
Supporting Soft Real-Time Parallel Applications on Multicore Processors∗

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

The prevalence of multicore processors has resulted in the
wider applicability of parallel programming models such as
OpenMP and MapReduce. A common goal of running paral-
lel applications implemented under such models is to guaran-
tee bounded response times while maximizing system utiliza-
tion. Unfortunately, little previous work has been done that
can provide such performance guarantees. In this paper, this
problem is addressed by applying soft real-time scheduling
analysis techniques. Analysis and conditions are presented
for guaranteeing bounded response times for parallel appli-
cations under global EDF multiprocessor scheduling.

1 Introduction

The growing prevalence of multicore platforms has resulted in
the wider applicability of parallel programming models such
as OpenMP [4] and MapReduce [6]. Such models can be ap-
plied to parallelize certain segments of programs, thus better
utilizing hardware resources and possibly shortening response
times. Many applications implemented under such parallel
programming models have soft real-time (SRT) constraints.
Examples include real-time parallel video and image process-
ing applications [1, 8] and computer vision applications such
as colliding face detection [13]. In these applications, pro-
viding fast and bounded response times for individual video
frames is important, to ensure smooth video output. How-
ever, achieving this at the expense of using conservative hard
real-time (HRT) analysis is not warranted. In this paper, we
consider how to schedule parallel task systems that require
such SRT performance guarantees on multicore processors.

Parallel task models pose new challenges to scheduling
since intra-task parallelism has to be specifically considered.
Recent papers [14, 18] on scheduling real-time periodic par-
allel tasks have focused on providing HRT guarantees under
global-earliest-deadline-first (GEDF) or partitioned deadline-
monotonic (DM) scheduling. However, as discussed above,
viewing parallel tasks as HRT may be overkill in many set-
tings and furthermore may result in significant schedulability-
related utilization loss. Thus, our focus is to instead ensure
bounded response times in supporting parallel task systems
by applying SRT scheduling analysis techniques. Specifi-
cally, we assign deadlines to parallel tasks and schedule them

∗Work supported by AT&T, IBM, Intel, and Sun Corps.; NSF grants CNS
0834270, CNS 0834132, and CNS 0615197; and ARO grant W911NF-06-1-
0425.

using GEDF, but in contrast to previous work [14, 18], we al-
low deadlines to be missed provided such misses are bounded
(hence response times are bounded as well). Moreover, we
consider a generalized parallel task model that removes some
of the restrictions seen in previous work (as discussed below).

Response time bounds have been studied extensively in
the context of global real-time scheduling algorithms such as
GEDF. It has been shown that a variety of such algorithms can
ensure bounded response times in ordinary real-time sporadic
task systems (i.e., without intra-task parallelism) with no uti-
lization loss on multiprocessors [7, 15].1 Motivated by these
results, we consider whether it is possible to specify reason-
able constraints under which bounded response times can be
guaranteed using global real-time scheduling techniques, for
sporadic parallel task systems that are not HRT in nature.

Related work. Scheduling non-real-time parallel applica-
tions is a deeply explored topic [5,6,10,11,19,20]. However,
in all of just-cited work, scheduling decisions are made on a
best-effort basis, so none of these results can provide perfor-
mance guarantees such as response time bounds.

Regarding scheduling HRT parallel task systems, Laksh-
manan et al. proposed a scheduling technique for the fork-
join model, where a parallel task is a sequence of segments,
alternating between sequential and parallel phases [14]. A se-
quential phase contains only one thread while a parallel phase
contains multiple threads that can be executed concurrently
on different processors. In their model, all parallel phases are
assumed to have the same number of parallel threads, which
must be no greater than the number of processors. Also, all
threads in any parallel segment must have the same execution
cost. The authors derived a resource augmentation bound of
3.42 under partitioned DM scheduling.

In [18], Saifullah et al. extended the fork-join model so that
each parallel phase can have a different number of threads,
but their model is still limited, as the number of threads
in any parallel phase must not exceed the number of pro-
cessors and all such threads must have the same execution
cost. The authors proposed an approach that transforms each
implicit-deadline periodic parallel task into a number of or-
dinary constrained-deadline periodic tasks by creating per-
segment intermediate deadlines. They also showed that re-
source augmentation bounds of 2.62 and 3.42 can be achieved
under GEDF and partitioned DM scheduling, respectively.

1Technically, bounded response times can only be ensured for task sys-
tems that do not over-utilize the underlying platform. In all claims in this
paper concerning bounded response times, a non-over-utilized system is as-
sumed.

1

In contrast to this prior work, we seek to efficiently sup-
port parallel task systems on multiprocessors with bounded
response times. We generalize the parallel task models con-
sidered in [14, 18] by allowing the number of threads in any
parallel segment to exceed the number of processors as well
as allowing threads belonging to the same segment to have
different execution costs. Also, we consider sporadic parallel
tasks instead of periodic ones. A more fundamental difference
is that we propose a SRT schedulability analysis framework to
derive conditions for guaranteeing bounded response times.

Contributions. In this paper, we show that by assigning
deadlines to parallel task systems and scheduling them un-
der GEDF, such systems can be supported on multiproces-
sors with bounded response times. Our analysis shows that
on a two-processor platform, no utilization loss results for
any parallel task system. Despite this special case, on a plat-
form with more than two processors, utilization constraints
are needed. To discern how severe such constraints must fun-
damentally be, we present a parallel task set with minimum
utilization that is unschedulable on any number of proces-
sors. This task set violates our derived constraint and has
unbounded response times. The impact of utilization con-
straints can be lessened by restructuring tasks to reduce intra-
task parallelism. We propose optimization techniques that can
be applied to determine such a restructuring. Finally, we con-
duct experiments to evaluate the applicability of the derived
schedulability condition.

Organization. The rest of this paper is organized as follows.
Sec. 2 describes our system model. In Sec. 3, we present our
analytical results. In Sec. 4, we discuss the above mentioned
optimization technique. In Sec. 5, we experimentally evaluate
the proposed analysis. Sec. 6 concludes.

2 System Model
We consider the problem of scheduling a set of τ =
{τ1, ..., τn} of n independent sporadic parallel tasks on m
processors. Each parallel task τi is a sequence of si segments,
where the jth segment τ ji contains a set of vji threads (vji > m

is allowed). The kth (1 ≤ k ≤ vji) thread τ j,ki in segment
τ ji has a worst-case execution time of ej,ki . We assume that
each thread τ j,ki executes for exactly ej,ki time units. This as-
sumption can be eased to treat ej,ki as an upper bound, at the
expense of more cumbersome notation. For notational con-
venience, we order the threads of each segment τ ji of each
parallel task τi in largest-worst-case-execution-time-first or-
der. Thus, thread τ j,1i has the largest worst-case execution
time among all threads in any segment τ ji . For any segment
τ ji , if vji > 1, then the threads in this segment can be executed
in parallel on different processors. The threads in the jth seg-
ment can execute only after all threads of (j−1)th segment (if
any) have completed. We let vmaxi denote the maximum num-
ber of threads in any segment of task τi. We assume vmaxi ≥ 2

τi1,1

τi2,1

τi2,2

τi2,3

τi3,1 τi5,1

Period pi=10 and deadline di=10

2

τi4,1

τi4,2
ei1,1=2

ei2,1=3

ei2,2=1

ei2,3=5

ei3,1=4

ei4,1=2

ei4,2=3

ei5,1=3

Figure 1: Example parallel task τi. It has five segments where the
second and fourth segments are parallel segments and contain three
and two threads, respectively. This task has a worst-case execution
cost of 23 time units, a period of 10 time units, and thus a utilization
of 2.3.

holds for at least one task τi; otherwise, the considered task
system is simply an ordinary sporadic task system (without
intra-task parallelism).

The worst-case execution time of any segment τ ji is de-

fined as eji =
∑vji
k=1 e

j,k
i (when all threads execute sequen-

tially). The worst-case execution time of any parallel task τi
is defined as ei =

∑si
j=1 e

j
i (when all threads in each seg-

ment of the task execute sequentially). We also need to de-
termine the best-case execution time of τi on m processors
(when τi is the only task executing on m processors), de-
noted emini . In general, for any parallel task τi, if we allow
vmaxi ≥ m and threads in each segment have different exe-
cution costs, then the problem of calculating emini is equiv-
alent to the problem of minimum makespan scheduling [12],
where we treat each thread in a segment as an independent
job and seek to obtain the minimum completion time for ex-
ecuting all such jobs on m processors. This gives us per-
segment best-case execution times, which can be summed to
yield emini . Unfortunately, this problem has been proved to
be NP-hard [12]. This problem can be solved using a clas-
sical dynamic programming-based algorithm [12], which has
exponential time complexity with respect to the per-segment
thread count. However, for some special cases where certain
restrictions on the task model apply, we can easily calculate
emini in linear time. For example, when vmaxi ≤ m holds,
emini =

∑si
j=1 e

j,1
i since in this case all threads of each seg-

ment of τi can be executed in parallel on m processors and
thread τ j,1i has the largest execution cost in each segment τ ji .
Moreover, when all threads in each segment have equal exe-

cution costs, emini =
∑si
j=1

∑dvji /me
k=1 ej,1i , because the exe-

cution of each segment τ ji can be viewed as the executions of
dvji /me sequential sub-segments, each with an equal execu-
tion cost of ej,1i .

We require emini ≤ pi for any task τi; otherwise, response
times (defined next) can grow unboundedly. An example par-
allel task is shown in Fig. 1.

Each parallel task is released repeatedly, with each such
invocation called a job. The kth job of τi, denoted τi,k, is
released at time ri,k. Associated with each task τi is a period

2

Table 1: Summary of notation.

τ ji,h jth segment of the hth job of task τi
τ j,ki,h kth thread of segment τ ji of the hth job of task τi
si Number of segments of task τi
ej,ki Worst-case execution cost of thread τ j,ki

eji Worst-case execution cost of segment τ ji
ei Worst-case execution cost of task τi
emin
i Best-case execution cost of task τi
vmax
i Maximum number of threads in any segment of task τi
vmaxi Maximum number of threads of any segment of the task

that has the ith maximum number of threads of any seg-
ment among all tasks

pi, which specifies the minimum time between two consecu-
tive job releases of τi. The utilization of a task τi is defined
as ui = ei/pi, and the utilization of the task system τ as
Usum =

∑
τi∈τ ui. We require Usum ≤ m; otherwise, re-

sponse times can grow unboundedly. For any job τi,k of task
τi, its uth segment is denoted τui,k, and the vth thread of this
segment is denoted τu,vi,k . For clarity, a summary of the im-
portant terms defined so far, as well as some additional terms
defined later, is presented in Table 1.

Successive jobs of the same task are required to execute in
sequence. If a job τi,k completes at time t, then its response
time is t − ri,k. A task’s response time is the maximum re-
sponse time of any of its jobs. Note that, when a job of a task
completes after the release time of the next job of that task,
this release time is not altered.

Assigning deadlines. For each parallel task τi with a period
pi, we assign it a relative deadline of di = pi. Therefore, we
can model each parallel task as a real-time sporadic parallel
task with implicit deadlines. Any job τi,k of τi thus has an
absolute deadline at di,k = ri,k + di. Under GEDF, released
jobs are prioritized by their absolute deadlines. We assume
that ties are broken by task ID (lower IDs are favored).

3 Response Time Bound
We derive a response time bound for GEDF by comparing
the allocations to a task system τ in a processor sharing (PS)
schedule and an actual GEDF schedule of interest for τ , both
on m processors, and quantifying the difference between the
two. We analyze task allocations on a per-task basis.2

The time interval [t1, t2), where t2 > t1, consists of all
time instances t, where t1 ≤ t < t2, and is of length t2 − t1.
We assume time is discrete. For any time t > 0, the notation
t− is used to denote the time t − ε in the limit ε → 0+, and
the notation t+ is used to denote the time t + ε in the limit
ε→ 0+.

2The SRT analysis framework used here has been adopted from a frame-
work for ordinary sporadic task systems first proposed in [7], and subse-
quently used in several other papers [15–17].

 UNC Chapel Hill C. Liu

 Supporting Complex Time-Sensitive Applications with Dependencies in Multicore-based Systems

7

0
0

0.5

1.0

1.5

2.0
Utilization

5 10 15 20 25 30 35 40

τ1,2τ1,1 τ1,3 τ1,4

τ2,1 τ2,2

Figure 2: PS schedule for a task system containing two tasks. Task
τ1 has a period of 10 time units and a utilization of 1.5. Task τ2
has a period of 20 time units and a utilization of 0.5. As seen in the
PS schedule, intra-task parallelism is not considered and each job
completes exactly at its deadline.

Definition 1. A task τi is active at time t if there exists a job
τi,h such that ri,h ≤ t < di,h.

Definition 2. Job τi,h is pending at time t if t ≥ ri,h and τi,h
has not completed by t.

Definition 3. Job τi,h is enabled at t if t ≥ ri,h, τi,h has
not completed by t, and τi,h−1 (if h > 1) has completed
by t. Similarly, any thread in segment τki,h is enabled at t
if t ≥ ri,h, the thread has not completed by t, and all threads
in segment τk−1i,h (if any) have completed by t.

Let A(τi,j , t1, t2, S) denote the total allocation to the job
τi,j in an arbitrary schedule S in [t1, t2). Then, the total time
allocated to all jobs of τi in [t1, t2) in S is given by

A(τi, t1, t2, S) =
∑
j≥1

A(τi,j , t1, t2, S).

Consider a PS schedule PS. In such a schedule, τi executes
with the rate ui when it is active. (Note that intra-task par-
allelism is not considered in the PS schedule.) Thus, if τi is
active throughout [t1, t2), then

A(τi,j , t1, t2, PS) = (t2 − t1)ui. (1)

Note that according to the parallel task model, the term ui in
(1) could be greater than one. This is a key difference in com-
parison to most prior work where a PS schedule is considered.
A PS schedule for an example task system is shown in Fig. 2.

The difference between the allocation to a job τi,j up to
time t in a PS schedule and an arbitrary schedule S, de-
noted the lag of job τi,j at time t in schedule S, is defined
by lag(τi,j , t, S) = A(τi,j , 0, t, PS) − A(τi,j , 0, t, S). The
lag of a task τi at time t in schedule S is given by

lag(τi, t, S) =
∑
j≥1

lag(τi,j , t, S)

= A(τi, 0, t, PS)−A(τi, 0, t, S). (2)

The concept of lag is important because, if lags remain
bounded, then response times are bounded as well. The LAG

3

for a finite job set J at time t in the schedule S is defined as

LAG(J, t, S) =
∑
τi,j∈J lag(τi,j , t, S)

=
∑
τi,j∈J(A(τi,j , 0, t, PS)−A(τi,j , 0, t, S)). (3)

Our response time bound derivation focuses on a given
task system τ . We order jobs in τ by EDF, and break ties
by task ID. Let τl,j be a job of a task τl in τ , td = dl,j , and S
be a GEDF schedule for τ with the following property.

(P) The response time of every job τi,k of higher priority
than τl,j is at most x+ pi + ei in S, where x ≥ 0.

Our objective is to determine the smallest x such that the
response time of τl,j is at most x + pl + el. This would by
induction imply a response time of at most x + pi + ei for
all jobs of every task τi, where τi ∈ τ . We assume that τl,j
finishes after td, for otherwise, its response time is trivially no
greater than pl. The steps for determining the value for x are
as follows.

1. Determine an upper bound on the work pending for tasks
in τ that can compete with τl,j after td. This is dealt with
in Lemmas 1 and 2 in Sec. 3.1.

2. Determine a lower bound on the amount of work pending
for tasks in τ that can compete with τl,j after td, required
for the response time of τl,j to exceed x+ pl + el. This
is dealt with in Lemma 3 in Sec. 3.2.

3. Determine the smallest x such that the response time of
τl,j is at most x+pl+el, using the above upper and lower
bounds. This is dealt with in Theorem 1 in Sec. 3.3.

Definition 4. d = {τi,h : (di,h < td) ∨ (di,h = td ∧ i ≤ l)}.

d is the set of jobs with deadlines at most td with priority
at least that of τl,j . These jobs do not execute beyond td in
the PS schedule. Note that τl,j is in d. Also note that jobs
not in d have lower priority than those in d and thus do not
affect the scheduling of jobs in d. For simplicity, we will
henceforth assume that no job not in d executes in either the
PS or GEDF schedule. To avoid distracting “boundary cases,”
we also assume that the schedule being analyzed is prepended
with a schedule in which no deadlines are missed that is long
enough to ensure that all previously released jobs referenced
in the proof exist.

According to Property (P), job τl,j−1 has a response time
of at most x + pl + el. Thus, the completion time of τl,j−1,
denoted tp (p for predecessor), is given by

tp ≤ rl,j−1+pl+x+el ≤ rl,j+x+el = td−pl+x+el. (4)

Definition 5. A time instant t is busy for a job set J if all m
processors execute jobs in J at t. A time interval is busy for
J if each instant within it is busy for J .

The following claim follows from the definition of LAG.

tn

6

tn td
busy

End of the latest non-busy
interval for d before td

Figure 3: Definition of tn.

Claim 1. If LAG(d, t2, S) > LAG(d, t1, S), where t2 > t1,
then [t1, t2) is non-busy for d. In other words, LAG for d can
increase only throughout a non-busy interval.

An interval could be non-busy for d only if there are not
enough enabled jobs in d to occupy all available processors.

Since d includes all jobs of higher priority than τl,j , the
competing work for τl,j after time td is given by the amount
of work pending at td for jobs in d, which is given by
LAG(d, td, S).

3.1 Upper Bound

In this section, we determine an upper bound on
LAG(d, td, S). We first upper bound lag(τi, t, S) (t ∈
[0, td]) in Lemma 1 below. Then, in Lemma 2, we upper
bound LAG(d, td, S) by summing individual task lags.

Definition 6. Let tn be the end of the latest non-busy interval
for d before td, if any; otherwise, let tn = 0 (see in Fig. 3).

By the above definition and Claim 1, we have

LAG(d, td, S) ≤ LAG(d, tn, S). (5)

Lemma 1. lag(τi, t, S) ≤ ui · x+ (ui + 1) · ei for any task
τi and t ∈ [0, td].

Proof. Let di,k be the deadline of the earliest pending job of
τi, τi,k, in the schedule S at time t. If such a job does not
exist, then lag(τi, t, S) = 0, and the lemma holds trivially.
Let γi be the amount of work τi,k performs before t.

By the selection of τi,k, we have

lag(τi, t, S) =
∑
h≥k

lag(τi,h, t, S)

= A(τi,k, ri,k, t, PS)−A(τi,k, ri,k, t, S)

+
∑
h>k

(
A(τi,h, ri,h, t, PS)

−A(τi,h, ri,h, t, S)
)
. (6)

By the definition of PS, A(τi,k, ri,k, t, PS) ≤ ei, and∑
h>k A(τi,h, ri,h, t, PS) ≤ ui · max(0, t − di,k) (the lat-

ter follows because each such job τi,h executes with rate ui
in PS while active, and the sum of the active intervals under
consideration is at most t − di,k). By the selection of τi,k,
A(τi,k, ri,k, t, S) = γi, and

∑
h>k A(τi,h, ri,h, t, S) = 0. By

setting these values into (6), we have

lag(τi, t, S) ≤ ei − γi + ui ·max(0, t− di,k). (7)

There are two cases to consider.

4

Case 1. di,k ≥ t. In this case, (7) implies lag(τi, t, S) ≤
ei − γi ≤ ui · x+ (ui + 1) · ei.

Case 2. di,k < t. In this case, because t ≤ td and dl,j =
td, τi,k is not the job τl,j . Thus, by Property (P), τi,k has a
response time of at most x+ pi + ei. Since τi,k is the earliest
pending job of τi at time t, the earliest possible completion
time of τi,k is at t+. Thus, we have t − ri,k < t+ − ri,k ≤
x+pi+ei, which (because di,k = ri,k+pi) implies t−di,k =
t− ri,k − pi < x+ ei.

Setting this value into (7), we have lag(τi, t, S) < ei −
γi + ui · (x+ ei) ≤ ui · x+ (ui + 1) · ei.

Lemma 2 below upper bounds LAG(d, td, S). We first
define some needed terms.

Definition 7. Let U be the sum of the min(m− 1, n) largest
task utilizations. Let E be the largest value of the expression∑
τi∈γ

(
(ui + 1) · ei

)
, where γ denotes any set of min(m−

1, n) tasks in τ .

Lemma 2. LAG(d, td, S) ≤ U · x+ E.

Proof. By (5), we have LAG(d, td, S) ≤ LAG(d, tn, S).
By summing individual task lags at tn, we can bound
LAG(d, tn, S). If tn = 0, then LAG(d, tn, S) = 0, so as-
sume tn > 0. Consider the set of tasks β = {τi : ∃τi,h
in d such that τi,h is enabled at t−n }. Given that the instant
t−n is non-busy, there are not enough enabled jobs in d to oc-
cupy all m processors. More precisely, there are not enough
enabled threads belonging to jobs in d to occupy all m pro-
cessors. There could be at most min(m− 1, n) parallel tasks
that have enabled jobs at t−n since each such parallel task has
at least one enabled thread at t−n ; that is, |β| ≤ min(m−1, n).

If task τi does not have pending jobs at t−n , then
lag(τi, tn, S) ≤ 0. Therefore, we have LAG(d, td, S)
{by (5)}
≤ LAG(d, tn, S)

{by (3)}
=

∑
τi:τw

i,h∈d lag(τi, tn, S) ≤∑
τi∈β lag(τi, tn, S)

{by Lemma 1}
≤

∑
τi∈β

(
ui · x+(ui+1) ·

ei). By Def. 7 and because |β| ≤ min(m − 1, n), we have
LAG(d, td, S) ≤

∑
τi∈β

(
ui·x+(ui+1)·ei) ≤ U ·x+E.

3.2 Lower Bound

In the following lemma, we determine a lower bound on
LAG(d, td, S) that is necessary for the response time of τl,j
to exceed x+ pl + el.

Definition 8. If any thread of any segment of job τi,h is en-
abled at time t but does not execute at t, and at least one pro-
cessor is executing some job other than τi,h at t, then τi,h is
preempted at t (see Fig. 4).

Definition 9. Let vmaxi denote the maximum number of
threads of any segment of the task that has the ith maximum
number of threads of any segment among tasks in τ .

9

t

preemption

τ1,11,1

τ1,11,2

τ1,11,3

t

τ1,11,1

τ1,11,3

τ1,11,2Proc. 1

Proc. 2 τ2,11,1

(a) τ1,1 is not preempted at t

τ2,11,1

(b) τ1,1 is preempted at t

Figure 4: Illustration of a preemption. Job τ1,1 has one segment
with three parallel threads, executed on two processors. In inset (a),
although τ1,31,1 is enabled but does not execute at time t, τ1,1 is not
preempted at t since both processors are executing threads of τ1,1.
In inset (b), τ1,1 is preempted by τ2,1 at t.

If
∑n
i=1 vmaxi

≤ m, then each thread of each segment of
each task in τ can be executed on a processor without being
preempted, which implies that each task τk ∈ τ has a bounded
response time of emink < x + pk + ek. Thus, we consider
the other case, where

∑n
i=1 vmaxi > m. Moreover, since

we assume that there exists at least one task τk ∈ τ with
vmaxk ≥ 2 (as discussed in Sec. 2), we have vmax1

≥ 2.
Thus, if n > m, then

∑m
i=1 vmaxi

> m holds. Therefore, we
have

min(m,n)∑
i=1

vmaxi
> m. (8)

Definition 10. Let

Q =

2 if vmax1 > m

min{k | k =

k∑

i=1

vmaxi > m} if vmax1 ≤ m.

Q is used in Lemma 3 below to obtain a lower bound
on LAG(d, td, S); the two conditions in the definition of Q
arise because of different subcases considered in the proof of
Lemma 3. Note that by the above definition and (8), we have

2 ≤ Q ≤ min(m,n) ≤ m. (9)

Lemma 3. If the response time of τl,j exceeds x + pl + el,
then LAG(d, td, S) > Q · x− (m− 1) · el.

Proof. Throughout the proof of this lemma, we assume∑n
i=1 vmaxi

> m and vmax1
≥ 2 both hold, for reasons

discussed above. We prove the contrapositive: we assume
that

LAG(d, td, S) ≤ Q · x− (m− 1) · el (10)

holds and show that the response time of τl,j cannot exceed
x + pl + el. Let ηl be the amount of work τl,j performs by
time td in S. Define y as follows.

y =
Q

m
· x+

ηl
m

(11)

Let W be the amount of work due to jobs in d that can com-
pete with τl,j after td+y, including the work due for τl,j . Let
tf be the completion time of τl,j . We consider two cases.

5

subcase 2.1

4

td tp ts tf ≤ ts+el-ηl

Earliest non-busy
instant in [td,td+y)

τl,j is not preempted
before tf

Figure 5: Subcase 2.1

Case 1. [td, td + y) is a busy interval for d. In this case,

W = LAG(d, td, S) −my
{by (10)}
≤ Q · x − (m − 1) · el −

my
{by (11)}

= Q ·x−(m−1) ·el−Q ·x−ηl = −(m−1) ·el−
ηl < 0. Because GEDF is work-conserving (i.e., GEDF idles
a processor only when there is no enabled job), at least one
processor is busy until τl,j completes. Thus, the amount of
work performed by the system for jobs in d during the interval
[td+y, tf) is at least tf−td−y. Hence, tf−td−y ≤W < 0.
Therefore, the response time of τl,j is tf−rl,j = tf−td+pl <

y + pl
{by (11)}

=
Q

m
· x+

ηl
m

+ pl
{by (9)}
≤ x+ el + pl.

Case 2. [td, td+y) is a non-busy interval for d. Let ts ≥ td
be the earliest non-busy instant in [td, td+y). Recall (see (4))
that tp is the completion time of job τl,j−1. We consider three
subcases.

Subcase 2.1. tp ≤ ts and τl,j is not preempted within
[ts, tp). As illustrated in Fig. 5, in this case, τl,j can start exe-
cution at ts because ts is non-busy. Since τl,j is not preempted
within [ts, tp), τl,j completes by ts + el − ηl. Thus, because
ts < td+ y, τl,j finishes by time ts+ el− ηl < td+ y+ el−

ηl
{by (11)}

= td+
Q

m
·x+ ηl

m
+el−ηl

{by (9)}
≤ rl,j+pl+x+el.

Subcase 2.2 tp ≤ ts and τl,j is preempted within [ts, tp).

If tf ≤ y+ td, then tf − rl,j ≤ y+ td− rl,j
{by (11)}

=
Q

m
·x+

ηl
m

+pl
{by (9)}
≤ x+ el+pl. So assume tf > y+ td. Let t1 >

ts be the earliest time when τl,j is preempted. As shown in
Fig. 6, by the definition of ts and t1, τl,j executes throughout
[ts, t1) without being preempted. Because τl,j is preempted
at t1, t1 is busy with respect to d. Let t2 be the last time
τl,j resumes execution after being preempted if such a time
exists; if such a time does not exist, which implies that τl,j is
preempted until tf , then let t2 = tf (note that by Def. 8, some
threads of τ jl can execute while τ jl is preempted). Within
[t1, t2), τl,j could be preempted multiple times. By Def. 8, all
such intervals during which τl,j is preempted must be busy in
order for the preemption to happen. Given that tf ≤ t2+el−
ηl, if t2 ≤ y + td, then tf ≤ y + td + el − ηl, in which case,
because td− rl,j = pl, the response time of τl,j is tf − rl,j ≤

y+ pl+ el− ηl
{by (11)}
≤ Q

m
· x+ pl+ el

{by (9)}
≤ x+ pl+ el,

as required.
If t2 > td+y, then the amount of work due to d performed

within [td, td+y) is at leastmy−(m−1)·min(el, y) because

 UNC Chapel Hill C. Liu

 Supporting Complex Time-Sensitive Applications with Dependencies in Multicore-based Systems

subcase 2.2

4

td ts t1 y+td t2 tf

τl,j
executes

without being
preempted

Busy
Busy interval

where τl,j
is preempted

Busy interval
where τl,j

is preempted

τl,j
executes

without being
preempted

τl,j
executes

without being
preempted

Figure 6: Subcase 2.2

all intervals during which τl,j is preempted are busy, and τl,j
can execute for at most el time in [td, y + td). (Within inter-
vals in [ts, td + y) where τl,j is not preempted, at least one
processor is occupied by τl,j .) Thus, the amount of work that
can compete with τl,j after td + y is W ≤ LAG(d, td, S) −

(my − (m− 1) ·min(el, y))
{by (10)}
≤ Q · x− (m− 1) · el −

(my− (m−1) ·min(el, y)) ≤ Q ·x−my
{by (11)}

= −ηl ≤ 0.
Since W is defined to be the amount of work due to jobs in d
that can compete with τl,j after td + y and W ≤ 0, the latest
completion time of τl,j is at td + y + el − ηl. Therefore, the
response time of τl,j is tf − rl,j ≤ td + y + el − ηl − rl,j =
y + el − ηl + (td − rl,j) = y + el − ηl + pl

{by (11)}
=

Q

m
· x+

ηl
m

+ el − ηl + pl
{by (9)}
≤ x+ el + pl.

Subcase 2.3: tp > ts. The earliest time τl,j can com-
mence execution is tp, as shown in Fig. 7. Let S(τl,j) be the
time when τl,j starts execution for the first time. If τl,j is not
preempted after tp, then τl,j starts execution at tp and com-
pletes no later than tp + eminl . Thus, we have tf − rl,j =

tp + eminl − rl,j
{by (4)}
≤ td − pl + x + el + eminl − rl,j =

x+ el + eminl ≤ x+ el + pl (because eminl ≤ pl).
The other possibility is that τl,j gets preempted after tp.

Let λ denote the set of tasks including τl that have ready jobs
in d at any time instant within [ts, tp).

We now prove that |λ| ≥ Q holds. By Def. 8, in order
for τl,j to be preempted after tp, the number of processors
required by tasks in λ (note that τl ∈ λ) at some time instant
after tp must exceed m. Thus, the maximum total number of
threads of tasks in λ that can execute in parallel at the same
time must exceed m, which gives∑

τi∈λ

vmaxi > m. (12)

Thus, by the definition of vmaxk
, we have

∑|λ|
k=1 vmaxk

≥∑
τi∈λ v

max
i

{by (12)}
> m. By Def. 10, we consider two cases:

vmax1
≤ m and vmax1

> m. If vmax1
≤ m, then |λ| ≥

Q holds. On the other hand, if vmax1
> m, then although∑|λ|

k=1 vmaxk
> m may hold when |λ| = 1, λ clearly needs

to contain at least two tasks in order for τl,j to be preempted
(namely, τl and at least one other task). Thus, |λ| ≥ Q also
holds in this case.

Because |λ| ≥ Q, we know that at leastQ tasks have ready
jobs in d at any time instant within [ts, tp), which occupy

6

 UNC Chapel Hill C. Liu

 Supporting Complex Time-Sensitive Applications with Dependencies in Multicore-based Systems

subcase 2.3

6

td ts tp S(τl,j)

Busy
Busy
due to

preemp
tion

τl,j
executes
without
being

preempted

tf

τl,j

Busy
due to

preemp
tion

τl,j

Busy
due to

preemp
tion

Work performed
during [ts, tp) is at

least: Q⋅(tp-ts)

Work performed during [S(τl,j), tf) is
at least: m⋅(tf - S(τl,j)) - (m-1)⋅el

Figure 7: Subcase 2.3

at least Q processors throughout the interval [ts, tp). Thus,
the amount of work due to d performed in [ts, tp) is at least
Q · (tp− ts). We now complete the proof of Subcase 3.2 (and
thereby Lemma 3).

By the definitions of ts and tp, [td, ts) and [tp, S(τl,j)) are
busy for d. As discussed above, the amount of work due to d
performed in [ts, tp) is at least Q · (tp − ts). Moreover, the
amount of work due to d performed in [S(τl,j), tf) is at least
m · (tf − S(τl,j))− (m− 1) · el.3 Thus, we have

LAG(d, td, S) ≥ m · (ts − td) +Q · (tp − ts)
+m · (S(τl,j)− tp)
+m · (tf − S(τl,j))− (m− 1) · el.

By (10), we therefore have

Q · x− (m− 1) · el
≥ m · (ts − td) +Q · (tp − ts)

+m · (S(τl,j)− tp)
+m · (tf − S(τl,j))− (m− 1) · el,

which gives,

tf − td ≤ Q

m
· x+

(
1− Q

m

)
· (tp − ts). (13)

Also, we have tp−ts ≤ tp−td
{by (4)}
≤ td−pl+x+el−td =

x − pl + el. Therefore, tf − rl,j = tf − td + pl
{by (13)}
≤

Q

m
·x+

(
1− Q

m

)
· (x− pl+ el)+ pl

{by (9)}
≤ x+ pl+ el.

3.3 Determining x

Setting the upper bound on LAG(d, td, S) in Lemma 2 to
be at most the lower bound in Lemma 3 will ensure that the
response time of τl,j is at most x+pl+ el. By solving for the
minimum x that satisfies the resulting inequality, we obtain a
value of x that is sufficient for ensuring a response time of at
most x+ pl + el. By Lemmas 2 and 3, this inequality is

U · x+ E

≤ Q · x− (m− 1) · el.
3We apply the same reasoning as used in Subcase 2.2. All intervals in

[S(τl,j), tf) during which τl,j is preempted are busy, and τl,j can execute
for at most el time in [S(τl,j), tf). (Within such intervals, at least one pro-
cessor is occupied by τl,j .)

Solving for x, we have

x ≥ E + (m− 1) · el
Q− U

. (14)

If x equals the right-hand side of (14), then the response
time of τl,j will not exceed x + pl + el. A value for x that
is independent of the parameters of τl can be obtained by
replacing (m− 1) · el with maxl((m− 1) · el) in (14).

Theorem 1. With x as defined above, the response time for
any task τl scheduled under GEDF is at most x + pl + el,
provided U < Q, where U and Q are defined in Def. 7 and
Def. 10, respectively.

3.4 A Case with No Utilization Loss

The following corollary shows that GEDF results in no uti-
lization loss for scheduling any parallel task system on two
processors.

Corollary 1. For two-processor systems, the response time
for any task τl scheduled under GEDF is at most x+ pl + el,

where x =
E + (m− 1) · el
Q−maxi(ui)

and maxi(ui) is the maximum

task utilization of tasks in τ .

Proof. If the system only contains one task, then clearly this
task, denoted τ1, has bounded response time, which is given
by emin1 ≤ x + p1 + e1. If the system contains more than
one task, then by Defs. 7 and 10 and m = 2, we have U =
maxi(ui) and Q = 2 = m. Thus, the utilization constraint
in Theorem 1 becomes maxi(ui) < Q = m, which always
holds.

3.5 Cases with Utilization Loss

As shown in Theorem 1 and Corollary 1, the utilization con-
straint U < Q is needed on m ≥ 3 processors while no uti-
lization constraint is needed onm = 2 processors. By Defs. 7
and 10, in the worst case, U = Usum and Q = 2. This
implies that in some cases even when m is arbitrarily large,
Usum < 2 is needed in our analysis. Since no utilization loss
can be achieved on two processors as shown in Corollary 1,
we can schedule any parallel task system with Usum = 2 on
only two processors (i.e., leave the other m − 2 processors
idle if m > 2). Thus, in the worst case, Usum ≤ 2 (rather
than Usum < 2) is needed under our analysis for any paral-
lel task system to have bounded response times for m ≥ 3
processors. To discern how severe such constraints must fun-
damentally be, we next show that for any m ≥ 3, there exists
a parallel task system with a total utilization of 2 + σ that
has unbounded response times, where σ can be an arbitrar-
ily small value. This proves that utilization constraints are
fundamental for parallel task systems scheduled on m ≥ 3
processors. (Note that this task set also violates our derived
utilization constraint.)

7

8

Time

τ1

τ2

e 2e 3e 4e0

Proc. 1

Proc. 2

Proc. 3

Proc. m

....

ε

ε

ε

ε 2ε

ε ε

ε

εε

εε

εε

....

Figure 8: The worst-case parallel task set.

Worst-case parallel task set. Consider a parallel task system
containing two parallel tasks. Task τ1 has only one segment
that contains one thread with an execution cost of e time units,
and τ1 has a period of e time units. Thus, τ1 has a utilization
of 1.0. Task τ2 has three segments, where the first segment
contains one thread with an execution cost of e−ε time units,
where ε can be an arbitrarily small value, the second segment
contains m parallel threads, each of which has an execution
cost of ε time units, and the third segment contains one thread
with an execution cost of e time units. τ2 has a period of 2e

and a utilization of
e− ε+m · ε+ e

2e
= 1 +

(m− 1)

2e
· ε.

Thus, this task set has a total utilization of 2+
(m− 1)

2e
· ε, or

rather 2 + σ, where σ =
(m− 1)

2e
· ε can be arbitrarily small.

Fig. 8 shows the GEDF schedule of this parallel task sys-
tem on any m ≥ 3 processors. It is clearly seen that task τ2’s
response time grows unboundedly regardless of m.

3.6 Potential Extension

For readability and conciseness, we limited attention to ob-
taining a basic response time bound under GEDF for sporadic
parallel task systems. However, our techniques can also be
applied to global first-in-first-out as well as many other global
scheduling algorithms with minor modifications. Moreover,
recent work [9] proposed a slightly different analysis frame-
work, compliant vector analysis, that tightens the response
time bound for ordinary sporadic task systems scheduled un-
der GEDF compared to the framework we propose. This new
analysis framework can be applied to provide tighter bounds
for scheduling sporadic parallel task systems as well.

4 Optimization
The utilization loss seen in the utilization constraint U < Q is
mainly caused by a small value of Q. By Def. 10, Q depends
on vmaxi

(1 ≤ i ≤ n). If the value of vmaxi
can be decreased,

then the value of Q is increased.
To decrease vmaxi

(1 ≤ i ≤ n), we can seek to decrease
vmaxk (the maximum number of threads in any segment of
τk) for each task τk ∈ τ . This can be done by splitting any

1

τ12,1 (4)

τ12,2 (3)

τ12,3 (2)

τ12,4 (1)

τ11,1 (1)

τ13,1 (4)

τ13,2 (3)

τ13,3 (2)

τ13,4 (1)

τ14,1 (3)

τ14,2 (2)

τ14,3 (1)

τ15,1 (1)(a)

(b)

(d)

τ12,1 (4)

τ12,2 (3)

τ12,3 (2)

τ13,1 (1)τ11,1 (1)

τ14,1 (4)

τ14,2 (3)

τ14,3 (2)

τ15,1 (1)

τ16,1 (3)

τ16,2 (2)

τ16,3 (1)

τ17,1 (1)

τ12,1 (4)

τ12,2 (3)

τ13,1 (2)

τ13,2 (1)
τ11,1 (1)

τ14,1 (4)

τ14,2 (3)

τ15,1 (2)

τ15,2 (1)

τ16,1 (3)

τ16,2 (2)
τ17,1 (1) τ18,1 (1)

e1min = 13

e1min = 15

e1min = 18

(c)
τ12,1 (4)

τ12,2 (3)
τ13,1 (2)τ11,1 (1) τ14,1 (1)

τ15,1 (4)

τ15,2 (3)
τ16,1 (2) τ17,1 (1)

τ18,1 (3)

τ18,2 (2)
τ19,1 (1) τ110,1 (1)

Threads that originally belong to the same segment

Figure 9: Illustration of the optimization algorithm.

segment of τk with a large number of threads into multiple
sequential sub-segments, each of which has a smaller number
of threads, thus decreasing vmaxk . Notice that a critical con-
straint to enable such splittings is to ensure that emink ≤ pk
still holds for any task τk after splitting; otherwise, response
times may grow unboundedly. Thus, for each task, we need to
determine the maximum degree to which its segments can be
split. We propose an algorithm to solve this problem. Since
the idea behind this algorithm is intuitive, we next present an
example to illustrate it. The pseudo-code and a detailed de-
scription of the algorithm are given in Appendix A. Applying
this algorithm can also reduce the response time bound, as
seen in Sec. 5.
Optimization example. Since we seek to decrease vmaxk for
each task τk in any given task system using the same opti-
mization algorithm, we use one example task τ1 to illustrate
the idea. In this example, m = 4 and τ1 originally has five
segments, as illustrated in Fig. 9(a). The notation τ i,j1 (e) in
Fig. 9 denotes that thread τ i,j1 has an execution cost of e time
units. τ1 has a period of 18 time units, thus p1 = 18.

Because we want to decrease vmax1 , we first try to de-
crease the number of threads of segments in τ1 that have the
largest number of threads, which are τ21 and τ31 . We make
two important observations. (i) We desire to reduce the num-
ber of threads of τ21 and τ31 to no less than the number of
threads of τ41 , which contains the second largest number of
threads. Further reductions do not reduce vmax1 . (ii) We de-
sire to reduce the number of threads of segments in τ21 and
τ31 by the same amount. Reducing any such segment’s thread
count by a greater amount than the others does not reduce
vmaxk . Therefore, according to these observations, we split
each of τ21 and τ31 into two sequential sub-segments, one with
three threads and the other one with one thread, as shown in
Fig. 9(b) (note that in the figure updated segment notations
are used after each splitting). After this splitting, we obtain
emin1 = 15 < p1 = 18 (we apply the same method discussed

8

in Sec. 2 to obtain emin1). Thus, this splitting is valid. Now
we obtain a task τ1 in which segments τ21 , τ41 , and τ61 have the
largest number of threads (three threads per segment), while
segment τ11 has the second largest number of threads (one
thread per segment). Therefore, we again try to reduce the
number of threads of τ21 , τ41 , and τ61 to no less than the num-
ber of threads of τ11 . This can be achieved by splitting each of
these three segments into three sequential segments, each of
which contains only one thread. However, after such a split-
ting, we have emin1 = 28 > p1 = 18. Thus, such a splitting is
invalid.

Therefore, our goal now is trying to reduce the number
of threads of τ21 , τ41 , and τ61 to a smallest possible number,
which is two threads per segment in this case. As shown in
Fig. 9(c), we split each of τ21 , τ41 , and τ61 into two sequen-
tial sub-segments, one with two threads and another one with
one thread. Also notice that after this splitting, τ31 and τ41
originally belonged to the same segment, and τ61 and τ71 orig-
inally belonged to the same segment. Since combining τ31
and τ41 (as well as τ61 and τ71) into one sub-segment does not
increase vmax1 , we combine them in such a way to decrease
emin1 , as illustrated in Fig. 9(d). After this splitting, we have
emin1 = 18 = p1. Thus, we cannot split segments any further,
and we successfully reduce vmax1 from 4 to 2.

5 Experimental Evaluation

In this section, we describe experiments conducted using
randomly-generated parallel task sets to evaluate the applica-
bility of the response time bound in Theorem 1. Moreover, we
evaluate whether the optimization algorithm can effectively
improve schedulability and reduce the bound.

Experimental setup. In our experiments, parallel task sets
were generated as follows. The number of segments of each
task was uniformly distributed over [1, 30]. The number of
threads of each segment was uniformly distributed over [1,
m/2]. The execution cost of each thread was uniformly dis-
tributed over [1ms,100ms]. The worst-case execution cost ei
and the best-case execution cost emini of each parallel task τi
were then calculated using the approach discussed in Sec. 2.
Then, for each task τi, its period was uniformly distributed
over [emini , emini + ei], and its utilization was calculated us-
ing ei and pi. We also varied the system utilization Usum
within {0.1, 0.2, ..., m }. For each Usum, 1,000 parallel task
sets were generated for systems with four, six, and eight pro-
cessors.4 Each such parallel task set was generated by cre-
ating parallel tasks until total utilization exceeded Usum, and
by then reducing the last task’s utilization so that the total sys-
tem utilization equalledUsum. For each generated system, we
first checked schedulability (i.e., the ability to ensure bounded

4For systems with higher processor counts, recent experimental work
[2] suggests that when overheads are considered, clustered scheduling ap-
proaches (where groups of processors with low processor counts that share
low-level caches are scheduled globally) are better than global approaches.

response times) and the magnitude of response time bounds
using Theorem 1. Then, for each such generated system, we
applied the optimization algorithm and re-checked schedula-
bility and response time bounds. In doing so, system over-
heads were ignored (factoring overheads into our analysis is
beyond the scope of this paper). In all figures and tables pre-
sented in this section, we let “Original” and “Optimization”
denote results under the original analysis and results after ap-
plying the optimization algorithm.

Results. The schedulability results that were obtained on
four-, six-, and eight-processor systems are shown in insets
(a)–(c) of Fig. 10, respectively. In these figures, the x-axis
denotes Usum and the y-axis denotes the fraction of generated
task sets that were successfully schedulable with bounded re-
sponse times. Each curve plots the fraction of the gener-
ated parallel task sets the corresponding approach success-
fully scheduled, as a function of Usum. As seen, our anal-
ysis can provide reasonable schedulability. For example, on
four processors, all parallel task sets have bounded response
times until Usum reaches 3.0 and more than 40% of the task
sets still have bounded response times when Usum reaches
3.3. Moreover, the optimization algorithm is able to effec-
tively improve schedulability, especially when the processor
count is large. For example, on eight processors, the opti-
mization algorithm can improve schedulability by more than
100% in many cases (e.g., whenUsum = 4.0). Such improve-
ments tend to increase with increasing processor count. This
is because when m becomes larger, it is easier to increase Q
by applying the optimization algorithm, which is intuitive ac-
cording to the definition of Q. Note that, when schedulability
drops significantly, it does so at an integral values of Usum.
For example, as seen in Fig. 10(a), when Usum reaches 3.0,
schedulability drops from 100% to less than 50% under Orig-
inal. This is because when Usum reaches 3.0, by Def. 7, U
may also equal 3.0 since some parallel tasks very likely have
utilization greater than 1.0. Thus, Q has to be 4.0 instead of
3.0 (when the utilization is below 3.0) in order for the uti-
lization constraint Q > U to hold; this obviously makes this
constraint much more severe.

Fig. 11 shows the computed response time bounds using
Theorem 1 under Original and Optimization. To better illus-
trate the magnitude of the response time bounds, we plot rel-
ative response time bounds. A task’s relative response time
bound is given by the ratio of its response time bound divided
by its period. The data in Fig. 11 shows average relative re-
sponse time bounds obtained by considering all tasks in cer-
tain selected task sets. Such task sets were selected by con-
sidering values of Usum for which 100% schedulability can
be ensured, which guarantees all such task sets valid response
time bounds. For example, on four processors, we calculated
the average relative response time bound over task sets whose
utilizations are within [0.1, 3) (all such task sets are schedu-
lable and thus have valid response time bounds). As seen in

9

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

(a) Four processors

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

(b) Six processors

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6 7 8

Sc
he

du
la

bi
lit

y

Total Utilization

Original
Optimization

(c) Eight processors

Figure 10: Schedulability results.

 0

 5

 10

 15

 20

m=4 m=6 m=8Re
la

tiv
e

re
sp

on
se

 ti
m

e
bo

un
d

Original
Optimization

Figure 11: Response time bounds.

the figure, our analysis can achieve reasonable response time
bounds. For example, on four processors, the average relative
response time bound is around nine. The benefit of the opti-
mization algorithm is apparent. For example, on eight proces-
sors, we can reduce the average relative response time bound
from sixteen to less than ten. This is because applying the
optimization algorithm only increases Q and does not change
other values in the response time bound expression shown in
Theorem 1.

6 Conclusion

We have presented schedulability analysis for sporadic par-
allel task systems under GEDF scheduling. The proposed
analysis shows that such systems can be efficiently supported
on multiprocessors with bounded response times. In exper-
iments presented herein, our analysis is proved to provide
good performance w.r.t. both schedulability and response
time bounds. In future work, it would be interesting to in-
vestigate more practical parallel task models where data com-
municate among segments within a parallel task. Moreover,
allowing more general parallel execution patterns such as cy-
cles could be a significant improvement.

References

[1] D. Bailey. An optimal scheduling algorithm for parallel video process-
ing. In Proc. of the 5th IEEE Intl. Conf. on Multimedia Computing and
Systems, pp. 245-248, 1998.

[2] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical com-
parison of global, partitioned, and clustered multiprocessor real-time
schedulers. In Proc. of the 31st Real-Time Sys. Symp., pp. 14-24, 2010.

[3] C. Liu and J. H. Anderson. Supporting soft real-time parallel
applications on multicore processors (full version). Available at:
http://www.cs.unc.edu/∼anderson/papers.

[4] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDon-
ald. Parallel programming in OpenMP. In Morgan Kaufmann, 2000.

[5] S. Chen and S. Schlosser. MapReduce meets wider varieties of applica-
tions. In Technical Report IRP-TR-08-05, Intel Labs Pittsburgh, 2008.

[6] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. In Proc. of the 6th USENIX Conf. on Symp. on Operating
System Design and Implementation, pp. 137-150, 2004.

[7] U. Devi and J. Anderson. Tardiness bounds under global EDF schedul-
ing on a multiprocessor. In Proc. of the 26th IEEE Int’l Real-Time Sys.
Symp., pp. 330-341, 2005.

[8] E. Dougherty and P. Laplante. Introduction to real-time imaging. In
Wiley-IEEE Press, 1995.

[9] J. Erickson, U. Devi, and S. Baruah. Improved tardiness bounds for
global EDF. In Proc. of the 22nd Euromicro Conf. in Real-Time Sys.,
pp. 14-23, 2010.

[10] D. Feitelson. Job scheduling in multiprogrammed parallel systems. In
Technical Report RC 19790 (87657), 1997.

[11] D. Feitelson and L. Rudolph. Parallel job scheduling: issues and ap-
proaches. In Proc. of the Workshop on Job Scheduling Strategies for
Parallel Processing, pp. 1-18, 1995.

[12] E. Horowitz and S. Sahni. Exact and approximate algorithms for
scheduling nonidentical processors. In Journal of ACM, 23(2), 1976.

[13] Y. Kitamura, A. Smith, H. Takemura, and F. Kishino. Parallel algo-
rithms for real-time colliding face detection. In Proc. of the 4th IEEE
Workshop on Robot and Human Communication, pp. 211-218, 1995.

[14] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-
time tasks on multi-core processors. In Proc. of the 31st Real-Time Sys.
Symp., pp. 259-268, 2010.

[15] H. Leontyev and J. Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. In Proc. of the 28th IEEE Real-TIme Sys-
tems, pp. 413-422, 2007.

[16] C. Liu and J. Anderson. Supporting pipelines in soft real-time multi-
processor systems. In Proc. of the 21st Euromicro Conf. on Real-Time
Sys., pp. 269-278, 2009.

[17] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft
real-time multiprocessor systems. In Proc. of the 30th Real-Time Sys.
Symp., pp. 425-436, 2009.

[18] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time
scheduling for generalized parallel task models. In Proc. of the 32nd

Real-Time Sys. Symp., pp. 217-226, 2011.
[19] C. Volker, V. Hamscher, and R. Yahyapour. Economic scheduling in

grid computing. In Proc. of the Conf. on Scheduling Strategies for Par-
allel Processing, pp. 128-152, 2002.

[20] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Job scheduling for multi-user MapReduce clusters. In Tech-
nical Report EECS-2009055, UC Berkeley, 2009.

10

Appendix A

We propose Algorithm Q-Optimization to increase Q for
any given parallel task system τ by decreasing vmaxk for each
task τk ∈ τ , as discussed in Sec. 4. The pseudo-code is given
in Fig. 12.
Algorithm description. Algorithm Q-Optimization seeks to
increase the value of Q by decreasing the maximum number
of threads in any segment of each task.

We first describe the function SPLIT used in the main al-
gorithm. SPLIT(τk,H) splits the segments with the maxi-
mum number of threads into a number of sequential sub-
segments, each with at most H threads (Lines 1-3 in Func-
tion SPLIT). Threads are assigned to each of these sub-
segments in smallest-thread-ID-first order, until either a sub-
segment containsH threads or all threads have been assigned.
Then Function COMBINE (Line 4 in Function SPLIT) seeks
to combine any two sub-segments that originally belong to the
same segment into one segment if the sum of the number of
threads in both sub-segments is no greater than the maximum
number of threads of any segment. Finally, Function SPLIT
calculates emink (Line 5 in Function SPLIT) using the method
we discussed in Sec. 2.

Now we describe Algorithm Q-Optimization in detail. Ac-
cording to observations (i) and (ii) given in Sec. 4, the algo-
rithm first executes SPLIT(τk, vmaxk), which splits each of the
segments in τk that have the maximum number of threads into
a sequential number of sub-segments, each with at most vmaxk

threads. After such a splitting, if emink < pk and vmaxk 6= 1
(Lines 5-7 in Algorithm Q-Optimization), then we set the
further-split-flag to be true, which implies that there is still
room for us to split τk to further reduce vmaxk .

On the other hand, if emink > pk after such a splitting
(Line 8 in Algorithm Q-Optimization), then it implies that
such a splitting causes emini to exceed τk’s period (which
causes the task to have unbounded response times) and is
thus invalid. Since this splitting is invalid, we restore the
task structure to the one before the splitting (Lines 10-11 in
Algorithm Q-Optimization). Thus, we now know that it is
impossible to split segments in τk to reduce vmaxk to equal
vsecmaxk . However, by splitting, we might still be able to re-
duce vmaxk to some number between vsecmaxk and vmaxk (re-
alized by Lines 12-19 in Algorithm Q-Optimization). Since
the maximum value of such a number is given by Ck, starting
fromCk, the algorithm uses the SPLIT function and compares
the resulting emink with pk to determine whether any such
splitting is valid (using the same logic as discussed above).

11

ALGORITHM: Q-OPTIMIZATION

further-split-flag: A BINARY VARIABLE

vsecmax
k : THE SECOND MAXIMUM NUMBER OF PER-SEGMENT THREADS IN τk
Ck : Ck := vsecmax

k + 1

1 for each parallel task τk ∈ τ
2 further-split-flag:=false
3 do
4 SPLIT(τk,vsecmax

k)
5 if emin

k < pk
6 if vmax

k 6= 1
7 then further-split-flag:=true
8 else if emin

k > pk
9 Restore the structure of τk to the one before the last splitting

10 Update segment notations, Ak, vmax
k , vsecmax

k , and Ck

11 while Ck < vmax
k

12 SPLIT(τk,Ck)
13 if emin

k ≤ pk
14 break
15 else
16 Restore the structure of τk to the one before the last splitting
17 Update segment notations, Ak, vmax

k , vsecmax
k , and Ck

18 Ck := Ck + 1
19 while further-split-flag=true

FUNCTION: SPLIT(τk,H)

Ak : THE SET OF SEGMENTS IN τk THAT HAVE vmax
k NUMBER OF THREADS

1 for each segment τ jk ∈ Ak

2 Split τ jk into
⌈vjk
H

⌉
sequential sub-segments, each with at most H threads, and

assign threads to each sub-segment in smallest-thread-ID-first order
3 Update segment notations, Ak, vmax

k , vsecmax
k , and Ck

4 COMBINE(τk)
5 Calculate emin

k

FUNCTION: COMBINE(τk)

h: A VARIABLE, INITIALLY h := 1

1 while τhk exists
2 if τhk and τh+1

k (if any) are sub-segments that originally belong to the same segment, and vhk + vh+1
k ≤ vmax

k

3 then combine τhk and τh+1
k into one segment

4 Update segment notations, Ak, vmax
k , vsecmax

k , and C
5 else
6 h := h+ 1

16

Figure 12: Algorithm Q-Optimization.

12

