
Optimal Dataflow Scheduling on a Heterogeneous
Multiprocessor With Reduced Response Time
Bounds
Zheng Dong1, Cong Liu2, Alan Gatherer3, Lee McFearin4,
Peter Yan5, and James H. Anderson6

1 The University of Texas at Dallas, Dallas, TX, USA
zheng@utdallas.edu

2 The University of Texas at Dallas, Dallas, TX, USA
cong@utdallas.edu

3 America Wireless Access Laboratory, Huawei Technologies Co. Ltd, USA
alan.gatherer@huawei.com

4 America Wireless Access Laboratory, Huawei Technologies Co. Ltd, USA
lee.mcfearin@huawei.com

5 America Wireless Access Laboratory, Huawei Technologies Co. Ltd, USA
peter.yifey.yan@huawei.com

6 University of North Carolina at Chapel Hill, Chapell Hill, NC, USA
anderson@cs.unc.edu

Abstract
Heterogeneous computing platforms with multiple types of computing resources have been widely
used in many industrial systems to process dataflow tasks with pre-defined affinity of tasks to
subgroups of resources. For many dataflow workloads with soft real-time requirements, guar-
anteeing fast and bounded response times is often the objective. This paper presents a new
set of analysis techniques showing that a classical real-time scheduler, namely earliest-deadline-
first (EDF), is able to support dataflow tasks scheduled on such heterogeneous platforms with
provably bounded response times while incurring no resource capacity loss, thus proving EDF
to be an optimal solution for this scheduling problem. Experiments using synthetic workloads
with widely varied parameters also demonstrate that the magnitude of the response time bounds
yielded under the proposed analysis is reasonably small under all scenarios. Compared to the
state-of-the-art soft real-time analysis techniques, our test yields a 68% reduction on response
time bounds on average. This work demonstrates the potential of applying EDF into practical
industrial systems containing dataflow-based workloads that desire guaranteed bounded response
times.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases real-time scheduling, schedulability, heterogeneous multiprocessor

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.15

1 Introduction

In many applications, such as traffic monitoring [12], trajectory tracking [14], and modem
signal processing, dataflows periodically arrive in the form of data streams (e.g., continuous
image frames). A stream processing system is required to handle such data streams often in
a soft real-time fashion, e.g., results must be processed within a short and bounded time
period. For example, in traffic monitoring systems and voice data processing systems in

© Zheng Dong, Cong Liu, Alan Gatherer, Lee McFearin, Peter Yan, and James H. Anderson;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 15; pp. 15:1–15:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

Scheduler

A
1

A
2

A
n

Scheduler

CPU cluster
B1

B2

Bm

DSP cluster
Video stream 1

Video stream 2

Incoming frames

func. of frame compression func. of frame decoding

compressed frames decoded frames

Figure 1 An example video stream processing system.

cellular networks, results become meaningless if they cannot be processed and returned to
the end user within a bounded time window.

To handle continuously arrived dataflows with fast and bounded response times, heavily
heterogeneous computing systems [2] containing various types of accelerators (e.g., digital
signal processors–DSP) are used in many stream processing systems, such as Apache Storm
and its successor Twitter Heron [13], StreamCloud [10] and Apache Spark Streaming [26]. In
these systems, multiple types of resources are used to process different functionalities using
dataflow tasks as the data source with pre-defined affinity of tasks to subgroups of resources
(i.e., each functionality is designated to be processed on a specific type of computing resource,
such as CPU, DSP, or one of the many types of hardware-accelerators). One significant
challenge faced by such systems is the need to develop a multi-resource, real-time scheduler,
which can correctly support a maximum load of dataflows that may fully utilize all system
resources, along with the accompanying analytical schedulability test algorithms, which
validate at design time whether a set of dataflows can feasibly run with bounded response
times.

Fig. 1 shows a simplified example video stream application processed in a heterogeneous
computing system. There are two types of computing resources: a cluster of CPUs and a
cluster of DSPs [9]. Each video stream is independent and has two subtasks, where the first
subtask is to compress incoming video frames and is dedicated to be executed on CPUs,
while the second subtask is frame decoding and is dedicated to be executed on DSPs. In
this example, each video stream has a period of 1

24s, i.e., each stream periodically generates
frames at a rate of 24 frame per second (FPS). For each frame, the output of the first
subtask processed by CPUs is then fed to DSPs as data input to execute the second subtask.
The multi-resource scheduler determines how to schedule and allocate resources to various
subtasks belonging to different dataflow tasks.

Much recent work has been conducted on scheduling soft real-time (i.e., task response
times must be provably bounded) tasks on a homogeneous multiprocessor [5, 7]. However,
analysis is lacking for supporting soft real-time applications developed using the dataflow
formalism in a heterogeneous computing system with pre-defined task affinity to resources.
In this paper, we address this lack of support by presenting new schedulability analysis
techniques for a classical real-time scheduler, namely earliest-deadline-first (EDF). The
resulting scheulability test proves EDF to be an optimal solution for this heterogeneous
dataflow scheduling problem in terms of system utilization. That is, EDF can correctly
support any set of dataflow tasks with probably bounded response times that may even require
all types of computing resources to be fully utilized, thus incurring no capacity loss on any
resource.

Specifically, we present new schedulability analysis techniques showing that any dataflow
task system is schedulable under EDF with bounded response times if Uksum ≤Mk, 1 ≤ k ≤ m,
where m denotes the number of resource types, Mk denotes the number of processors of the
kth resource type, and Uksum denotes the total resource utilization required by all dataflow



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:3

tasks on processors of the kth resource type. This schedulability test implies EDF’s optimality
due to no capacity loss on any type of resource. We have also conducted extensive experiments
involving synthetic workloads with widely varied parameters, which demonstrate that the
magnitude of the response time bound yielded under our schedulability test is reasonably
small under all scenarios. Compared to the state-of-the-art soft real-time analysis techniques,
our test yields a 68% reduction on response time bounds on average.

2 Related Work

Task scheduling has been a well-studied problem in many parallel and distributed systems
(e.g., [21, 4, 24, 27]). A plethora of schedulers have been developed and used in practice,
e.g., the Fair Scheduler, the Capacity Schedular, and delay scheduling. These scheduling
strategies, however, cannot be applied to solve our problem of scheduling dataflow tasks
with provably bounded response times on a heterogeneous computing platform, because they
target at different application models and different performance objectives. On the other
hand, the problem of scheduling task systems on multiprocessors with bounded response
times [19, 3, 16] (e.g., several recent dissertations are produced focusing on this topic [6, 15])
or hard deadlines [7, 8, 23, 22, 11, 1] have received much recent attention. Such works mostly
focus on supporting on sporadic task systems on homogeneous multiprocessors, where the
traditional sporadic task model is a basic recurrent task model that is much simpler than
the dataflow task model studied in this paper (both models will be specifically defined in
later sections).

In recent works [25, 17], a release-enforcer technique has been proposed to schedule DAG-
based tasks on both homogeneous [17] and heterogeneous multiprocessors [25], showing that
no utilization loss can be achieved under GEDF scheduling. Specifically, the release-enforcer
technique forces a DAG-based task to release jobs in a sporadic manner through arbitrarily
delaying jobs’ releases, thus eliminating the need of directly handling DAG-induced precedence
constraints. A DAG-based task set can thus be transformed to an ordinary sporadic task
set. Unfortunately, this technique forces any job’s release to be delayed to the worst-case
completion time of any of its predecessor jobs, thus causing a rather pessimisitic response
time bound. Fundamentally differeant from this technique, this paper presents a new set of
analysis techniques that directly analyze jobs’ response time on its original GEDF schedule,
without any artificial delay of jobs’ releases. The resulting response time bounds are thus
much improved (Sec. 7 shows the advantage of our proposed techniques over applying the
existing technique [25] in terms of respones time bounds).

3 The Dataflow Task Model

In this section, we introduce the studied dataflow task system model, which is directly
motivated by the workloads seen in a couple of industrial cellular network systems.

We consider the problem of scheduling n dataflow tasks on a heterogeneous computing
platform consisting of m > 1 types of processors, where each type of processor is designated
to execute a specific functionality. Let Mk denote the number of processors of type k
(1 ≤ k ≤ m). Each dataflow task is specified as a 2-tuple (Gi, Pi), where Gi is a chain of m
subtasks, and Pi is a positive real number. We discuss these parameters below.

Since a dataflow task may continuously generate data streams that need to be processed
(i.e., “jobs”), the period Pi denotes the minimum amount of time that must elapse between
the releases of successive jobs of τi. That is, if a job is released at time t, then the next

ECRTS 2017



15:4 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

0 3 6

5 9

CPU

DSP

5

13

job release dependency

8

843

other workload

Figure 2 Two kinds of dependencies.

job of τi may not be released prior to the time instance t+ Pi. Let τi,j denote the jth
job released by τi and ri,j denote the release time of τi,j .
The chain of subtasks Gi is specified as τ1

i , ..., τ
m
i , where τki denotes the kth subtask of

dataflow task τi. Subtask τki is designated to be executed on processors of type k. Any
jth job released by τi is thus composed by a chain of m subjobs, each of which belongs to
the corresponding subtask. Any subjob τki,j is characterized by its corresponding subtask
τki ’s worst-case execution time (WCET) eki [20]. The edge connecting any two subtasks
represents dependencies between the released subjobs. That is, any subjob τki,j (i.e., the
jth subjob belonging to subtask τki ) must complete execution before subjob τk+1

i,j can
begin execution. Moreover, any subjob τki,j must complete execution before subjob τki,j+1
can begin execution, which is the next released subjob belonging to the same subtask.
These two types of dependencies among subjobs are illustrated in Fig. 2 and by the
following example,

I Example 1. The above dataflow task model studied in this paper is mainly motivated
by many industrial applications seen in practice. Consider the video stream application
introduced in Fig. 1 as an example to illustrate the Dataflow Task Model. A video stream
task τi periodically generates frames at a rate of 24 FPS, thus Pi = 1

24s. Any j
th job (i.e., jth

frame in this example) τi,j needs to be processed using two functionalities, frame compression
and frame decoding, which corresponds to the two subtasks of τi that are designated to
be processed on two types of computing resources, CPUs and DSPs respectively. Thus
Gi = (τ1

i , τ
2
i ). As illustrated in Fig. 2, there are two types of dependencies among subjobs:

(i) There is dependency between any two subjobs τki,j and τk+1
i,j . This is because for each

frame, the functionality of frame decoding can only happen after the same frame has been
compressed. (ii) There is dependency between any two subjobs τki,j and τki,j+1 (or τk+1

i,j and
τk+1
i,j+1). This is because in terms of each functionality, the video frames must be processed in
sequential order since they are captured sequentially.

In order to apply the EDF1 scheduling algorithm, we assign a deadline parameter Di to
each dataflow task τi, where Di = Pi. Thus, any job τi,j has a deadline at time ri,j + Di.
Under EDF, jobs are prioritized by deadlines, where jobs with shorter deadlines have higher
priorities. Note that we apply EDF scheduling on all types of processors. Thus, all subjobs
of any job τi,j inherit the priority of τi,j , regardless of the type of processor on which they
are executed. We allow job preemption and migration (but only migrating to a processor
of the correct type), i.e., a higher-priority job that requires type-k processors may preempt

1 We have verified that both preemption and the dynamic job-level priority-based EDF scheduler can
possibly be implemented in a couple of industrial dataflow-based cellular network systems seen in
practice.



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:5

the execution of a lower-priority job on a type-k processor and this lower-priority job may
migrate to another type-k processor if such a processor is available.2

The utilization of τi on type-k processors is denoted uki (i.e., the utilization of subtask
τki ), which is given by ek

i

Pi
, and we require

uki ≤ 1; (1)

for otherwise the response time of τki may grow unboundedly. Since a task periodically
releases jobs, the concept of task utilization is important as it characterizes the percentage
of a single processor’s capacity a task (or a subtask) requires in the long term.

The total utilization of a task system τ on type-k processors is defined as Uksum(τ) =∑n
i=1 u

k
i . We place no constraint on total utilization except that

Uksum(T ) ≤Mk. (2)

A scheduling algorithm is considered to be optimal if it can schedule any task system τ

that satisfies Eq. (2) with bounded response times guaranteed for all tasks in τ .
The goal of this paper is to derive response time bounds for a dataflow task system

scheduled under EDF. The response time of a task is defined to be the maximum response
time of any of its released jobs. A job’s response time is defined to be fi,j − ri,j , where
fi,j denotes the time at which τi,j completes and ri,j is the release time of τi,j . Instead of
deriving the response time bound directly, we derive a tardiness bound for any dataflow task
scheduled under EDF. The tardiness of a job τi,j is defined to be max{0, fi,j − di,j}, where
di,j is the deadline of τi,j . The tardiness of a task is defined to be the maximum tardiness of
any of its released jobs. Since di,j = ri,j + Pi, the response time bound of any task τi can be
obtained by simply using the derived tardiness bound of the task plus a Pi value.

4 Analysis Overview

Our goal now is to derive a tardiness bound for each dataflow task τi scheduled under EDF.
Since a job released by any dataflow task consists of a chain of sub-tasks, instead of directly
bounding the tardiness of each task, our analysis technique seeks to (i) bound the tardiness
of any first subtask τ1

i (Sec. 4.1), (ii) bound the tardiness of any second subtask τ2
i (Sec. 5),

and (iii) finally bound the tardiness of any kth (k > 2) subtask τki based on the tardiness
bound derived for τk−1

i (Sec. 6). In the following, we first bound the tardiness of any τ1
i as

it is quite straightforward, and then describe the challenges in bounding the tardiness for
other subtasks.

4.1 Tardiness Bound on Type 1 Processors
According to our dataflow task model, every dataflow task τi releases its jobs periodically
with a minimum job inter-arrival gap of Pi, and any subjob τ1

i,j+1 of job τi,j+1 can start
execution at time t if ri,j+1 ≤ t and subjob τ1

i,j completes by t. Thus, the first subtask τ1
i of

each task τi scheduled on type-1 processors can be viewed as a sporadic task3 scheduled on a

2 Note that, although in many hardware accelerators frequent job preemptions are allowed but discouraged
due to overhead consideration, we allow preemptions in this paper as this is the first attempt resolving
this scheduling problem. We leave the further issue of enforcing non-preemptive executions on certain
types of processors as future work.

3 Under the sporadic task model, each sporadic task continuously releases jobs and can be specified by
(ei, Pi), where ei denotes the WCET of any released job and pi specified the minimum amount of time
that must elapse between the releases of successive jobs of this task.

ECRTS 2017



15:6 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

homogeneous multiprocessor with M1 processors: the period and WCET of each task τ1
i are

Pi and e1
i , respectively.

As reviewed earlier, Devi and Anderson [6] have shown that EDF scheduling is capable
of scheduling sporadic task sets with probably bounded tardiness while incurring no capacity
loss, and the tardiness bound can be calculated using the following closed-form expression:

Tardiness(τ1
i ) =

∑
τ1

i
∈εmax(τ1,M1−1) e

1
i − e1

min

M1 −
∑
τ1

i
∈Umax(τ1,M1−1) u

1
i

+ e1
i , (3)

where Umax(τ1,M1 − 1) (εmax(τ1,M1 − 1), respectively) denotes a subset of (M1 − 1) tasks
with the highest utilization (largest WCET, respectively) in τ1 where τ1 denotes the set of
the first subtasks of all dataflow tasks. To ease our description, in the rest of this paper, we
use TBki to denote tardiness bound of subtask τki which is scheduled on type-k processors.

4.2 Challenges on Deriving Tardiness Bound for Any Subtask τ ki
(k > 1)

It is straightforward to derive a tardiness bound for any subtask τ1
i because such subtasks

can be naturally modeled as sporadic tasks, thus allowing existing analysis to be directly
applied. However, since any subjob τki,j (k > 1) cannot start execution until τk−1

i,j completes,
the releasing pattern of any such subtask τki is hard to characterize. Note that due to
dependencies, subjob τki,j (k > 1) is said to be released when τk+1

i,j completes execution. That
is, rki,j = fk+1

i,j , where fk+1
i,j denotes the completion time of subjob τk+1

i,j . A straightforward
approach is to force such subtasks to be modeled as sporadic tasks by calculating the
minimum separation between any two consecutive subjob releases by τki . However, we use an
example illustrating that such an approach would result in significant pessimism and could
be invalid in many cases.

I Example 2. Fig. 2 shows an example to illustrate the pessimism induced by ordinary
sporadic model. τki,j is released at 0 and completes execution at 5, when τk+1

i,j is released.
τki,j+1 is released at 6 and completes execution at 8, when τk+1

i,j+1 is released. Thus, the time
interval between the release time of these two consecutive subjobs of τk+1

i is 3 time units.
The minimum time interval between any two consecutive subjob releases of τk+1

i is thus 3
time units. However, since ek+1

i = 4 in this example, the utilization of τk+1
i would be forced

to become 4/3 > 1, which implies that τk+1
i is unschedulable and thus the whole task system

is unschedulable.

As seen in the above example, intuitively, the approach of forcing any subtask τ2
i does

not work due to dependencies. The minimum time separation between any two consecutive
subjob releases by τ2

i could be too small due to the facts that any subjob τ2
i,j is released at

the time when τ1
i,j completes and τ1

i,j may complete later than its deadline due to tardiness.
This may dramatically increase τ2

i ’s utilization in the analysis and thus artificially create
more workloads due to τ2

i than it actually contributes, which is too pessimistic and may even
make the resulting schedulability test invalid. To resolve this challenge, we next present a
set of novel analysis techniques to bound any subtask τ2

i ’s tardiness by analyzing the actual
workload contributed by each such subtask.

5 Tardiness Bound on Type 2 Processors

In this section, we derive the tardiness bound for any subtask τ2
i which is scheduled on type-2

processors. Our analysis techniques involve comparing the resource allocation to τ2, which



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:7

denotes the set of all subtasks τ2
i in the system, in a processor sharing (PS) schedule (defined

below) and an actual EDF schedule of interest for τ2, both on M2 type-2 processors, and
quantifying the difference between the two. We analyze allocations on a per-subtask basis.

The time interval [t1, t2), where t2 > t1, consists of all time instances t, where t1 ≤ t < t2,
and is of length t2 − t1. For any time t > 0, the notation τ− denotes the time t− ε in the
limit ε− > 0+, and the notation t+ is used to denote the time t+ ε in the limit ε− > 0+.

I Definition 3 (active subjob). A subtask τ2
i is active at time t in a schedule S if there exists

a job τ2
i,j (called τ2

i ’s active job at t) such that f1
i,j ≤ t < di,j (as defined earlier, f1

i,j denotes
the completion time of subjob τ1

i,j as well as the time τ2
i,j is released). By our task model,

every subtask has at most one active subjob at any time.

I Definition 4 (pending subjob). A subjob τ2
i,j is pending at time t in a schedule S if f1

i,j ≤ t,
and τ2

i,j has not completed execution by t in S. A subtask is pending at time t if any of its
subjobs are pending at time t.

I Definition 5 (ready subjob). A pending subjob T 2
i,j is ready at time t in a schedule S if

f1
i,j ≤ t, T 2

i,j has not yet completed at t, and all its predecessor subjobs (i.e., τ1
i,j and τ2

i,j−1)
have completed execution by t in S.

Let A(τ2
i,j , t1, t2,S) denote the total processing time allocated to τ2

i,j in an arbitrary
schedule S in [t1, t2). Then, the total time allocated to all jobs of τ2

i in S is given by

A(τ2
i , t1, t2,S) =

∑
j≥1

A(τ2
i,j , t1, t2,S) (4)

Now consider a PS schedule PS defined below.

I Definition 6 (processor sharing). PS is a processor-sharing (PS) schedule on M2 type-2
processors for all subtasks in τ2. In such a schedule, τ2

i executes with the rate u2
i when it is

active.

Thus, if τ2
i is active throughout [t1, t2), then

A(τ2
i , t1, t2, PS) = (t2 − t1) · u2

i . (5)

The difference between the allocation to a subjob τ2
i,j up to time t in a PS schedule and

an arbitrary schedule S, denoted the lag of subjob τ2
i,j in schedule S, is defined by

lag(τ2
i,j , t, S) = A(τ2

i , 0, t, PS)−A(τ2
i , 0, t, S). (6)

The concept of lag is important because, if lags remain bounded, then tardiness is bounded
as well. In order to bound lags for subjobs of subtasks τ2

i ∈ τ2 on type-2 processors, PS plays
a pivotal role. Intuitively, we can imagine that PS represent the schedule of a system of n
type-2 processors, where the ith processor has a capacity of e

2
i

Pi
and is dedicated to executing

subjobs of τ2
i . Thus, we can see that in a PS schedule subjobs released by different subtaskτ2

i

will not interfere with each other and subjobs released by the same subtask execute at a
constant rate sequentially.

The concept of PS is originally introduced in [6] for sporadic task systems. For the
sporadic case, PS represents an “ideal” schedule since each job released at time t is expected
to complete at its deadline, which is t+ Pi. Thus, bounding the lag can be achieved through
comparing the allocation to an arbitrary schedule S and the allocation in PS. However, a
key difference between the sporadic task model and our dataflow task model is that each

ECRTS 2017



15:8 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

EDF

PS

Tardiness in PS EDF-induced Tardiness

Completion time in PS Completion time in the EDF Schedule

Figure 3 τk
i,j ’s tardiness is comprised of its tardiness in PS and the EDF-induced tardiness.

subjob has two types of dependencies. Due to dependencies, a subjob may not be able to
ideally complete by its deadline in PS. Specifically, due to the facts that the release time r2

i,j

of any subjob τ2
i,j is the completion time f1

i,j of the subtask τ1
i,j executed on type-1 processors

(f1
i,j > di,j is possible due to tardiness according to Eq. 3), and τ1

i,j and τ2
i,j have the same

deadline di,j , τ2
i,j thus may not complete by its deadline at di,j in PS.

The above discussions highlight a key point that under the dataflow task model, the
tardiness of τ2

i is due to two sources: (i) the tardiness due to using an arbitrary scheduler
which can be less ideal than the PS scheduler (e.g., EDF in this paper), which can be
bounded by comparing the allocation to τ2

i in the corresponding arbitrary schedule against
the allocation in PS, and (ii) the tardiness of τ2

i seen in PS, which exists due to the potential
late completion of subjobs of τ1

i (i.e., its subjobs complete after the corresponding deadlines)
executed on type-1 processors (note again that this PS-induced tardiness does not exist for
the ordinary sporadic task model.) This is also illustrated in Fig. 3.

Motivated by this key observation, we seek to bound the tardiness of τ2
i by bound two

types of tardiness: PS-induced tardiness (Sec. 5.1) and EDF-induced tardiness (Sec. 5.2).
Finally we obtain a tardiness bound for any τ2

i by combining these two types of tardiness
(Sec. 5.3).

5.1 PS-induced Tardiness
In this section, we derive a bound on the PS-induced tardiness for τ2

i ; in particular, the
following theorem shows that the tardiness of any subjob of τ2

i in PS can be bounded by a
constant that depends only on the dataflow task τi’s period and and the tardiness bound of
τ1
i executed on type 1 processors.

I Theorem 7. τ2
i ’s tardiness in PS is bounded by TB1

i + Pi.

Proof. For the first subjob τ2
i,1 of τ2

i , its release time r2
i,1 is no later than r1

i,1 + Pi + TB1
i .

This is because the completion time of τ1
i,1 executed on type-1 processor is no later than

r1
i,1 +Pi+TB1

i according to Eq. 3. According to the definition of PS, we know that τ2
i,1 begins

execution no later than r1
i,1 +Pi + TB1

i and will complete no later than r1
i,1 +Pi + TB1

i +Pi
in PS. Since the deadline of τ2

i,1 is r1
i,1 + Pi, τ2

i,1’s tardiness is no greater than TB1
i + Pi in

PS.
We now prove this theorem’s correctness for all the other jobs τ2

i,j (j > 1) by contradiction.
Let us assume that the tardiness of some job of τ2

i is larger than TB1
i + Pi in PS. Let τ2

i,x

denote the first such job.
According to the definition of PS, all subjobs of τ2

i execute sequentially on type-2
processors at a constant rate e2

i

Pi
. Since the tardiness of τ2

i,x in PS is greater than TB1
i + Pi,

τ2
i,x must begin execution after r1

i,x + Pi + TB1
i . Note that r1

i,x, which is one predecessor job
of τ2

i,x, must complete by r1
i,x + Pi + TB1

i according to Eq. 3. Thus, this implies that τ2
i,x−1



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:9

does not complete at r1
i,x+Pi+TB1

i . Since the deadline of τ2
i,x−1 is r1

i,x−1 +Pi, the tardiness
of τ2

i,x−1 in PS is greater than (r1
i,x +Pi + TB1

i )− (r1
i,x−1 +Pi) = r1

i,x + TB1
i − r1

i,x−1. Since
r1
i,x − r1

i,x−1 ≥ Pi, the tardiness of τ2
i,x−1 in PS is greater than TB1

i ) + Pi. This implies that
τ2
i,x is not the first subjob of τ2

i that has a tardiness greater than TB1
i ) +Pi. A contradiction

is reached and the theorem is thus proved. J

5.2 EDF-induced Tardiness
In this section, we bound EDF-induced tardiness for subtask τ2

i by comparing any subjob
τ2
i,j ’s completion time under EDF and its completion time under PS. Since we only focus on
subtasks and subjobs that are scheduled on type-2 processors in this section, to make the
description easier, we call τ2

i a task and τ2
i,j a job in this section.

First we quantify the allocation to job τ2
i,j in an interval [t1, t2) in PS. For this, we have

defined A(S, τ2
i,j , t1, t2) to denote the total processing time allocated to τ2

i,j in an arbitrary
schedule S in [t1, t2) in Eq. 4 and we have A(τ2

i,j , t1, t2, PS) ≤ (t2 − t1) · u2
i according to

Eq. 5.
We relate the allocation to a job τ2

i,j under PS to its allocation under EDF using the
notation of lag, which is defined as

lag(τ2
i,j , t, EDF ) = A(τ2

i,j , 0, t, PS)−A(τ2
i,j , 0, t, EDF ). (7)

Then, task lags can be defined in a similar way:

lag(τ2
i , t, EDF ) =

∑
j≥1

(A(τ2
i,j , 0, t, PS)−A(τ2

i,j , 0, t, EDF )). (8)

The lag of task τ2
i at t in EDF schedule indicates the difference between the allocation to

τ2
i in EDF and PS in interval [0, t). If lag(τ2

i , t, EDF ) is positive, then schedule EDF has
performed less work on the jobs of τ2

i until t than PS, and more work if lag(τ2
i , t, EDF ) is

negative.
The total lag for a finite job set Θ at t, denoted LAG(Θ, t, EDF ) , is given by the sum

of the lags of all jobs in Θ. That is,

LAG(Θ, t, EDF ) =
∑
τ2

i,j
∈Θ

lag(τ2
i,j , t, EDF )

=
∑
τ2

i,j
∈Θ

(A(τ2
i,j , 0, t, PS)−A(τ2

i,j , 0, t, EDF )). (9)

Since both A(τ2
i,j , 0, 0, PS) and A(τ2

i,j , 0, 0, EDF ) are zero, ∀ i and ∀ j, LAG(Θ, 0, EDF )
is zero. By Eq. 7 and Eq. 9, we have the following for t2 > t1:

LAG(Θ, t2, EDF ) = LAG(Θ, t1, EDF )
+A(Θ, t1, t2, PS)−A(Θ, t1, t2, EDF ). (10)

I Definition 8 (busy/none-busy interval). A time interval [t1, t2) is busy for a job set Θ, if,
at each time-instant t ∈ [t1, t2), all processors executes jobs from Θ, and is non-busy for Θ
otherwise. An interval [t1, t2) is maximally non-busy for Θ if it is non-busy for Θ at every
time instant within it and either t1 = 0 or t−1 is a busy instant for Θ.

If [t1, t2) is a busy interval in an EDF schedule for Θ, then the tasks in Θ receive a total
allocation of M2(t2 − t1) time in that interval in an EDF schedule. By Eq. 8, the total
allocation to Θ cannot exceed M2(t2 − t1) in PS. Thus, by Eq. 9, the LAG of Θ at t2 is no
larger than that at t1, and the following lemma holds.

ECRTS 2017



15:10 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

I Lemma 9. For any time interval [t1, t2) that is busy for Θ, LAG(Θ, t2, EDF ) ≤ LAG(Θ, t1, EDF ).

Lemma 9 implies that the total lag for a job set can only increase across non-busy intervals,
which causes tardiness of jobs. Next, we bound EDF-induced tardiness on type 2 processors
using lags. For the rest of this section, let τ2 denote the task system scheduled on type 2
processors. τ2 has a PS schedule and satisfies Eq. 1 and Eq. 2. All jobs τ2

i,j ∈ τ2 have the
following information:

release time r2
i,j

execution time e2
i

completion time f2
i,j for τ2

i,j in PS

I Definition 10. f̂2
i,j = max{di,j , f2

i,j} denotes the earliest time at or after di,j by which τ2
i,j

has completed in PS.
Note that f̂2

i,j ≥ f2
i,j and job τ2

i,j ’s tardiness in PS equals f̂2
i,j − di,j .

I Definition 11. Let c2i,j denotes the completion time of τ2
i,j in the EDF schedule. EDF-

induced tardiness equals max{c2i,j − f̂2
i,j , 0}, as illustrated earlier in Fig. 3.

In the rest of this section, we bound EDF-induced tardiness by leveraging and extending
the general analysis framework first developed in [6]. Let

ρ = max
τ1

i
∈τ1
{TB1

i }. (11)

ρ denotes the largest tardiness bound among all subtasks τ1
i that ae scheduled on type-1

processors. We assume that the EDF schedule has the following property.

I Property 12. The EDF-induced tardiness of every job of every task τ2
k in τ2 with deadline

less than di,j is at most x+ e2
k, where x ≥ ρ.

Our goal is to determine the smallest x ≥ ρ such that the tardiness of τ2
i,j remains at

most x+ e2
i . Such a result would by induction imply a tardiness of at most x+ e2

k for all
jobs of every task τ2

k ∈ τ2. Because τ2 is arbitrary, the tardiness bound will hold for every
concrete instantiation of τ2. The objective is easily met if τ2

i,j completes by its deadline, di,j ,
so assume otherwise. The completion time of τ2

i,j then depends on the amount of work that
can compete with τ2

i,j after di,j . Hence, a value for x can be determined via the following
steps.
1. Compute an upper bound on pending work for tasks in τ2 (including τ2

i,j) that can
compete with τ2

i,j after di,j .
2. Determine the amount of such work necessary for the tardiness of τ2

i,j to exceed x+ e2
i .

3. Determine the smallest x ≥ ρ such that the tardiness of τ2
i,j is at most x+ e2

i using the
upper bound in Step 1 and the necessary condition in Step 2.

To reason about the tardiness of τ2
i,j we need to determine how other jobs preempt/delay

its execution. We classify such jobs based on the relation between their deadlines and
completion time on PS and those of τ2

i,j , as follows.
fd = {τ2

l,k : dl,k ≤ di,j ∧ f2
l,k ≤ f̂2

i,j}
fD = {τ2

l,k : dl,k > di,j ∧ f2
l,k ≤ f̂2

i,j}
Fd = {τ2

l,k : dl,k ≤ di,j ∧ f2
l,k > f̂2

i,j}
FD = {τ2

l,k : dl,k > di,j ∧ f2
l,k > f̂2

i,j}



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:11

In this notation, f and F denote jobs’ completion time in PS at most and greater than
f̂i,j , respectively. d denotes that τ2

l,k’s deadline is no later than that of τ2
i,j , and D denotes

that τ2
l,k’s deadline is later than that of τ2

i,j . Note that τ2
i,j ∈ fd.

The set of jobs with completion time in PS at most f̂2
i,j is further referred to as Θ = fd∪fD.

This set of jobs do not execute beyond f̂2
i,j in the PS schedule. Note that because the jobs in

fd ∪ Fd might have the priority at least that of τ2
i,j (at some time instant), the execution of

τ2
i,j might be postponed (in the worst case) until there are at most m ready jobs in fd ∪ Fd
including τ2

i,j . Based on this observation, we derive the EDF-induced tardiness bound in
three steps.

5.2.1 Step 1: An upper bound on competing work
In this section, we determine an upper bound on competing work for τ2

i,j , which is denoted
by UB(fd ∪ Fd, f̂i,j , EDF ).

Because jobs in fd∪Fd can have priorities at least that of τ2
i,j , the competing work due to

fd∪Fd for τ2
i,j beyond f̂2

i,j , UB(fd∪Fd, f̂i,j , EDF ), is bounded by the sum of (i) the amount
of work pending at f̂2

i,j for jobs in fd, and (ii) the amount of workW (Fd, f̂2
i,j , EDF ) required

by jobs in Fd that can compete with τ2
i,j after f̂2

i,j . For the pending work mentioned in (i),
because jobs from Θ have completion time in PS at most f̂2

i,j , they do not execute in the PS
schedule beyond f̂2

i,j . Thus, the work pending for jobs in fd is given by LAG(fd, f̂2
i,j , EDF ),

which must be positive in order for τ2
i,j to exceed its completion time in PS at f̂i,j .

Instead of bounding LAG(fd, f̂2
i,j , EDF ), we try to bound LAG(Θ, f̂2

i,j , EDF ). This
is because LAG(fd, f̂2

i,j , EDF ) ≤ LAG(Θ, f̂2
i,j , EDF ). This inequality holds because Θ =

fd ∪ fD, and LAG(fD, f̂2
i,j , EDF ) is non-negative because according to the definition

of fD, the jobs in fD cannot perform more work by time f̂2
i,j in EDF than they have

performed in the PS schedule. Thus, W (fd ∪ Fd, f̂2
i,j , EDF ) ≤ LAG(Θ, f̂2

i,j , EDF ) +
W (Fd, f̂2

i,j , EDF ). Therefore, W (fd∪Fd, f̂2
i,j , EDF ) can be obtained by determining upper

bounds for LAG(Θ, f̂2
i,j , EDF ) and W (Fd, f̂2

i,j , EDF ) individually.

Upper bound on LAG(Θ, f̂2
i,j, EDF ). Since we are deriving this bound w.r.t. Θ, we

assume that all busy and non-busy intervals considered are w.r.t. Θ and the EDF schedule.
By Lemma 9, if no non-busy interval for Θ exists in [0, f̂2

i,j), then LAG(Θ, f̂2
i,j , EDF ) ≤

LAG(Θ, 0, EDF ) = 0. Thus, we consider the more interesting case where some non-busy
interval exists in [0, f̂2

i,j). An interval for jobs in Θ could be non-busy for two reasons:
Simply not enough ready jobs in Θ exists that can occupy all available processors. Thus,
it does not matter whether jobs from Fd or FD execute during the interval. Such an
interval is called non-busy non-occupation.
There exists ready jobs in Θ that cannot execute within some sub-intervals in [0, f̂2

i,j),
since jobs in Fd occupy one or more processors and they have higher priorities. Such an
interval is called non-busy occupation.

Let the carry-in job τ2
c,h of a task τ2

c be defined as the job, if any, for which r2
c,h ≤ f̂2

i,j < f2
c,h

holds. Note that at most one such job could exist for each task τ2
c and only such carry-in

jobs can prevent the execution of jobs in Θ before time f̂2
i,j , thus increasing the LAG for Θ.

I Definition 13. Let τ2
H be the set of tasks that have carry in jobs in Fd.

I Definition 14. Let δc be the amount of work performed by a carry-in job τ2
c,h in EDF by

time f̂2
i,j .

ECRTS 2017



15:12 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

As discussed earlier, LAG for Θ can increase only across non-busy intervals. In much of
the rest of the analysis, we focus on a time t2 defined as follows: if there exists a non-busy
non-occupation interval before f̂2

i,j , across which LAG for Θ increases, then let [t1, t2] denote
the latest such interval; otherwise, t1 = t2 = 0.

The following two lemmas have been proved previously in [6, 18] for ordinary sporadic
task systems (note again that no PS-induced tardiness exists for sporadic task systems).
Note that when we calculate EDF-induced tardiness, the value of LAG(Θ, f̂2

i,j , EDF ) +
W (FD, f̂2

i,j , EDF ) depends only on allocations in the PS schedule and allocations to jobs in
Θ ∪ FD by time f̂2

i,j in the EDF schedule, which can compete processing time with τ2
i,j after

f̂2
i,j . Thus, the tardiness in PS does not affect the derivation of the EDF-induced tardiness.

Also, Property 12 alone is sufficient for determining how much work any job in Θ∪FD other
than τ2

i,j completes before f̂2
i,j . For these reasons, Lemmas 15 and Lemma 16 continue to

hold for τ2 task systems.

I Lemma 15. LAG(Θ, f̂2
i,j , EDF ) ≤ LAG(Θ, t2, EDF ) +

∑
τ2

c∈τ2
H
δc(1− u2

c).

Proof. By Eq. (9) and Eq. (10),

LAG(Θ, f̂l,j , EDF )

≤ LAG(Θ, t2, EDF ) +A(Θ, t2, f̂l,j , PS)

−A(Θ, t2, f̂l,j , EDF ). (12)

We split [t2, f̂i,j ] into b non-overlaping intervals [tpi , tqi), where 1 ≤ i ≤ b, such that t2 = tp1 ,
tq(i−1) = tpi

and tqb
= f̂i,j . Each interval [tpi

, tqi
) is either busy, non-busy occupation or

non-busy non-occupation. We assume that any occupation interval [tpi , tqi) is defined so
that if a task τ2

c ∈ τ2
H executes at some point in the interval, then it executes continuously

throughout the interval. Note that such a task τ2
c does not necessarily execute continuously

throughout [t2, f̂i,j). For each occupation interval [tpi
, tqi

), we define a subset of tasks
α2
c ⊆ τ2

H that execute continuously throughout [tpi
, tqi

). The allocation difference for Θ
throughout the interval [t2, f̂2

i,j) is thus:

A(Θ, t2, f̂2
l,j , PS)−A(Θ, t2, f̂2

l,j , EDF )

=
b∑
i=1

(A(Θ, tpi , tqi , PS)−A(Θ, tpi , tqi , EDF )). (13)

We now bound the difference between the work performed in the PS schedule and the
schedule EDF across each of these intervals [tpi

, tqi
). The sum of these bounds gives us a

bound on the total allocation difference throughout [t2, f̂2
i,j). Depending on the nature of

the interval [tpi
, tqi

), three cases are possible.
Case 1. [tpi , tqi) is busy. Because in EDF all processors are occupied by jobs in Θ, A(Θ, tpi

,

tqi , EDF ) = M2 × (tq1 − tpi). In PS, A(Θ, tpi , tqi , PS) ≤ U2
sum(tq1 − tpi). Since U2

sum ≤
M2, we have

A(Θ, tpi
, tqi

, PS)−A(Θ, tpi
, tqi

, EDF ) ≤ 0. (14)
Case 2. [tpi , tqi) is non-busy non-occupation. By the selection of [t1, t2], LAG does not

increase for Θ across [tpi
, tqi

). Therefore, from Eq. (10), we have
A(Θ, tpi

, tqi
, PS)−A(Θ, tpi

, tqi
, EDF ) ≤ 0. (15)

Case 3. [tpi , tqi) is non-busy occupation. The cumulative utilization of all tasks τ2
c ∈ α2

c ,
which execute continuously throughout [tpi , tqi), is

∑
τ2

c∈α2
c
uc. The carry-in jobs of these

tasks do not belong to Θ, by the definition of Θ. Therefore, the allocation of jobs



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:13

in Θ during [tpi , tqi) in PS is at most A(Θ, tpi , tqi , PS) = (tqi − tpi)(M2 −
∑
τ2

c∈α2
c
uc).

All processors are occupied at every time instant in the interval [tpi
, tqi

), because it is
occupation. Thus, A(Θ, tpi

, tqi
, EDF ) = (tqi

− tpi
)(M2 − |α2

c |). Therefore, the allocation
difference for jobs in Θ throughout the interval is

A(Θ, tpi
, tqi

, PS)−A(Θ, tpi
, tqi

, EDF )

≤ (tqi − tpi)((M2 −
∑
τ2

c∈α2
c

u2
c)− (M2− | α2

c |))

= (tqi − tpi)
∑
τ2

c∈α2
c

(1− u2
c)). (16)

To complete our proof, define α2
c = null for all intervals [tpi , tqi) that are either busy or

non-busy non-occupation. Then, summing the allocation differences for all the intervals
[tpi

, tqi
) given by Eq. (14), Eq. (15), and Eq. (16), we have

A(Θ, tpi
, tqi

, PS)−A(Θ, tpi
, tqi

, EDF )

≤
b∑
i=1

∑
τ2

c∈α2
c

(tqi
− tpi

)(1− u2
c)). (17)

For each task τ2
c ∈ τ2

H , the sum of the lengths of the intervals [tpi , tqi), in which the carry-
in job of τ2

c executes continuously is at most δ2
c . A(Θ, tpi

, tqi
, PS)− A(Θ, tpi

, tqi
, EDF ) ≤∑

τ2
c∈τ2

H
δ2
c (1−u2

c). Setting this value into Eq. (12), we get LAG(Θ, f̂i,j , EDF ) ≤ LAG(Θ, t2,
EDF ) +

∑
τ2

c∈τ2
H
δ2
c (1− u2

c). J

I Lemma 16. lag(τ2
k , t, EDF ) ≤ x× u2

k + e2
k for any task τ2

k and t ∈ [0, f̂2
i,j ].

Proof. Let f̂2
k,j be the completion time of the earliest pending job of τ2

k , τ2
k,j , in the PS

schedule at time t. Let γk be the amount of work τ2
k,j performs before t in the EDF schedule.

We first prove the lemma for the case f̂2
k,j < t. By Eq. (7) and the selection of τ2

k,j ,

lag(τ2
k , t, EDF )

=
∑
h≥j

lag(τ2
k,h, t, EDF )

=
∑
h≥j

(A(τ2
k,h, 0, t, PS)−A(τ2

k,h, 0, t, EDF )) (18)

A(τ2
k,h, 0, t, EDF ) = A(τ2

k,h, r
2
k,h, t, EDF ), because no job executes before its release time.

Thus,

lag(τ2
k , t, EDF )

=
∑
h>j

(A(τ2
k,h, r

2
k,h, t, PS)−A(τ2

k,h, r
2
k,h, t, EDF ))

+A(τ2
k,j , r

2
k,j , t, PS)−A(τ2

k,j , r
2
k,j , t, EDF ). (19)

A(τ2
k,j , r

2
k,j , t, PS) = e2

k and
∑
h>j A(τ2

k,h, r
2
k,h, t, PS) ≤ u2

k(t − f̂2
k,j), by the definition of

PS. A(τ2
k,j , r

2
k,j , t, EDF ) = γk and

∑
h>j A(τ2

k,h, r
2
k,h, t, EDF ) = 0, by the selection of τ2

k,j .
Setting these values into Eq. (19), we have

lag(τ2
k , t, EDF ) ≤ u2

k(t− f̂2
k,j) + e2

k − γk (20)

ECRTS 2017



15:14 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

By Property (P), τ2
k,j has EDF-induced tardiness at most x+e2

k, so t+e2
k−γk ≤ f̂2

k,j +x+e2
k.

Thus, t− f̂2
k,j ≤ x+ e2

k + γk − e2
k. From 20, we have

lag(τ2
k , t, EDF ) ≤ u2

k(t− f̂2
k,j) + e2

k − γk = u2
k(x+ e2

k + γk − e2
k) + e2

k − γk
≤ x× u2

k + e2
k.

Then, we prove the lemma for the case f̂2
k,j ≥ t. By Eq. (7) and the selection of τ2

k,j ,

lag(τ2
k , t, EDF ) =

∑
h≤j

lag(τ2
k,h, t, EDF ) =

∑
h≤j

(A(τ2
k,h, 0, t, PS)−A(τ2

k,h, 0, t, EDF ))

=
∑
h<j

(A(τ2
k,h, r

2
k,h, t, PS)−A(τ2

k,h, r
2
k,h, t, EDF ))

+A(τ2
k,j , r

2
k,j , t, PS)−A(τ2

k,j , r
2
k,j , t, EDF ). (21)

By the definition of PS,
∑
h<j A(τ2

k,h, r
2
k,h, t, PS) ≤

∑
h<j e

2
k; since τk,j is the earliest

pending job of τ2
k in the schedule EDF at time t,

∑
h<j A(τ2

k,h, rk,h, t, EDF ) =
∑
h<j e

2
k.

Also, A(τ2
k,j , r

2
k,j , t, PS) ≤ e2

k and A(τ2
k,j , r

2
k,j , t, EDF ) = γk ≥ 0, and setting these values

into Eq. (21):

lag(τ2
k , t, EDF ) ≤ (

∑
h<j

e2
k −

∑
h<j

e2
k) + e2

k − γk ≤ e2
k

Therefore, lag(τ2
k , t, EDF ) ≤ x× u2

k + e2
k for any task τ2

k and t ∈ [0, f̂i,j ] is proved. J

We now prove that there is an upper bound on Θ’s LAG at time t2. Let k′ = max{k :
τi,k ∈ Θ, ri,k ≤ f̂l,j}. Define

I Definition 17. Let U(τ2, y) (E(τ2, y)) be the set of at most min{|τ2|, y} tasks from τ2 of
highest utilization (execution cost), where |τ2| is the number of tasks in τ2, and let

E2
L =

∑
τ2

i
∈E(τ2,M2−1)

e2
i (22)

and

U2
L =

∑
τ2

i
∈U(τ2,M2−1)

u2
i (23)

I Lemma 18. LAG(Θ, t2, EDF ) ≤ x× U2
L + E2

L.

Proof. To bound LAG(Θ, t2, EDF ), we sum individual task lags at t2. If t2 = 0, then
LAG(Θ, t2, EDF ) = 0 and the lemma holds trivially. So assume that t2 > 0. Consider
the set of tasks χ = {τ2

i : ∃τ2
i,j ∈ Θ such that τ2

i,j is pending at t2}. Because the instant
t2 is non-busy non-occupation, | χ |≤ (M2 − 1). If a task has no pending jobs at t2, then
lag(τ2

i , t2, S) ≤ 0. Therefore, by Eq. (7) and Lemma 16, we have

LAG(Θ, t2, EDF )

=
∑

τ2
i

:τ2
i,j
∈Θ

lag(τ2
i , t2, EDF ) ≤

∑
τ2

i
∈χ

lag(τ2
i , t2, EDF )

≤
∑
τ2

i
∈χ

(u2
i × x+ e2

i ) ≤ E2
L + x× U2

L (24)

J

Thus, based on Lemma 15 and Lemma 18, we have the desired upper bound LAG(Θ, f̂i,j ,
S) ≤ x× U2

L + E2
L +

∑
τ2

c∈τ2
H
δc(1− u2

c).



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:15

Upper bound on W (Fd, f̂2
i,j, EDF ). To compute a bound on the requirement of jobs

that can compete with τ2
i,j after f̂2

i,j , W (Fd, f̂2
i,j , EDF ), we first find the latest release time

of such a job. Intuitively, if a job is released at a time instant which is far behind f̂2
i,j ,

the job’s priority may not be higher than τ2
l,j ’s priority due to the constrained range of its

tardiness bound on the type 1 processors.

I Lemma 19. If τ2
l,k ∈ Fd ∪ fd, then r2

l,k ≤ f̂2
i,j + TB1

l .

Proof. Given that f̂2
i,j ≥ di,j holds for any job τ2

i,j , if τ2
l,k ∈ Fd ∪ fd, then f̂2

i,j ≥ di,j ≥ dl,k
holds. According to Eq. (3), we have r2

l,k ≤ dl,k+TB1
l . Thus, r2

l,k ≤ f̂2
i,j +TB1

l is proved. J

I Corollary 20. All jobs in Fd∪fd are released at or before f̂2
i,j+ρ, where ρ = maxτ1

i
∈τ1{TB1

i }
according to Eq. 11.

According to the dataflow task model, a subjob’s release time on type 2 processors is the
completion time of the corresponding subjob released by the same dataflow job on type 1
processors. Then, the minimum inter-arrival time of any two consecutive subjobs released by
the same dataflow task on type 2 processors is the dataflow task’s execution time on type 1
processors. Thus, we have the following corollary.

I Corollary 21. The minimum inter-arrival time of any two consecutive jobs, i.e. τ2
l,k and

τ2
l,k+1, released by the same task τ2

l on type 2 processors equals to the corresponding dataflow
task’s execution time on type 1 processors, i.e. e1

l .

I Lemma 22. The amount of work W (Fd, f̂2
i,j , EDF ) required by jobs in Fd that can compete

with τ2
i,j after f̂2

i,j can be bounded by
∑
τ2

c∈τ2
H

(e2
c − δc) +

∑
τ2

l
∈τ2\τ2

i
(dTB

1
l

e1
l

e)e2
l .

Proof. Each job τl,k in Fd is either a carry-in job or is released after f̂i,j . In the latter
case, by Lemma 19, τl,k is released in the interval (f̂2

i,j , f̂
2
i,j + TB1

l ]. Thus, each task τ2
l

may have one carry-in job in Fd and up to dTB
1
l

e1
l

e jobs in Fd released after f̂2
i,j according

to corollary. 20 and 21. If τ2
l has a carry-in job, then τ2

l is in τ2
H and the work due to its

carry-in job after f̂2
i,j is at most e2

l − δi. The work generated by any job of τ2
l in Fd released

after f̂2
i,j is at most e2

l . From these facts, the lemma follows. (Note that τ2
i is excluded from

the second summation because it does not have jobs in Fd.) J

Upper bound on W (fd∪Fd, f̂2
i,j , EDF ). SinceW (fd∪Fd, f̂2

i,j , EDF ) ≤ LAG(Θ, f̂2
i,j ,

EDF ) +W (Fd, f̂2
i,j , EDF ), by Lemmas 15, 18, and 22, we have

W (fd ∪ Fd, f̂2
i,j , EDF ) ≤ x× U2

L + E2
L +

∑
τ2

c∈τ2
H

(δc(1− u2
c) + (e2

c − δc))

+
∑

τ2
l
∈τ2\τ2

i

(dTB
1
l

e1
l

e)e2
l

≤ x× U2
L + E2

L +
∑

τ2
l
∈τ2\τ2

i

(dTB
1
l

e1
l

e+ 1)e2
l . (25)

5.2.2 Step 2: Determining necessary condition for tardiness to exceed
x+ e2

i

We now find a lower bound on the amount of competing work that is necessary for τ2
i,j to

miss its deadline by more than x+ e2
i .

ECRTS 2017



15:16 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

I Lemma 23. If the tardiness of τ2
i,j exceeds x+ e2

i , where x ≥ ρ (recall that ρ is defined in
Eq. 11), then W (fd ∪ Fd, f̂2

i,j , EDF ) > ρ+m× (x− ρ) + e2
i .

Proof. We prove it by contraposition: we assume that W (fd ∪ Fd, f̂2
i,j , EDF ) ≤ ρ+m×

(x − ρ) + e2
i holds and show that the tardiness of τ2

i,j can not exceed x + e2
i . All jobs in

fD ∪ FD are ignored for this proof, because they can not preempt τ2
i,j and thus they can

not delay τ2
i,j ’s completion time. According to Corollary 20, all jobs in fd ∪ Fd are released

at or before f̂2
i,j + ρ. Thus, the number of tasks with pending jobs in fd ∪ Fd definitely

decreases after f̂2
i,j + ρ.

Consider the point in time bi,j = max{c2i,j−1, v
2
i,j}, where v2

i,j = min{t ≥ f̂2
i,j : [t,∞) is a

non-busy interval} and c2i,j−1 is the completion time of τ2
i,j−1 in EDF schedule.

At bi,j , τ2
i,j must have begun executing in EDF , because bi,j ≥ v2

i,j ≥ f̂2
i,j ≥ r2

i,j . Its
predecessor has completed (since bi,j ≥ c2i,j−1), and there is at least one idle processor after
bi,j . Therefore, τ2

i,j will complete by bi,j + e2
i . In other words,

c2i,j ≤ max{c2i,j−1 + e2
i , v

2
i,j + e2

i } ≤ max{f̂2
i,j−1 + x+ e2

i + e2
i , v

2
i,j + e2

i } (26)

We consider two cases depending on the relationship between f̂2
i,j−1 + x+ e2

i + e2
i and

v2
i,j + e2

i .

Case 1. f̂2
i,j−1 + x+ e2

i + e2
i ≥ v2

i,j + e2
i . Because jobs of τ2

i execute sequentially at a
rate of u2

i in PS, and do not begin until their predecessors complete, thus,

f2
i,j ≥ f2

i,j−1 + e2
i /u

2
i ≥ f2

i,j−1 + e2
i . (27)

Also, jobs execute in PS after their release times, thus,

f2
i,j ≥ r2

i,j + e2
i /u

2
i ≥ r2

i,j + e2
i ≥ d2

i,j−1 + e2
i . (28)

Combine Eq. (27) with Eq. (28), we get f2
i,j ≥ max{fi,j−1, di,j−1} + e2

i = f̂2
i,j−1 + e2

i .
Thus, Eq. (26) becomes

c2i,j ≤ max{f̂i,j−1 + x+ e2
i + e2

i , v
2
i,j + e2

i } = f̂i,j−1 + x+ e2
i + e2

i ≤ fi,j + x+ e2
i

≤ f̂2
i,j + x+ e2

i , (29)

which implies that the tardiness of τ2
i,j does not exceed x+ e2

i .

Case 2. f̂2
i,j−1 + x+ e2

i + e2
i < v2

i,j + e2
i . If v2

i,j ≤ f̂2
i,j + x, then by the definition of v2

i,j ,
the tardiness of τ2

i,j can not exceed x+ e2
i . Thus, we assume otherwise, i.e., v2

i,j > f̂2
i,j +x. In

this case, [f̂l,j +ρ, f̂l,j +x] must be a busy interval. This is because according to Corollary 20,
all jobs in fd∪Fd are released at or before f̂2

i,j + ρ. Thus, the number of tasks with pending
jobs in fd ∪ Fd definitely decreases after f̂2

i,j + ρ. When v2
i,j > f̂2

i,j + x, v2
i,j must be the

earliest non-busy time instance after f̂2
i,j + ρ. The reason is explained in Fig. 4. Since no jobs

are released after f̂2
i,j + ρ, once a processor is idle at a non-busy time instant t′ ≥ f̂2

i,j + ρ, no
jobs can be scheduled to it. Then, the time interval after t′ becomes non-busy. Thus, by the
definition of v2

i,j , v2
i,j must equal t′. Thus, the workload in EDF during [f̂2

i,j +ρ, f̂2
i,j +x] is at

least (x−ρ)×m. Since W (fd∪Fd, f̂2
i,j , EDF ) ≤ ρ+m× (x−ρ)+e2

i , the workload in EDF
during [f̂2

i,j , f̂
2
i,j +ρ] and [f̂2

i,j +x, f̂2
i,j +x+e2

i ] is at most ρ+e2
i . Even if all this work executes

sequentially, it will complete by f̂2
i,j + x+ e2

i because x ≥ ρ. Therefore, c2i,j ≤ f̂2
i,j + x+ e2

i

and hence the contraposition holds. This lemma is proved. J



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:17

2

,i jv

M2

2

,i jf x+2

,i jf
2

,i jf r+

Figure 4 The structure of workload in Lemma 23.

5.2.3 Step 3: Deriving EDF-induced tardiness bound
By Lemma. 23, setting the upper bound on Eq. (25) to be at most ρ+m× (x− ρ) + e2

i will
ensure that the EDF-induced tardiness of τ2

i,j is at most x+ e2
i . The resulting inequality is

as follows.

x× U2
L + E2

L +
∑

τ2
l
∈τ2\τ2

i

(dTB
1
l

e1
l

e+ 1)e2
l ≤ ρ+m× (x− ρ) + e2

i (30)

Thus,

x ≥ E2
L +D∗

m− U2
L

(31)

where

D∗ = (m− 1)ρ− e2
i +

∑
τ2

l
∈τ2\τ2

i

(dTB
1
l

e1
l

e+ 1)e2
l . (32)

If x equals the greater of ρ and the right-hand side of Eq. (31) (recall that x ≥ ρ is
required), then the EDF-induced tardiness of τ2

i,j will not exceed x+ e2
i .

I Theorem 24. With x as defined above, the EDF-induced tardiness for a job τ2
i,j on type 2

processors in EDF schedule is at most x+ e2
i .

5.3 Tardiness Bound of τ 2
i

We have bounded PS-induced tardiness and EDF-induced tardiness of any τ2
i in Secs. 5.1

and 5.2, respectively. As shown earlier in Fig. 3, the total tardiness of τ2
i scheduled under

EDF on type-2 processors can be bounded by combining these two types of tardiness. The
following theorem immediately follows.

I Theorem 25. The tardiness of any task τ2
i ∈ τ scheduled under EDF is at most

TB2
i = TB1

i + Pi + E2
L +D∗

m− U2
L

+ e2
i , (33)

where D∗ = (m− 1)ρ− e2
i +

∑
τ2

l
∈τ2\τ2

i
(dTB

1
l

e1
l

e+ 1)e2
l .

ECRTS 2017



15:18 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

6 Tardiness Bound of τ ki (k > 2)

In this section, we bound any τki ’s (k > 2) tardiness based on τk−1
i ’s tardiness on type-(k− 1)

processors. The proof procedure is exactly the same as how we bound τ2
i ’s tardiness based

on τ1
i ’s tardiness in Sec. 5.

6.1 PS-induced Tardiness of τ ik
I Theorem 26. Tardiness Bound of τki on PS Schedule is TBk−1

i + Pi.

Proof. We can prove this Theorem by mathematical induction. (i) When k = 2, the tardiness
Bound of τ2

i in PS is TB1
i + Pi according to Theorem 7. (ii) When k > 2, the tardiness

Bound of τki in PS is TBk−1
i +Pi, which can be proved using the same reasoning for proving

Theorem 7 (by simply replacing subtask indexes 1 and 2 by indexes k− 1 and k respectively).
Thus, this theorem is proved. J

6.2 EDF-induced Tardiness of τ ki
In this section, we bound EDF-induced tardiness of τki exactly as how we bound such
tardiness for τ2

i described in Sec. 5.2 in the following three steps.

Step 1: We derive an upper bound on competing work at f̂ki,j following the same methods
described in Sec. 5.2.1.

W (fd ∪ Fd, f̂ki,j , EDF ) ≤ x× UkL + EkL +
∑
τk

c ∈τk
H

(δc(1− ukc ) + (ekc − δc))

+
∑

τk
l
∈τk\τk

i

(dTB
k−1
l

ek−1
l

e)ekl ≤ x× UkL + EkL +
∑

τk
l
∈τk\τk

i

(dTB
k−1
l

ek−1
l

e+ 1)ekl . (34)

Step 2: Determining necessary condition for tardiness to exceed x + eki following the
same methods described in Sec. 5.2.2.

W (fd ∪ Fd, f̂ki,j , EDF ) > ρ+m× (x− ρ) + eki , (35)

where ρ = maxτk−1
i
∈τk−1{TBk−1

i }.
Step 3: Deriving EDF-induced tardiness bound on type k processors following the same

methods described in Sec. 5.2.3. Based on Eq. 34 and Eq. 35, we have

x ≥ EkL +D∗

Mk − UkL
(36)

where

D∗ = (Mk − 1)ρ− eki +
∑

τk
l
∈τk\τk

i

(dTB
k−1
l

ek−1
l

e+ 1)ekl . (37)

Thus, the following corollary immediately follows.

I Corollary 27. The tardiness of any subtask τki ∈ τ scheduled under EDF is at most

TBki = TBk−1
i + Pi + EkL +D∗

Mk − UkL
+ eki

= TB1
i + (k − 1)Pi +

k∑
j=2

EjL +D∗

M j − U jL
+

k∑
j=2

eji , (38)



Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:19

4 6 8 10 12 14 16 18 20

Average Execution Time of All Subtasks

0

5

10

15

20

25
R

a
ti
o
 o

f 
re

s
p
o
n
s
e
 t
im

e
 o

v
e
r 

ta
s
k
 p

e
ri
o
d

Obi-heavy
Obi-middle
Obi-light
RTB-heavy
RTB-middle
RTB-light
RTRT-heavy
RTRT-middle
RTRT-light

(a) 4 types of processors

4 6 8 10 12 14 16 18 20

Average Execution Time of All Subtasks

0

5

10

15

20

25

30

R
a
ti
o
 o

f 
re

s
p
o
n
s
e
 t
im

e
 o

v
e
r 

ta
s
k
 p

e
ri
o
d

Obi-heavy
Obi-middle
Obi-light
RTB-heavy
RTB-middle
RTB-light
RTRT-heavy
RTRT-middle
RTRT-light

(b) 6 types of processors

4 6 8 10 12 14 16 18 20

Average Execution Time of All Subtasks

0

5

10

15

20

25

30

R
a
ti
o
 o

f 
re

s
p
o
n
s
e
 t
im

e
 o

v
e
r 

ta
s
k
 p

e
ri
o
d

Obi-heavy
Obi-middle
Obi-light
RTB-heavy
RTB-middle
RTB-light
RTRT-heavy
RTRT-middle
RTRT-light

(c) 8 types of processors

Figure 5 Magnitude of our derived analytical response time bounds.

where D∗ = (M j − 1)ρ− eji +
∑
τj

l
∈τj\τj

i
(dTB

j−1
l

ej−1
l

e+ 1)ejl .

Since the response time bound of any task τi can be obtained by simply using the derived
tardiness bound of the task plus a Pi value, the response time bound can be easily calculated
by the following Theorem 28.

I Theorem 28. The response time bound for any dataflow task τi ∈ τ with m subtasks
scheduled under EDF, denoted RBi, is

RBi = TBmi + Pi

= TB1
i +mPi +

m∑
j=2

EjL +D∗

M j − U jL
+

m∑
j=2

eji , (39)

where D∗ = (M j − 1)ρ− eji +
∑
τj

l
∈τj\τj

i
(dTB

j−1
l

ej−1
l

e+ 1)ejl and TB1
i is given by Eq. 3.

7 Experiments

So far we have shown that EDF is optimal to support dataflow tasks with bounded response
times on a heterogeneous computing platform. The magnitude of the analytical response
time bound yielded under our analysis is of importance. To assess this, we have conducted
experiments using randomly-generated task sets with widely varied parameters to examine
how large the magnitude of the analytical response time bound is. Although we can only use
synthesized task sets for assessment, we have verified that the generated range of parameters
is wide enough to cover a couple of industrial dataflow-based cellular network systems seen
in practice.

7.1 Experiment setup
The experiments compare the analytical response time bounds (RTB) given by Corollary 28
and the actual response time (RTRT) observed at runtime for randomly generated dataflow
tasks scheduled under EDF in a heterogeneous multiprocessor system with m types of
resources. For each resource type, there are 8 identical processors. When we generate
subtasks, new subtasks were added until the total utilization of subtasks on each type of
resources equals 8. Subtask utilizations were distributed differently for each experiment using
three uniform distributions. The ranges for the uniform distributions were [0.005,0.1] (light),
[0.1,0.3] (medium), and [0.3,0.8] (heavy). Task execution time were uniformly distributed
over (0ms, 20ms]. Task periods were calculated from execution time and utilizations. For
each task utilization distribution, 1, 000, 000 task sets were generated for systems with m = 4,

ECRTS 2017



15:20 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

6, or 8. We compare RTB, Obi, and RTRT under three utilization settings: per-subtask
utilization is heavy, medium, and light.

7.2 Results
The obtained results are shown in Figure 5. Each curve plots the ratio of response time over
task period averaged among all tasks generated in each experiment, as a function of the
average execution time of all subtasks.

As seen in the figures, in all scenarios, RTB yields a much reduced response time bounds
compared to Obi. For example, as shown in Fig. 5(a), when the average execution time of all
subtasks is 12, RTB (Obi) yields a ratio of response time over task period of 8.6 (13.7), 9.3
(14.5), 10.1 (15.3), under light, medium, and heavy per-subtask utilizations, respectively. On
average, RTB yields a 68% reduction on response time bounds compared to Obi. Moreover,
in most scenarios, RTB yields reasonably small response time bounds compared to RTRT.
For example, as shown in Fig. 5(a), when the average execution time of all subtasks is at
most 12, the ratio of response time over task period under RTB ranges from 5 to 10, where
the ratio under RTRT ranges from 4 to 6. Even for the worst-case scenario where the average
execution time of all subtasks is large, the response time bound yielded under RTB is at
most 3 times greater than RTRT. Given that RTRT represents the runtime response time
observed in an actual GEDF schedule, we believe that the analytical bounded yielded under
RTB is not only safe, but also reasonably tight in most cases. Another observation seen in all
tested scenarios is that the analytical response time bounds under RTB become larger when
per-subtask utilizations become heavier. This is because the task sets with heavy utilization
may have the largest values of UkL (defined in Eq. 23), which results the largest response
time bound according to Corollary 28.

8 Conclusion

In this paper, we investigate the problem of scheduling dataflow tasks on a heterogeneous
computing platform with multiple types of resources with pre-defined affinity of tasks to
subgroups of resources, which is motivated by many industrial applications seen in practice.
We present a new set of analysis techniques that demonstrate that the classical and simple
EDF scheduler can guarantee probably bounded response times for tasks with no capacity
loss, thus proving EDF to be an optimal solution for this dataflow scheduling problem.
Despite EDF’s optimality in terms of schedulability, experiments also demonstrate that the
magnitude of the response time bounds calculated under our analysis is reasonably small
under all scenarios. This paper demonstrates the potential of applying EDF into practical
industrial systems to schedule dataflow workloads with guaranteed bounded response times.

References
1 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-

predictable scheduling. In 2014 International Conference on Embedded Software, EM-
SOFT 2014, New Delhi, India, October 12-17, 2014, pages 20:1–20:10, 2014. doi:
10.1145/2656045.2656070.

2 Björn Andersson, Gurulingesh Raravi, and Konstantinos Bletsas. Assigning real-time tasks
on heterogeneous multiprocessors with two unrelated types of processors. In Proceedings
of the 31st IEEE Real-Time Systems Symposium, RTSS 2010, San Diego, California, USA,
November 30 – December 3, 2010, pages 239–248, 2010. doi:10.1109/RTSS.2010.32.

3 Bach Duy Bui, Rodolfo Pellizzoni, Marco Caccamo, Chin F. Cheah, and Andrew Tzakis.
Soft real-time chains for multi-hop wireless ad-hoc networks. In Proceedings of the 13th

http://dx.doi.org/10.1145/2656045.2656070
http://dx.doi.org/10.1145/2656045.2656070
http://dx.doi.org/10.1109/RTSS.2010.32


Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson 15:21

IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2007, April
3-6, 2007, Bellevue, Washington, USA, pages 69–80, 2007. doi:10.1109/RTAS.2007.34.

4 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In 6th Symposium on Operating System Design and Implementation (OSDI 2004),
San Francisco, California, USA, December 6-8, 2004, pages 137–150, 2004. URL: http:
//www.usenix.org/events/osdi04/tech/dean.html.

5 UmaMaheswari C. Devi and James H. Anderson. Fair integrated scheduling of soft real-time
tardiness classes on multiprocessors. In 10th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 2004), 25-28 May 2004, Toronto, Canada, pages 554–
561, 2004. doi:10.1109/RTTAS.2004.1317303.

6 UmaMaheswari C. Devi and James H. Anderson. Tardiness bounds under global EDF
scheduling on a multiprocessor. In Proceedings of the 26th IEEE Real-Time Systems
Symposium (RTSS 2005), 6-8 December 2005, Miami, FL, USA, pages 330–341, 2005.
doi:10.1109/RTSS.2005.39.

7 Zheng Dong and Cong Liu. Closing the loop for the selective conversion approach: A
utilization-based test for hard real-time suspending task systems. In 2016 IEEE Real-Time
Systems Symposium, RTSS 2016, Porto, Portugal, November 29 – December 2, 2016, pages
339–350, 2016. doi:10.1109/RTSS.2016.040.

8 Piotr Dziurzanski, Amit Kumar Singh, Leandro Soares Indrusiak, and Björn Saballus. Hard
real-time guarantee of automotive applications during mode changes. In Proceedings of the
23rd International Conference on Real Time Networks and Systems, RTNS 2015, Lille,
France, November 4-6, 2015, pages 161–170, 2015. doi:10.1145/2834848.2834859.

9 Tom Z. J. Fu, Jianbing Ding, Richard T.B. Ma, Marianne Winslett, Yin Yang, Zhenjie
Zhang, Yong Pei, and Bingbing Ni. Livetraj: Real-time trajectory tracking over live video
streams. In Proceedings of the 23rd Annual ACM Conference on Multimedia Conference,
MM’15, Brisbane, Australia, October 26-30, 2015, pages 777–780, 2015. doi:10.1145/
2733373.2807401.

10 Vincenzo Gulisano, Ricardo Jiménez-Peris, Marta Patiño-Martínez, Claudio Soriente, and
Patrick Valduriez. Streamcloud: An elastic and scalable data streaming system. IEEE
Trans. Parallel Distrib. Syst., 23(12):2351–2365, 2012. doi:10.1109/TPDS.2012.24.

11 Ralf Jahr, Mike Gerdes, Theo Ungerer, Haluk Ozaktas, Christine Rochange, and Pavel G.
Zaykov. Effects of structured parallelism by parallel design patterns on embedded hard
real-time systems. In 2014 IEEE 20th International Conference on Embedded and Real-
Time Computing Systems and Applications, Chongqing, China, August 20-22, 2014, pages
1–10, 2014. doi:10.1109/RTCSA.2014.6910546.

12 Shunsuke Kamijo, Yasuyuki Matsushita, Katsushi Ikeuchi, and Masao Sakauchi. Traffic
monitoring and accident detection at intersections. IEEE Trans. Intelligent Transportation
Systems, 1(2):108–118, 2000. doi:10.1109/6979.880968.

13 Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,
Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter heron:
Stream processing at scale. In Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, Melbourne, Victoria, Australia, May 31 – June 4, 2015,
pages 239–250, 2015. doi:10.1145/2723372.2742788.

14 Kam-yiu Lam, Jiantao Wang, Joseph Kee-Yin Ng, Song Han, Limei Zheng, Calvin
Ho Chuen Kam, and Chun Jiang Zhu. Smartmood: Toward pervasive mood tracking and
analysis for manic episode detection. IEEE Trans. Human-Machine Systems, 45(1):126–131,
2015. doi:10.1109/THMS.2014.2360469.

15 Hennadiy Leontyev and James H. Anderson. Generalized tardiness bounds for global
multiprocessor scheduling. In Proceedings of the 28th IEEE Real-Time Systems Sym-

ECRTS 2017

http://dx.doi.org/10.1109/RTAS.2007.34
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://dx.doi.org/10.1109/RTTAS.2004.1317303
http://dx.doi.org/10.1109/RTSS.2005.39
http://dx.doi.org/10.1109/RTSS.2016.040
http://dx.doi.org/10.1145/2834848.2834859
http://dx.doi.org/10.1145/2733373.2807401
http://dx.doi.org/10.1145/2733373.2807401
http://dx.doi.org/10.1109/TPDS.2012.24
http://dx.doi.org/10.1109/RTCSA.2014.6910546
http://dx.doi.org/10.1109/6979.880968
http://dx.doi.org/10.1145/2723372.2742788
http://dx.doi.org/10.1109/THMS.2014.2360469


15:22 Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor

posium (RTSS 2007), 3-6 December 2007, Tucson, Arizona, USA, pages 413–422, 2007.
doi:10.1109/RTSS.2007.33.

16 Yang Li, Linh Thi Xuan Phan, and Boon Thau Loo. Network functions virtualization with
soft real-time guarantees. In 35th Annual IEEE International Conference on Computer
Communications, INFOCOM 2016, San Francisco, CA, USA, April 10-14, 2016, pages
1–9, 2016. doi:10.1109/INFOCOM.2016.7524563.

17 Cong Liu and James H. Anderson. Supporting Soft Real-Time DAG-Based Systems on
Multiprocessors with No Utilization Loss. In Proceedings of the 31st IEEE Real-Time
Systems Symposium, RTSS 2010, San Diego, California, USA, November 30 – December
3, 2010, pages 3–13, 2010. doi:10.1109/RTSS.2010.38.

18 Cong Liu and James H. Anderson. An o(m) analysis technique for supporting real-time self-
suspending task systems. In Proceedings of the 33rd IEEE Real-Time Systems Symposium,
RTSS 2012, San Juan, PR, USA, December 4-7, 2012, pages 373–382, 2012. doi:10.1109/
RTSS.2012.87.

19 José Marinho, Vincent Nélis, Stefan M. Petters, Marko Bertogna, and Robert I. Davis.
Limited pre-emptive global fixed task priority. In Proceedings of the IEEE 34th Real-Time
Systems Symposium, RTSS 2013, Vancouver, BC, Canada, December 3-6, 2013, pages
182–191, 2013. doi:10.1109/RTSS.2013.26.

20 André Oliveira Maroneze, Sandrine Blazy, David Pichardie, and Isabelle Puaut. A formally
verified WCET estimation tool. In 14th International Workshop on Worst-Case Execution
Time Analysis, WCET 2014, July 8, 2014, Ulm, Germany, pages 11–20, 2014. doi:10.
4230/OASIcs.WCET.2014.11.

21 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,
and Giorgio C. Buttazzo. Response-time analysis of conditional DAG tasks in multipro-
cessor systems. In 27th Euromicro Conference on Real-Time Systems, ECRTS 2015, Lund,
Sweden, July 8-10, 2015, pages 211–221, 2015. doi:10.1109/ECRTS.2015.26.

22 Jan Nowotsch and Michael Paulitsch. Quality of service capabilities for hard real-time
applications on multi-core processors. In 21st International Conference on Real-Time Net-
works and Systems, RTNS 2013, Sophia Antipolis, France, October 17-18, 2013, pages
151–160, 2013. doi:10.1145/2516821.2516826.

23 Alessandro Vittorio Papadopoulos, Martina Maggio, Alberto Leva, and Enrico Bini.
Hard real-time guarantees in feedback-based resource reservations. Real-Time Systems,
51(3):221–246, 2015. doi:10.1007/s11241-015-9224-1.

24 Keivan Ronasi, Vincent W. S. Wong, and Sathish Gopalakrishnan. Distributed scheduling
in multihop wireless networks with maxmin fairness provisioning. IEEE Trans. Wireless
Communications, 11(5):1753–1763, 2012. doi:10.1109/TWC.2012.030812.110493.

25 Kecheng Yang, Ming Yang, and James H. Anderson. Reducing response-time bounds for
dag-based task systems on heterogeneous multicore platforms. In Proceedings of the 24th
International Conference on Real-Time Networks and Systems, RTNS 2016, Brest, France,
October 19-21, 2016, pages 349–358, 2016. doi:10.1145/2997465.2997486.

26 Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Discretized
streams: An efficient and fault-tolerant model for stream processing on large clusters. In
4th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’12, Boston, MA,
USA, June 12-13, 2012, 2012. URL: https://www.usenix.org/conference/hotcloud12/
workshop-program/presentation/zaharia.

27 Haibo Zeng and Marco Di Natale. Outstanding paper award: Using max-plus algebra to
improve the analysis of non-cyclic task models. In 25th Euromicro Conference on Real-
Time Systems, ECRTS 2013, Paris, France, July 9-12, 2013, pages 205–214, 2013. doi:
10.1109/ECRTS.2013.30.

http://dx.doi.org/10.1109/RTSS.2007.33
http://dx.doi.org/10.1109/INFOCOM.2016.7524563
http://dx.doi.org/10.1109/RTSS.2010.38
http://dx.doi.org/10.1109/RTSS.2012.87
http://dx.doi.org/10.1109/RTSS.2012.87
http://dx.doi.org/10.1109/RTSS.2013.26
http://dx.doi.org/10.4230/OASIcs.WCET.2014.11
http://dx.doi.org/10.4230/OASIcs.WCET.2014.11
http://dx.doi.org/10.1109/ECRTS.2015.26
http://dx.doi.org/10.1145/2516821.2516826
http://dx.doi.org/10.1007/s11241-015-9224-1
http://dx.doi.org/10.1109/TWC.2012.030812.110493
http://dx.doi.org/10.1145/2997465.2997486
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zaharia
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/zaharia
http://dx.doi.org/10.1109/ECRTS.2013.30
http://dx.doi.org/10.1109/ECRTS.2013.30

	Introduction
	Related Work
	The Dataflow Task Model
	Analysis Overview
	Tardiness Bound on Type 1 Processors
	Challenges on Deriving Tardiness Bound for Any Subtask tau-i-k (k>1)

	Tardiness Bound on Type 2 Processors
	PS-induced Tardiness
	EDF-induced Tardiness
	Step 1: An upper bound on competing work
	Step 2: Determining necessary condition for tardiness to exceed x+exp(e-i,2)
	Step 3: Deriving EDF-induced tardiness bound

	Tardiness Bound of tau-i-2

	Tardiness Bound of exp(tau-i,k) (k>2)
	PS-induced Tardiness of tau-i-k
	EDF-induced Tardiness of exp(tau-i,k)

	Experiments
	Experiment setup
	Results

	Conclusion

