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Abstract
The applicability of Simultaneous Multithreading (SMT) to real-time systems has been hampered
by the difficulty of obtaining reliable execution costs in an SMT-enabled system. This problem is
addressed by introducing a scheduling framework, called CERT-MT, that combines scheduling-aware
timing analysis with a cyclic-executive scheduler in a way that minimizes SMT-related timing
variations. The proposed scheduling-aware timing analysis is based on maximum observed execution
times and accounts for the uncertainty inherent in measurement-based timing analysis. The timing
analysis is found to work for tasks with and without SMT, though some adjustments are required in
the former case. A large-scale schedulability study is presented that shows CERT-MT can schedule
systems with total utilizations approaching 1.4 times the core count, without sacrificing safety.
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1 Introduction

Simultaneous Multithreading (SMT) is a technology that allows a single physical computing
core to act as two or more logical cores, or hardware threads. Ideally, enabling SMT allows
multiple jobs to execute in parallel on a single core in significantly less time than would be
required for the same jobs to execute sequentially. If this ideal can be achieved, the potential
benefits are clear. Users in industry are eager to make more use of SMT; in particular,
multiple developers have expressed interest to the U.S. Federal Aviation Administration
(FAA) in using SMT in safety-critical systems [55].
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Unfortunately, with SMT enabled, a task’s execution time is dependent on code that
executes on other thread(s) of the same core. This fact makes it difficult to obtain worst-case
execution times (WCETs) with SMT enabled, to the point that the real-time community
has largely given up on SMT for hard real-time systems. However, multicore systems face
problems with interdependence between scheduling and execution times even without SMT.
Such problems make static timing analysis on multicore platforms extremely difficult, which
has led to interest in Measurement Based Probabilistic Timing Analysis (MBPTA), a family
of methods that determine probabilistic worst-case execution times (pWCETs) by sampling
observed execution times [17, 20].

Considered problem. We claim the following: if a hard real-time task system τ can be
guaranteed a given level of safety on a modern multicore architecture via MBPTA, enabling
SMT can, in many cases, allow τ to run on fewer cores without sacrificing safety. We provide
a formal definition of safety in Sec. 2. We justify this claim by providing and examining CERT-
MT (Controlled Execution of Real Time with Multi-Threading), a scheduling framework
based on a cyclic-executive scheduler and MBPTA timing analysis.

The CERT-MT framework. CERT-MT is a framework that includes both scheduling
analysis and timing analysis designed to minimize uncertainties resulting from SMT. The
overall structure of CERT-MT is illustrated in Fig. 1. The timing analysis of CERT-MT is
based on MBPTA. We add to the MBPTA family of techniques by analyzing the probabilistic
and statistical implications of basing timing analysis on worst observed execution times. As
part of this analysis, we point out a potential source of error: the measurements used in
MBPTA to build estimates may themselves be subject to stochastic variation.

Historically, there has been a separation of concerns in the real-time community between
timing analysis and schedulability analysis. There are good reasons for this separation: both
topics are complex on their own, making it difficult to address both within a single work.
However, maintaining this separation comes at the cost of imprecise timing analysis that
can be made safe only by resorting to more pessimism than needed. To avoid both unsafe
conditions and excessive pessimism, CERT-MT is built around two key rules: first, conditions
when testing tasks with MBPTA should match runtime conditions as closely as possible;
second, timing analysis and scheduling decisions should be considered at the same time, since
scheduling can affect task execution times. These are well-known, standard principles of
measurement-based analysis; we consider scheduling and timing analysis simultaneously in
deference to these principles.

Contribution and organization. We give an MBPTA method that is straightforward
to use and, given basic assumptions about the underlying data, provides mathematically
guaranteed results. Using this method, we analyze the execution times of tasks employing
SMT and thereby show that using SMT can bring substantial benefits to hard real-time
systems without sacrificing safety.

More specifically, in Sec. 3 we define the CERT-MT scheduler, which is designed to
minimize variations of job execution times caused by SMT, and in Sec. 4, we give our new
MBPTA method, which upper-bounds the likelihood of an observed maximum execution
time being exceeded. This method, which is also applicable to systems without SMT, breaks
new ground by accounting for the fact that if measurements contain any random elements,
then any measurement-based estimate is itself a random variable. The theoretical work of
Secs. 3 and 4 is backed by empirical results.

In Sec. 5, we present our experiments. First, in Sec. 5.1, we show that our timing analysis
works very well in practice, even when certain assumptions underlying our analysis do not
hold. Second, in Sec. 5.2, we discuss how enabling SMT affects the timing requirements
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of individual tasks. Finally, in Sec. 5.3, we give the results of a large-scale schedulability
study built around the understanding of SMT behavior we have developed. In this study,
CERT-MT enabled systems with total utilizations approaching 140% of the core count to be
scheduled with no loss of safety. In Sec. 6, we conclude and discuss future research directions.

We add to existing work on MBPTA, but there are many elements within MBPTA we do
not address. In order to focus on the role of SMT, we do not consider the role of interference
from tasks on other cores, nor do we address the complex question of how to determine
appropriate task inputs for timing analysis. For our benchmark tasks, we used the built-in
inputs and proceeded to work under the assumption that they are appropriate. Finally, we
do not consider how the probability of individual jobs exceeding stated costs affects the
probability of larger system failures. We plan to address these topics in future work.

2 Background

In this section, we provide some basic background information about SMT, define our task
and platform models, and give a brief overview of concepts related to MBPTA and pWCETs.

SMT basics. Modern superscalar cores execute multiple instructions per cycle, using
instruction-level parallelism within jobs to decrease execution time. SMT extends this
behavior by allowing multiple jobs to execute instructions within a single cycle. An overview
is given in Ex. 1 below. More details can be found in Eggers et al. [22].

I Example 1. Fig. 2 shows the effects of enabling SMT. At the top of Fig. 2, jobs of tasks
τ1 and τ2 execute sequentially without SMT on a core that can accept two instructions per
cycle. When fewer than two instructions are ready, as in cycles 2 and 3, execution resources
are wasted. τ1 finishes in cycle 6 and τ2 in cycle 12.

In the middle of the figure, the same jobs execute in parallel with SMT enabled, reducing
the number of lost cycles. Both tasks finish in cycle 8. In this case, SMT has the effect
of delaying the completion of the darker-colored τ1, but speeding up the completion of the
lighter τ2, since it does not have to wait for τ1 to complete before beginning its own execution.

The bottom shows SMT execution with the start of τ2 delayed; this delay actually causes
τ1 to require more time to execute due to different interactions between the two tasks. For a
detailed discussion of factors that can affect SMT execution, see Bulpin [10, 11]. J

Figure 1 The CERT-MT framework.
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Figure 2 Top: task execution without SMT.
Middle: execution with SMT. Bottom: execution
with SMT, different starting times.

Hardware platform. Our hardware platform π consists of m identical cores, each
supporting two hardware threads. Different threads on the same core are referred to as
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sibling threads. Jobs scheduled on sibling threads are sibling jobs. Sibling jobs are said to be
co-scheduled. It is not possible to adjust the priority of sibling jobs relative to one another;
in particular, switching which job executes on which sibling thread has no effect. These
conditions match those of Hyperthreading, Intel’s SMT implementation [25]. Jobs that do
not use SMT are referred to as solo jobs.

Task model. We consider a hard real-time task system τ that consists of n independent
synchronous periodic, implicit-deadline tasks. More specifically, we assume there are no inter-
task precedence constraints, critical sections, or other synchronization requirements. Each
task τi = (Ci, Ti) is defined by its execution cost, Ci, and its period, Ti. Time is continuous.
The utilization of τi is given by ui = Ci

Ti
. Every task releases an unlimited number of jobs,

with the ath job released by τi denoted by τi.a. Jobs of τi are released every Ti units of time
and have a relative deadline of Ti; the ath job is released at time ri.a = Ti(a− 1) and has an
absolute deadline at time di.a = Ti · a. The system is scheduled correctly if it can be shown
that no job will ever miss a deadline if all task execution costs are upper-bounded by Ci.

Typically, Ci is said to give a task τi’s WCET. Our Ci values are determined based on
pWCETs, or probabilistic WCETs. We give a more precise definition of Ci below, after
establishing some necessary statistical concepts.

We require task periods to be harmonic, i.e., every period must be an integer multiple
of every smaller period. The least common multiple of all periods is referred to as the
hyperperiod and denoted H. We add to this task model random variables that correspond to
the execution times of individual jobs:

I Definition 2. Ei is a random variable corresponding to the execution time of a randomly
selected job of τi. J

pWCETs and system safety. There are two problems with modeling a task based on
its WCET. First, determining the true WCET may be prohibitively difficult, especially on a
multicore machine. Second, if the WCET can be determined, it may be a very rare event
that a job actually requires that many units of execution time, leading to very pessimistic
scheduling if it is assumed that every job of τi will require its WCET; depending on the
application, this pessimism may be unnecessary. As an alternative to WCETs, we could
consider pWCETs instead.

I Definition 3. τi has the pWCET Cp
i if and only if execution times for τi follow a probability

distribution1 such that

Pr(Ei ≤ Cp
i ) = p (1)

holds. We refer to p as the provisioning level of τi. J

However, finding a task’s pWCET has its own problems. Validating that Cp
i is a pWCET

for a task τi requires a detailed understanding of the task’s behavior in many possible
execution states and of the likelihoods of those states occurring. It can be argued that
determining a pWCET is no more practical than determining a WCET. Furthermore, it
is potentially dangerous to determine a pWCET based only on observed run-times. To
understand why, consider a simpler problem: rolling a die. Finding exact probabilities of a
given die roll result, which is analogous to a pWCET, requires detailed knowledge of the die’s
physical properties, which is analogous to perfect knowledge of a task’s behavior. Lacking

1 In some sources, the distribution itself is referred to as the pWCET
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detailed knowledge of a die or task, we can make predictions based on observed past rolls or
execution times. This method is practical, but does not produce a pWCET for the task.

I Example 4. We wish to know Pr(an arbitrary future roll ≤ 5) for a given die, but we
cannot examine the die directly. We only know the results of rolling the die in the past.
Suppose that out of ten roles, the maximum was 5. Any of the following are possible: the
die has no faces greater than 5, the die has faces greater than 5 but these are unlikely to be
rolled, or the die has faces greater than 5, which are reasonably likely to be rolled, but our
set of ten rolls was not representative of the die’s true long term behavior. To illustrate the
last case, rolling a fair six-sided die ten times gives

Pr(ten rolls ≤ 5 | a fair six-sided die) =
(

5
6

)10
≈ 0.162.

Consequently, a naive interpretation of observed results, such as the rule that getting zero 6s
out of ten rolls means a 6 is less likely than other roles, will frequently be wrong. J

Any estimate we can collect from measured random data—such as the observed maximum
given ten rolls—is a random variable, but to make probabilistic statements of the form
Pr(arbitrary future roll or execution time ≤ Y ) where Y is a constant rather than a random
variable, we need more information than can be obtained by observing results. For a die,
this would mean physically examining it. For a task, we would need static analysis, which is
impractical for tasks utilizing SMT or in multicore systems. Since static timing analysis is
impractical, we are left with measurement-based methods. With MBPTA, each trial is used
to gather data, similarly to each roll of a die. A set of execution times is called a trace.

I Definition 5. A trace is an ordered set of execution times for a task and constitutes a
finite-sized sample from the population of all possible execution times for that task. For trace
R with |R| elements, let {R1, R2, ...R|R|} be the ordered sample times within the trace. Let
the maximum of the trace be denoted by Rmax. Note that the Rk values refer to times within
a finite-sized sample, while Ei is from the entire population of execution times. J

The trace is analyzed to produce an estimate of future behavior. How to do so safely lies
at the heart of MBPTA analysis. EVT methods attempt to use traces that are representative
of possible task behaviors to produce an upper bound on Cp

i , typically much larger than the
observed maximum execution time, for a given value of p. By doing so, practitioners can
avoid many hazards associated with estimates based on purely random data. Unfortunately,
how to obtain data that is sufficiently representative is very much an open question; there is
no universal agreement on how to do so [17, 20, 36]. Consequently, it is not always possible
to correctly apply EVT.

We use a different approach. We analyze a trace to produce a safe WCET, which accounts
for both randomness in future behavior and randomness involved in creating the estimate.

I Definition 6. Given a task τi, a safe WCET Sq
i is a random variable such that

Pr(Ei ≤ Sq
i ) = q (2)

holds given trace R of τi, where R constitutes a random sampling of τi’s possible execution
times. We refer to q as the safety level2 of τi.

2 Note that q is unrelated to safety integrity levels used in risk analysis, despite the similar name.
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The difference between Defs. 3 and 6 is that, while Cp
i in Def. 3 is a constant, Sq

i is a
random variable. In practice, the execution times forming R may not actually be random,
but we analyze R as if they were. We formally state our assumptions regarding R in
Sec. 4. Later, in Sec. 5, we show empirically that our analysis holds even when applied
to execution traces for which our assumptions of randomness may not. This approach of
analyzing non-random data as if it were random may seem strange, but it is not original
to us. In particular, pseudo-random number generators (pRNGs) actually produce values
that are purely deterministic, but are then used to produce “randomess” that powers a vast
variety of applications across many domains. Our traces do not exhibit the same degree of
random-like behavior that is expected of widely-used pRNGs, but our experiments in Sec. 5
show the power of assuming randomness to gain insight into task behaviors.

Costs and correctness revisited. We define the execution-cost parameter Ci in our
model so that Ci = Sq

i holds for a specified q. The traditional notion of correctness—all jobs
are guaranteed to complete on time—cannot be adhered to without known upper bounds on
all job execution times. For this reason, we supplement the binary idea of correctness with a
quantifiable level of safety.

I Definition 7. Task system τ is q-safe if all tasks have sWCETs with safety level at least
q, and the system would be correctly scheduled if all tasks had true WCETs no greater than
the stated sWCETs. J

Some may question the wisdom of using sWCETs within a safety-critical context. However,
probabilistic reasoning is already present within hard real-time contexts. In particular,
FAA standards for commercial aircraft state acceptable failure rates, essentially giving a
probabilistic bound. We are not weakening hard real-time correctness; we are making explicit
a dependence on timing analysis that is often left implicit.

Determining an appropriate safety level is an application-specific decision. Our concept
of safety is applicable to any system designed around an acceptable failure rate, which could
include applications ranging from streaming media to aviation. We highlight aviation rules
to show that probabilistic timing analysis does not preclude systems that have both hard
real-time and safety-critical requirements.

Related work. The foundations of SMT were given by Tulsen et al. [67] and Eggers
et al. [22] in the mid 1990s. SMT first became widely available in 2002, when it was made
available on Intel processors [50], prompting works that gave detailed descriptions of SMT
on Intel hardware [10, 11, 34, 64, 66], albeit outside of a real-time context.

Jain et al. [35] did early work on applying SMT to real time; they showed experimentally
that significant performance gains in soft real-time systems are possible. Kato et al. [37, 38]
gave algorithms for determining which tasks should share a core to maximize efficiency,
provided that it is possible to statically determine execution costs of SMT-enabled tasks.

Cazorla et al. [16] and Gomes et al. [26, 27] have proposed ways to exert greater
control over SMT timings by modifying the interaction between the operating system and
the hardware, while Zimmer et al. [73] and Suito et al. [65] have proposed purpose-built
hardware aimed towards real-time work with multithreading. Lo et al. [48] gave methods
to limit real-time work to a small number of threads, executing non-real-time work only
when safe to do so. Mische et al. [53] suggested using SMT to hide context-switch costs by
using threads to switch task state in and out in the background. More recently, Osborne
et al. [57, 58] have benchmarked SMT performance and given schedulability results within
a soft real-time context based on worst-case observed execution times. Detailed analysis
of Intel’s microarchitecture, including the resource constraints that are relevant with SMT,
have been performed by Fog [25]. Scheduling with SMT is related to the more general case



S. H. Osborne and J. H. Anderson 21:7

of scheduling in parallel any set of tasks that may influence one another’s execution times,
as discussed by Andersson et al. [4].

Cyclic-executive (CE) scheduling was developed to combine high predictability with low
run-time overheads [5, 47]. The essence of the method is to pre-compute a table stating
when every job should execute. Recent work on CE scheduling for multicore platforms has
focused on mixed-criticalty scheduling [14, 12] and more efficient schedule computation [21].

The difficulties with guaranteeing execution costs in a multicore context arise from the
possibility of tasks on different cores interfering with one another. An overview of these
problems, and possible solutions, is given by Kim in his dissertation [40]. More specific
concerns include cache conflicts [2, 9, 19, 41, 49, 69, 70], DRAM conflicts [29, 30, 68, 71, 72],
memory bus conflicts [54, 63], general OS support [3, 18, 31], and I/O conflicts [39, 59].

MBPTA was first proposed by Burns and Edgar in 2000 [13], in part as a means to address
the difficulty of timing analysis on complex processors; concerns over the practicality of static
timing analysis predate multicore computing. Traditionally, EVT has required that execution
times be identically and independently distributed [6, 24, 60]. This requirement has been
an obstacle to the use of EVT, since observed execution times will often include statistical
dependencies. One way real-time practitioners have worked around this limitation by has been
by requiring that executions be performed with randomized caches [1, 7, 8, 32, 42, 43, 51, 52].
Others have explored ways to introduce randomness to execution traces after measurement
is complete [45, 46]. Alternatively, the works of Leadbetter et al. [44] and Hsing [33] imply
that variables need not be identically distributed so long as they are stationary—a data
set is stationary if it maintains the same distribution over time—and either all values are
independently distributed over time or extreme values are independent with respect to time
(extremal independence). This fact has been used by Guet, Santinelli, and various co-authors
in [28, 61, 62] and has been noted by Carzola et al. and Davis and Cucu-Grosjean in recent
survey papers [17, 20].

3 The CERT-MT Scheduler

In this section, we describe the CERT-MT scheduler, which is a CE scheduler that allows for
SMT. We do so in two parts. First, we describe the restrictions we place on jobs using SMT
that will make our timing analysis possible. Second, we discuss the correctness conditions of
CE schedulers and outline the construction of a mathematical optimization program that
will produce a correct schedule for SMT-enabled tasks that adheres to our rules if one exists.
We will return to the topic of timing analysis in Sec. 4.

3.1 Rules for Using SMT

Again, the fundamental rule of CERT-MT is that jobs employing SMT must execute as they
are tested in determining execution times.3 To enforce this rule, we implement the following
two sub-rules:

1. All jobs employing SMT must be simultaneously co-scheduled, as defined in Def. 8 below.
2. All jobs employing SMT must be executed non-preemptively. We include scheduler

interruptions as preemptions.

3 Recall that we consider only independent tasks; we defer more complex systems to future work.
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I Definition 8. We say that two jobs are simultaneously co-scheduled if both begin execution
simultaneously on sibling threads of the same core, and when one job completes, the remaining
job continues on the same core with no sibling job until complete. We use τi.a:j.b to denote the
simultaneously co-scheduled jobs τi.a and τj.b and τi:j to denote non-specific simultaneously
co-scheduled jobs of τi and τj . J

With these sub-rules in place, we can enforce our primary rule—execution as tested—
without creating an excessive timing-analysis burden. The first sub-rule allows us to limit
our testing to simultaneously co-scheduled jobs, as opposed to considering, for example, what
happens if τi begins executing as a solo job and τj begins later on the same core, similar to
what we saw in the final case of Ex. 1 and Fig. 2. We thereby ensure that our timing analysis
accounts for hardware resource sharing between jobs on the same core. From here onwards,
we use the term “co-scheduled” to mean “simultaneously co-scheduled” since that is the only
scheme we consider. Banning preemptions for SMT-enabled jobs is a precautionary step;
while there exists substantial work on accounting for preemptions without SMT, no such
work exists for SMT. In its absence, we choose to use a conservative approach. We allow for
preemptions when not using SMT.

Disadvantages of non-preemptive scheduling. While requiring non-preemptive exe-
cution simplifies our timing analysis, it can make otherwise schedulable systems unschedulable,
as shown in Ex. 9 below. The example does not explicitly reference SMT or co-scheduled
jobs; we explain later how co-scheduled jobs can be treated as a single schedulable unit.

In a CE schedule, jobs are assigned to execute within specific time intervals called frames
[5]. A correct schedule is built by assigning jobs to frames. We give a precise definition of
frames—our definition elaborates on the standard one—in Def. 10 below, following Ex. 9.

I Example 9. Let τ be a task system with periods in the set {10, 20}, with some jobs having
Ti = 20 and Ci > 10. Consider the frame size f needed to execute τ non-preemptively. If
f > 10 holds, then no job with Ti = 10 can be scheduled, since the first frame will not
complete until after the deadline of the first job, so such a job could miss its deadline. If
f ≤ 10 holds, then no job with Ci > 10 can be scheduled, since the frame boundary causes a
preemption by the scheduler. J

To facilitate the scheduling of non-preemptive jobs, we allow the frame size to be defined
per-core, rather than requiring one frame size for the entire platform. We replace the notation
f for a platform-wide frame size—the standard in CE scheduling—with f(`).

I Definition 10. A frame is a time interval of length f(`) on core `. Frames are indexed
using g, starting from g = 1, such that the gth frame on core ` starts at time (g−1) ·f(`) and
ends at time g · f(`). We require that no frame extends beyond the hyperperiod boundary,4
allowing the schedule to repeat every hyperperiod. The last frame per hyperperiod on core `
has index g =

⌊
H

f(`)

⌋
. J

As a consequence of allowing multiple frame sizes, frames with the same indices may
cover different lengths of time on different cores. For example, suppose that on a two-core
system, f(1) = 10 and f(2) = 20. Frames 1, 2, and 3 of core 1 would start at times 0, 10,
and 20, but frames 1, 2, and 3 of core 2 would start at times 0, 20, and 40. In addition, the
maximum valid frame index varies based on f(`); since we only need to define a schedule for
the first hyperperiod, we do not consider frames for which g · f(`) > H holds.

4 This requirement weakens the typical CE requirement that f(`) divide H while still allowing the schedule
over each hyperperiod to repeat.
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Scheduling co-scheduled jobs. We define three scheduling parameters for co-scheduled
job pairs: joint cost, joint release, and joint deadline. These parameters allow us to treat
pairs of jobs as schedulable entities.

I Definition 11. The joint cost to simultaneously execute jobs of τi and τj is given by Ci:j ,

defined as the execution time for both jobs assuming they begin simultaneously. If i = j, then
Ci:j = Ci, indicating solo execution for τi. Jobs with nothing co-scheduled are solo jobs. J

As with single-task costs, determining Ci:j such that both jobs are absolutely guaranteed
to complete is impractical. For this reason, we define Ci:j = Sq

i:j for a specified value of q,
with Sq

i:j analogous to Sq
i (Def. 6).

I Definition 12. Let Ei:j be a random variable corresponding to the time required to simul-
taneously co-schedule a pair of randomly selected jobs of τi and τj . We define the joint safe
WCET (jsWCET) Sq

i:j of τi:j to be a function of a trace R of τi:j such that

Pr(Ei:j ≤ Sq
i:j) = q (3)

holds. As with solo tasks, we assume R is a random sample, making Sq
i:j a random variable.J

Our definition of safety (Def. 7) can be easily expanded to accommodate jsWCET values.
Along with defining a joint cost for each pair, we define a joint release and joint deadline.

I Definition 13. Given τi.a:j.b, the joint release and joint deadline are given, respectively, by

r(i.a, j.b) = max(Ti · (a− 1), Tj · (b− 1)) and
d(i.a, j.b) = min(Ti · a, Tj · b).

For the case where i = j and a = b—i.e., a solo job—the r and d terms are simply the job’s
release time and absolute deadline. J

In order for both jobs of a pair to finish on time, the pair must begin no sooner than
r(i.a, j.b)—both jobs must have been released—and must finish no later than d(i.a, j.b)—prior
to either jobs’ deadline.

3.2 Creating a Schedule
In this subsection, we review what it means for a CE scheduler to be correct and expand
upon standard CE rules to apply to SMT and when frame size can vary. For now, we assume
we have already determined safe execution costs for all tasks and pairs of co-scheduled tasks.
We will discuss how to determine such costs in Secs. 4 and 5. A CE schedule is correct if the
rules stated in Def. 14 below, adapted from Baker and Shaw [5], hold.

I Definition 14. A CE schedule is correct if over the course of each hyperperiod: (i) all jobs
are scheduled; (ii) any non-preemptable job is scheduled in exactly one frame; (iii) every job
completes in a frame that ends no later than its deadline; (iv) no job executes in a frame that
begins before its release; (v) the total execution time scheduled in each frame is no greater
than the frame size; and (vi) no job executes in parallel with itself. J

If we allow a particular job to execute on multiple cores, rule (vi) of Def. 14 becomes
quite challenging. For this reason, we require that each job, with or without SMT, executes
on only one core. However, a task may execute different jobs on different cores.

In a conventional CE scheduler, not permitting SMT and requiring one frame size across
all cores, the assignment of jobs or job portions to frames so that the system is schedulable is
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the primary decision to make. With CERT-MT, additional decisions are needed: what frame
size should be used for each core, on what core should each job be scheduled—with different
frame sizes, cores are not interchangeable—and how, if at all, should jobs be co-scheduled?
Even so, the requirements given for correctness in Def. 14 are unchanged.

However, these correctness requirements are more complicated, particularly since the
scheduling decisions needed cannot be made independently. To make them, we employ a
mathematical optimization program. To convert our correctness conditions into mathematical
form, we define a variable for every possible job pair, core, and frame.

I Definition 15. For i 6= j, let the variable x(i.a, j.b, `, g) be defined as

x(i.a, j.b, `, g) = time budgeted for τi.a:j.b on core ` in frame g
Ci:j

.

This actually defines two variables for every pair of distinct jobs: one for which i < j holds,
and a second for which the opposite is true. For i = j, we define the variable only for a = b

and keep the same definition with the provision that a solo job is said to be “simultaneously
co-scheduled” with itself.5 We refer to these variables as the x variables. J

I Example 16. Let the task system τ consist of τ1 = (7.5, 10), τ2 = (5, 20), τ3 = (5, 20),
τ4 = (10, 20), and τ5 = (20, 40). Furthermore, let C1:2 and C1:3 = 10. Fig. 3 shows a possible
schedule for τ on two cores (note that τ has total utilization of 2.25; it cannot be scheduled on
two cores without SMT), along with the non-zero corresponding x variables. Frame borders
are indicated by dashed lines; we have f(1) = 10 and f(2) = 20. The first two variables,
x(1.1, 2.1, 1, 1) and x(2.1, 1.1, 1, 1), show that the first jobs of τ1 and τ2 are co-scheduled in
frame 1 of core 1 for 10 time units, their joint cost. The last variable listed, x(5.1, 5.1, 2, 2),
shows that job 1 of τ5 is scheduled in frame 2 of core 2 for half of its total cost. Note that
the preemption of τ5.1 by the scheduler at time 20 is permitted, as our non-preemption
requirement only applies to jobs using SMT. J

We outline the constraints needed to build an optimization program that will produce a
correct schedule for τ on platform π if such a schedule exists. Rather than giving the full
program here, we outline the constraints needed to fulfill the conditions of Def. 14. The full
program is available online [56].

Our first constraint is needed to address the existence of two variables for every pair of
jobs. We require that

x(i.a, j.b, `, g) = x(j.b, i.a, `, g) (4)

holds. In Fig. 3, we see the first eight variables listed as pairs for this reason. Our remaining
constraints fulfill the requirements of Def. 14.

(i) All jobs are scheduled. To guarantee that all jobs released over the hyperperiod are
scheduled, we require that for all jobs τi.a released within the first hyperperiod, the x
variables corresponding to each job must sum to 1. Mathematically,6

∀i, a
n∑

j=i

H
Tj∑

b=1

m∑
`=1

⌊
H

f(`)

⌋∑
g=1

x(i.a, j.b, `, g) = 1.

5 We do not propose scheduling a job with a second copy of itself; we overload the term simultaneously
co-scheduled to avoid constantly addressing solo jobs as a special case.

6 Note that variables for which i = j and a 6= b do not exist per Def. 15. Here and elsewhere when i = j,∑ H
Tj

b=1 would more properly written as
∑a

b=a
. We leave it as is for the sake of brevity.
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Time 20 30 40100

Core 1

Core 2

Figure 3 A possible schedule
and corresponding x variables for
the task system of Ex. 16.
x(1.1, 2.1, 1, 1)=x(2.1, 1.1, 1, 1)=1
x(1.2, 3.1, 1, 2)=x(3.1, 1.2, 1, 2)=1
x(1.3, 2.2, 1, 3)=x(2.2, 1.3, 1, 3)=1
x(1.4, 3.2, 1, 4)=x(3.2, 1.4, 1, 4)=1
x(4.1, 4.1, 2, 1)=1
x(5.1, 5.1, 2, 1)=0.5
x(4.2, 4.2, 2, 2)=1
x(5.1, 5.1, 2, 2)=0.5

In our example, τ1 through τ4 fulfill this requirement by having one variable valued at 1
for each job within the hyperperiod; τ5 has two non-zero variables for its one job, which
is scheduled in two different frames of core 2; each variable is valued at 0.5

(ii) Any non-preemptable job must be scheduled in exactly one frame. For i 6= j,

we require that x be an integer variable, which can be seen with the variables corresponding
to τ1 through τ3 in Ex. 16. While each job of τ4 is also scheduled in a single frame, doing
so is not necessary for a correct schedule, since τ4 does not use SMT.

(iii) Every job completes in a frame that ends no later than its deadline. Frame g
of core ` ends at time g · f(`). We make the per-core frame size into a variable—f(`) for
all ` ≤ m—and require that if a job is scheduled in a given frame, then the job’s deadline
may be no sooner than the end of the frame. In our optimization program, we express
this rule using the following constraint:

∀i.a, j.b, `, g, dx(i.a, j.b, `, g)e · g · f(`) ≤ d(i.a, j.b).

If dx(i.a, j.b, `, g)e = 1 holds, then the restriction is true if and only if the frame’s end
time, g · f(`), is no more than the deadline. If dx(i.a, j.b, `, g)e = 0 holds, i.e., the job(s)
is (are) not scheduled in frame g of core `, making the frame size irrelevant, then the
constraint is always true. While the ceiling operator is meaningless for non-preemptable
co-scheduled jobs, which already have x(i.a, j.b, `, g) ∈ {0, 1}, it is necessary for the solo
jobs to test whether any portion of the jobs is within frame g.
This constraint holds in Fig. 3; using the first jobs of τ1 and τ2 as an example, we have

dx(1.1, 2.1, 1, 1)e · 1 · f(1) ≤ d(1.1, 2.1)
1 · 1 · 10 ≤ 10.

Observe also that scheduling τ1.1 anywhere other than frame 1 of core 1, given that
f(2) = 20, would violate this constraint. In addition, constraint (v) below guarantees
that every job can execute for its scheduled time within each frame.

(iv) No job executes in a frame that begins before its release. Frame g of core `
begins at time (g − 1) · f(`). Consequently, we require

dx(i.a, j.b, `, g)e · r(i.a, j.b) ≤ (g − 1)f(`).

The logic here is similar to that in (iii) above; if x(i.a, j.b, `, g) = 0 holds, then the
constraint will always be true. Otherwise, the job’s release must fall no later than the
beginning of the frame for the constraint to hold. In Fig. 3, using the third job of τ1 and
the second job of τ2 as examples, we have

dx(1.3, 2.2, 1, 2)e · r(1.3, 2.2) ≤ (3− 1) · f(1)
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1 · 20 ≤ 2 · 10.

(v) The total execution time scheduled in each frame is no greater than the frame
size. Each x variable requires that x(i.a, j.b, `, g) · Ci:j units of time be allocated to the
corresponding job in the selected frame in order for the corresponding job or job pair
to complete. Clearly, we must avoid overscheduling frames. The following constraint
accomplishes that goal:

∀ l, g :
n∑

i=1

H
Ti∑

a=1

n∑
j=i

H
Tj∑

b=1
x(i.a, j.b, `, g) · Ci:j ≤ f(`).

For example, C1:2 and f(1) are equal to 10 in Ex. 16, giving us

x(1.1, 2.1, 1, 1) · C1:2 ≤ f(1)
1 · 10 ≤ 10

for frame 1 of core 1; note that all other variables connected to this frame, apart from
x(2.1, 1.1, 1, 1), are equal to 0.

(vi) No job executes in parallel with itself. For non-preemptable jobs, this rule holds
automatically, since every job is scheduled in exactly one frame. For preemptable solo
jobs, we add the constraint

∀i, a, `

⌊
H

f(`)

⌋∑
g=1

x(i.a, i.a, `, g) ∈ {0, 1},

which states that for every solo job, either all or none of it must be on a given core. In
Ex. 16, this constrains each job of τ4 and τ5 to a single core.

If a correct schedule exists, then an optimization program that follows the above constraints
can find one. Despite the name, there is no objective function that needs to be optimized; if a
set of decision variables that fulfills all restrictions exists, a correct schedule can be formed by
making the scheduling choices corresponding to those variables. In our experiments, we found
that when executing this program on a platform with 24 cores, most systems containing in
the range of 20 tasks on 4 or 8 cores could be scheduled within a few seconds; we counted as
a failure any system for which we had not found a solution within 60 seconds. Since solving
the optimization program is done offline, this time is acceptable for many applications.

4 Timing Analysis

In this section, we present the timing-analysis portion of CERT-MT. While using the observed
maximum for task costs, as we do here, is somewhat common practice, we are not aware of
any prior work that considers exactly what the observed maximum is telling us, nor that
addresses the fact that the observed maximum may itself be a random variable.

We use our results here to analyze our benchmark tests, presented in Sec. 5. All discussions
of job execution costs in this section also apply to costs for simultaneously co-scheduled pairs
of jobs. As mentioned in Sec. 2, we analyze execution times as if they were random. More
specifically, we assume for now that for any given task, the execution times of individual
jobs follow Premise 1 below. In Sec. 5 we show empirically that we can safely predict task
behavior even without Premise 1 in most cases.
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I Premise 1. The following properties hold for Ei and all Rk ∈ R : First, Ei and all values
within R are drawn from the same probability distribution; second, individual Rk values
are not dependent on k; and third, individual Rk values are not dependent on other values
within R. J

If we schedule our system using Rmax as the task cost, how safe is that? More formally,
consider Premise 2 below:

I Premise 2. Given task τi and trace R, assume that Sq
i is defined by Sq

i = Rmax. J

Combining Premise 2 and Def. 6 gives

Pr(Ei ≤ Rmax) = q. (5)

We want to determine the value of q. To do so, we need to consider both the relationship
between Ei and Rmax and that between Rmax = Sq

i and Cp
i for an arbitrary value of p. We

make use of three basic rules of probability to determine q, given below without proof. Using
these, rules, we give a lower bound for q in terms of p and |R| in Lemma 20 below.

I Proposition 17. Let events B1 through Bv partition a probability space, and let A be an
event belonging to the same probability space. The law of total probability states that the
following holds: Pr(A) =

∑v
i=1 Pr(A|Bi) · Pr(Bi). J

I Proposition 18. Let A be a possible outcome of a repeated random trial. It follows for
a series of trials, where each trial’s result is independent from all previous results, that
Pr(A holds for some trial) = 1− Pr(A holds for no trials) holds. J

I Proposition 19. Let A be a possible outcome of v repeated, independent trials. Then,
Pr(A holds for all trials) = Pr(A)v. J

I Lemma 20. Assume Premises 1 and 2 hold. Given a trace R and an arbitrary p associated
with some value for Cp

i , the following holds:

q ≥ p ·
(

1− p|R|
)
. (6)

Note that since (6) holds for an arbitrary p, q is not a function of p.

Proof. The lemma is established by the following derivation:

q

= {by Exp. (5)}
Pr (Ei ≤ Rmax)

= {by Prop. 17}
Pr(Ei≤Rmax|Rmax≥Cp

i)·Pr(Rmax≥Cp
i)+Pr(Ei≤Rmax|Rmax<C

p
i )·Pr(Rmax<C

p
i )

≥ {since Pr (Ei ≤ Rmax | Rmax < Cp
i ) · Pr (Rmax < Cp

i ) ≥ 0}
Pr (Ei ≤ Rmax | Rmax ≥ Cp

i ) · Pr (Rmax ≥ Cp
i )

≥ {since Pr (Ei ≤ Rmax | Rmax ≥ Cp
i ) ≥ Pr(Ei ≤ Cp

i )}
Pr(Ei ≤ Cp

i ) · Pr (Rmax ≥ Cp
i )

= {by Exp. (1)}
p · Pr (Rmax ≥ Cp

i )
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= {by the definition of Rmax (Def. 5)}
p · Pr(Rk ≥ Cp

i holds for some Rk ∈ R)
= {by Prop. 18}
p · (1− Pr(Rk < Cp

i holds for all Rk ∈ R))
= {by Prop. 19}

p · (1− Pr(Rk < Cp
i )|R|)

= {since Rk terms are independent and from the same distribution as Ei, per Pre. 1}

p · (1− Pr(Ei < Cp
i )|R|)

≥ {since Pr(Ei < Cp
i ) ≤ Pr(Ei ≤ Cp

i ) }

p · (1− Pr(Ei ≤ Cp
i )|R|)

= {by Exp. (1)}

p · (1− p|R|).

J
We can now lower-bound q in terms of |R| alone.

I Theorem 21. Assume that Premises 1 and 2 hold. Then it follows that

q ≥
(

1
|R|+ 1

) 1
|R|
(

1− 1
|R|+ 1

)
. (7)

Proof. We first define the lower bound of q given in Exp. (6) as q∗, i.e. q ≥ q∗ holds, where

q∗ = p(1− p|R|).

Maximizing q∗ will give a lower bound for q in terms of |R| alone. To maximize q∗, we find
the value of p for which the first derivative of q∗ with respect to p equals 0 and the second
derivative is negative. The first derivative is given by

dq∗

dp
= 1− (|R|+ 1) · p|R|,

and the second by
d2q∗

dp2 = −|R| · (|R|+ 1) · p|R|−1.

Observe that d2q∗

dp2 < 0 holds for all p > 0. Consequently, q∗ is maximized when dq∗

dp = 0.
Solving dq∗

dp = 0 for p gives the value of p that maximizes q∗. Inserting this value into
Exp. (6) in the place of q gives the result. J

I Definition 22. We refer to the lower bound of Exp. (7) given trace size |R| as qb(|R|). J

To attach some concrete values to (7), |R| = 1000 gives qb(|R|) = 0.992 and |R| = 105

gives qb(|R|) = 0.9999. Using these results, we can make comparisons between tasks with and
without SMT based on maximum observed execution times. While we could have compared
maximum observed times without the preceding proofs, determining qb(|R|) as we have allows
us to meaningfully say that tasks with SMT are as safe as those without.

Violating Premise 1. The greatest potential shortfall of this approach is the reliance
on Premise 1, which may not hold in practice. However, this obstacle is not unique to us; as
mentioned in Sec. 2 under “Related works," EVT methods also must contend with data that
may not be as independent as desired. In Sec. 5.1, we empirically test what happens when
Premise 1 does not hold.
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5 Experimental Results

In this section, we present our experimental results. The benchmark tests were conducted
on an Intel Xeon Silver 4110 2.1 GHz (Skylake) CPU running Ubuntu 16.04.6. All code
related to our experiments is available online [56]. We begin, in Sec. 5.1, by evaluating how
well defining costs to be Rmax works when Premise 1 may not hold. We also determine
how many execution-time samples are needed to safely determine Rmax within the context
of our experiments. Using these sample counts, we then evaluate the benefits of allowing
SMT in Sec. 5.2 by examining benchmark data involving individual tasks and task pairs.
Finally, in Sec. 5.3, we evaluate these benefits more holistically on a system-wide basis via a
schedulability study. The benchmark data discussed in Sec. 5.2 was used to inform parameter
choices underlying this study.

Experimental studies are typically done within a framework that defines an “artificial
world,” and definitive conclusions can only really be drawn with respect to that “world”—
further conclusions concerning the “real” world, though often interesting and relevant, are
necessarily speculative. In our context, we need to be able to compare Rmax values determined
from relatively small traces to entire populations. Thus, in Secs. 5.1 and 5.2, we assume
an artificial world in which 18 programs are of interest from the TACLeBench sequential
benchmarks [23], which consist of functions commonly found in embedded and real-time
systems. Furthermore, we assume that the entire population of execution times for the
task in this world is given by a sequence of 100,000 job executions, which we denote as R+.
Note that, in the “real” world, we typically would not have the entire population of possible
execution times—if we did, we would have no need for MBPTA. With this setup in place,
our world thus consists of 18 solo tasks and 171 task pairs, each with 100,000 jobs or job
pairs. In determining SMT execution costs in this world, we simultaneously co-scheduled
task pairs per Def. 8. In all cases, we invalidated the cache between jobs or job pairs in
determining such costs.

In the “real” world, appropriately dealing with task inputs in timing analysis is a complex
issue. In our setting here, the initial “input” for each benchmark is hard-coded, but the
program structure causes the inputs processed by each loop to vary, primarily due to the
presence of non-resetting global variables. This aspect of the benchmarks allows for patterns
similar to real-world applications where a task’s input, and therefore its execution time,
exhibits dependencies between one job and the next. For example, in many image-processing
applications, the complexity of one job, and therefore the processing time needed, is predictive
of the next. As our purpose here is to assess the viability of SMT, rather than fully addressing
the issue of timing analysis in multicore systems, we believe these assumptions regarding
input data are reasonable.

5.1 Timing-Analysis Assessment
So far, our timing-analysis has been theoretical; we have shown that if Premises 1 and 2
hold, then we can safely place a lower bound on the value of q, which we denote as qb(|R|)
per Def. 22 (“b” denotes our theoretical bound). In practice, however, Premise 1 may not
hold. What can we say about q in a more realistic setting? To avoid overloading q, we define
an additional term for the value we actually compute given a trace and population.

I Definition 23. Given a trace size |R| and a population R+, and assuming that every
possible block of |R| consecutive execution times taken from R+ forms a trace and is equally
likely to occur, let the result of computing q per Def. 6 be denoted qc(|R|) (“c” denotes a
computed value of q).
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The way we have created R+ and defined our possible traces means that Premise 1 will
not typically hold; individual Rk values within each trace will tend to be dependent on both
k and on other values within the same trace. However, if we find that qc(|R|) ≥ qb(|R|) holds,
we then have evidence that building a system on the assumption that a proportion qb(|R|) of
all tasks will have execution times no more than Rmax is safe even without Premise 1. In our
experiments, we use |R| = 1000 (i.e., we consider using 1,000 samples from the population of
size 100,000), giving qb(1000) = 0.992 using Exp. (7).

Results. When we calculated qc(1000) for each of our 18 solo tasks, we found a minimum
qc(1000) of 0.997 and a mean and maximum of 0.999. We conclude that for these tasks in
our experimental context, calculating costs via Rmax is safe even without Premise 1. Our
qc(1000) values are closer to 0.999 than to qb(1000); the former is the value we would expect
to see given that Rmax ≈ C0.999

i . Our qc(1000) values for all solo jobs, along with additional
summary statistics, are available in an online appendix [56]. For our 171 task pairs using
SMT, the mean qc(1000) across all pairs was found to be 0.998. Further highlights are given
in Table 1. Full results are in [56].

Cases where qc(1000) < qb(1000). Of the 171 task pairs, five had qc(1000) < qb(1000), but
if we exclude pairs for which Ci and Cj (defined as the Rmax for the first 1,000 jobs of each
solo task) differ by a factor of more than 10, we can eliminate these five problem pairs. In
Sec. 5.2, we will see that there are additional reasons to not consider pairs with dramatically
different solo execution times, making this exclusion an appealing option.

An alternative solution is to increase our trace size until we find a new value for |R|
such that qc(|R|) ≥ qb(1000). When we did this, our new |R| values ranged from 1,250 to
1,500, in all cases giving qc(|R|) > 0.992. An example can be seen in Table 1; the pair of
tasks “cjpeg_wrbmp” and “susan” have qc(1000) = 0.987, but if we inflate the trace size by a
factor of 1.5 (column “inf.”), we then have qc(1500) = 0.992 (column “q(inf.|R|)”). Note that
inflation factors are not applicable for task pairs where qc(1000) ≥ qb(1000) holds. Within the
context of our experiments, this result suggests that even when SMT is challenging from
a timing-analysis perspective, reliable timings can be obtained by using a trace size that
is a slightly larger than the trace size that would be needed for a given level of safety if
Premise 1 held. We plan to investigate this aspect of our results further in future work, with
a particular emphasis on what inflation factors can be expected given a wider range of tasks
and Rmax values.

Timing-analysis conclusions. Before moving on, we recap our conclusions from this
subsection. In the experiments discussed here, we found that qc(1000) ≥ qb(1000) held perfectly,
even without Premise 1, when SMT was not in play. When SMT was used, qc(1000) ≥ qb(1000)
held most of the time, or all of the time if do not allow SMT to be used when Ci and Cj

differ by more than a factor of 10.
The seemingly obvious solution is to use SMT only for cases where qc(1000) ≥ qb(1000)

holds. The problem is that to know whether the inequality holds, we need either an assurance
that Premise 1 holds or the ability to compare multiple traces to the population. In real
applications, we would not have the population available. For this reason, the implementation
of our timing-analysis method should be done in consultation with domain experts who could
give assurances that a trace is large enough to capture relevant execution-time variations.

This approach may seem unsatisfactory, but it is similar to formal system verification
under a fault hypothesis. In a safety-critical context, such as avionics, software properties are
demonstrated to hold subject to a given fault hypothesis—informally, a list of possibilities
that should not happen. For example, an aviation software fault hypothesis might include
“foreign objects will not enter the engines." If this condition fails—perhaps a flock of geese
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Table 1 Task pairs with min., median, and max. qc(1000) values.
benchmark 1 benchmark 2 qc(1000) inf. qc(inf.|R|)

cjpeg_wrbmp susan 0.987 1.5 0.992
adpcm_dec rijndael_enc 0.999 NA NA
dijksta gsm_enc 0.999 NA NA

flies into the engines—then correctness is no longer guaranteed. A fault hypothesis will be
based on expert input, but it cannot be mathematically guaranteed. Selecting a trace size
that will allow at least the first point of Premise 1 to hold is essentially another element of a
fault hypothesis. In this case we would be claiming that |R| is large enough to capture the
task’s overall behavior. This concern is not unique to us, but applies to any MBPTA method.
Even for static analysis, the results hinge on the assumption that all relevant factors were
adequately accounted for.

5.2 Execution Times with and without SMT
We now consider how execution times with SMT compare to those without. We need this
information to make a realistic assessment of the potential benefits of using SMT. In Sec. 5.1,
we saw that given our populations, trace sizes of 1,000 are safe for tasks without SMT and
trace sizes of 1,500 are safe for tasks with SMT. With that in mind, our results in this
subsection are based on the first 1,000 execution times for solo tasks and the first 1,500
execution times for pairs. This is a conservative approach; while we found only five task
pairs for which inflating |R| was necessary, we do so here for all pairs.

For each pair of benchmark tasks, we record their multithreading score.

I Definition 24. If τi:j is a task pair for which Ci ≥ Cj holds, then the multithreading score
Mi:j satisfies the following:

Ci:j = Ci +Mi:j · Cj . J

When τi and τj are co-scheduled, we are essentially hiding the execution requirement for τj

at the cost of increasing the execution time needed for τi. Mi:j thus gives how much greater
Ci:j is than Ci for every unit of Cj , i.e., the cost to τi, per unit of τj , of “hiding” τj .

If Mi:j ≥ 1 holds, then there is no benefit to pairing τi and τj together, since SMT would
not succeed in “hiding” τj at all. If Mi:j < 1 holds, then pairing jobs of the two tasks is
potentially beneficial, with lower values indicating greater benefit. If Mi:j < 0 holds, then
τi:j actually requires less measured time to execute than τi alone.

We found that Mi:j > 1 was frequently the case for pairs where Ci

Cj
> 10 holds. For this

reason, along with the difficulty in using Rmax for timing analysis in those cases described in
Sec. 5.1, we decided that using SMT in those cases is not advisable. For the remaining pairs,
where Ci

Cj
≤ 10 holds, we summarize our results via a histogram in Fig. 4. The remainder of

our discussion considers only these remaining pairs. Again, more detailed results are available
in [56]. We did see five negative values, ranging from -0.003 to -0.532. For all of these
values, comparing the traces for the component solo tasks to the larger population showed
unexpectedly high Rmax values. Essentially, we overestimated both τi and τj individually,
thereby distorting the value of Mi:j ; our values were not unsafe.

Even if we ignore the negative values, our findings indicate that SMT can have some
benefit in almost all pairs that have similar solo costs for τi and τj . We make further use of
these findings, and explore their implications for schedulability, in Sec. 5.3.
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Figure 4 Distribution of Mi:j val-
ues. The distribution has a median
of 0.42 and values less than one have
a mean of 0.40. Three values are
greater than 1.0.

5.3 Schedulability Study
In this subsection, we turn our attention to assessing the benefits of allowing SMT from
a system-wide perspective. To provide such an assessment, we conducted a schedulability
study involving CERT-MT.

Generating task sets. We examined 104 scheduling scenarios, with each scenario
defined by a core count, per-task utilization range, and a model for SMT interaction. The
last factor is described in detail below; the others require only a brief explanation. We
considered core counts of four and eight and per-task utilizations drawn from four uniform
ranges: (0, 0.4) (low), (0.3, 0.7) (medium), (0.6, 1) (high), and (0, 1) (wide). Each task was
created by selecting a utilization from the appropriate distribution and a period from the
set {10, 20, 40, 80}, with all periods having equal probability. A solo task execution cost
was then assigned as a function of utilization and period. For each scenario, we determined
schedulability ratios (i.e., the percentage of schedulable task sets) for task systems ranging
in total utilization from 3m

4 to 2m. Recall that m gives the core count, and consequently the
maximum schedulable utilization when SMT is not used.

For each scenario, the corresponding schedulability ratios are summarized in one graph.
Each data point in one of these graphs represents the fraction of approximately 50 task
systems that could be deemed as schedulable. The total set of graphs took over 2 CPU years
to compute on a 6,500-CPU research cluster.

Modeling pair costs. A key aspect of our study is that of modeling the cost of job pairs
executing with SMT. Our goal in modeling such costs was not to reproduce any system’s
behavior exactly, but to be able to draw broad conclusions about the value of allowing SMT
without relying on one specific model for task interactions.

In Fig. 4, we see that most Mi:j values fall between 0.1 and 0.8. To capture the possibility
of Mi:j ≥ 1, we first gave each job pair either a 0.0, 0.1, or 0.2 probability of having Mi:j ≥ 1.
We refer to this value as the split, i.e., a split of 0.1 indicates that each task pair has a 10%
chance of being declared unsuitable for SMT. This particular split value closely reflects our
observed results discussed previously. If a task pair was not selected to have Mi:j ≥ 1, then
we determined its Mi:j value based on one of three normal distributions—(0.45, 0.12), (0.6,
0.07), or (0.45, .06)—or one of three uniform distributions—(0.1, 0.8), (0.4, 0.8), or (0.27,
0.63). All of the normal distributions were truncated, with any negative value produced
replaced by 0.01. Of these distributions, the first uniform and first normal distributions
most closely match our observed results, which had a median of 0.43 and a mean of 0.40
excluding cases where Mi:j > 1. We exclude those cases from our mean because any pair
where Mi:j > 1 holds is unsuitable for threading; the exact value of Mi:j will not impact
the decision. The second distribution of each type gives a higher (i.e., more pessimistic)
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mean, and the third of each type has the same mean as the first, but a smaller standard
deviation (resp., range) in the normal (resp., uniform) case. All of these distributions add
some pessimism to Fig. 4 by eliminating or reducing the probability of Mi:j < 0.1.

In total, we utilized 18 combinations of distributions in determining task-pair costs: three
probabilities for Mi:j ≥ 1, each combined with each of three uniform and three normal
distributions. After determining Mi:j , we calculated Ci:j per Def. 24. For task pairs where
solo costs differ by a factor exceeding 10, we did not allow SMT. For our four-core scenarios,
we tested every possible combination of per-task utilizations and Mi:j distributions, yielding
72 scenarios. For our eight-core scenarios, we were more selective, considering 32 scenarios.

Creating and evaluating schedules. To determine whether a task system was
schedulable, we attempted to create a schedule that complied with the conditions given in
Sec. 3 for each system.7 The graphs show the proportion of systems that are schedulable at
each total utilization. We summarize CERT-MT’s overall performance for each graph by
recording its relative schedulable area (RSA), defined as the area under the schedulability
curve divided by the core count m. In calculating RSAs, we assumed that the schedulability
ratio is constant between total utilization 0.0 and 3m

4 , which is the smallest utilization we
tested in each scenario. This assumption results in RSAs being understated in some scenarios.

An ideal (e.g., fluid) scheduler, not using SMT, that can preempt and migrate jobs
arbitrarily would have an RSA of 1.0; it could schedule all task systems with total utilization
at most m and no task systems with greater utilization. RSAs for practical hard real-time
schedulers would typically be less than 1.0, sometimes dramatically so [15].

Schedulability graphs. Our full set of graphs is included in an online appendix [56].
Here we present a small selection of our results, along with some observations on general
trends we observed. In Figs. 5—8 we show, respectively, our best, median, and worst four-core
results, along with our best eight-core results. Generally, CERT-MT’s performance in the
eight-core scenarios was not as good as in the four-core scenarios, for reasons discussed below.

B Observation 1. At its best, CERT-MT proved capable of increasing RSAs by a factor of
1.4 or more. This ability is demonstrated by Fig. 5. Of our 72 four-core graphs, 26 have
RSAs of at least 1.3, and 45 have RSAs are greater than 1.0.
B Observation 2. The performance of CERT-MT tended to decrease as the job count
increased. For example, Fig. 7 uses light per-task utilization, meaning there are more tasks
for a given total utilization. The poorer performance of CERT-MT for high job counts
was not due to any ill effects from SMT but rather to the time required to produce a
schedule. Given the magnitude of our study, it was necessary to enforce a time limit on our
optimization program. If this limit was reached for a particular task set, then it was deemed
as unschedulable. We used a 60-second limit. This observation also explains the relatively
poor performance we saw in the eight-core scenarios. We counter this observation, however,
by noting that when testing a specific task system, a much higher time limit could be used.
Moreover, it is possible that a more efficient schedule-construction method could be devised.
B Observation 3. CERT-MT performed best when the majority of Mi:j values fell within a
narrow range. For example, the standard deviation of such values is the smallest in the most
successful scenario (depicted in Fig. 5). This observation is also connected to the time limits
we imposed on our optimization program; a wider range of Mi:j values gives this program
more “choices” to consider, which takes more time.
B Observation 4. The mean of Mi:j had surprisingly little effect on overall performance.
The graphs in Figs. 5 and 7 have distributions that produce identical means for Mi:j .

7 We used Gurobi Optimizer, a commercial optimization programming solver with free academic licensing.
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Figure 5 The best four-core scenario.
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Figure 6 The median four-core scenario.3 4 5 6 7 8
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Figure 7 The worst four-core scenario.
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Figure 8 The best eight-core scenario.

Improving schedulability. The schedulability study we conducted suggests that employing
SMT can potentially enable substantial schedulability gains in hard real-time systems.
Additionally, the observations above hint at several ways of further increasing schedulability
beyond what we have seen. First, a larger schedule-construction timeout value could be used,
as noted already. Second, for larger systems, it may be more effective to divide tasks into
clusters scheduled separately. Third, given that the standard deviation of Mi:j seems to be
more important for schedulability than its mean, it might be possible, counter-intuitively, to
improve schedulability by artificially increasing the lower Mi:j values to decrease their range.

6 Conclusion

In industry today there is interest in using SMT to increase the capacity of safety-critical
systems, as evidenced by the FAA inquiries noted earlier [55]. In this paper, we have shown
that when SMT-enabled jobs are scheduled with care, producing a safe, measurement-based
timing analysis is comparable in difficulty to doing the same for jobs not using SMT. Within
the context of our schedulability study, we demonstrated that allowing SMT can increase
system capacity by up to 40%. We have also highlighted a subtlety of measurement-based
timing analysis—any estimate based on random measured data is itself a random variable—
that is not always emphasized, and that could compromise safety, if not accounted for.

Due to space constraints, there are many topics we have not been able to address that
we plan to address in the future. These include: the impacts of (well-studied) sources of
cross-core interference in multicore systems when SMT is allowed; the selection of appropriate
task inputs in measurement-based timing analysis; the impacts of occasional deadline misses
on overall system safety; and refined methods for constructing schedules under CERT-MT.
As to the question posed in this paper’s title, the evidence provided in this paper suggests
that SMT can indeed be both safe and beneficial for hard real-time systems.
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