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Abstract

Semi-partitioned real-time scheduling algorithms extend
partitioned ones by allowing a (usually small) subset of
tasks to migrate. The first such algorithm to be proposed
was directed at soft real-time (SRT) sporadic task systems
where bounded deadline tardiness is acceptable. That al-
gorithm, called EDF-fm, is able to fully utilize the under-
lying hardware platform’s available capacity. Moreover, it
has the desirable practical property that migrations are
boundary-limited, i.e., they can only occur at job bound-
aries. Unfortunately, EDF-fm requires restrictions on per-
task utilizations, and thus is not optimal. In this paper, a
new boundary-limited, semi-partitioned algorithm is pre-
sented for SRT systems that is the first such algorithm to
be optimal. This algorithm, called EDF-0s, is similar to
EDF-fm but utilizes several new mechanisms that obviate
the need for per-task utilization restrictions. Experiments
presented herein show that, not only is EDF-0S provably
better than EDF-fmwith respect to schedulability, tardiness
bounds under EDF-0S are often much lower as well.

1 Introduction

Multiprocessor real-time scheduling algorithms may follow
a partitioned or global approach or some hybrid of the
two. Under partitioned scheduling, tasks are statically as-
signed to processors, while under global scheduling, they
are scheduled from a single run queue and hence may mi-
grate. When comparing different scheduling approaches,
one criterion is optimality, i.e., the ability to correctly sched-
ule (without timing constraint violations) any task system
for which a correct schedule exists. In the case of implicit-
deadline (see Sec. 2) sporadic task systems, optimality can
be achieved via global scheduling, but not partitioning;
however, global scheduling entails higher runtime over-
heads. When designing a hybrid approach, the goal is usu-
ally to attain optimal or near-optimal behavior but with less
overhead than a truly global approach.

One such hybrid approach is semi-partitioned schedul-
ing, which extends partitioned scheduling by allowing those
tasks that cannot be feasibly assigned to processors to mi-
grate. Semi-partitioned scheduling was first proposed for
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supporting soft real-time (SRT) sporadic task systems for
which bounded deadline tardiness is allowed [1]. Subse-
quently, several semi-partitioned algorithms were proposed
for hard real-time (HRT) systems [2, 3, 6, 7, 8, 11, 13, 14,
15,16, 17, 18, 19, 20, 25].

The original SRT algorithm proposed in [1], called EDF-
fm, is able to fully utilize the underlying hardware plat-
form’s available capacity. Moreover, it is boundary-limited:
a migrating task may only migrate between job boundaries
(i.e., between successive invocations). Unfortunately, EDF-
fm requires restrictions on per-task utilizations, and thus is
not optimal. In their simplest form, these restrictions pre-
clude any task utilization from exceeding 0.5, though they
can be relaxed somewhat, as discussed below.

Of the HRT algorithms cited above, two are optimal,
at least in theory, namely RUN [25] and EKG [3]. How-
ever, both are optimal only for implicit deadline periodic
task systems, and EKG becomes optimal (for periodic sys-
tems) only when a configurable parameter k£ becomes arbi-
trarily close to the number of processors, which unrealis-
tically increases preemption frequency. Additionally unlike
EDF-fm, neither of these algorithms is boundary-limited.
Thus, they allow jobs to migrate, which can be expensive in
practice if jobs maintain much cached state.

Contributions. In this paper, we present the first
boundary-limited, semi-partitioned scheduling algorithm
that is optimal for SRT sporadic task systems. This algo-
rithm, which we call EDF-0s (earliest-deadline-first-based
optimal semi-partitioned scheduling), is based on EDF-fm.

EDF-fm was designed with implicit-deadline sporadic
task systems in mind. It functions in two phases: an offline
assignment phase, where tasks are assigned to processors
and fixed tasks (which do not migrate) are distinguished
from migrating ones (which do); and an online execution
phase, where invoked tasks are scheduled via rules that ex-
tend earliest-deadline-first (EDF) scheduling to account for
fixed and migrating tasks. EDF-fm’s per-task utilization re-
strictions (the source of its non-optimality) arise for two
reasons. First, the proof of bounded tardiness for EDF-fm
relies crucially on the fact that migrating tasks never miss
deadlines. Such misses are problematic because they create
complex “couplings” of processors that are difficult to ana-
lyze: a miss by a migrating task on one processor can delay
the processing of work due to it on another processor. Sec-
ond, in EDF-fm, two migrating tasks may be assigned to the



same processor. EDF-fm schedules the jobs of such tasks on
an EDF basis and prioritizes them over jobs of fixed tasks.
To avoid misses by migrating tasks as desired, migrating
tasks are simply required to have a utilization of at most 0.5
(or more generally, those sharing a processor must have a
combined utilization of at most 1.0). The fact that migrating
tasks do not miss deadlines then follows trivially from the
optimality of EDF on one processor [23].

In EDF-o0s, we eliminate such utilization restrictions by
modifying both phases of EDF-fm. In particular, we modify
the assignment phase by considering tasks in a certain order
and by allowing a migrating task to execute on any number
of processors (in EDF-fm, such a task executes on at most
two processors). We modify the scheduling phase by stat-
ically prioritizing the jobs of certain migrating tasks over
those of others (in EDF-fm, such jobs are always sched-
uled on an EDF basis). As a result of our modifications,
migrating tasks can miss deadlines. However, we show that
the complex “coupling” noted above can be managed in our
analysis by leveraging properties that follow from our mod-
ified assignment phase and the more predictable nature of
the static prioritizations we introduce. This analysis shows
that EDF-0s is optimal: deadline tardiness is bounded pro-
vided total utilization is at most the system’s capacity and
per-task utilizations are at most 1.0. Moreover, this claim
of optimality holds regardless of whether deadlines are im-
plicit, constrained, or unrestricted (see Sec. 2).

Organization. We present our optimality proof (Sec. 4) af-
ter first providing needed background (Sec. 2) and describ-
ing EDF-0s in detail (Sec. 3). We then discuss extensions to
our main results (Sec. 5), present an experimental compari-
son of EDF-0s and EDF-fm (Sec. 6), and conclude (Sec. 7).
While EDF-0s is provably superior to EDF-fm with re-
spect to schedulability, our experiments show that tardiness
bounds under EDF-0s are often much lower as well.

2 Background

We consider the scheduling of a sporadic task system 7 =
{71, 72,...,7n } on M identical processors—we assume fa-
miliarity with the sporadic task model [24]. Task 7 is speci-
fied by (C;, T;), where C; is its maximum per-job execution
requirement and 7} is its period. The j** job of 7;, denoted
Ti,;> has release time r; ; and deadline d; ;. We initially
restrict attention to implicit deadlines (d; ; = r;; + 13)
but later (in Sec. 5) consider both constrained deadlines
(ds,; < 7i;+T;) and unrestricted deadlines (no relationship
between d; ; and r; ; + T; assumed). We denote the utiliza-
tion of 7; by U; = C;/T;, and the pth processor as F,. We
assume that time is discrete.

In the scheduling algorithms we consider, each task is al-
located a non-zero fraction, or share, of the available utiliza-
tion of 1.0 on certain processors. Task 7;’s share (potentially
zero) on P, is denoted s; ,,. The total share allocation on P,
is denoted o, £ ZTq‘,GT 8;,p- We require that o, < 1.0 and
that each task’s total share allocation matches its utilization:
U, = Zi\/le 3; k- If 7; has non-zero shares on multiple (only
one) processor, then it is a migrating (fixed) task.

initially s; , = 0 and 0, = O for all s and p
p:=1;
fori:=1to N do
ifU; <1— o, then /x 7; is fixed */
Sip = Ui
op:=0p+U;
else /x 7; is migrating */
Sip, Sipt1 = (1= 0p), Ui = (L —0op);
Op; Opt1:= 1, Sipt1
fi;
ifo,=1thenp:=p+1fi
od

Figure 1: EDF-fm assignment phase.

In the scheduling algorithms we consider, each job of
each task 7; executes on a specific processor. The fraction
of 7;’s jobs (potentially zero) that execute on processor P,
is denoted f; ,. Such fractions are commensurate with 7;’s
share allocations:

Py

fip = [}f . 6]
The lowest-indexed processor to which migrating task 7; as-
signs jobs is called its first processor.

If a job 7;; completes at time ¢, then its tardiness is
maz(0,t—d; ;). We seek scheduling algorithms that ensure
bounded tardiness: for each task, there is a constant upper
bound on the tardiness of any of its jobs. We consider only
feasible task systems that satisfy the following conditions.

vr; € T,U; <1, 2)
Y Ui< M. 3)
T; €T

EDF-fm. The EDF-o0s algorithm presented herein extends
the EDF-fm algorithm proposed by Anderson et al. [1].
EDF-fm consists of assignment and execution phases. Dur-
ing the assignment phase, tasks are allocated shares offline
via the procedure in Fig. 1. This procedure allocates proces-
sor utilization (as shares) to tasks by considering each pro-
cessor and task in turn. If the currently considered processor
P, has sufficient unallocated utilization, then the currently
considered task 7; is assigned to it as a fixed task; otherwise,
7; exhausts the remaining unallocated utilization of P, and
receives the rest of its needed allocation from P, .

In the execution phase, released jobs are scheduled on-
line without migration (i.e., each job executes on only one
processor). The following prioritizations are used on each
processor: migrating tasks are prioritized over fixed ones,
and jobs of a given type (fixed or migrating) are prioritized
against each other on an EDF basis. By the assignment pro-
cedure in Fig. 1, at most two migrating tasks can have non-
zero shares on a given processor. It is required that for any
two such tasks, their combined utilization is at most 1.0.
This ensures that such tasks do not miss deadlines (which is
a crucial property in the tardiness analysis of EDF-fm).

To ensure that fixed tasks have bounded tardiness, it is
important that no processor be overloaded in the long run.
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Figure 2: EDF-fm task assignment for Ex. 1. Shares of migrating
tasks are shown in a darker shade. 71 = (4, 5) is a fixed task on
Pi, 72 = (2,4) migrates between P; and P, with with 551 = £

5
and 522 = -5, and so on. After assignment, 55

, 50 Of P3 is unused.

This can be ensured by employing a mechanism that en-
sures that, in the long run, each migrating task 7; submits
an appropriate fraction of its jobs to each of the two proces-
sors on which it executes. Such fractions are given by (1). In
EDF-fm, the exact allocation of such jobs to processors is
done by leveraging results from work on Pfair scheduling.
We illustrate this with an example below.

Ex. 1. Consider the task system 7 = {(4,5), (2,4), (1, 2),
(2,5), (3,4)}, with 3-_ . U; = 33 < 3. Hence, 7 is feasi-
ble on 3 processors. The assignment phase of EDF-fm will
produce the share allocations in Fig. 2 when applied to the
tasks in 7 in the listed order.! Note that 75 has a share of %
on Py and 5 on P,. Thus, by (1), f11 = (£)/(3) = 2 of
its jobs should execute on P; in the long run, and f; 2 =
(3)/(3) = £ of is jobs should execute on P,. At runtime,
EDF-fm determines which processor to allocate to a newly
released job of such a migrating task by applying a formula
that is derived by considering a Pfair schedule [4] of certain
fictitious periodic tasks. To avoid confusion, we will call
these fictitious tasks “processes” (instead of tasks). For the
case of 79 in Ex. 1, two Pfair processes 1" and U are con-
sidered with utilizations 2 and 2, respectively. These uti-
lizations match the fractions % and g as computed using (1)
above. Job-to-processor allocations are made for 75 by con-
ceptually maintaining a single-processor Pfair schedule of
T and U assuming each is always available for execution.
Whenever a new job 75 ; of 75 is released, the Pfair sched-
ule is extended by one quantum. If process 7" is scheduled
during that quantum, then 75 ; is scheduled on P; (72’s first
processor); if process U is instead scheduled, then 7 ; is
scheduled on P,. This is illustrated in Fig. 4. By the def-
inition of a Pfair schedule, by any integral point in time ¢
in the Pfair schedule under consideration (where each inte-
gral time unit is one quantum), process 7' will have received
approximately % - ¢ quanta, and U will have received ap-
proximately % - t quanta. Thus, by any point in time in the
EDF-fm schedule, approximately % of the released jobs of
79 will have been assigned to P, and approximately % to Ps,
as desired.

More specifically, in a Pfair schedule of a periodic sys-

IStrategies for selecting an assignment order are considered in [1].

! release
| deadline

| late execution

[ scheduled job
O late job
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Figure 4: Using a fictitious Pfair schedule to assign jobs of 72
from Ex. 1. The upper part of the figure shows a Pfair schedule
for two processes 1" = % and U = % (In such a schedule, each
quantum of a task’s execution has a release time and deadline.) The
lower part shows how released jobs of 7 are distributed between
P and P> based on the Pfair schedule, starting with the fourth job
of 1o (for clarity, no jobs of other tasks are depicted in the lower
part). Since job releases are sporadic, consecutive jobs of 75 may
be separated by more than 7%, as seen for jobs T2 ¢ and 72_7.

tem of processes that do not over-utilize the assumed pro-
cessor platform, by the integral time instant ¢, a process
with utilization u will have received between |u -t| and
[u-t] quanta. In our case, a single-processor platform is
assumed and the Pfair processes under consideration will
always have a total utilization of 1.0. Based on this property
of Pfair schedules, the following is shown in [1].

Property 1. In any EDF-fm schedule, out of the first n jobs
of a migrating task t;, the number of jobs assigned to some
processor P, is between | f; , -n| and [ f; , - n

EDF-fm does not really maintain a fictitious Pfair
schedule per migrating task to assign its jobs; rather, a
formula derived from Pfair scheduling principles is used
that maps the index of a newly-released job to a processor.
For example, for task 72 in Ex. 1, its fourth job would be
mapped to P, its fifth job to P», and so on (see Fig. 4).
Fig. 5 shows the EDF-fm schedule for the task system in
Ex. 1 up to time 36, assuming each job is released as soon
as possible.

Ex. 2. We now give an example task system that shows
that if the task utilization restriction of EDF-fm is violated,
then migrating tasks may miss deadlines. Such misses in-
validate the tardiness analysis given in [1]. Consider the
system 7 = {(4,6), (2, 3), (5,6), (2,3), (1,2),(2,3)}. Be-
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Figure 5: An EDF-fm schedule for the task system in Ex. I.

fon=2and foo = 3. fao = faz = 3.
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Figure 6: An EDF-fm schedule for the task system in Ex. 2 show-
ing execution on P,. Jobs from 73 = (5, 6) complete late.

cause Zﬂ cr U; = 4 < 3, 7 is feasible on 4 processors.

Because all task utilizations exceed %, EDF-fm’s utilization
restriction will be violated regardless of the order in which
tasks are considered for assignment. For the listed order, we
show that deadlines may be missed by migrating tasks on
P,. Because 71 = (4, 6) will be assigned as a fixed task on
Py, 79 will migrate between P, and P, with 591 = % and
52,2 = %. Since only 2 of the available utilization of P re-
mains after assigning 7o, 73 = (5,6) will migrate between
P, and P; and its share on P, will be 530 = % Note that
for = % : % = % The Pfair-based mapping formula will
assign odd-indexed jobs of 7 to P; and even-indexed jobs
of 79 to Py. For 73, f39 = % . g = %. The mapping formula
will assign the first four jobs in each consecutive group of
five jobs of 73 to P». Fig. 6 shows the first 25 time units of
execution on P, assuming deadline ties are broken in favor
of 79. Note that each of the first four jobs of 73 misses its
deadline.

3 EDF-os

EDF-0s consists of assignment and execution phases, like
EDF-fm. Its assignment phase is described by the procedure
in Fig. 7. An assignment is produced in two steps: first, as
many tasks as possible are assigned as fixed tasks, using
a worst-fit decreasing bin-packing heuristic. Then, all re-
maining tasks are assigned (in decreasing utilization order)
as migrating tasks by considering each processor and re-
maining task in turn. Each such task is allocated non-zero
shares from a succession of processors until the sum of its
shares equals its utilization. Like the assignment procedure

for EDF-fm, this procedure ensures that there are at most
two migrating tasks with non-zero shares on any processor.
However, a migrating task can now have non-zero shares on
more than two processors. Note that we are no longer im-
posing any restrictions on task utilizations (other than that
they be at most 1.0), so it is now possible that migrating
tasks may be tardy. Note also that, because tasks are con-
sidered in decreasing utilization order, the utilization of any
migrating task is no more than that of any fixed task.

The same assignment scheme has been used by Sarkar
et al. [26] in work on frame-based fair scheduling for rate-
based task systems. Specifically, this scheme is used in their
work to determine the number of units of execution to allo-
cate for each task in a frame (specified interval of time).

In the execution phase, EDF-0s works as follows. As
in EDF-fm, each job executes on only one processor. On
any processor, migrating tasks are statically prioritized over
fixed ones, and fixed tasks are prioritized against each other
using EDF (like in EDF-fm). Also, if a processor has two
migrating tasks 7; and 7,11, then 7; is statically prioritized
over 7;41 (this differs from EDF-fm). That is, a migrating
task executes with highest priority on any processor that is
not its first processor (recall Sec. 2). Informally, this rule
ensures that tardiness is “created” for a migrating task only
on its first processor; on its other processors, one of its jobs
will be tardy only if its predecessor job was also tardy. In
fact, any such job assigned to a non-first processor will be
scheduled as soon as it is eligible (i.e., as soon as it has been
released and its predecessor has finished). As we shall see in
the tardiness bound proof in Sec. 4, this very predictable ex-
ecution behavior for “non-first-processor” jobs can be lever-
aged to derive a tardiness bound for all migrating tasks, and
in turn all fixed tasks.

Because a migrating task may execute on more than two
processors in EDF-0s, we must use a slightly altered ver-
sion of EDF-fm’s Pfair-based job assignment policy. In par-
ticular, if a migrating task executes on n processors, then
we conceptually manage n Pfair processes with utilizations
that sum to 1.0, where each Pfair process corresponds to a
processor, as before. If, in a schedule of these n processes
on a single processor, the k%" process is allocated time slot
t, then the t* job of the migrating task is assigned to pro-
cessor Py. With this generalized assignment policy, Prop. 1
continues to hold.

Ex. 1 (revisited). We now discuss how EDF-0s would
schedule the task system from Ex. 1 in Sec. 2. For conve-
nience, we list here the tasks in decreasing utilization order:
T ={(4,5),(3,4),(2,4),(1,2),(2,5)}. Fig. 8 shows how
EDF-os assigns these tasks to processors. Note that now
there is only one migrating task, 75, which executes on P;
and P,. Because its shares are the same on these two pro-
cessors, we have f51 = % and f5o = % Our Pfair-based
job assignment policy will assign odd-numbered jobs of 75
to P and the even numbered ones to P». Fig. 9 shows an ex-
ample schedule of this system. In this schedule, only fixed
tasks miss deadlines. Note also that jobs of 75 alternate be-
tween P; and Ps.



initially s; , = 0 and 0, = O for all s and p
/* assign fixed tasks via a worst-fit decreasing packing */
Index tasks in the order of heaviest utilization to lightest;
for i := 1to N do
Select p such that o}, is minimal;
ifU, >1— Jp then
break /x can’t assign any more fixed tasks */

fi;
Si,py Op, last := Ui, Op + Ui, %
fi
od;
/* now assign migrating tasks x/
p=1

for i := last + 1to N do
remaining := U,
repeat
Si,p := min(remaining, (1 — op));
Op, TEMAINING 1= Op + Si,p, TEMAINING — S; p;
ifo,=1thenp:=p+1fi
until remaining = 0
od

Figure 7: EDF-0s assignment phase.
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Figure 8: EDF-os task assignment for Ex. 1: 7 = (4,5), 72 =
(3,4), 3 = (2,4), and 74 = (1,2) are assigned as fixed tasks.
75 = (2,5) (shaded) is the only migrating task. For it, s51 = %
and s52 = £. After assignment, 55 of P is unused.

Ex. 2 (revisited). Next, we consider how EDF-0s would
schedule the task system from Ex. 2 in Sec. 2. As before,
we list tasks in decreasing utilization order for convenience:
T = {(57 6)7 (4a 6)7 (27 3)v (27 3)7 (2a 3)7 (17 2)} The task as-
signment that EDF-0s produces is shown in Fig. 10. Note
that this time there are two migrating tasks, and one of them,
75 = (2, 3), executes on three processors, P;, P, and Ps.
Fig. 11 shows an example EDF-0s schedule for this task
system.

4 Tardiness Bounds

In this section, we derive tardiness bounds for tasks sched-
uled by EDF-0s. We consider migrating and fixed tasks sep-
arately, in Secs. 4.1 and 4.2, respectively. In the rest of this
section, we assume that the task system 7 being analyzed is
feasible (refer to (2) and (3)). We denote the set of all fixed
tasks on processor P, as Tzf , and the sum of the shares of all
fixed tasks on P, as O'ZJ: .

We begin by establishing several properties that follow
from the assignment procedure in Fig. 7. Recall that, as dis-
cussed in Sec. 3, Prop. 1 continues to hold for EDF-o0s.
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Figure 9: EDF-0s schedule for Ex. 1. f5.1 = f5,2 = 3.
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Figure 10: EDF-os task assignment for Ex. 2.
Property 2. For each migrating task ;, U; < 1.

This property follows from the worst-fit decreasing
heuristic used by our assignment procedure. Because 7 is
feasible, if U; < 1 fails to hold, then U; = 1 holds. More-
over, 1 < M, for otherwise, total utilization would exceed
M. These facts imply that 7; would have been assigned as a
fixed task to a dedicated processor.

Property 3. There are no more than two migrating tasks
that assign jobs to processor P,,. If there are two migrating
tasks that assign jobs to P, then P, is the first processor
for exactly one of them.

It can be shown by induction that when our assignment
procedure first considers a migrating task 7;, there can be at
most one migrating task already assigned to the currently
considered processor (which will be 7;’s first processor).
From this, Prop. 3 follows.

Property 4. For processor P, with one or more migrating
tasks T; (and possibly Ty,) that have shares s; , (and sy, ;),
JIJ; + Sip+skp < L

Our assignment procedure does not allow o, to exceed
1.0 (i.e., P, cannot be over-allocated).

Property 5. If processor P, contains migrating tasks 7; and
Ty, and Py, is the first processor of Ty, then s; , + Uy, < 1.

Because tasks are assigned in order of decreasing uti-
lization, there must be some fixed task 7y on P, such that
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Figure 11: EDF-os schedule for Ex. 2. f51 = %, fs2 = 5 and

f5,3 = i- fe,3 = % and fs 4 = %

Uy > Uy. Therefore, by Prop. 4 and because s, > 0,
Prop. 5 holds.

Property 6. Out of any c consecutive jobs of some migrat-
ing task T;, the number of jobs released on P, is at most

fi)p(C — 1) + 2.

By Prop. 1, if 7; executes jobs on P, then out of its first
n jobs, the number assigned to P, is between | f; ,, - n] and
[ fi.p - m]. Thus, out of any ¢ consecutive jobs of 7;, where
the index of the first such job is j, the number of jobs as-
signed to P, is at most

[fip- (G +e=D]=Lfip- ()]
< {Since [z +y] < [z] + [y]
[fip- G+ [fip- (=] = Lfip- ()]
< {Since [z] — |z] < 1}
[fip-(c=1)]+1
< {Since [z] <z + 1}
fip-(c—1)+2.

4.1 Tardiness Bounds for Migrating Tasks

In this subsection, we derive a tardiness bound for migrating
tasks. Because such tasks are statically prioritized over fixed
ones, we need not consider fixed tasks in this derivation.
Thus, all referenced tasks in this subsection are assumed to
be migrating.

First, we provide a bound on the work from a migrating
task that competes with an arbitrary task. This result will be
used both here and in the next subsection.

Lemma 1. Consider a migrating task 7; that releases jobs
on processor P,. Letto > 0 and t. > to. If no job of 7;
has tardiness exceeding A;, then the demand from 7; in the
interval [to,t.) on P, is less than

(8ip)(te —to) + (sip)(Ai + T3) + 2C;.

Proof. Since we assume that the maximum tardiness of 7; is
at most A;, we know that any job released by 7; will take
no more than 7; + A; time units to complete, so jobs of
7; released before tg — (A; + T;) cannot create demand in
[to, t.). Thus, competing demand for execution from jobs
of 7; in the interval [tg,t.) comes from jobs of 7; released
in [to — A; — T;, t.). Since the minimum inter-release time

between jobs of 7; is Tj, there are at most [M—‘

such jobs released in this interval. Since 7; is a migrating
task, the number of jobs executed on P, out of any number
of consecutive jobs of 7; is limited by Prop. 6. Thus, the
demand from 7; in the interval [to,t.) on P, is at most

(1o ([ 1) )

< {Since [z] <z + 1}

<fi,p : <<t — o ;Ai -5, 1> - 1> + 2) C;

= {Simplifying}

te —t A+ T
<fi,p'< 0—; + )+2>C¢

= {By (D}
(si,p)(te — to) + (8ip)(A; + T7) 4+ 2C;. O

We now show that we can upper-bound the tardiness of a
migrating task 7, by considering an alternate job allocation
in which all of its jobs execute on its first processor, P,,. (For
ease of understanding, we will be using the indices “¢” and
“h” in the rest of this subsection to reflect lower and higher
static priorities, respectively.) Note that Prop. 5 ensures that,
when ignoring fixed tasks (as we do in this subsection), P,
has sufficient capacity to accommodate any jobs of 7, we
may move to it from other processors. This is because there
must exist a fixed task on P, with utilization at least that of
T¢. (Our usage of a worst-fit decreasing assignment strategy
is crucially exploited here.)

Lemma 2. Ifevery job of migrating task 7, that executes on
a non-first processor of 7, is moved to its first processor P,,
then no job of 7, will complete earlier. Moreover, if another
migrating task T, executes on P,, then such job moves do
not affect it.

Proof. If 7y shares P, with another migrating task 7, then
by the prioritization rules of EDF-0s, 74, is not impacted by
moving jobs of 7, to P, since 73, has higher priority than 7,
(we are not changing the static prioritization of these tasks).

We now show that moving a single job 74 of 7, to P,
cannot lessen the completion time of any job of 7,. By in-
ducting over all such moves, the lemma follows.

Because job 7, is being moved, it was originally ex-
ecuting on a non-first processor of 74. Hence, 74 was of
highest priority on that processor and executed immediately
to completion as soon as it was eligible (i.e., by the later of
its release time and the completion time of its predecessor
Te,k—1, if any). After the move, its execution may be delayed
by jobs of 73,, which have higher priority than those of 7, on



P,. Thus, after the move, 7 cannot complete earlier, and
may complete later. If it completes later, then this cannot
cause subsequent jobs of 7, to complete earlier (earlier jobs
of 7, are clearly not impacted). O

Thm. 1 below provides tardiness bounds for migrating
tasks. If a migrating task 7, shares its first processor with
another migrating task 73, then the bound for 7, depends
on that of 7. The bounds for all migrating tasks can be
computed inductively, with the following lemma providing
the base case.

Lemma 3. The migrating task 7, with the lowest-indexed
first processor P, does not share P, with another migrating
task.

Proof. By the assignment procedure of EDF-0s, no migrat-
ing task other than 75, executes on P,. O

Theorem 1. If 7 is the only task on its first processor P,
then it will have no tardiness. Otherwise, it shares its first
processor with exactly one task 7, and it has tardiness no
larger than

s (Shp)(Ap +Th) + 2CL + Cy
1-— Sh,p

Ay o YA C)

where A\, is the maximum tardiness of Ty,.

Proof. Denote as P, the first processor of 7,. By Lem. 2, we
can establish the desired tardiness bound by assuming that
all jobs of 7, run on P,. We make this assumption in the
remainder of the proof.

If 74 is the only migrating task on P,, then its jobs will
be of highest priority on P,. Thus, by Prop. 2 and Lem. 2,
7¢ will never be tardy.

In the rest of the proof, we assume that 7, shares P, with
another migrating task. By Prop. 3, there is a unique such
task 7, as stated in the theorem. By the prioritization rules
used by EDF-o0s, 73, has higher priority than 7.

Consider job 7, ; with release time r_; and deadline dp ;.
For purposes of contradiction, assume that 7, ;’s tardiness
exceeds Ay. According to the prioritization rules used by
EDF-o0s, 7/ ;’s execution may be impacted only by jobs
from 7, and by jobs from 7, with deadlines before d; ;. We
now upper bound the processor demand impacting 7 ; by
considering a certain time interval, as defined next.

Interval [to,t.). Let ¢y be the latest point in time at or be-
fore ry ; such that no jobs of 75, or 7 released on P, before
to are pending; a released job is pending if it has not yet
completed execution. (tg is well-defined because the stated
condition holds at time 0.) Define ¢. £ dg; + Ay The as-
sumption we seek to contradict is that 7, ; does not com-
plete by ¢.. Since 7, ; fails to complete by ¢, there are more
than t. — to units of demand in the interval [to, t.) for the
execution of jobs on P, with priority at least that of 7 ;.

Demand from 7;,. By Lem. 1, the competing demand in
[to,tc) due to 73, on P, is at most

(Sh,p)(te —to) + (Shp)(An + Th) + 2Ch,. (5)

Demand from 7. Additional demand can come from jobs
of 7, with deadlines earlier than d, ;. By the definition of
to, all such jobs are released in [to, ry, ;). Thus, there are at

(1¢,5—to0)

most L T

J such jobs. Including job 7 ; itself, there

—t
are at most | (ti=t0)

J + 1 jobs of 74 released in [tg,t.)
with deadlines at most dy ;. The total demand due to such
jobs is ( | 24722 | 11) ;. which by the definition of U
is at most

(Ug)(?‘gd- — to) + Cy. (6)

Total demand. For notational convenience, let
K £ (spp)(Ap +Ty) +2C), + Cy. (7)

Then, by (5) and (6), the total demand on P, due to jobs of
equal or higher priority than 7, ; in [tg, ) is at most

K + (tc - tO)ShJ) + (7‘@7]' — to)Ug. (8)

Because 7, ; completed after time t. (by assumption),
the considered demand exceeds the length of the interval
[to, tc), SO

(tc - tO) < {By (8)}
K+ (tc — tO)Sh,p + (Tg,j — to)Ug
= {Rearranging}
K+ (t. — T‘g’j)shﬁp + (T‘g,j —to)(Snp + Us)
< {By Prop. 5}
K+ (tc — ’I“&J*)Sh?p + (’I“&j — to). 9)

Subtracting (r, ; — to) from both sides of (9) gives (¢, —
r,5) < K 4 (tc — 74¢,5)Sh,p, Which implies

K> (te—r05)(1 — spp). (10)
By Prop. 2, U, < 1, and hence s, , < 1. Thus, by (10),

(te —re5) < {since 1 — sy, , is positive }
K
1—sup
={By (D}
(Sh,p)(Ap +Th) +2CL + Cy
1-— Sh.,p
={By ¥}
ANy +T).

Because vy ; = dy; — 1}, this implies ¢t. — dp; < Ay,
which contradicts our definition of ¢, = dy ; + A,. Thus, it
cannot be the case that 7, ; completed after time dy ; + Ay
as assumed. O

4.2 Tardiness Bounds for Fixed Tasks

If no migrating tasks execute on a given processor, then the
fixed tasks on that processor have zero tardiness, by the op-
timality of EDF on one processor. The following theorem



establishes tardiness bounds for fixed tasks that must exe-
cute together with migrating tasks.

Theorem 2. Suppose that at least one migrating task exe-
cutes on processor I, and let 7; be a fixed task on P,. If
P, has two migrating tasks (refer to Prop. 3), denote them
as 7, and Ty, where T, has higher priority; otherwise, de-
note its single migrating task as T, and consider T, to be a
“null” task with Ty = 1, sy, = 0, and Cy = 0. Then, 7; has
a maximum tardiness of at most

(8h,p) (A +Th) +2C, + (s0,5) (Ag + Ti) +2C
(1= 8hp—8ep) .

A2
(11

Proof. This proof will be similar in structure to that of
Thm. 1. We will upper bound demand over the following
interval.

Interval [t(,t.). For purposes of contradiction, suppose
that there exists a job 7; ; of 7; that has tardiness exceeding
A, i.e., 7; ; has not completed by t., where ¢, £ di j+ A
Define a job as a competing job if it is released on P, and it
is a job of 7, or 7y, or a job of a fixed task that has a dead-
line at or before d; ;. Let ty be the latest point in time at
or before r; ; such that no competing jobs released before
to are pending. (¢o is well-defined because the stated con-
dition holds at time 0.) We now bound demand over [to, t.)
due to competing jobs (including 7; ; itself) by considering
migrating and fixed tasks separately.

Demand from migrating tasks. By Lem. 1, demand over
[to, tc) due to jobs of 73, and 7y is at most

(Shﬂ))(tc
(sep)(te

—to) + (Snp)(Ap +Tp) +2CH+
—to) + (s0,p) (A +Ty) + 2C,. (12)

Demand from fixed tasks. A fixed task 7 can release at
dij—to
T

mand from all competing jobs of fixed tasks is at most

dij—toJ Ck
= 2w < (dii —t = 13
o CEICIED S (e

TLETY TLETH

most { J competing jobs within [tg,¢.). Thus, de-

By the definition of azf , (13) can be rewritten as

(dij —to)(o]) < {By Prop. 4}
(dij —to)(1 —spp—s0p). (14
Total demand. For notational convenience, let
K £ (spp)(Ap+T3)+2Ch+(s0,p) (Ao +T0) +2C,. (15)
Then, by (12) and (14), total competing demand is at most

K + spp(te —to) + sep(te —to)+
(di,j —to)(1 = Sn,p — Sep)- (16)

Because 7;; completed after time ¢, (by assumption),
the considered demand exceeds the length of the interval
[to, te), SO

(t. —to) < {By (16)}
K+ spp(te = to) + sep(te —to)+
(dij —to) — (dij —to)(Shp + Sep)
= {Rearranging}
K + (snp +sep)(te —to)+
(dij —to) — (dij —to)(Shp + sep). (17)
Subtracting (d; ; — to) from both sides of (17), we have

(te—dij) < K+ (shp+5ep)(te—to) — (dij —to)(Snp+
Sep) =K+ (spp + s0p)(tc — d; ;). This implies
K > (tc — dz,j)(]- — Sh,p — Sz’p). (18)

By Prop. 4 and because at least one fixed task 7; assigned to
Py, we have (1 — sp, , — s4,) > 0. Thus, by (18),

bomdy < — B
N R )
= {By (11) and (15)}
A

This contradicts our definition of t. = d; ; +A;, so it cannot
be the case that 7; ; has more than A; units of tardiness. [J

5 Discussion

In this section, we discuss several issues motivated by our
analysis as well as extensions to our results.

Refined assignment procedures. Our analysis suggests
that, by refining EDF-0s’s assignment procedure, it may
possible to obtain lower tardiness bounds. First, note that
the inductive nature of the tardiness bound calculation for
migrating tasks may cause migrating tasks assigned to later
processors to have higher bounds because tardiness can cas-
cade (though it will remain bounded). It may be possible to
reduce such cascades by adjusting the assignment of migrat-
ing tasks, particularly on systems that are not fully utilized.
Second, note that reducing the shares of migrating tasks ex-
ecuting on P, reduces the bounds in (4) and (11). How-
ever, such a reduction would entail increasing the shares of
these tasks on other processors, which could lead to tardi-
ness bound increases on those processors. It may be pos-
sible to take such linkages among processors into account
and obtain an assignment of tasks to processors that lessens
the largest tardiness bound in the system. Finally, note that
(4) includes —Ty as part of 7,’s tardiness bound. By biasing
the task assignment procedure to prefer larger periods for
migrating tasks, it might be possible to lessen the tardiness
bounds that result. We leave refinements to our assignment
procedure motivated by these observations as future work.

Bounds with non-implicit deadlines. We have so far as-
sumed that all job deadlines are implicit. However, if we



maintain the prioritizations that EDF-0s uses, then bounded
tardiness can be easily ensured for systems with non-
implicit deadlines, i.e., ones where each task 7; has a spec-
ified relative D, that may be less than, equal to, or greater
than T;. Maintaining the existing prioritizations for migrat-
ing tasks is straightforward, as these tasks are not scheduled
by deadline (that are statically prioritized). For each job 7; ;
of a fixed task 7;, we merely need to define a “scheduling
deadline” equal to 7; ; + T; and prioritize such jobs on an
EDF basis using scheduling deadlines instead of real ones.
With this change, EDF-0s will behave as before, but our
analysis then bounds tardiness (for both migrating and fixed
tasks) with respect to scheduling deadlines. However, they
can be easily corrected to be expressed with respect to real
deadlines: if D; > T;, then simply subtract D; —T; from the
bound; if D; < T}, then simply add T; — D; to the bound.

Window constrained second-level schedulers In defining
EDF-os, we used EDF as a secondary scheduler for fixed
tasks. (For migrating tasks, our prioritization rules and the
sporadic task model fully characterize the behavior.)

Optimal variants of EDF-0s can be constructed in which
other algorithms are used as the secondary scheduler. All
that we require is that a window-constrained [22] sched-
uler be used. Such a scheduler employs a per-task prior-
ity function x;(7;,;,t) such that for some constants ¢; and
Vi, Tij — ¢; < Xi(Ti,jat) < di’j + 1; for each job Tij-
The priority of job 7; ; is at least that of 7;/ j/ at time ¢ if
Xi(Tij,t) < xu (T jo, t) (priority functions can potentially
change with time).

Our analysis can be modified to deal with this more gen-
eral priority specification as follows. The bounds for migrat-
ing tasks continue to hold without modification; the proof of
Thm. 1 is unchanged. By the definition of EDF-0s priori-
ties, all jobs of 77, always have a higher priority than 7y ;,
and by the sporadic task model, no job of 7, released after
ry,; 1s eligible for execution before 7 ; completes.

However, in our analysis of the tardiness of fixed tasks
in the proof of Theorem 2, the number of competing

jobs due to a fixed task 7 is no longer Ld}i:toJ but

di j+vit+dr—to
Tk

replaced by “d; ;+1);” throughout the proof and K to be in-

flated by an additional Zm ert Uk dr. As aresult, A; must

J . In effect, this change causes “d; ;" to be

et Usdr .
be increased by 1; + % —>——. Tighter analysis may be
3P P

possible if more is known about the prioritization function
(as was the case with EDF).

Non-preemptivity. After designing EDF-0s, we initially
thought it retained its optimality if job execution is non-
preemptive. However, this turns out not to be the case.
In particular, with non-preemptivity, a job of a migrat-
ing task executing on a non-first processor for that task
may be non-preemptively blocked when it is released.
This blocking negates an important property exploited
in our analysis, namely that such jobs execute immedi-
ately upon release. In an online appendix (available at
http://www.cs.unc.edu/~anderson/papers.html), we give a

counterexample consisting of five tasks executing on three
processors where such non-preemptive blocking causes a
migrating task to have unbounded tardiness.

6 Experimental Comparison

To assess the improvement of EDF-0s over EDF-fm, we
conducted experiments in which the two algorithms were
compared both on the basis of schedulability and the tardi-
ness bounds ensured by each. Due to space constraints, we
only discuss the tardiness bound experiments here. It is self-
evident that EDF-0s is preferable with respect to schedula-
bility, as it is optimal and EDF-fm is not.

In our tardiness bound experiments, we randomly gen-
erated task sets and computed for each task set the max-
imum tardiness bound under each of EDF-0s and EDF-
fm. Our parameter distributions for the generated task sets
were based on prior studies, e.g., [12]. However, in order
to be certain that any generated task set was schedulable
by EDF-fm, we restricted the utilization of each task to be
at most 0.5. We used both uniform and bimodal utilization
distributions. For uniform distributions, we considered a
light distribution where values were drawn from [0.001,0.1]
and a medium distribution where they were drawn from
[0.1,0.4]. (We did not test a heavy distribution to avoid cre-
ating utilizations exceeding 0.5.) For bimodal distributions,
we drew values uniformly in the range of either [0.001,0.1]
or [0.25,0.499] with respective probabilities of 5 and §, &
and %, and % and g, for light, medium, and heavy distri-
butions, respectively. We generated periods uniformly from
either a short (3 ms to 33 ms), medium (10 ms to 100 ms),
or long (50 ms to 250 ms) distribution.

For each combination of period and utilization distribu-
tion, we generated 100,000 task sets and computed the max-
imum tardiness bound of each task set under each of EDF-
fm and EDF-0s. When generating each task set, we added
tasks until the task set became infeasible on eight proces-
sors, and then removed the last task.

Fig. 12 shows the percent mean reduction in the maxi-
mum tardiness bound for each experiment. Across all tests,
EDF-o0s achieved an average tardiness reduction of 84%
over EDF-fm. Therefore, it is a substantial improvement
over EDF-fm even for systems that EDF-fm can schedule.
One major reason for this improvement is that EDF-0s can
often generate a schedule with no migrating tasks (due to its
bin-packing heuristic), resulting in no tardiness for any task.
Although (unlike EDF-fm) EDF-0s allows migrating tasks
to be tardy, the first migrating task will have no tardiness,
and there are few migrating tasks to “cascade” tardiness.

7 Conclusion

We have presented EDF-0s, the first boundary-limited
semi-partitioned scheduling algorithm that is optimal under
the “bounded tardiness” definition of SRT correctness. We
have also discussed optimal variants of EDF-0s in which
implicit deadlines are not assumed and in which algorithms
other than EDF are used as the secondary scheduler. EDF-
0s and its analysis extend prior work on EDF-fm by intro-
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Figure 12: Percent tardiness reduction of EDF-0s over EDF-fm.

ducing two new key ideas: using some static prioritizations
to make the execution of migrating tasks more predictable;
and exploiting properties of worst-fit decreasing task assign-
ments to enable a migrating task to be analyzed by “pre-
tending” that all of its jobs execute on its first processor. In
experiments that we conducted, EDF-0s proved to be bet-
ter than EDF-fm not only with respect to schedulability, but
also tardiness bounds that can be guaranteed.

The only other optimal boundary-limited scheduling al-
gorithms for SRT systems known to us are non-preemptive
global EDF (NP-G-EDF) [10] and global FIFO (G-
FIFO) [21] (which is also non-preemptive). For static sys-
tems, EDF-0s is likely to be preferable in practice, be-
cause the tardiness bounds we have established are lower
than those known for NP-G-EDF and G-FIFO, and be-
cause semi-partitioned algorithms have lower runtime over-
heads than global ones [5]. On the other hand, for dynamic
systems, where task timing parameters (such as execution
budgets and periods) may change at runtime, NP-G-EDF
is likely to be preferable, as EDF-based global scheduling
tends to more amenable to runtime changes [9]. In contrast,
the correctness of EDF-0s relies crucially on how tasks are
assigned to processors, and redefining such assignments on-
the-fly does not seem easy.

In future work, we would like to implement EDF-0s and
conduct experiments in which it is compared to other alter-
natives on the basis of schedulability with measured over-
heads considered. We would also like to determine condi-
tions under which bounded tardiness can be ensured under
EDF-os if non-preemptive code regions exist or if locking
protocols are used to access shared resources.
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