
Suspension-Aware Analysis for Hard Real-Time Multiprocessor Scheduling

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

In many real-time systems, tasks may experience sus-
pension delays when accessing external devices. The prob-
lem of analyzing task systems with such suspensions on
multiprocessors has been relatively unexplored. The com-
monly used suspension-oblivious approach of treating all
suspensions as computation can be quite pessimistic. As
an alternative, this paper presents the first suspension-
aware hard real-time multiprocessor schedulability anal-
ysis for task systems with suspensions, under both global
fixed-priority and global EDF scheduling. In experiments
presented herein, the proposed schedulability tests proved
to be superior to suspension-oblivious tests. Moreover,
when applied to ordinary arbitrary-deadline sporadic task
systems with no suspensions, the proposed analysis for
fixed-priority scheduling improves upon prior analysis.

I. Introduction

In many embedded systems, suspension delays may occur
when tasks block to access shared resources or perform
operations on external devices. Such delays can be quite
lengthy, in which case schedulability in embedded systems
is negatively impacted. For example, delays introduced by
disk I/O range from 15µs (for NAND flash) to 15ms
(for magnetic disks) per read [9]. Delays introduced by
accessing devices such as GPUs could range from a few
milliseconds to several seconds [7], [15].

It has been shown that precisely analyzing hard real-time
(HRT) systems with suspensions is difficult, even for very
restricted self-suspending task models on uniprocessors
[17]. However, uniprocessor analysis that is correct in a
sufficiency sense (although pessimistic) has been proposed
(see [16] for an overview). Such analysis can be applied
on a per-processor basis to deal with suspensions under
partitioning approaches where tasks are statically bound to
processors. In contrast, for global scheduling where tasks
are scheduled from a single run queue and may migrate
across processors, other than the suspension-oblivious ap-
proach, which simply integrates suspensions into per-task

Work supported by NSF grants CNS 1239135, CNS 0834270, CNS
0834132, and CNS 1016954; ARO grant W911NF-09-1-0535; AFOSR
grant FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033.

worst-case-execution-time requirements, no known global
HRT schedulability analysis exists for self-suspending task
systems. Such approaches are the main focus of this paper.

Unfortunately, unless the number of self-suspending
tasks is small and suspension delays are short, the
suspension-oblivious approach may cause significant ca-
pacity loss. A potentially better alternative is to explicitly
consider suspensions in the task model and corresponding
schedulability analysis; this is known as suspension-aware
analysis. In this paper, we present the first suspension-
aware analysis for globally scheduled HRT self-suspending
tasks for multiprocessor embedded systems. We focus
specifically on two widely used global schedulers: global
fixed-priority (GFP) and global EDF (GEDF) scheduling.
We analyze these schedulers assuming the scheduled work-
load is an arbitrary-deadline sporadic self-suspending (SSS)
task system (formerly defined in Sec. 2). To enable more
general results, we allow soft real-time (SRT) tasks to be
supported in addition to HRT ones. Under our definition
of SRT, a task can miss a deadline, provided the extent
of violation is constrained by a user-specified predefined
deadline tardiness threshold. A summary of prior related
work and our specific contributions is given next.

Overview of related work. Analysis approaches have been
proposed in [13], [14] that can check whether bounded re-
sponse times can be ensured for any given SSS task system.
However, these approaches cannot be used to determine
whether hard deadlines or predefined deadline tardiness
thresholds (as defined in Sec. II) can be met. An overview
of work on scheduling SSS task systems on uniprocessors
(which we omit here due to space constraints) can be found
in [11], [12], [14]. While (as noted earlier) such work can
be applied under partitioning approaches, such approaches
suffer from bin-packing-related capacity loss, which limits
their usefulness, as we shall see in experiments presented
later.

Our contributions. The common suspension-oblivious
approach of treating all suspensions as computation for
analyzing SSS task systems on multiprocessors (or unipro-
cessors) is pessimistic. In order to support SSS task systems
in a more efficient way, we present in this paper the first
suspension-aware global HRT multiprocessor schedulabil-
ity analysis for general SSS task models. Our specific con-
tributions are as follows. First, we present HRT multipro-

cessor schedulability tests for arbitrary-deadline SSS task
systems under both GFP and GEDF scheduling (note that
these tests can also be applied on uniprocessors). Second,
we show that our analysis is general enough to also sup-
port SRT (with predefined tardiness thresholds) SSS tasks.
Third, we demonstrate that, for ordinary arbitrary-deadline
task systems with no suspensions, our fixed-priority test
has lower time complexity than the best prior test [8].
This is because our test is based on an interval analysis
framework tailored to the arbitrary-deadline case, while the
test in [8] is based on a framework that encompasses both
constrained- and arbitrary-deadline task systems and thus
is less exact. Fourth, we present experimental results that
show that our suspension-aware analysis is much superior
to the prior suspension-oblivious approach. Also, when
applied to ordinary arbitrary-deadline task systems with no
suspensions, our fixed-priority analysis has better runtime
performance than that proposed in [8].

The rest of this paper is organized as follows. In Sec.
2, we present the SSS task model. Then, in Secs. 3 and
4, we present the aforementioned suspension-aware GFP
and GEDF schedulability tests, respectively. In Sec. 5, we
experimentally compare them with other methods. In these
experiments, our tests exhibited superior performance, typ-
ically by a wide margin. We conclude in Sec. 6.

II. System Model

We consider the problem of scheduling an SSS task system
τ = {τ1, ..., τn} of n independent SSS tasks on m ≥ 1
identical processors. Each task is released repeatedly, with
each such invocation called a job. Jobs alternate between
computation and suspension phases. We assume that each
job of any task τi executes for at most ei time units (across
all of its computation phases) and suspends for at most si
time units (across all of its suspension phases). We place
no restrictions on how these phases interleave (a job can
even begin or end with a suspension phase). Note that if
si = 0, then τi is an ordinary sporadic task. Associated with
each task τi are a period pi, which specifies the minimum
time between two consecutive job releases of τi1, and a
relative deadline di. For any task τi, we require ei + si ≤
min(di, pi). The kth job of τi, denoted τi,k, is released
at time ri,k and has a deadline at time di,k = ri,k + di.
The utilization of a task τi is defined as ui = ei/pi, and
the utilization of the task system τ as usum =

∑
τi∈τ ui.

An SSS task system τ is said to be an arbitrary-deadline
system if, for each τi, the relation between di and pi is not
constrained (e.g., di > pi is possible).2 In this paper, we
consider arbitrary-deadline SSS task systems.

1In a periodic task system, each task τi’s period specifies the exact
time between two consecutive job releases of τi.

2τ is said to be a constrained system if, for each task τi ∈ τ , di ≤ pi.

Successive jobs of the same task are required to execute
in sequence. If a job τi,k completes at time t (that is, its last
phase, be it a computation or suspension phase, completes
at t), then its response time is t − ri,k and its tardiness
is max(0, t − di,k). A task’s response time (tardiness) is
the maximum of the response time (tardiness) of any of its
jobs. Note that, when a job of a task misses its deadline,
the release time of the next job of that task is not altered.

In this paper, we establish HRT schedulability tests
for arbitrary-deadline SSS task systems under both GFP
(Sec. III) and GEDF (Sec. IV). Under GFP, tasks are
assigned fixed priorities; a job has the same priority as
the task to which it belongs. Under GEDF, released jobs
are prioritized by their deadlines and any ties are broken
by task ID (lower IDs are favored).

To enable more general results, for any task τi, we allow
a predefined tardiness threshold to be set, denoted λi. (Task
τi is an ordinary HRT task if λi = 0.) Throughout the
paper, we assume that ei, si, di, pi, and λi for any task
τi ∈ τ are non-negative integers and all time values are
integral. Thus, a job that executes at time point t executes
during the entire time interval [t, t+ 1).

For simplicity, we henceforth assume that each job
of any task τi executes for exactly ei time units. As
shown in [14], any response-time bound derived for an
SSS task system by considering only schedules meeting
this assumption applies to other schedules as well. (This
property was shown in [14] for GEDF, but it applies to
GFP as well.) For any job τi,k, we let si,k denote its total
suspension time, where si,k ≤ si.

Real-time workloads often have both self-suspending
tasks and computational tasks (which do not suspend) co-
exist. To reflect this, we let τs (τe) denote the set of self-
suspending (computational) tasks in τ . Also, we let ns (ne)
denote the number of self-suspending (computational) tasks
in τ .

III. GFP Schedulability Test

In this section, based upon response-time analysis (RTA),
we derive a fixed-priority multiprocessor schedulability test
for HRT and SRT (i.e., each task τi can have a predefined
tardiness threshold λi) arbitrary-deadline SSS task systems.

Under GFP, a task cannot be interfered with by tasks
with lower priorities. Assume that tasks are ordered by
decreasing priority, i.e., i < k iff τi has a higher priority
than τk.

Definition 1. Let τl,j be the maximal job of τl, i.e., τl,j
either has the largest response time among all jobs of τl or
it is the first job of τl that has a response time exceeding
dl + λl.

We assume l > m since under GFP, any task τi where

to te td td+λlrl,j tf
L

ζl

Fig. 1: The maximal job τl,j of task τl becomes eligible
at te. to is the earliest time instant before te such that at
any time instant t ∈ [to, te) all processors are occupied by
tasks with equal or higher priority than τl,j .

i ≤ m has a response time bound of ei + si. We further
assume that for any task τi where i < l, its largest response
time does not exceed di + λi. Our analysis focuses on the
job τl,j , as defined above. To avoid distracting “boundary
cases,” we also assume that the schedule being analyzed
is prepended with a schedule in which no deadlines are
missed that is long enough to ensure that all predecessor
jobs referenced in the proof exist (this applies to Sec. IV
as well).

Definition 2. A job is said to be completed if it has finished
its last phase (be it suspension or computation). fi,k denotes
the completion time of job τi,k. The eligible time of job
τi,k is defined to be max(ri,k, fi,k−1). A task τi is active
at time t if there exists a job τi,k such that ri,k ≤ t < fi,k.

Definition 3. Let tf denote the completion time of our
job of interest τl,j , te denote its eligible time (i.e., te =
max(rl,j , fl,j−1)), and td denote its deadline.

As in [2], we extend the analyzed interval from te to an
earlier time instant to as defined below.

Definition 4. to denotes the earliest time instant at or
before te such that at any time instant t ∈ [to, te) all
processors are occupied by tasks with equal3 or higher
priority than τl, as illustrated in Fig. 1.

For conciseness, let τhp ⊆ τ denote the set of tasks that
have equal or higher priority than the analyzed task τl, and
let

L = tf − to (1)

and
ζl = te − to. (2)

Definition 5. A task τi has a carry-in job if there is a job
of τi that is released before to that has not completed by
to.

Two parameters are important to RTA: the workload and
the interference, as defined below.

Workload. The workload of an SSS task τi in the interval
[to, tf) is the amount of computation that τi requires to

3Note that any job τl,k of τl where k < j may delay τl,j from
executing and thus can be considered to have higher priority than τl,j .

to tf

pipi ei

ri,kL

to tf

pipi ei

ri,k
L

di,h

λi
pi

ei,h
ri,h

pipi

Fig. 2: Computing ωnc(τi, L).

execute in [to, tf). Note that suspensions do not contribute
to the workload since they do not occupy any processor.
Let ω(τi, L) denote an upper bound of the workload of
each task τi ∈ τhp in the interval [to, tf) of length L.
Let ωnc(τi, L) denote the workload bound if τi does not
have a carry-in job (see Def. 5), and let ωc(τi, L) denote
the workload bound if τi has a carry-in job. ωnc(τi, L)
and ωc(τi, L) can be computed as shown in the following
lemmas.

Lemma 1.

ωnc(τi, L) =
(⌊L− ei

pi

⌋
+ 1
)
· ei. (3)

Proof: Since τi does not have a carry-in job, only jobs
that are released within [to, tf) can contribute to ωnc(τi, L).
The scenario for the worst-case workload to happen is
shown in Fig. 2, where job τi,k, which is the last job of
τi that is released before tf , executes continuously within
[ri,k, ri,k + ei) such that ri,k + ei = tf (according to our
task model, each suspension of τi,k within [ri,k, tf) may be
of length 0), and jobs of τi are released periodically. (Note
that if i = l, then this worst-case scenario still gives a safe
upper bound on the workload since in this case τl,j could
be the job τi,k.) Besides τi,k, there are at most

⌊
L−ei
pi

⌋
jobs

of τi released within [to, tf).

Definition 6. For any interval of length t, let ∆(τi, t) =(⌈
t
pi

⌉
−1
)
· ei +min

(
ei, t−

⌈
t
pi

⌉
· pi + pi

)
.

∆(τi, t) is defined for computing carry-in workloads.
Def. 6 improves upon a similar definition for computing
carry-in workloads proposed in [10] by deriving a more
precise upper bound of the workload.

The following lemma, which computes ωc(τi, L), is
proved similarly to Lemma 1.

Lemma 2.

ωc(τi, L) = ∆(τi, L− ei + di + λi) (4)

Proof: The scenario for the worst-case workload to
happen is shown in Fig. 3, where job τi,k, which is the last
job of τi that is released before tf , executes continuously
within [ri,k, ri,k + ei) such that

ri,k + ei = tf (5)
(recall that τi,k may suspend for zero time within [ri,k, tf)),
and jobs are released periodically. (Note that if i = l, then

to tf

pipi ei

ri,k
L

to tf

pipi ei

ri,k
L

di,h

λi
pi

ei,h
ri,h

pipi

Fig. 3: Computing ωc(τi, L).

this worst-case scenario still gives a safe upper bound on
the workload since τl,j could be the job τi,k.)

Let τi,h be the first job such that ri,h < to and

di,h + λi > to, (6)

i.e., τi,h is the first job of τi (potentially tardy) that may
execute during [to, tf) and is released before to (note that if
τi,h does not exist, then τi would not have a carry-in job).
Besides τi,k and τi,h, jobs of τi that are released within
[ri,h + pi, ri,k) can contribute to ωc(τi, L). Let y denote
the number of jobs of τi released in [ri,h, ri,k). There are
thus y−1 jobs of τi that are released within [ri,h+pi, ri,k).
Since jobs of τi are released periodically, we have

ri,k − ri,h = y · pi. (7)

Moreover, work contributed by τi,h cannot exceed the
smaller of ei and the length of the interval [to, di,h + λi).
The length of the interval [to, di,h +λi) is given by di,h +

λi − to = ri,h + di + λi − to
{by (7)}

= ri,k − y · pi + di +

λi − to
{by (1) and (5)}

= (L − ei + di + λi) − y · pi. Thus,
the work contributed by τi,h is given by min(ei, (L− ei+
di + λi)− y · pi).

By summing the contributions of τi,h, τi,k, and jobs of
τi that are released within [ri,h + pi, ri,k), we have

ωc(τi, L)

= min(ei, (L− ei + di + λi)− y · pi)
+ ei + (y − 1) · ei

= min(ei, (L− ei + di + λi)− y · pi)
+ y · ei (8)

To find y, by (7), we have y =
ri,k−ri,h

pi
=

ri,k−di,h+di
pi

{by (6)}
<

ri,k−to+λi+di
pi

{by (1)and(5)}
= L−ei+λi+di

pi
. For con-

ciseness, let σ = L − ei + λi + di. Thus, y < σ
pi

holds.
If σ mod pi = 0, then y ≤ σ

pi
− 1 =

⌈
σ
pi

⌉
− 1, otherwise,

y ≤
⌊
σ
pi

⌋
=
⌈
σ
pi

⌉
−1. Thus, a general expression for y can

be given by y ≤
⌈
σ
pi

⌉
− 1.

By (8), the maximum value for ωc(τi, L) can be ob-
tained when y =

⌈
σ
pi

⌉
− 1. Setting this expression for

y into (8), we get ωc(τi, L) = min
(
ei, σ −

⌈
σ
pi

⌉
· pi +

pi
)

+
(⌈

σ
pi

⌉
− 1
)
· ei
{by Def. 6}

= ∆(τi, σ)
{by the def. of σ}

=
∆(τi, L− ei + di + λi).

It is important to point out that neither ωnc(τi, L) nor
ωc(τi, L) depends on ζl (as defined in (2)). For any given
interval [to, tf) of length L, we get the same result of
ωnc(τi, L) and ωc(τi, L), regardless of the value of ζl.
This observation enables us to greatly reduce the time
complexity to derive the response time bound, as shown
later.

Interference. The interference Il(τi, L) of a specific task τi
on τl over [to, tf) is the part of the workload of τi that has
higher priority than τl,j and can delay τl,j from executing
its computation phases. Note that if i 6= l, then τi cannot
interfere with τl while τi or τl is suspending. If i = l, then
suspensions of job τl,k where k < j, may delay τl,j from
executing. However, by Def. 4, all processors are occupied
by tasks with equal or higher priority than τl at any time
instant t ∈ [to, te). Thus, whenever suspensions of any
such job τl,k delay τl,j from executing within [to, te), such
suspensions must be overlapped with computation from
some other task with higher priority than τl. Therefore, it
suffices for us to compute the interference using workload
as derived in (3) and (4). (Intuitively, this portion of the
schedule, i.e., the schedule within [to, te), would be the
same even if τl did not suspend, since τl has the lowest
priority among the tasks being considered.)

As we did for the workload, we also define two expres-
sions for Il(τi, L). We use Incl (τi, L) to denote a bound
on the interference of τi to τl during [to, tf) if τi does not
have a carry-in job, and use Icl (τi, L) if τi has a carry-in
job.

By the definitions of workload and interference, within
[to, tf), if i 6= l, then task τi cannot interfere with τl by
more than τi’s workload in this interval. Thus, we have
Incl (τi, L) ≤ ωnc(τi, L) and Icl (τi, L) ≤ ωc(τi, L). The
other case is i = l. In this case, since τl,j cannot interfere
with itself, we have Incl (τi, L) ≤ ωnc(τl, L) − el and
Icl (τi, L) ≤ ωc(τl, L) − el. Moreover, because τi cannot
interfere with τl while τl,j is executing and suspending for
a total of el + sl,j time units in [to, tf), Il(τi, L) cannot
exceed L− el − sl,j . Therefore, we have4

Incl (τi, L) ={
min(ωnc(τi, L), L− el − sl,j + 1), if i 6= l

min(ωnc(τl, L)− el, L− el − sl,j + 1), if i = l
(9)

and

Icl (τi, L) ={
min(ωc(τi, L), L− el − sl,j + 1), if i 6= l

min(ωc(τl, L)− el, L− el − sl,j + 1), if i = l.
(10)

4The upper bounds of Incl (τi, L) and Icl (τi, L) (as shown next) are
set to be L− el− sl,j +1 instead of L− el− sl,j in order to guarantee
that the response time bound we get from the schedulability test presented
later is valid. A formal explanation of this issue can be found in [5].

Now we define the total interference bound on τl within
any interval [to, to + Z) of arbitrary length Z, denoted
Ωl(Z), which is given by

∑
τi∈τhp

Il(τi, Z). The total
interference bound on τl within the interval [to, tf) is thus
given by Ωl(L).

Upper-bounding Ωl(L). By Def. 4, either to = 0, in which
case no task has a carry-in job, or some processor is idle
in [to − 1, to), in which at most m − 1 computational
tasks are active at to − 1. Thus, at most min(m− 1, nehp)
computational tasks in τhp have carry-in jobs, where nehp
denotes the number of computational tasks in τhp. Due to
suspensions, however, all self-suspending tasks in τhp may
have carry-in jobs that suspend at to. Let τshp denote the set
of self-suspending tasks in τhp. Thus, self-suspending tasks
can contribute at most

∑
τi∈τs

hp
max(Icl (τi, L), Incl (τi, L))

work to Ωl(L). Let τehp denote the set of computational

tasks in τhp and β
min(m−1,ne

hp)

τi∈τe
hp

denote the min(m −
1, nehp) greatest values of max(0, Icl (τi, L)−Incl (τi, L)) for
any computational task τi ∈ τehp. Then computational tasks

can contribute at most
∑
τi∈τe

hp
Incl (τi, L)+β

min(m−1,ne
hp)

τi∈τe
hp

work to Ωl(L). Therefore, by summing up the work con-
tributed by both self-suspending tasks and computational
tasks, we can bound Ωl(L) by

Ωl(L) =
∑
τi∈τs

hp

max(Icl (τi, L), Incl (τi, L))

+
∑
τi∈τe

hp

Incl (τi, L) + β
min(m−1,ne

hp)

τi∈τe
hp

.(11)

The time complexity for computing∑
τi∈τs

hp
max(Icl (τi, L), Incl (τi, L)) and∑

τi∈τe
hp
Incl (τi, L) is O(n). Also, as noted in [2],

by using a linear-time selection technique from [6], the
time complexity for computing β

min(m−1,ne
hp)

τi∈τe
hp

is O(n).
Thus, the time complexity to upper-bound Ωl(L) as above
is O(n).

Schedulability test. We now derive an upper bound on the
response time of task τl in an SSS task system τ scheduled
using fixed priorities, as stated in Theorem 1. Before stating
the theorem, we first present two lemmas, which are used to
prove the theorem. Lemma 3 is intuitive since it states that
the total interference of tasks with equal or higher priority
than τl must be large enough to prevent τl,j from being
finished at to + H if to + H < tf holds (recall that tf is
defined to be the completion time of τl,j).

Lemma 3. For job τl,j and any interval [to, to + H) of
length H , if H < tf − to, then⌊Ωl(H)

m

⌋
> H − el − sl,j . (12)

Proof: Ωl(H) denotes the total interference bound on
τl within the interval [to, to +H).

If te ≥ to + H , then by Def. 4, all processors must be
occupied by tasks in τhp during the interval [to, to + H),
which implies that tasks in τhp generate a total workload
of at least m ·H within [to, to+H) that can interfere with
τl. Thus, (12) holds since Ωl(H) ≥ m ·H ≥ m · (H− el−
sl,j + 1).

The other possibility is te < to +H . In this case, given
(from the statement of the lemma) that H < tf − to, job
τl,j is not yet completed at time to + H . Thus, only at
strictly fewer than el + sl,j time points within the interval
[to, to + H) was τl,j able to execute its computation and
suspension phases (for otherwise it would have completed
by to + H). In order for τl,j to execute its computation
and suspension phases for strictly fewer than el+ sl,j time
points within [to, to + H), tasks in τhp must generate a
total workload of at least m · (H − el − sl,j + 1) within
[to, to + H) that can interfere with τl. Thus, Ωl(H) ≥
m · (H − el − sl,j + 1) holds.

Lemma 4. te − rl,j ≤ κl, where κl = λl − pl + dl if
λl > pl − dl, and κl = 0, otherwise.

Proof: By Def. 1, we have

fl,j−1 ≤ dl,j−1 + λl. (13)

If λl > pl − dl, then we have te − rl,j
{by Def. 3}

=

max(rl,j , fl,j−1) − rl,j = max(0, fl,j−1 − rl,j)
{by (13)}
≤

max(0, dl,j−1+λl−rl,j) = max(0, rl,j−1+dl+λl−rl,j) ≤
max(0, dl + λl − pl) = λl − pl + dl.

If λl ≤ pl − dl, then fl,j−1
{by (13)}
≤ dl,j−1 + λl =

rl,j−1 + dl +λl ≤ rl,j − pl + dl +λl ≤ rl,j , which implies
that job τl,j−1 completes by rl,j . Thus, by Def. 3, we have
te − rl,j = 0.

Theorem 1. Let ψl be the set of minimum solutions of
(14) for L below for each value of sl,j ∈ {0, 1, 2, ..., sl}
by performing a fixed-point iteration on the RHS of (14)
starting with L = el + sl,j:

L =
⌊Ωl(L)

m

⌋
+ el + sl,j . (14)

Then ψmaxl + κl upper-bounds τl’s response time, where
ψmaxl is the maximum value in ψl.

Proof: We first prove by contradiction that ψmaxl +
κl − ζl is an upper bound of τl’s response time. Assume
that the actual worst-case response time of τl is given by
R, where

R > ψmaxl + κl − ζl. (15)

By Defs. 1 and 3, we have

R = tf − rl,j . (16)

Thus, we have ψmaxl

{by (15)}
< R + ζl − κl

{by (16)}
=

tf−rl,j+ζl−κl
{by (2)}

= tf−to+te−rl,j−κl
{by Lemma 4}

≤
tf − to + κl − κl = tf − to. Hence, by Lemma 3, (12)
holds with H = ψmaxl , which contradicts the assumption
of ψmaxl being a solution of (14). Therefore, ψmaxl +κl−ζl
is an upper bound of τl’s response time.

By (2) and Def. 4, ζl ≥ 0 holds. Moreover, by (3) and
(4)-(11), Ωl(L) is independent of ζl, which implies that
ψmaxl is independent of ζl. Thus, the maximum value for
the term ψmaxl + κl − ζl, which is given by ψmaxl + κl
when setting ζl = 0, is an upper bound of τl’s response
time.

Note that (14) depends on sl,j . Thus, it is necessary to
test each possible value of sl,j ∈ {0, 1, 2, ..., sl} to find a
corresponding minimum solution of (14). By the definition
of ψmaxl , ψmaxl can then be safely used to upper-bound τl’s
response time. Moreover, for every task τi ∈ τ , ψmaxi ≤
di + λi − κi must hold in order for τ to be schedulable;
otherwise, some jobs of τi may have missed their deadlines
by more than the corresponding tardiness thresholds. The
following corollary immediately follows.

Corollary 1. Task system τ is GFP-schedulable upon m
processors if, by repeating the iteration stated in Theorem 1
for all tasks τi ∈ τ , ψmaxi ≤ di + λi − κi holds.

Comparing with [8]. In [8], an RTA technique, which
we refer to as “GY” for short, was proposed to handle
ordinary arbitrary-deadline sporadic task systems (without
suspensions). (Note that GY is the only prior work that
considers multiprocessor RTA techniques for arbitrary-
deadline task systems.) In GY, the methodology used for
the constrained-deadline case is extended for dealing with
the arbitrary-deadline case by recursively solving an RTA
equation. This recursive process could iterate many times
depending on task parameters, and may not terminate in
some rare cases. On the other hand, due to the fact that
our analysis used a more suitable interval analysis frame-
work for arbitrary-deadline task systems5 (which applies to
constrained-deadline task systems as well), for any task in
an ordinary sporadic task systems (without suspensions),
its response-time bound can be found by solving the RTA
equation (14) only once and our RTA process always

5Specifically, we analyzed the eligible time te of our job of interest τl,j ,
instead of its release time rl,j as done in [8]. In this way, when computing
workload and interference, we already considered the case where job τl,k
where k < j might complete beyond rl,j if dl > pl holds. On the
contrary, in GY, the analyzed interval is extended to include all prior jobs
that may complete beyond rl,j and an RTA equation is recursively solved
to find the response-time bound.

to te td td+λl

no idleness
within [to, te)

ξl

Θ
Tl,j ’s computation and

suspension phases

Intervals in which all m processors are occupied by jobs other
than Tl,j, and the total length must be greater than (td+λl-te-el-sl,j)

in order for Tl,j to miss its deadline by more than λl

Proc.
1
2....
m

Fig. 4: A job τl,j of task τl becomes eligible at te and
misses its deadline at td by more than λl. to is the earliest
time instant at or before te such that there is no idleness
in [to, te).

terminates. As shown by experiments presented in Sec. V,
our analysis has better runtime performance than GY.

IV. GEDF Schedulability Test

In this section, we present a GEDF schedulability test
for SSS task systems. Our goal is to identify sufficient
conditions for ensuring that each task τi cannot miss any
deadlines by more than its predefined tardiness threshold,
λi. These conditions must be checked for each of the n
tasks in τ .

Let S be a GEDF schedule of τ such that a job τl,j of
task τl is the first job in S to miss its deadline at td = dl,j
by more than its predefined tardiness threshold λl, as shown
in Fig. 4. Under GEDF, jobs with lower priorities than τl,j
do not affect the scheduling of τl,j and jobs with higher
priorities than τl,j , so we will henceforth discard from S
all jobs with priorities lower than τl,j .

Similar to Sec. III, we extend the analyzed interval from
τl,j’s eligible time te (see Def. 3) to an earlier time instant
to as defined below.

Definition 7. to denotes the earliest time instant at or
before te such that there is no idleness in [to, te).

Our goal now is to identify conditions necessary for
τl,j to miss its deadline by more than λl; i.e., for τl,j to
execute its computation and suspension phases for strictly
fewer than el + sl,j time units over [te, td + λl). This can
happen only if all m processors execute jobs other than
τl,j for strictly more than (td + λl − te)− (el + sl,j) time
units (i.e., at least td + λl − te − el − sl,j + 1 time units)
over [te, td + λl) (for otherwise, τl,j would complete by
td + λl), as illustrated in Fig. 4. For conciseness, let

ξl = td + λl − to. (17)

Definition 8. Let Θ denote a subset of the set of intervals
within [te, td+λl), where τl,j does not execute or suspend,

such that the cumulative length of Θ is exactly td + λl −
te − el − sl,j + 1 over [te, td + λl). As seen in Fig. 4, Θ
may not be contiguous.

By Def. 8, the length of the intervals in [to, te) ∪ Θ is
given by te − to + td + λl − te − el − sl,j + 1 = td + λl −
to − el − sl,j + 1

{by (17)}
= ξl − el − sl,j + 1.

For each task τi, let W (τi) denote the contribution of τi
to the work done in S during [to, te)∪Θ. In order for τl,j
to miss its deadline, it is necessary that the total amount
of work that executes over [to, te) ∪Θ satisfies∑

τi∈τ
W (τi) > m · (ξl − el − sl,j). (18)

This follows from the observation that all m processors are,
by Defs. 7 and 8, completely busy executing work over the
ξl − el − sl,j + 1 time units in the interval [to, te) ∪Θ.

Condition (18) is a necessary condition for τl,j to miss
its deadline by more than λl. Thus, in order to show
that τ is GEDF-schedulable, it suffices to demonstrate that
Condition (18) cannot be satisfied for any task τl for any
possible values of ξl and sl,j .

We now construct a schedulability test using Condi-
tion (18) as follows. In Sec. IV-A, we first derive an
upper bound for the term

∑
τi∈τ W (τi) in the LHS of

Condition (18). Then, in Sec. IV-B, we compute possible
values of the term m · (ξl − el − sl,j) in the RHS of
Condition (18). Later, in Sec. IV-C, a schedulability test
is derived based on these results.

A. Upper-Bounding
∑
τi∈τ W (τi)

In this section, we derive an upper bound on
∑
τi∈τ W (τi),

by first upper-bounding W (τi) for each task τi and then
summing these per-task upper bounds.

In the following, we compute upper bounds on W (τi). If
τi has no carry-in job (defined in Def. 5), then let Wnc(τi)
denote this upper bound; otherwise, let Wc(τi) denote the
upper bound. Since τl,j is the first job that misses its
deadline at td by more than its corresponding tardiness
threshold, we have

fl,j−1 ≤ dl,j−1 + λl ≤ td − pl + λl. (19)

The following lemma bounds the length of time interval
[to, te).

Lemma 5. te − to ≤ max(ξl − λl − dl, ξl − pl).

Proof: te − to
{by Def. 3}

= max(rl,j , fl,j−1) −

to
{by (19)}
≤ max(td − dl, td − pl + λl) − to = max(td −

dl−to, td−pl+λl−to)
{by (17)}

= max(ξl−λl−dl, ξl−pl).

If a task τi has no carry-in job, then the total amount of
work that must execute over [to, te)∪Θ is generated by jobs

ri,k di,k

An interval with length t

pi pi pi

job release job deadline

di

Fig. 5: DBF for self-suspending tasks.

of τi arriving in, and having deadlines within, the interval
[to, td]. The following lemma, which was originally proved
for ordinary sporadic task systems [4], applies to SSS task
systems as well.

Lemma 6. The maximum cumulative execution require-
ment by jobs of an SSS task τi that both arrive in, and
have deadlines within, any interval of length t is given by
demand bound function

DBF (τi, t) = max(0, (
⌊
t−di
pi

⌋
+ 1) · ei).

Proof: Because we restrict attention to jobs of τi
that have releases and deadlines within the considered
interval of length t, and suspensions do not occupy any
processor, the required total work of τi can be bounded by
considering the scenario in which some job τi,k of τi has
a deadline at the end of the interval and jobs are released
periodically. This scenario is illustrated in Fig. 5. There are
at most

⌊
t−di
pi

⌋
jobs that are released and have deadlines

within the interval other than τi,k. Thus, the maximum
cumulative execution requirement by jobs of τi is given
by DBF (τi, t) = max(0, (

⌊
t−di
pi

⌋
+ 1) · ei), which is the

same as the DBF for ordinary sporadic tasks (i.e., without
suspensions). This is due to the fact that suspensions do
not contribute to the execution requirement.

The lemma below computes Wnc(τi) using DBF.

Lemma 7.

Wnc(τi) =

min

(
DBF (τi, ξl − λl),

ξl − el − sl,j + 1
)

if i 6= l

min
(
DBF (τl, ξl − λl)− el,

max(ξl − λl − dl, ξl − pl)
)

if i = l

Proof: Depending on the relationship between i and
l, there are two cases to consider.

Case i 6= l. The total amount of work contributed by
τi that must execute over [to, te) ∪ Θ cannot exceed the
total length of the intervals in [to, te) ∪ Θ, which is ξl −
el − sl,j + 1. Furthermore, the total work that needs to
be bounded must have releases and deadlines within the
interval [to, td], which by (17) is of length ξl − λl. By
Lemma 6, this total work is at most DBF (τi, ξl − λl).

Case i = l. As in the previous case, the total work
is at most DBF (τl, ξl − λl). However, in this case, since
τl,j does not execute within [to, te) ∪ Θ, we can subtract
its execution requirement, which is el, from DBF (τl, ξl−

λl). Also, this contribution cannot exceed the length of the
interval [to, te), which by Lemma 5 is at most max(ξl −
λl − dl, ξl − pl).

We now consider the case where τi has a carry-in job.
The following lemma, which computes Wc(τi), is proved
similarly to Lemma 7.

Lemma 8.

Wc(τi) =

min(∆(τi, ξl − λl + λi),

ξl − el − sl,j + 1) if i 6= l

min(∆(τl, ξl)− el,

max(ξl − λl − dl, ξl − pl). if i = l

Proof: The total work of τi in this case can be upper-
bounded by considering the scenario in which some job
of τi has a deadline at td and jobs of τi are released
periodically, as illustrated in Fig. 6. Depending on the
relationship between i and l, we have two cases to consider.

Case i 6= l. Let τi,k be the first job such that ri,k < to
and

di,k + λi > to, (20)

i.e., τi,k is the first job of τi (potentially tardy) that may
execute during [to, td) and is released before to (note that
if τi,k does not exist then τi would have no carry-in job).
Since jobs are released periodically,

td − di,k = x · pi (21)

holds for some integer x.
The demand for jobs of τi in this case is thus bounded by

the demand due to x jobs that have deadlines at or before
td and are released at or after ri,k + pi, plus the demand
imposed by the job τi,k, which cannot exceed the smaller
of ei and the length of the interval [to, di,k + λi), which

by (21) is td−x ·pi+λi− to
{by (17)}

= ξl−λl+λi−x ·pi.
Thus, we have

Wc(τi) = x · ei +min(ei, ξl − λl + λi − x · pi). (22)

To find x, by (21), we have x =
td−di,k
pi

{by (20)}
<

td−to+λi

pi

{by (17)}
= ξl−λl+λi

pi
. For conciseness, let π =

ξl−λl+λi. Thus, x < π
pi

holds. If π mod pi = 0, then x ≤
π
pi
− 1 =

⌈
π
pi

⌉
− 1, otherwise, x ≤

⌊
π
pi

⌋
=
⌈
π
pi

⌉
− 1. Thus,

a general expression for x can be given by x ≤
⌈
π
pi

⌉
− 1.

By (22), the maximum value for Wc(τi) can be obtained
when x =

⌈
π
pi

⌉
−1. Setting this expression for x into (22),

we have Wc(τi) =
(⌈

π
pi

⌉
−1
)
·ei+min

(
ei, π−

⌈
π
pi

⌉
·pi+

pi
) {by Def. 6}

= ∆(τi, π)
{by the def. of π}

= ∆(τi, ξl − λl +
λi).

Moreover, this total demand cannot exceed the total
length of the intervals in [to, te) ∪ Θ, which is ξl − el −
sl,j + 1.

di,k

pi pi pi

to td

λi
pipipi
di

Fig. 6: Computing Wc(τi).

Case i = l. Repeating the reasoning from the previous
case, we find that the total demand of jobs of τl with
deadlines at most td is at most ∆(i, ξl−λl+λi) = ∆(τi, ξl).
Since τl,j does not execute within [to, te)∪Θ, we subtract
its execution requirement, which is el, from ∆(τi, ξl). Also,
this contribution cannot exceed the length of the interval
[to, te), which by Lemma 5 is max(ξl − λl − dl, ξl − pl).

Upper-bounding
∑
τi∈τ W (τi). Similar to the discussion

in Sec. III, by Def. 7, either to = 0, in which case no task
has a carry-in job, or some processor is idle in [to− 1, to),
in which at most m − 1 computational tasks are active at
to− 1. Thus, at most min(m− 1, ne) computational tasks
can have a carry-in job. However, since suspensions do
not occupy any processor, each self-suspending task may
be active at to − 1 and have a job that is suspended at
to. Thus, in the worst case, all ns self-suspending tasks
can have carry-in jobs. Consequently, there are at most ns
self-suspending tasks and min(m − 1, ne) computational
tasks that contribute Wc(τi) work, and the remaining
max(0, ne−m+1) computational tasks must contribute to
Wnc(τi). Thus, self-suspending tasks can contribute at most∑
τi∈τs max

(
Wnc(τi),Wc(τi)

)
work to

∑
τi∈τ W (τi). Let

δ
min(m−1,ne)
τi∈τe denote the min(m − 1, ne) greatest val-

ues of max(0,Wc(τi) −Wnc(τi)) for any computational
task τi. Then computational tasks can contribute at most∑
τj∈τe Wnc(τj) + δ

min(m−1,ne)
τk∈τe work to

∑
τi∈τ W (τi).

Therefore, by summing up the work contributed by
both self-suspending tasks and computational tasks, we
can bound

∑
τi∈τ W (τi) by

∑
τi∈τs max(Wnc(τi),

Wc(τi))+
∑
τj∈τe Wnc(τj)+ δ

min(m−1,ne)
τk∈τe .

Similar to the discussion in Sec. III, the time com-
plexity for computing Wc(τi), Wnc(τi), and Wc(τi) −
Wnc(τi) is O(n). Also, by using a linear-time selection
technique from [6], the time complexity for computing
δ
min(m−1,ne)
τk∈τe is O(n). Thus, the time complexity to upper-

bound
∑
τi∈τ W (τi) as above is O(n).

B. Finding Values of ξl and sl,j

So far we have upper-bounded the LHS of Condition (18).
Recall that our goal is to test Condition (18) for a violation
for all possible values of ξl and sl,j . The following theorem
shows that the range of possible values of ξl that need
to be tested can be limited. Let esum be the sum of the
execution costs for all tasks in τ . For conciseness, let φ =

m · (el + sl,j)− λl · usum +
∑
τi∈τ λi · ui + esum.

Theorem 2. If Condition (18) is satisfied for τl, then it is
satisfied for some ξl satisfying

min(dl + λl, pl) ≤ ξl <
φ

m− usum
, (23)

provided usum < m

Proof: By Lemmas 6 and 7, Wnc(τi) ≤
⌊
ξl−λl

pi

⌋
·ei+ei

holds. By Lemma 8 and Def. 6, Wc(τi) ≤
⌊
ξl−λl+λi

pi

⌋
·ei+

ei holds. Thus, the LHS of Condition (18) is no greater than∑
τi∈τ

(⌊
ξl−λl+λi

pi

⌋
· ei+ ei

)
. Assuming Condition (18) is

satisfied, we have∑
τi∈τ W (τi) > m · (ξl − el − sl,j)

⇒ {upper-bounding
∑
τi∈τ W (τi) as above}∑

τi∈τ

(⌊
ξl−λl+λi

pi

⌋
· ei + ei

)
> m · (ξl − el − sl,j)

⇒ {removing the floor}∑
τi∈τ

(
(ξl − λl + λi) · ui + ei

)
> m · (ξl − el − sl,j)

⇒ {rearranging}
ξl · usum − λl · usum +

∑
τi∈τ λi · ui + esum

> m · ξl −m · el −m · sl,j
⇒ ξl <

φ

m− usum
,

provided usum < m.

Moreover, we have ξl
{by (17)}

= td − to + λl
{by Def. 7}
≥

td− te+λl
{by Def. 3}

= td−max(rl,j , fl,j−1)+λl
{by (19)}
≥

td−max(td−dl, td−pl+λl)+λl = min(dl, pl−λl)+λl =
min(dl + λl, pl).

Possible values for sl,j . By Lemmas 7 and 8,∑
τi∈τ W (τi), which is the LHS of Condition (18), de-

pends on the value of sl,j non-monotonically. Moreover,
by Theorem 2, ξl also depends on the value of sl,j (recall
φ). Thus, it is necessary to test all possible values of sl,j ,
which are {0, 1, 2, ..., sl}.

C. Schedulability Test

Theorem 3. Task system τ is GEDF-schedulable on m
processors if for all tasks τl and all values of ξl satisfying
(23),∑

τi∈τ max
(
Wnc ((τi),Wc(τi)) +

∑
τj∈τe Wnc(τj)

+δ
min(m−1,ne)
τk∈τe

)
≤ m · (ξl − el − sl,j) (24)

holds for every value of sl,j ∈ {0, 1, 2, ..., sl}.

By Theorem 2, we can test Condition (24) in time
pseudo-polynomial in the task parameters.

V. Experiments

In this section, we describe experiments conducted using
randomly-generated task sets to evaluate the performance

of the proposed schedulability tests. In these experiments,
several aspects of our analysis were investigated. In the
following, we denote our GEDF and GFP schedulability
tests as “Our-EDF” and “Our-FP,” respectively.

HRT effectiveness. We evaluated the effectiveness of the
proposed techniques for HRT SSS task systems by com-
paring Our-EDF and Our-FP to the suspension-oblivious
approach denoted “SC” combined with the tests in [2]
and [8], which we denote “Bar” and (as noted earlier)
“GY,” respectively. That is, after transforming all SSS
tasks into ordinary sporadic tasks (no suspensions) using
SC, we applied Bar and GY, which are the best known
schedulability tests for GEDF and GFP, respectively. In
[2], Bar was shown to overcome a major deficiency (i.e.,
the O(n) carry-in work) of prior GEDF analysis. In [8],
GY was shown to be superior to all prior analysis for or-
dinary task systems available at that time. Moreover, since
partitioning approaches have been shown to be generally
superior to global approaches on multiprocessors [1], we
compared our test to SC combined with the partitioning
approach proposed in [3], which we denoted “FB-Par”. FB-
Par is considered to be the best partitioning approach for
constrained-deadline sporadic task systems.

SRT effectiveness. We evaluated the effectiveness of the
proposed techniques for SRT SSS task systems with pre-
defined tardiness threshold by comparing them to SC
combined with the test proposed in [10], which we denote
“LA.” LA is the only prior schedulability test for SRT
ordinary task systems with predefined tardiness thresholds.

Impact of carry-in work. To evaluate the impact brought
by O(n) carry-in work on our analysis, we compared the
HRT schedulability for SSS task systems using our analysis
to that obtained by applying the analysis proposed in [5],
which we denoted “BC,” to an otherwise equivalent task
system with no suspensions. In [5], BC was shown to be
superior to all prior analysis assuming O(n) carry-in work
available at that time.

Runtime performance. Finally, we evaluated the effective-
ness and the runtime performance of Our-FP for ordinary
arbitrary-deadline sporadic task systems (with no suspen-
sions) by comparing it to GY.

In our experiments, SSS task sets were generated based
upon the methodology proposed by Baker in [1]. Integral
task periods were distributed uniformly over [10ms,100ms].
Per-task utilizations were uniformly distributed in [0.01,
0.3]. Task execution costs were calculated from periods
and utilizations. For any task τi in any generated task set,
di/pi was varied within [1,2] for the arbitrary-deadline
case and within [max(0.7, ei+sipi

), 1] for the constrained-
deadline case, and the tardiness threshold λi was varied
uniformly within [0, 2 · pi] for SRT tasks. The suspension

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(a) HRT: short suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(b) SRT: short suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(c) HRT: moderate suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(d) SRT: moderate suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

GY
Bar

FB-Par

(e) HRT: long suspensions

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5

Our-FP
Our-EDF

LA

(f) SRT: long suspensions

Fig. 7: HRT and SRT results. ui ∈ [0.01, 0.3], di ∈ [max(0.7 · pi, ei + si), pi].

length for any task τi was generated by varying si/ei
as follows: 0.5 (short suspension length), 1 (moderate
suspension length), and 1.5 (long suspension length). Task
sets were generated for m = 4 processors, as follows. A
cap on overall utilization was systematically varied within
[1, 1.1, 1.2, ..., 3.9, 4]. For each combination of utilization
cap and suspension length, we generated 1,000 SSS task
sets. Each such SSS task set was generated by creating
SSS tasks until total utilization exceeded the corresponding
utilization cap, and by then reducing the last task’s utiliza-
tion so that the total utilization equalled the utilization cap.
For GFP scheduling, priorities were assigned on a global
deadline-monotonic basis. In all figures presented in this
section, the x-axis denotes the utilization cap and the y-
axis denotes the fraction of generated task sets that were
schedulable.

Fig. 7 shows HRT and SRT schedulability results for
constrained-deadline SSS task sets achieved by using Our-
EDF, Our-FP, Bar, GY, and FB-Par. As seen, for both the

HRT and the SRT cases, Our-EDF and Our-FP improve
upon the other tested alternatives. Notably, Our-EDF and
Our-FP consistently yield better schedulability results than
the partitioning approach FB-Par. This is due to the fact
that, after treating suspensions as computation, FB-Par
suffers from bin-packing-related utilization loss. Moreover,
as the suspension length increases, such performance im-
provement also increases. This is because treating suspen-
sion as computation becomes more pessimistic as the sus-
pension length increases. This result suggests that a task’s
suspensions do not negatively impact the schedulability of
other tasks as much as computation does.

Fig. 8 shows HRT schedulability results for constrained-
deadline SSS task sets achieved by using Our-FP and by
applying BC to otherwise equivalent task sets with no
suspensions. In Fig. 8, “Our-FP-S” (respectively, “Our-FP-
M”) represents schedulability results achieved by Our-FP
for the task sets (which are originally generated for BC
with no suspensions) after adding suspensions by setting

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

BC
Our-FP-S
Our-FP-M

Fig. 8: HRT results compared with BC.

si
ei

= 0.2 (respectively, siei = 0.5). It can be seen that Our-
FP yields schedulability results that are very close to that
achieved by BC. For task sets with si

ei
= 0.2, Our-FP and

BC achieved almost identical schedulability results. This
shows that the negative impact brought by suspensions is
mainly caused by forcing O(n) carry-in work.

Fig. 9 shows HRT schedulability results for arbitrary-
deadline ordinary task systems (with no suspensions)
achieved by using Our-FP and GY. In this experiment, for
each choice of the utilization cap, 10,000 task sets are
generated. As seen, Our-FP slightly improves upon GY.
Moreover, Fig. 9 also shows the total time for running this
entire experiment for Our-FP and GY. As seen, Our-FP
runs much faster (> 10×) than GY, due to the fact that
Our-FP can find any task’s response time by solving the
RTA equation only once.

VI. Conclusion

We have presented HRT and SRT (with predefined tar-
diness thresholds) multiprocessor schedulability tests for
arbitrary-deadline SSS task systems under both GFP and
GEDF scheduling. In experiments presented herein, our
suspension-aware analysis results significantly improve
upon the suspension-oblivious approach SC. Moreover,
our analysis shows that by applying an interval analysis
framework tailored to the arbitrary-deadline case, arbitrary-
deadline task systems (both ordinary and self-suspending
ones) can be analyzed much more efficiently. Experiments
indicate that our analysis has much better runtime perfor-
mance than the prior approach proposed in [8].

In future work, it would be interesting to investigate
more precise and practical suspension patterns. That is,
instead of assuming that each task’s suspensions are simply
upper-bounded and will not be interfered with by other
tasks’ suspensions, it would be interesting to allow a
task’s suspension lengths to be affected by other tasks’
suspensions (e.g., due to contention when multiple tasks
simultaneously access the same shared resource).

0 %

20 %

40 %

60 %

80 %

100 %

 0 0.5 1 1.5 2 2.5 3 3.5 4

Our-FP
GY

Our-FP running time: 67(s)
GY running time: 946(s)

Fig. 9: HRT results compared with GY.

References

[1] T. Baker. A comparison of global and partitioned EDF schedulability
tests for multiprocessors. In Technical Report TR-051101, Florida
State University, 2005.

[2] S. Baruah. Techniques for multiprocessor global schedulability
analysis. In Proc. of the 28th RTSS, pp. 119-128, 2007.

[3] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling
of sporadic task systems. In Proc. of the 26th RTSS, pp. 321-329,
2005.

[4] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proc. of the 11th RTSS,
pp. 182-190, 1990.

[5] M. Bertogna and M. Cirinei. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In Proc. of the 28th
RTSS, pp. 149-160, 2007.

[6] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Trarjan.
Time bounds for selection. JCSS, (4): 448-461, 1973.

[7] G. Elliott and J. Anderson. Real-World Constraints of GPUs in Real-
Time Systems. In Proceedings of the First International Workshop
on Cyber-Physical Systems, Networks, and Applications, pp. 48-54,
2011.

[8] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds
for fixed priority multiprocessor scheduling. In Proc. of the 30th
RTSS, pp. 387-397, 2009.

[9] S. Lee and B. Moon. Design of flash-based DBMS: an in-page
logging approach. In Proc. of the 2007 ACM SIGMOD Conf. on
Management of Data, pp. 55-66, 2007.

[10] H. Leontyev and J. Anderson. A unified hard/soft real-time schedu-
lability test for global EDF multiprocessor scheduling. In Proc. of
the 29th RTSS, pp. 375-384, 2008.

[11] C. Liu and J. Anderson. Improving the schedulability of sporadic
self-suspending soft real-time multiprocessor task systems. In Proc.
of the 16th IEEE Int’l Conf. on Embedded and Real-Time Computing
Sys. and Apps., pp. 14-23, 2010.

[12] C. Liu and J. Anderson. Scheduling suspendable, pipelined tasks
with non-preemptive sections in soft real-time multiprocessor sys-
tems. In Proc. of the 16th IEEE Real-Time and Embedded Tech.
and Apps. Symp., pp. 23-32, 2010.

[13] C. Liu and J. Anderson. An O(m) analysis technique for supporting
real-time self-suspending task systems. In Proc. of the 33rd RTSS,
pp. 373-382, 2012.

[14] C. Liu and J. Anderson. Task scheduling with self-suspensions in
soft real-time multiprocessor systems. In Proc. of the 30th RTSS,
pp. 425-436, 2009.

[15] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin.
Power-efficient time-sensitive mapping in cpu/gpu heterogeneous
systems. In Proc. of the 21st International Conference on Parallel
Architectures and Compilation Techniques, pp. 23-32, 2012.

[16] J. Liu. Real-time systems. Prentice Hall, 2000.
[17] F. Ridouard, P. Richard, and F. Cottet. Negative results for schedul-

ing independent hard real-time tasks with self-suspensions. In Proc.
of the 25th RTSS, pp. 47-56, 2004.

