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Abstract

Existing research in soft real-time scheduling has fo-
cused on determining tardiness bounds given a scheduling
algorithm. In this paper, we study lateness bounds, which
are related to tardiness bounds, and propose a scheduling
algorithm to minimize lateness bounds, namely the global
fair lateness (G-FL) algorithm. G-FL is a G-EDF-like
scheduler, but has lower maximum lateness bounds than G-
EDF. Due to its G-EDF-like nature, it can be used within
existing systems that implement arbitrary-deadline G-EDF,
and with existing synchronization protocols. Therefore, we
argue that G-FL should replace G-EDF for SRT applica-
tions.

1 Introduction

Analysis-based soft real-time (SRT) schedulers have
been demonstrated to be useful on multiprocessor systems
when bounded deadline tardiness is acceptable [1]. Previ-
ous work on bounded tardiness, such as [2, 3], has provided
tardiness bounds for specific schedulers. For many appli-
cations, such as the video processing described in [1], the
output of SRT tasks can be stored in a buffer, and the buffer
read at the desired rate to simulate HRT completion. The
buffer size is determined from tardiness bounds.

If tardiness bounds can be reduced, smaller buffer sizes
will be adequate to provide equivalent performance. These
smaller buffer sizes can reduce the cost of the system,
and may enable more applications to run on resource-
constrained devices such as smartphones and tablets.

Past Work. In [4], Leontyev and Anderson provide gen-
eral analysis for SRT scheduling. They observed that
scheduling priorities for most algorithms can be modeled by

giving each job a priority point (PP) in time, with the sched-
uler always picking the job with the earliest PP (with appro-
priate tie-breaking). For example, fixed-priority scheduling
can be modeled by assigning all jobs of each task a single
PP near the beginning of the schedule. Global earliest dead-
line first (G-EDF) can be modeled by defining the absolute
deadline of a job as its PP. The authors defined a class of
window-constrained algorithms that provide bounded tardi-
ness with no utilization loss. In [5], response times are ana-
lyzed for many schedulers, including a class of G-EDF-like
(GEL) schedulers, in which the PP of each job is defined
as some per-task constant after the job’s release. Although
these papers provide analysis for a large class of scheduling
algorithms, they do not provide a method to choose the best
scheduling algorithm to meet particular requirements.

One choice of algorithm that has been studied is G-EDF
itself. Although G-EDF is known to be suboptimal on mul-
tiprocessors, it is attractive for several reasons. Optimal al-
gorithms, such as those described in [6, 7, 8], either cause
tasks to experience frequent preemptions and migrations,
resulting in prohibitive overheads, or are difficult to im-
plement in practice. In contrast, experimental research has
demonstrated that the overheads caused by G-EDF are rea-
sonable when it is used on a moderate number of processors
[9]. Furthermore, unlike optimal algorithms, G-EDF has the
desirable property that it is job-level static-priority (JLSP).
The JLSP property is required for most known work on real-
time synchronization algorithms (see [10]). Several promis-
ing non-optimal schedulers such as the earliest-deadline-
until-zero-laxity (EDZL) algorithm [11, 12], as well as all
optimal schedulers, are not JLSP and thus cannot be used
with these synchronization algorithms.

In this work, we modify G-EDF to improve its tardi-
ness bounds. In order to do so, we use the technique of
compliant-vector analysis (CVA), first proposed in [13]. A
summary of past work on CVA is provided in Sec. 3.1. Be-



cause some of that past work is applied to arbitrary-deadline
sporadic task systems, it can be used to derive response time
bounds for arbitrary GEL schedulers. Therefore, for easier
reference, in Sec. 3.1 we present the existing analysis as
it applies to arbitrary GEL schedulers. Although the same
systems can be analyzed using the method described in [5],
CVA can provide tighter bounds.

Our Contribution. In this paper, we demonstrate that
CVA is useful for determining an appropriate choice of
scheduler within the class of GEL schedulers. Any GEL
scheduler is JLSP and has the same overheads as G-EDF
with arbitrary deadlines. With the CVA method presented
here, it is possible that jobs of some tasks can be guaranteed
to complete by points before their deadlines. Therefore, in-
stead of evaluating tardiness (which would be defined to be
zero for such tasks), we evaluate lateness instead, defined
as the difference between deadline and completion time.

We propose the global fair lateness (G-FL) scheduler, a
GEL scheduler that provides the same lateness bound (un-
der CVA) for all tasks. For each job, G-FL uses a PP that
precedes its deadline. We demonstrate that under CVA, G-
FL minimizes the maximum lateness bound over all tasks.
Therefore, G-FL has several useful properties. If a task sys-
tem can be proven HRT schedulable by any GEL algorithm
under CVA, then it can be proven schedulable with G-FL.
If the task system cannot be proven HRT schedulable, then
G-FL will still provide a fair allocation of lateness bounds
to all tasks. However, our work does not demonstrate that
a better GEL scheduler cannot exist given better analysis,
and does not imply that no individual task will have a lower
CVA bound with a technique other than G-FL. Still, we be-
lieve that G-FL should be used as a replacement for G-EDF
in SRT systems.

Related Work. Because our work involves shortening the
deadline used by the scheduler, it superficially resembles
the work of Lee et al. [14], in which the deadlines of some
tasks are shortened at design time to create “contention-free
slots” that allow the priorities of some jobs to be lowered
during runtime, increasing system schedulability. How-
ever, in their work, the actual deadlines by which jobs must
complete are altered, which is not true of our work. Fur-
thermore, their work requires modifying G-EDF in a man-
ner that adds additional runtime overhead and removes the
JLSP property, while our work does not.

Organization. In Sec. 2, we describe the task model un-
der consideration and define basic terms. In Sec. 3, we
review the CVA provided in [3] and demonstrate for eas-
ier reference its applicability to arbitrary GEL schedulers.
We also provide several observations about CVA that en-
able us to prove the desired results about G-FL. In Sec. 4,

we present G-FL and prove that it has the desired proper-
ties. In Sec. 5, we present experiments comparing tardiness
bounds and tardiness in computed schedules for G-FL com-
pared to G-EDF. These experiments show that G-FL can
provide significantly lower tardiness bounds and observed
tardiness than G-EDF.

2 Task Model

We consider a system τ of n arbitrary-deadline sporadic
tasks τi = (Ti,Ci,Di) running on m ≥ 2 processors, where
Ti is the minimum separation time between subsequent re-
leases of jobs of τi, Ci ≤ Ti is the worst-case execution time
of any job of τi, and Di ≥ 0 is the relative deadline of each
job of τi. We use Ui = Ci/Ti to denote the utilization of τi.
All quantities are real-valued. We assume that

∑
τi∈τ

Ui ≤ m, (1)

which was demonstrated in [4] to be a necessary condition
for SRT schedulability. We assume that n > m. If this is not
the case, then each task can be assigned its own processor,
and no job of each τi will have response time exceeding Ci.

If a job has absolute deadline d and completes execu-
tion at time t, then its lateness is t− d, and its tardiness is
max{0, t − d}. If such a job was released at time r, then
its response time is t − r. We bound these quantities on a
per-task basis, i.e., for each τi, we consider upper bounds on
these quantities that apply to all jobs of τi. The max-lateness
bound for τ is the largest lateness bound for any τi ∈ τ . Sim-
ilarly, the max-tardiness bound for τ is the largest tardiness
bound for any τi ∈ τ .

We use for each τi the notation Yi to refer to its relative
PP, Ri to refer to its response time bound, and Li to refer to
its lateness bound.

For all variables subscripted with an i, we also use vector
notation to refer to the set of all values for the task system.
For example, ~T = 〈T1,T2, . . .Tn〉.

3 Compliant-Vector Analysis

In Sec. 3.1, we present results from prior work on CVA.
In Sec. 3.2, we present new observations about CVA that
we use in the proofs in Sec. 4. Our broad goal is to provide
the necessary transformations to convert an arbitrary system
into a G-FL system with a max-tardiness bound that is no
larger.

3.1 Prior Work on CVA

In [3], CVA is presented for G-EDF with arbitrary dead-
lines. By using ~Y , the set of relative PPs, in place of ~D,
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Figure 1: Example of exact analysis and linear upper bound
for task maximum demand within an interval.

the relative deadlines, we can use the same existing analy-
sis to analyze arbitrary GEL schedulers. In this subsection,
we will make that small change, but otherwise we will sim-
ply review the existing work presented in [3]. That paper
describes the computation of ~x = 〈x1,x2, . . . ,xn〉 such that
the tardiness of task τi is at most xi +Ci. Therefore, the re-
sponse time bound Ri under G-EDF for any job of task τi
is Di + xi +Ci. Substituting Yi for Di, we see that under an
arbitrary GEL scheduler, each task τi has a response time
bound

Ri = Yi + xi +Ci, (2)

and a lateness bound

Li = Yi + xi +Ci−Di. (3)

Because Di ≥ 0 was a necessary condition in [3], Yi ≥ 0
is a necessary condition when we apply our analysis. (If
this condition is violated, we can increase each Yi by some
constant such that the condition is met, without changing
any scheduling decisions.)

We will now briefly review the computation of~x as pro-
vided in [3]. In that analysis, the tardiness of a particular
job J of task τ j is considered, with the inductive assump-
tion that the response time bound in (2) holds for all jobs
with higher priority than J. Only jobs with earlier PPs than
J need to be considered. At several points in the proof, the
amount of work that each task τi can demand over an inter-
val of length t (having both release times and PPs within the
interval) is upper-bounded by a linear function, as depicted
in Fig. 1. We denote the y-intercept of this linear function
(for a given Yi)1 with

Si(Yi) =Ci ·max
{

0,1− Yi

Ti

}
. (4)

Si(Yi) upper bounds the extra work demanded by τi beyond
what would be expected from utilization alone. For the en-

1In [3], Yi was fixed at Di, so this value was a constant. We have rede-
fined it as a function to facilitate the choice of a GEL scheduling algorithm.

Figure 2: Task running through last idle interval.

tire system, we define

S(~Y ) = ∑
τi∈τ

Si(Yi). (5)

As discussed in [3], we consider the work remaining at
the PP of J. This work can occur not only due to tasks τi for
which Yi < Ti (as accounted for using S(~Y )), but also due to
each task τi that is executing throughout the last idle inter-
val before J’s PP, as depicted in Fig. 2. We denote the job
of each τi running at the beginning of that idle interval as
Ji. Intuitively, Ji itself can have at most Ci units of backed-
up work, and there can be an additional xiUi− Si(Yi) units
of backed-up work released by τi between Ji’s release and
completion. (This follows because (2) is assumed to induc-
tively hold for higher-priority jobs. A more precise expla-
nation is presented in [3].) Therefore, each such task con-
tributes at most xiUi +Ci−Si(Yi) units, so an upper bound,
denoted as G(~x,~Y ), on the total remaining work from all
such tasks is given by

G(~x,~Y ) = ∑
(m−1) largest

(xiUi +Ci−Si(Yi)). (6)

As demonstrated in [3], the work remaining at J’s priority
point from all jobs is at most G(~x,~Y )+S(~Y ), and the work
from J itself is at most C j. We pessimistically assume that J
does not run at all before its PP. Because J will be allowed
to execute at any moment after its PP when fewer than m
processors are in use by competing work, the response time
for J is at most

G(~x,~Y )+S(~Y )−C j

m
+C j +Yj. (7)

(In this expression, the first term is due to the competing
work after the PP of J, the C j term indicates the maximum
execution required by J, and the Yj term appears because
we assume that execution begins no earlier than the PP.)
Therefore, in light of (2), to find the response time bounds,
we compute~x such that

∀i,xi =
G(~x,~Y )+S(~Y )−Ci

m
. (8)



The vector satisfying (8) is called the minimum compliant
vector. In [3], (8) is justified by the following theorem. We
will not replicate the proof here.

Theorem 1. There exists a unique minimum compliant vec-
tor~x such that (8) holds and response time bounds are as in
(2) iff

∀i,Yi ≥ 0. (9)

Furthermore, no smaller response time bound is achievable
using CVA for any task.

As [3] shows, the minimum compliant vector can be
computed in polynomial time. The method to do so is based
on several general principles that are also directly relevant
to the present work, so we will call them “laws.” The first
follows immediately from (8).

Shape Law. ~x is the minimum compliant vector iff there
exists s such that

∀i,xi =
s−Ci

m
(10)

and
s = G(~x,~Y )+S(~Y ). (11)

Observe that s is independent of the task index i.

In [3],~Y is fixed, and by (2),~x must be computed in order
to compute ~R. In light of the Shape Law, we simply need
to compute the necessary s. Towards this end, the next law
is simply the Shape Law restated with additional notation.
We use ~v(s) in place of ~x. (We include “First” in the name
of this law because a similar law will appear in the next
subsection.)

First Restated Shape Law. Suppose~Y is fixed. Let~v(s) be
defined as

∀i,vi(s) =
s−Ci

m
. (12)

Let
MY (~Y ,s) = G(~v(s),~Y )+S(~Y )− s. (13)

Then,~v(s) is the minimum compliant vector iff

MY (~Y ,s) = 0. (14)

Observe that, when using the notation of the First Re-
stated Shape Law, (2) becomes

Ri = Yi + vi(s)+Ci. (15)

Finally, because zeros of piecewise linear functions can
be computed in polynomial time, our next law will allow
the zero of MY (~Y ,s) to be computed in polynomial time.

MY Piecewise Linear Law. MY (~Y ,s) is piecewise linear
with respect to s.

Proof.

MY (~Y ,s) = {By (13)}
G(~v(s),~Y )+S(~Y )− s

= {By (5)–(6) and (12)}

∑
m−1 largest

(
Ui ·

s−Ci

m
+Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)− s

These laws are sufficient to understand the computation
of~x, the minimum compliant vector.

3.2 New CVA Laws

In this subsection, we prove some new laws that will
enable us to reason about the behavior of CVA when cer-
tain parameters are modified. At several points, our basic
methodology will be similar to that in prior work. We first
create a function f (s) such that f (s) = 0 iff ~v(s) satisfies
(10)–(11) with appropriate substitutions. We then use the
Intermediate Value Theorem to show that such a zero ex-
ists. The Intermediate Value Theorem requires that we have
points a and b such that f (a) ≥ 0 and f (b) ≤ 0 (or vice
versa). The following lemma will allow us to show that
f (0) > 0 for each function we will use. For example, ob-
serve that Lem. 1 implies MY (~Y ,0) > 0, where MY (~Y ,s) is
defined as in the First Restated Shape Law. Our result was
proven for that case in [3], but here we have generalized it.

Lemma 1. For arbitrary~Y ,

G(~v(0),~Y )+S(~Y )> 0. (16)

Proof.

G(~v(0),~Y )+S(~Y )

= {By (5)–(6) and (12)}

∑
m−1 largest

(
−UiCi

m
+Ci−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

= {Rearranging}

∑
m−1 largest

(
Ci(m−Ui)

m
−Si(Yi)

)
+ ∑

τi∈τ

Si(Yi)

≥ {Because each Si(Yi)≥ 0 by (4); observe that
each Si(Yi) in the first summation also appears
in the second}



∑
m−1 largest

Ci(m−Ui)

m

> {Because Ui ≤ 1 < m}
0

For our next three laws, we will assume that ~R and~Y have
already been given, and that they comply with Thm. 1. That
is, they are related as in (2) with minimum compliant vector
~x. We will then show that when some component of ~R is
increased, the values of ~Y and ~x can be modified to yield
precisely the new bounds, while ~x remains the minimum
compliant vector.

The next law is analogous to the First Restated Shape
Law, and also follows directly from the Shape Law by defi-
nition. We again use~v(s) in place of~x, and we now use~I(s)
in place of~Y , because we must determine~Y .

Second Restated Shape Law. Denote ~v(s) as in (12). By
(15), denote~I(s) with

∀i, Ii(s) = Ri− vi(s)−Ci. (17)

Also denote

MR(s) = G(~v(s),~I(s))+S(~I(s))− s (18)

Then,~v(s) is the minimum compliant vector iff

MR(s) = 0. (19)

The next law is required to use the Intermediate Value
Theorem. To make the proof less tedious, we make use of
the fact that the set of continuous functions is closed under
addition and composition.

MR Continuity Law. MR(s) is continuous with respect to
s.

Proof. Observe from (12) that each vi(s) is continuous with
respect to s. By (17), each Ii(s) is therefore also contin-
uous with respect to s. Therefore, by (4), Si(Ii(s)) is also
continuous with respect to s. By (5) and (6), we know
that G(~v(s),~I(s)) and S(~I(s)) are continuous with respect
to s. Therefore, by (18), MR(s) is continuous with respect
to s.

We now prove the desired modification property.

R j Increase Law. Suppose~Y yields precisely response time
bounds ~R using Thm. 1. Then, if a single component R j is
increased, there exists a new value of ~Y such that Thm. 1
yields precisely the new response time bounds ~R.

Proof. Assume that ~Y yields precisely response time
bounds ~R using Thm. 1, where ~x is the unique minimum
compliant vector mentioned in that theorem. By the Second

Restated Shape Law, there exists an s0 such that MR(s0) =
0, where by (10) and (12), ~v(s0) =~x, and by (15) and (17),
~I(s0) = ~Y . By (17), when R j is increased, I j(s0) will also
increase. By (4), S j(I j(s0)) will not increase. Because R j
is the only value modified, no other vi(s0) or Si(Ii(s0)) will
change. If S j(I j(s0)) decreases, then S(~I(s0)) (see (5)) will
decrease, and G(~v(s0),~I(s0)) (see (6)) will increase by no
more than the decrease in S(~I(s0)).

Therefore, by (18), after the increase,

MR(s0)≤ 0. (20)

By the Intermediate Value Theorem, Lem. 1, and the MR

Continuity Law, there is an

s1 ≤ s0 (21)

such that
MR(s1) = 0 (22)

under the new analysis.
By our assumption that ~Y initially yielded precisely

bounds ~R, (9) held initially. As noted above, ~I(s0) =~Y , so
by (9),

∀i,~I(s0)≥ 0. (23)

By (12), (17), and (21)–(23),

∀i,~I(s1)≥~I(s0)≥ 0. (24)

Therefore, (9) also continues to hold when ~Y is assigned
~I(s1) instead of ~I(s0). Thus, by Thm. 1, the Second Re-
stated Shape Law, and (22), the PP assignment ~I(s1) does
indeed yield the desired response time bounds with mini-
mum compliant vector~v(s1).

We now demonstrate that we can achieve smaller ana-
lytical response time bounds by reducing the PPs we use
in the analysis. As the PP Uniform Modification Law will
demonstrate, we can perform this PP reduction for the anal-
ysis without modifying the PPs used by the scheduler at run-
time.

PP Uniform Modification Law. Suppose there are two
GEL schedulers with PP assignments ~Y and ~Y ′ such that
each Yi and Y ′i differ by a system-wide constant. The re-
sponse time bounds derived by analyzing ~Y will also apply
to a system scheduled using ~Y ′, and vice versa.

Proof. Using either~Y or ~Y ′ will result in the same scheduler
decisions, because each absolute PP has been increased or
decreased by the same constant.

This observation will allow us to state the PP Uniform
Reduction Law, which allows us to determine the smallest
response time bounds available using Thm. 1. We will ex-
amine the effect on bounds when ~Y is altered in a manner



consistent with the PP Uniform Modification Law. In order
to do so, we first analyze the behavior of each single Si(Yi)
when Yi is reduced by a non-negative constant ∆.

Lemma 2. If ∆ ≥ 0, then for every i, Si(Yi−∆) ≤ Ui∆+
Si(Yi).

Proof.

Si(Yi−∆) = {By (4)}

max
{

0,Ci

(
1− Yi−∆

Ti

)}
= {Rearranging}

max
{

0,Ui∆+Ci

(
1− Yi

Ti

)}
≤ {By definition of max}

Ui∆+max
{

0,Ci

(
1− Yi

Ti

)}
= {By (4)}

Ui∆+Si(Yi)

With this analysis completed, we now characterize the
effect of altering~Y on response time bounds.

PP Uniform Reduction Law. Consider a GEL scheduler
with relative PP assignment ~Y . By subtracting from each
Yi the value minτ j∈τ Yj, an equivalent scheduler can be cre-
ated for which a minimum compliant vector exists. Further-
more, if the original ~Y satisfied (9), then the analysis using
the modified ~Y produces response time bounds that are no
larger.

Proof. For brevity, let

∆ = min
τ j∈τ

Yj (25)

By the PP Uniform Modification Law, the analysis pro-
duced by subtracting ∆ from each Yi also applies to the origi-
nal~Y . Furthermore, by definition of “min,” Yi−∆≥ 0 holds
for each i, so the new assignment satisfies (9). Therefore,
the preconditions of Thm. 1 are met, so a minimum compli-
ant vector exists.

Suppose the original ~Y satisfies (9). It immediately fol-
lows from (25) that

∆≥ 0. (26)

For notational convenience, we will use ~Y −∆ to denote
the vector obtained by subtracting ∆ from each component
of~Y . In light of the First Restated Shape Law, we define s0
so that

MY (~Y ,s0) = 0. (27)

We now want to show that s1 exists so that MY (~Y −∆,s1) =
0.

We will first analyze MY (~Y −∆,s0 +m∆), which will al-
low us to use the Intermediate Value Theorem. Observe
from (5)–(6) and (13) that each task τi contributes to S(~Y −
∆), and some tasks contribute to G(~v(s0 +m∆),~Y −∆) as
well. We will analyze the final value of MY (~Y −∆,s0+m∆)
by analyzing the contribution from both the tasks that con-
tribute to G(~v(s0 +m∆),~Y −∆) and those that do not. For τi
that does contribute to G(~v(s0 +m∆)), we have((

s0 +m∆−Ci

m

)
Ui +Ci−Si(Yi−∆)

)
+Si(Yi−∆)

=Ui∆+

((
s0−Ci

m

)
Ui +Ci−Si(Yi)

)
+Si(Yi). (28)

For all other τi, by Lem. 2 and (26) we have

Si(Yi−∆)≤Ui∆+Si(Yi). (29)

Therefore,

MY (~Y −∆,s0 +m∆)

= {By (13)}
G(~v(s0 +m∆),~Y −∆)+S(~Y −∆)− s0−m∆

= {By (5)–(6) and (12)}

∑
m−1 largest

((
s0 +m∆−Ci

m

)
Ui +Ci−Si(Yi−∆)

)
+ ∑

τi∈τ

Si(Yi−∆)− s0−m∆

≤ {By (28)–(29); although the set of tasks in the first
summation below may differ from the previous
expression, that can only produce a larger result}

∑
m−1 largest

((
s0−Ci

m

)
Ui +Ci−Si(Yi)

)
+ ∑

τi∈τ

Ui∆+ ∑
τi∈τ

Si(Yi)− s0−m∆

= {Rearranging}

∑
m−1 largest

((
s0−Ci

m

)
Ui +Ci−S(Yi)

)

+ ∑
τi∈τ

Si(Yi)− s0−

(
m− ∑

τi∈τ

Ui

)
∆

≤ {By (1)}

∑
m−1 largest

((
s0−Ci

m

)
Ui +Ci−S(Yi)

)
+ ∑

τi∈τ

Si(Yi)− s0

= {By (5)–(6) and (12)}
G(~v(s0),~Y )+S(~Y )− s0



= {By (13)}
MY (~Y ,s0).

By (27), MY (~Y ,s0) = 0. Therefore, by the above analy-
sis, MY (~Y−∆,s0+∆)≤ 0. By the Intermediate Value Theo-
rem, the MY Piecewise Linear Law, and Lem. 1, there exists
a

s1 ≤ s0 +m∆ (30)

such that MY (~Y −∆,s1) = 0, as desired. Therefore, by the
First Restated Shape Law, ~v(s1) is the new minimum com-
pliant vector. Denote the original response time bounds as
~R and the new response time bounds as ~R′. For each i,

R′i = {By (12) and (15)}

Yi−∆+
s1−Ci

m
+Ci

≤ {By (30)}

Yi +
s0−Ci

m
+Ci

= {By (12) and (15)}
Ri.

4 Global Fair Lateness Scheduling

In this section, we describe the G-FL scheduler and
prove that it minimizes the max-lateness bound. First, we
define the scheduler.

Definition 1. The Global Fair Lateness (G-FL) scheduler
is the GEL scheduler with relative PP assignment

∀i,Yi = Di−
m−1

m
Ci.

Here we demonstrate Thm. 2, which shows that G-FL
minimizes the max-lateness bound achievable for any task
system τ . This proof is based on a series of transitions, as
depicted in Fig. 3.

Theorem 2. Suppose that there is a PP assignment~Y yield-
ing a max-lateness bound of Lmax under Thm. 1. Then, using
G-FL each lateness bound is at most Lmax using the analysis
provided in the PP Uniform Reduction Law.

Proof. We begin with an arbitrary system, as in Fig. 3(a).
By definition of lateness,

∀i,Ri = Di +Li. (31)

Therefore, increasing the lateness bound of a task also in-
creases its response time bound. Using the R j Increase Law
repeatedly, we can transform the arbitrary system into one

where each task has lateness bound Lmax, as depicted in
Fig. 3(b).

Using (15) and (31), by the First Restated Shape Law we
see that for some s,

∀i,Yi = Di +Lmax− v(s)−Ci

= {By (12)}

Di +Lmax−
s
m
− m−1

m
Ci

By the PP Uniform Reduction Law, we can instead con-
sider assignment ~Y ′ such that,

∀i,Y ′i = Di +Lmax−
s
m
− m−1

m
Ci (32)

−min
τ j∈τ

(
D j +Lmax−

s
m
− m−1

m
C j

)
= {Because Lmax and s

m do not depend on j}

Di−
m−1

m
Ci−min

τ j∈τ

(
D j−

m−1
m

C j

)
. (33)

Also by the PP Uniform Reduction Law, no task will have a
larger response time bound when using ~Y ′ than when using
~Y , so no task will have a lateness bound exceeding Lmax.
This choice of PPs and the resulting lateness bounds are
depicted in Fig. 3(c).

We now consider the behavior of G-FL. (Recall that the
PPs of G-FL are specified in Def. 1.) We again use the
PP Uniform Reduction Law considering this assignment of
PPs, defining the new set of PPs as ~Y ′. We obtain

Y ′i = Di−
m−1

m
Ci−min

τ j∈τ

(
D j−

m−1
m

C j

)
. (34)

Observe that (33) and (34) are identical. Therefore, un-
der G-FL each task will have a lateness bound no larger than
Lmax.

Finally, we demonstrate that G-FL has “fair lateness” in
the sense that each task will have the same analytical late-
ness bound under the PP Uniform Reduction Law.

Theorem 3. Under G-FL, all lateness bounds computed us-
ing the PP Uniform Reduction Law are identical.

Proof. Recall that~L denotes the lateness bounds. We con-
sider lateness bounds computed using the PP Uniform Re-
duction Law. By the Shape Law, there is some s such that

Li = {By (3) and (10)}

Yi +
s−Ci

m
+Ci−Di

= {Applying the PP Uniform Reduction Law to
Def. 1}



(a) Arbitrary assignment of~Y . (b) All Li assigned Lmax. (c) Best analysis matches best G-FL anal-
ysis.

Figure 3: Proof structure for Thm. 2.

Di−
m−1

m
Ci−min

τ j∈τ

(
D j−

m−1
m

C j

)
+

s−Ci

m

+Ci−Di

= {Rearranging}

Di−Di−
m−1

m
Ci +

m−1
m

Ci +
s
m

−min
τ j∈τ

(
D j−

m−1
m

C j

)
= {Cancelling}

s
m
−min

τ j∈τ

(
D j−

m−1
m

C j

)
. (35)

Observe that (35) does not depend on the task index i.
Therefore, the lateness bound is the same for all tasks.

5 Experimental Analysis

To compare G-FL and G-EDF, we generated implicit-
deadline task sets based on the experimental design from
prior studies (e.g., [15]). We generated task utilizations us-
ing either a uniform or a bimodal distribution. For task
sets with uniformly distributed utilizations, we used ei-
ther a light distribution with values randomly chosen from
[0.001,0.1], a medium distribution with values randomly
chosen from [0.1,0.4], or a heavy distribution with values
randomly chosen from [0.5,0.9]. For tasks sets with bi-
modally distributed utilizations, values were chosen uni-
formly from either [0.001,0.5] or [0.5,0.9], with respective
probabilities of 8/9 and 1/9 for light distributions, 6/9 and
3/9 for medium distributions, and 4/9 and 5/9 for heavy
distributions. We generated integral task periods using a
uniform distribution from [3ms,33ms] for short periods,
[10ms,100ms] for moderate periods, or [50ms,250ms] for

long periods. Each experiment was run with either m = 2,
m = 4, or m = 6 CPUs. By [9] we do not need to consider
significantly larger numbers of CPUs, as clustered schedul-
ing will outperform global scheduling for such systems in
practice.

Because negative lateness is likely not beneficial to a sys-
tem designer, we compared tardiness rather than lateness.
All tardiness bound computations were done with respect
to the PP Uniform Reduction Law. With either PP assign-
ment (G-EDF or G-FL), the computation algorithm from [3]
can be used.

We ran two experiments for each possible combination
of utilization distribution, period distribution, and proces-
sor count: one to compare the tardiness bounds for G-FL
and G-EDF, and one to compare the observed tardiness for
G-FL and G-EDF. For each experiment, we generated 1000
task sets. For each task set τ , we generated tasks until gen-
erating one that would cause ∑τi∈τ Ui to exceed m. For ob-
served tardiness experiments, we restricted task worst-case
execution times to be integers.

For each task set, we computed “maximum tardiness”
metrics g for G-EDF and h for G-FP. In the tardiness bound
experiments, g and h were defined as the maximum tar-
diness bounds computed using the PP Uniform Reduction
Law. In the observed tardiness experiments, we defined g
and h as the maximum tardiness experienced by any job
during the first 100 seconds of execution, when all job re-
leases are periodic and all jobs run for their full worst-case
execution times. For each experiment, we computed ḡ, the
mean g value over all task sets, and h̄, the mean h value over
all task sets. The relative improvement for an experiment is
defined as (ḡ− h̄)/ḡ.

Results of our experiments are shown in Figs. 4 and 5.
Tardiness bound experiments often showed an improvement
of about 30%, and observed tardiness experiments some-



times showed an improvement exceeding 99%. These re-
sults show that G-FL is significantly better than G-EDF both
in terms of analytical bounds and in terms of observed tar-
diness.

Although this work focuses on SRT scheduling, we did
explore the use of G-FL for HRT scheduling by comput-
ing the percentage of task sets with no observed deadline
misses. These results are depicted in Fig. 6 for G-EDF
and Fig. 7 for G-FL. Particularly for tasks with bimodal uti-
lization distributions, G-FL scheduled many more task sets
without observed deadline misses.

6 Conclusion

We have demonstrated that G-FL provides max-lateness
bounds no larger than those currently available for G-EDF
and have provided experimental evidence that G-FL is su-
perior to G-EDF both in terms of max-tardiness bounds
and maximum observed tardiness. Furthermore, G-FL pro-
vides equal tardiness bounds for all tasks in the system,
and therefore provides a closer relationship between dead-
lines and response time bounds than G-EDF currently does.
The implementation of G-FL is identical to that of G-EDF
with arbitrary deadlines, and G-FL maintains the desir-
able JLSP property (enabling known synchronization tech-
niques.) Therefore, G-FL is a better choice than G-EDF for
SRT systems.

Although this paper does not focus on HRT analysis for
G-FL, experimental evidence indicates that G-FL may be a
better HRT scheduler than G-EDF. Future work could ex-
amine this possibility.
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Figure 4: Improvement of G-FL over G-EDF for max-tardiness bound.
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Figure 5: Improvement of G-FL over G-EDF for max observed tardiness. (No tardiness was observed for Light-Uniform in
any schedule.)
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Figure 6: Ratio of task sets with no observed deadline misses for G-EDF.
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Figure 7: Ratio of task sets with no observed deadline misses for G-FL.


