 3.75 10.11 23.67 98.88
τ4 3.75 10.11 21.00 88.88
τ5 2.50 8.86 28.06 83.88
τ6 3.75 10.11 57.22 103.88
τ7 2.50 8.86 56.86 93.88

Table 4: Expected tardiness bounds from this paper and
[10] for tasks from Table 2. Server budgets based on
variance-based heuristic with β = 0.59 (the largest value
possible for T to be schedulable.)

Bi(T, Expected Expected
Task bi GEDF) Tardiness Tardiness [10]
τ1 3.21 10.17 19.12 93.88
τ2 3.21 10.17 19.12 88.88
τ3 6.21 10.76 22.79 98.88
τ4 3.21 10.17 21.35 88.88
τ5 2.48 9.17 27.79 83.88
τ6 4.21 10.42 56.67 103.88
τ7 2.48 9.17 55.72 93.88

sizes the point that the expected tardiness bounds in [10]
are on the order of worst-case execution times, while the
expected tardiness bounds given by Theorem 4 are on the
order of average execution times.

7 Conclusion
We considered a scheduling policy where soft real-time
tasks are scheduled on simple sporadic servers, with pre-
determined execution budgets. The types of task systems
that can be scheduled generalize the sporadic task model,
the multiframe task model, and the task model used in [10]
by allowing for dependence within intervals of bounded
length. We derived expected tardiness bounds on a mul-
tiprocessor assuming that servers are scheduled using a
global algorithm with bounded tardiness. The expected
tardiness bounds in this paper improve on those given in
[10] for the special case where each job’s execution time
is independent of every other job’s execution time, because
the bounds presented here do not depend on worst-case
execution costs; indeed, such worst-case execution costs
need not even exist.

The major analytical contribution of this paper was to
separate the deterministic scheduling analysis, which is
done with the server budgets, from the stochastic analy-
sis. In other words, the terms Bi(T,A) do not depend on
the stochastic analysis but on existing deterministic analy-

sis. Because of this separation, if better deterministic tar-
diness analysis becomes available in the future, then it can
be used immediately with the results of this paper to yield
better expected tardiness bounds.

Our analysis also handles some types of dependence.
Although we assumed independence in the stochastic ex-
ecution time demands between intervals, the size of the
interval during which dependence is allowed can be spec-
ified. The analytical tradeoff allows dependence in longer
intervals with increased tardiness bounds.

A major practical implication of this paper for schedul-
ing soft real-time systems is that the parameters needed to
schedule the task system and determine a tardiness bound
(mean and variance of execution times) can be easily esti-
mated from observational data in an unbiased way. This re-
duces the need to perform timing analysis for tasks where
bounded tardiness is acceptable (e.g., multimedia decod-
ing). Such tasks can effectively be executed on simple
sporadic servers in a predictable way.

References
[1] L. Abeni and G. Buttazzo. Qos guarantee using probabilis-

tic deadlines. In Proceedings of the IEEE Euromicro Con-
ference on Real-Time Systems, June 1999.

[2] J. Calandrino, J. H. Anderson, and D. Baumberger. A hy-
brid real-time scheduling approach for large-scale multi-
core platforms. In Proceedings of the 19th Euromicro Con-
ference on Real-Time Systems, July 2007.

[3] U. C. Devi and J. H. Anderson. Tardiness bounds under
global EDF scheduling on a multiprocessor. In Proceedings
of the 26th IEEE Real-Time Systems Symposium, 2005.

[4] J. Erickson, S. Baruah, and U. C. Devi. Improved tardiness
bounds for global EDF. In Proceedings of the EuroMicro
Conference on Real-Time Systems (ECRTS), 2010.

[5] D. P. Heyman and M. J. Sobel. Stochastic Models in Oper-
ations Research, volume 1. McGraw-Hill, 1982.

[6] H. Leontyev and J. H. Anderson. Generalized tardiness
bounds for global multiprocessor scheduling. In Proceed-
ings of the 28th IEEE Real-Time Systems Symposium, 2007.

[7] D. V. Lindley. The theory of queues with a single server.
Mathematical Proceedings of the Cambridge Philosophical
Society, 48(2), 1952.

[8] C. Liu and J. Anderson. Task scheduling with self-
suspensions in soft real-time multiprocessor systems. In
Proceedings of the 30th IEEE Real-Time Systems Sympo-
sium, December 2009.

[9] S. Meyn and R. L. Tweedie. Markov Chains and Stochastic
Stability. Cambridge University Press, 2009.

[10] A. F. Mills and J. H. Anderson. A stochastic framework for
multiprocessor soft real time scheduling. In Proceedings
of the 16th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2010.

[11] S. Ross. A first course in probability. Prentice Hall, 6 edi-
tion, 2002.

10

	Introduction
	System Model
	Independence
	Simple Sporadic Servers
	Scheduling Example
	Remaining Work Process

	Analysis of the Remaining Work Process
	Tardiness Bounds for Multiprocessor Scheduling
	Allocation of Server Budgets
	Example
	Conclusion

