
Response-Time Bounds for Concurrent GPU
Scheduling

Ming Yang and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract—Graphics processing units (GPUs) have been
receiving increasing attention in the real-time systems com-
munity as a potential solution for hosting workloads like those
found in autonomous-driving use cases that require significant
computational capacity. Allowing multiple programs to access
a GPU concurrently can enable the GPU to be more efficiently
utilized, if each individual program is incapable of occupying
all GPU resources. In this work, we summarize the basic
scheduling rules for concurrent GPU scheduling in NVIDIA
GPUs. We define a task model for GPU scheduling based on
these scheduling rules. In ongoing work, we are attempting
to obtain response-time bounds for tasks under this model.

I. INTRODUCTION

Graphics Processing Units (GPUs) have been receiving
increasing attention in the real-time systems community as
a means for accelerating computationally intensive work-
loads. Some of the more promising use cases for GPUs can
be found with respect to autonomous driving, where image-
and sensor-processing computations must be supported.
Several GPU management frameworks have been created
that provide real-time guarantees for tasks using a GPU.
These frameworks ([2], for example) typically view a GPU
as a “black box” that can be accessed by only one task
at a time. However, with GPU core counts continually
increasing, a single small-scale kernel (i.e., GPU program)
may not fully utilize all of a GPU’s resources. For example,
average resource usage for programs in the Parboil2 suit
is only around 30% [7]. To avoid GPU-related capacity
loss, sharing a single GPU among multiple small ker-
nels becomes necessary. To address this issue of GPU
under-utilization, NVIDIA GPU introduced a feature called
concurrent kernel execution (CKE) in the Fermi GPU
architecture. This feature allows kernels from the same
GPU context to execute concurrently on a GPU.

In this paper, we summarize the concurrent GPU
scheduling rules used on NVIDIA GPUs, as verified in
prior work by our group using synthetic benchmarks [5].
As we shall see, these scheduling rules provide a notion
of parallel execution that is a hybrid of the gang task
model [6] and the malleable task model [1]. In the gang
model, each task is multi-threaded and all of a task’s
threads must be scheduled to run together. The malleable
task model is similar, except that a task’s threads may
execute on any available processors and do not have to
commence execution together. In concurrent GPU schedul-
ing, both of these notions of execution occur together, but

at different granularities. Such a combination introduces
challenges with respect to real-time schedulability analysis.
In this paper, we formally present a task model for concur-
rent GPU scheduling based on the above-mentioned rules,
and consider the issue of deriving response-time bounds
under this model.

II. BACKGROUND

We limit attention in this paper to NVIDIA GPUs.
CUDA programming. A program using a GPU uses
the compute unified device architecture (CUDA) API pro-
vided by NVIDIA [4]. Using CUDA, parallelism-related
attributes of kernels can be specified. Each kernel is issued
as a group of threads that execute on a GPU. Threads
of one kernel are arranged into multiple same-size blocks.
Each kernel is a grid of such blocks. The number of threads
per block (block size) and the number of blocks per grid
(grid size) of a kernel are defined via parameters passed
to the CUDA call that launches that kernel.
Concurrent kernel execution. With concurrent kernel
execution, multiple kernels from the same GPU context
are allowed to execute concurrently on a GPU. Multiple
CPU threads1 within the same CPU process usually share a
single GPU context, which is conceptually a virtual address
space in the GPU hardware. A GPU accepts kernels for
execution based on the available thread resources on the
GPU and the block size of the kernel.

GPUs treat blocks as schedulable entities. All threads
in a block are scheduled as a gang. A GPU has a limited
number of threads. When a block is scheduled, that block
occupies a number of threads equal to the block size of
the corresponding kernel. A block cannot be selected for
scheduling unless the GPU has a sufficient number of
unoccupied threads. Different blocks of the same kernel
may be scheduled at different times. At this granularity,
GPU scheduling is more like the malleable task model.
Streams and queues. Programmers can define prece-
dence relationships among kernels using streams. A stream
contains a sequence of kernels that execute in order;
kernels from different streams can execute out of order
or concurrently. Programmers are suggested to not rely
on any ordering of kernels executed in different streams
for program correctness [4]. A GPU uses hardware work

1Not to be confused with the GPU hardware threads mentioned above.



GPU

K1

K5

Stream 1

⌧1

K2

Stream 2

⌧2

K3

Stream 3

⌧3

K4

Stream 4

⌧4

K3

K4

K1 K2

Primary Queue

Fig. 1: Streams and queues

queues in scheduling kernels. All NVIDIA GPUs since
the Kepler architecture have up to 32 such queues. In this
work, we therefore assume that 32 queues are available and
the number of streams is at most 32. As shown in Fig. 1, we
let each task τi have a unique stream. Thus, in the rest of
this paper, the terms task, stream, and hardware work queue
can be used interchangeably without ambiguity. Each GPU
context has a primary queue (or channel [9]) shared among
streams. The enqueue and dequeue rules for these queues
are described in the next section.

III. GPU SCHEDULING

In this section, we summarize the GPU scheduling rules
for concurrent kernels launched from one multi-threaded
CPU process. The acceptance of a kernel for execution by
the GPU depends on when the kernel becomes the head of
its stream queue and the availability of the GPU resources
it needs to commence execution. Generally, these resources
include GPU threads, registers, and shared memory, but we
only consider thread resources in this work. Current GPUs
limit block sizes to be at most 1,024 threads. Also, the
NVIDIA Jetson TX1 [3], which is marketed for embedded
use cases, requires the total number of occupied threads to
be at most 4,096. We will assume both of these limits on
thread resources in this work.

The basic GPU scheduling rules are as follows:
R1. A block of a kernel in the primary queue is assigned

to the GPU for execution if:
a) that kernel is at the head of the primary queue, and
b) the number of unoccupied threads on the GPU is

at least the kernel’s block size.
R2. A kernel is enqueued on the primary queue when it

becomes the head of its stream queue.
Example 1. Consider task set {τ1, τ2, τ3, τ4}, where each
task τi has a unique stream, Stream i. As shown in Fig. 1,
the kernels are labeled increasingly by their arrival orders
as heads of their respective stream queues. A schedule for
these kernels is shown in Fig. 2. The GPU is fully idle with

0

1024

2048

3072

4096

Time

Th
re

ad
 re

so
ur

ce
s a

llo
ca

tio
n

K1

K2

K2

K3

K4

K5

2 4 6 8 10 14 1612

Fig. 2: Schedule example

4,096 unoccupied threads at the beginning. Then K1 starts
executing and occupies 1,024 threads—it consists of one
block and has a block size of 1,024. At the same time,
K2 begins executing concurrently. K2 has seven blocks
and a block size of 512 threads, so six of its seven blocks
can execute concurrently with K1. The queues in Fig. 1
show the state of the system at this point in time. Note
that K1 and K2 are no longer in the primary queue. They
will remain in their stream queues until they complete.
Their stream-queue entries are shaded to indicate they are
currently executing. When K1 finishes, by Rule R1a, K3
is still blocked waiting for K2. Once the last block of K2
is assigned to the GPU, K3 is blocked until time 6, by
Rule R1b. K5 is not inserted into the primary queue until
K1 finishes, by Rule R2. For K5, the condition of Rule R1
is satisfied when K4 finishes.

These rules are a reworking of the stream scheduling
rules for the Fermi GPU architecture defined in [8], with
the additional consideration of the Hyper-Q feature intro-
duced since the Kepler GPU architecture. Comprehensive
experiment verifying these rules on the NVIDIA TX1 have
been presented in prior work by our group [5].

In the next section, we present a task model based on the
rules above. In this task model, we only consider the kernel
at the head of each task’s stream queue. Any kernels behind
that at the head can be viewed as not being released yet.
With this assumption, we can summarize the rules above
in one property:
(P1) Kernels are executed in FIFO order by release time.

A kernel cannot be scheduled until all earlier kernels
are completely scheduled, i.e., all blocks of the earlier
kernels have been assigned to the GPU.

IV. SYSTEM MODEL

We consider the problem of scheduling a set τ of n
independent sporadic tasks {τ1, τ2, τ3, · · · , τn} on a single
GPU. Each task τi releases jobs (kernels) repeatedly with
minimum separation time between consecutive jobs equal
to Ti, which is called the period of τi. We denote the total
execution time workload for τi as Ci. The utilization of
task τi is defined as ui = Ci/Ti. The total utilization of
the task system τ is defined as Usum =

∑
τi∈τ ui.



The kth(k ≥ 1) job of τi is denoted τi,k. The release
time of the job τi,k is denoted ri,k and its (absolute)
deadline di,k is computed as ri,k + Ti. Denoting the
completion time of τi,k as fi,k, its response time is defined
as Ri,k = fi,k − ri,k. A task’s response time is the
maximum of the response time of any of its jobs. Each task
is sequential, i.e., jobs cannot be executed concurrently (in
our model, jobs correspond to kernel executions, and a task
submits all of its kernels to one stream, which orders those
kernels). According to Property P1, jobs are prioritized by
their release times with arbitrary tie-breaking.

As discussed in Sec. II, the degree of parallelism
afforded to a job is determined by configuring parameters
that define its thread-block hierarchy. Hence, we associate
two more parameters with each task τi, namely gi and
bi: gi denotes the grid size of each job of τi, i.e., the
number of blocks in the grid of the job (we assume each
job has only one grid, so this is equivalent to the number
of blocks per job); bi denotes the block size of the job, i.e.,
the number of threads in each block. For brevity, we denote
τi’s parameters using the notation τi = (Ci, Ti, gi, bi).

All blocks of a job τi,k complete the same amount of
work, so each block has a workload of Ci

gi
. Each block

executes as bi parallel GPU threads, so it finishes within
Ci

gibi
time units.

We denote the maximum block size limited by the GPU
as blim, which is equal to 1, 024 for all currently available
NVIDIA GPUs. We denote the largest block size of the
task system τ as bmax. We denote the total number of
GPU threads on the GPU as m.
Example 2. Consider the task set {τ1, τ2, τ3, τ4} from
Example. 1. We have τ1 = (1024 · 3.8, 8, 1, 1024), τ2 =
(3584 ·6, 16, 7, 512), τ3 = (1024 ·6, 17, 1, 1024), and τ4 =
(2560·11.2, 18, 5, 512). Note that tasks can have utilization
larger than 1.0, as a task can occupy multiple GPU threads.
For instance, in the example here, u1 = 486.4. This task
set has total utilization Usum = 3784.7 < 4096 = m.

The task model above is admittedly simplistic in several
ways. As noted earlier, we are currently only considering
available GPU threads as resources required by kernels and
ignoring GPU registers and shared memory. Also, actual
GPU-using workloads consist of a mixture of CPU code
and GPU code, and typically, a task would submit kernels
that are not all the same. Our eventual goal is to consider
a richer model that is more realistic, but for now, we are
restricting our attention to the simple model defined above.

V. CURRENT PROGRESS

Total utilization restriction. Due to the usage of gang
scheduling at the block level, a block has to be post-
poned if there are not enough unoccupied GPU threads
to accommodate it. The following theorem shows that this
leads to the need for a utilization restriction if response
times are to be bounded. Let bmax denote the largest block
size in the system. Assume that bmax > 1, for otherwise

0

1024

2048

3072

4096(m)

Time

Th
re

ad
 re

so
ur

ce
s a

llo
ca

tio
n

⌧1,1 ⌧1,2

⌧2,2⌧2,1

⌧3,1 ⌧3,2

1✏ 1 + 2✏1 + ✏ 2 2 + 2✏

}bmax

}b m
bmax

cbmax

}m � b m
bmax

cbmax

{b m
bmax

cbmax � bmax + 1

Fig. 3: Unbounded response time for τ3.

(bmax = 1), our task model becomes the malleable task
model, for which responses can be bounded with no
utilization restriction.
Theorem 1. There exists a task system τ for which Usum
≥ m− bmax + 1 such that response times are unbounded.
Proof. We construct such a task system τ = {τ1, τ2, τ3}.
Let k = b m

bmax
cbmax, which is the maximum number

of threads for a job with block size bmax that can be
scheduled at a time. Define τ1 = (ε · k, 1, k

bmax
, bmax),

τ2 = (m− k, 1,m− k, 1), and τ3 = (k− bmax +1, 1, k−
bmax+1, 1). Note that Usum = ε·k

1 + m−k
1 + k−bmax+1

1 =
ε ·k+m−bmax+1, so limε→0+ Usum = m−bmax+1. As
shown in Fig. 3, τ3,1 is blocked for time ε, by Rule R1b,
because all GPU threads are fully occupied by τ1,1 and
τ2,1 in time interval [0, ε). τ3,1 finishes at time 1 + ε with
response time 1 + ε. Considering later jobs, the response
time of τ3 keeps increasing. Specifically, although the
limε→0+ Usum = m− bmax + 1, job τ3,j’s response time
is R3,j = 1 + ε · j, where j ≥ 1. �

VI. CONCLUSIONS

In this paper, we defined a task model for GPU schedul-
ing and showed that response times can be unbounded in
this model if total utilization exceeds a certain limit. In
ongoing work, we are attempting to prove that response
times are indeed bounded in this model if total utilization
is at most this limit.

REFERENCES
[1] S. Collette, L. Cucu, and J. Goossens. Integrating job parallelism in real-time

scheduling theory. Information Processing Letters, 2008.
[2] G. Elliott, B. Ward, and J. Anderson. GPUSync: A framework for real-time

GPU management. In RTSS ’13.
[3] NVIDIA. NVIDIA Tegra X1 Whitepaper. Online at link, 2015.
[4] NVIDIA. NVIDIA CUDA Toolkit Documentation. Online at link, 2017.
[5] N. Otterness, M. Yang, T. Amert, J. Anderson, and F.D. Smith. Inferring

the scheduling policies of an embedded CUDA GPU. In OSPERT ’17, in
submission.

[6] J. K. Ousterhout et al. Scheduling techniques for concurrent systems. In ICDCS
’82.

[7] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving gpgpu concur-
rency with elastic kernels. In ACM SIGPLAN Notices, 2013.

[8] S. Rennich. Webinar: CUDA C/C++ streams and concurrency. Online at link,
2011.

[9] H. Zhou, G. Tong, and C. Liu. Gpes: a preemptive execution system for gpgpu
computing. In RTAS ’15.

http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://docs.nvidia.com/cuda/
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

	Introduction
	Background
	GPU Scheduling
	System Model
	Current progress
	Conclusions

