
Light Reading: Optimizing Reader/Writer Locking
for Read-Dominant Real-Time Workloads
Catherine E. Nemitz #

University of North Carolina at Chapel Hill, NC, USA

Shai Caspin #

University of North Carolina at Chapel Hill, NC, USA

James H. Anderson #

University of North Carolina at Chapel Hill, NC, USA

Bryan C. Ward #

MIT Lincoln Laboratory, Lexington, MA, USA

Abstract
This paper is directed at reader/writer locking for read-dominant real-time workloads. It is shown
that state-of-the-art real-time reader/writer locking protocols are subject to performance limitations
when reads dominate, and that existing schedulability analysis fails to leverage the sparsity of
writes in this case. A new reader/writer locking-protocol implementation and new inflation-free
schedulability analysis are proposed to address these problems. Overhead evaluations of the new
implementation show a decrease in overheads of up to 70% over previous implementations, leading to
throughput for read operations increasing by up to 450%. Schedulability experiments are presented
that show that the analysis results in schedulability improvements of up to 156.8% compared to the
existing state-of-the-art approach.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture;
Computing methodologies → Shared memory algorithms

Keywords and phrases Reader/writer, real-time, synchronization, spinlock, RMR complexity

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.6

Supplementary Material Software (ECRTS 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.1.3

Funding Work was supported by NSF grants CNS 1563845, CNS 1717589, CPS 1837337, CPS
2038855, and CPS 2038960, ARO grant W911NF-20-1-0237, and ONR grant N00014-20-1-2698.
This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGS-1650116. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. This work was also supported by a Dissertation
Completion Fellowship from the UNC Graduate School.

Acknowledgements DISTRIBUTION STATEMENT A. Approved for public release. Distribution
is unlimited. This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Under Secretary of Defense for Research and Engineering. © 2021
Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as
defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as
detailed above. Use of this work other than as specifically authorized by the U.S. Government may
violate any copyrights that exist in this work.

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nemitz@cs.unc.edu
mailto:shai@unc.edu
mailto:anderson@cs.unc.edu
mailto:bryan.ward@ll.mit.edu
https://orcid.org/0000-0001-7168-6693
https://doi.org/10.4230/LIPIcs.ECRTS.2021.6
https://doi.org/10.4230/DARTS.7.1.3
https://doi.org/10.4230/DARTS.7.1.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Light Reading

Figure 1 Throughput for red-black tree lookups. This read-only scenario is representative of use
cases where writes can occur but are so infrequent that over long intervals, only reads occur.

1 Introduction

In an ongoing project, our research group has been investigating real-time use cases where
shared resources exist that are much more frequently read than written. The importance of
such read-dominant use cases has been well documented by McKenney [24], who devised a
non-blocking synchronization solution called Read-Copy-Update (RCU) to support resource
sharing. As explained later, RCU can be problematic in real-time systems, so for our use
cases, a better option is reader/writer locks, a now-standard synchronization solution first
proposed five decades ago [16]. A reader/writer lock extends a mutex lock by distinguishing
between read accesses (non-modifying) and write accesses (potentially modifying) and seeks
to allow reads to execute concurrently with one another while supporting exclusive writing.

At the outset of our project, it was our belief that reader/writer locking was a solved
problem for real-time systems. This belief was rooted in the existence of reader/writer locking
protocols that are asymptotically optimal with respect to blocking times [12], and the apparent
ease with which such blocking times can be factored into schedulability analysis [3]. In delving
further, however, we found this belief to be wrong. In particular, for read-dominant use cases,
we found major deficiencies with respect to both state-of-the-art real-time reader/writer
locking protocols and the schedulability analysis needed to apply them.

These experiences motivated this paper, which is directed at the goal of efficiently
supporting read-dominant real-time workloads. Our contributions towards this goal include a
new reader/writer locking-protocol implementation and schedulability analysis. We expound
on these contributions below, after first elaborating on the deficiencies noted above.

Surprising performance limitations in existing reader/writer locks. In the real-time
literature, Brandenburg and Anderson presented a category of reader/writer locks called
phase-fair locks over a deacade ago [12] and established the optimality of such locks under
common definitions of priority-inversion blocking (pi-blocking). To our knowledge, phase-fair
locks stand as the state-of-the-art for spin-based (our focus) real-time reader/writer locking.

In our work on read-dominant workloads, we employed a phase-fair ticket lock (PF-T), one
of Brandenburg and Anderson’s proposed phase-fair variants [11]. In experiments involving
PF-Ts, we observed perplexing behavior, shown in Fig. 1: throughput did not scale beyond
four cores for a purely read-only workload. This was surprising as the phase-fair lock logic
should allow all reads to execute without ever blocking. So why then did the PF-T not scale
to match the case of having no synchronization at all (NO-SYNC)?

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:3

The answer relates to the overhead of the PF-T’s lock/unlock logic. In particular, every
lock and unlock call updates the shared lock state. Even under a read-only workload,
these updates invalidate cached lock state on other cores. Contention for this shared lock
state incurs significant overhead that severely hampers throughput. Additionally, many
shared-state updates require the use of an atomic instruction.

Analytically leveraging the sparsity of writes. In examining existing schedulability analysis
for phase-fair locks [11], we found that they do not exploit the sparsity of writes in read-
mostly workloads. In particular, reads are pessimistically assumed to always incur some
write blocking. Thus, even if lock performance close to NO-SYNC could be achieved, such
improvements would be lost analytically in checking schedulability. In recent years, holistic,
inflation-free blocking analysis has been developed for mutex locks that limits over-estimates
of blocking. However, such analysis has not been extended to apply to reader/writer locks.

Contributions. The contributions of this paper are four-fold. First, in Sec. 3, we present
the spin-based phase-fair with light reading ticket lock (PF-L), which is optimized for read-
dominant workloads. The PF-L achieves low read overhead by eliminating shared lock state
between readers (at the expense of forcing write requests to check additional state) and by
eliminating atomic instructions from read lock/unlock logic. It also enables sequences of
reads to access cached lock state exclusively if they are uninterrupted by writes.

Second, in Sec. 4, we present an experimental evaluation of the PF-L compared to other
alternatives on the basis of throughput and locking overheads. Across all of our experiments,
the PF-L enabled throughput increases over the state-of-the-art PF-T in the range 2–450%,
and overhead reductions for reading in the range 40–73% for read-dominant workloads.

Third, in Sec. 5, we extend prior inflation-free blocking analysis proposed for mutex
locks [9] to apply to reader/writer locks. This analysis involves modifying an integer linear
program (ILP), as the introduction of reads requires applying numerous additional constraints.

Fourth, in Sec. 6, we present the results of a schedulability study that we conducted to
compare our new PF-L implementation and inflation-free reader/writer blocking analysis to
prior alternatives. In this study, our new analysis improved schedulability by up to 159%
compared to previous state-of-the-art methods.

2 Background

In this section, we present our assumed models and relevant background and related work.

Task model. We consider a sporadic task system Γ comprised of n constrained-deadline tasks
scheduled by the Partitioned Earliest-Deadline-First (P-EDF) scheduler on a multiprocessor
platform with m cores. (We assume familiarity with the sporadic model and P-EDF.)
An arbitrary task is denoted τi. When conducting analysis, the partition (core) under
consideration is denoted P ∗, and an arbitrary partition is denoted Pk.

Resource model. We assume a set of nr shared resources, with an arbitrary resource
denoted ℓq. A job of a task can issue a request for only one resource at a time (no nesting).
Each request is either a read request (which may execute concurrently with other reads) or a
write request (which must be exclusive). We use Rr

i , Rw
i , and Ri to denote a read, write, or

arbitrary (read or write) request, respectively, issued by a job of τi. Once a request Ri for a
resource ℓq has been granted, Ri is satisfied, and the issuing job holds ℓq until Ri completes.

ECRTS 2021

6:4 Light Reading

R

τ4 on P3

τ0 on P0

τ1 on P0

τ2 on P1

τ3 on P2

task invocation

task deadline

task requires resource

R normal computationread access

spin blocking W write access

W

R

R

Wτ5 on P4

R

W

read read readwrite-1 write-0 write-1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

time
read

queue
write

queuearrival blocking

[0, 1)
[1, 2)
[2, 3)
[3, 4)
[4, 7)

[7, 10)
[10, 11)
[11, 12)
[12, 13)
[13, 16)
[16, 21)

-
-
R0
R0

R0, R4
-
-
-
R3
-
-

-
R2
R2

R2, R5
R2, R5

R5
-
R1
R1
R1
-

Figure 2 Phase-fair request satisfaction.

Phase-fair locks. Phase-fair (PF) reader/writer (RW) locks were proposed to improve
blocking bounds in real-time systems [12]. Some prior approaches to RW locking can starve
read (resp., write) requests by prioritizing writes (resp., reads) over them [16, 25]. PF locks
instead employ alternating read and write phases. Assuming non-preemptive spin-based
locking (as we do here), the orchestration of these phases is defined by four rules [12]:

PF1 reader phases and writer phases alternate;
PF2 writers are subject to FIFO ordering, but only with regard to other writers;
PF3 at the start of each reader phase, all currently unsatisfied reads are satisfied (exactly

one write request is satisfied at the start of a writer phase); and
PF4 during a reader phase, newly issued read requests are satisfied only if there are no

unsatisfied write requests pending.

▶ Example 1. Consider the six tasks depicted in Fig. 2. For simplicity, we assume that each
task requires access to the same resource; the type of access is indicated for each request. At
time t = 1, the first job of τ3 issues a read request, Rr

3, which is satisfied immediately. Just
after this, at t = 1 + ϵ, τ2 issues a write request Rw

2 , which must wait (Rule PF1). At t = 2
and t = 4, τ0 and τ4 issue read requests Rr

0 and Rr
4, respectively, which also must wait (Rule

PF4). At t = 3, τ5 issues a write request, which waits; it will not be satisfied before the write
request issued by τ2 (Rule PF2). When Rr

3 completes, Rw
2 is satisfied (Rule PF1). When

Rw
2 completes, both Rr

0 and Rr
4 are satisfied (Rule PF3). Read and write phases continue to

alternate, as shown. Note that the job of τ1 released at t = 2 does not preempt the currently
executing job of τ0 on P0 because the latter is executing non-preemptively.

Different implementation strategies can be applied to realize the phase-fair rules. Branden-
burg and Anderson presented several implementations, including a ticket-lock-based imple-
mentation (PF-T), a more compact version for embedded systems (PF-C), and a queue-based
implementation with O(1) RMR time complexity (PF-Q) [12]; as discussed more fully later,
RMR time complexity counts only operations that entail an interconnect traversal to access
memory. An alternative O(1) implementation has been given by Bhatt and Jayanti [8].

Blocking analysis. When checking schedulability, locking delays must be accounted for.
The simplest approach involves inflating execution times by per-request worst-case blocking
bounds. This approach is safe but pessimistic, as the worst case may not always occur.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:5

τ0 on P0

τ1 on P1

W

WW

W W W

Figure 3 Example of blocking between two tasks.

Recently, holistic, inflation-free analysis, which accounts for blocking over an analysis interval,
has been proposed for mutexes [9, 27, 30]. Such analysis seeks to avoid over-estimating
locking delays.

▶ Example 2. Fig. 3 depicts a schedule of two tasks, τ0 and τ1, that write a common
resource. Note that each request of τ0 can potentially be blocked by one request of τ1. Under
conventional inflation-based blocking analysis, the execution time of τ0 would thus be inflated
by the cost of four requests. However, only two requests may be issued by τ1 during one job
of τ0. Holistic analysis leverages such knowledge to more tightly bound total blocking, and
an inflation-free approach accounts for this blocking without inflating task execution times.

Related work. As mentioned in Sec. 1, RCU, like our PF-L implementation, was designed
for read-dominant workloads. However, RCU is not linearizable [19]. Furthermore, RCU
efficiently executes reads by requiring writes to copy shared-object state and this copying
results in a need for garbage collection. To our knowledge, no schedulability analysis exists
for RCU, in part due to the non-deterministic behavior of garbage collection.

In addition to the RW locks already mentioned, FIFO-based and reader-preference locks
have been developed for higher throughput [23], and reader-preference, writer-preference, and
no-preference RW locks with O(1) RMR time complexity (see Sec. 3) have been presented [7].

Of the PF variants by Brandenburg and Anderson mentioned earlier, the two ticket-
lock-based approaches, the PF-T and PF-C, have O(m) RMR time complexity, while the
queue-based PF-Q has O(1) RMR time complexity [12]. However, when measuring worst-case
overheads, the sub-optimal PF-T outperforms the asymptotically optimal PF-Q [12] due to
the lower frequency of atomic operations. Similarly, the O(1) implementation of Bhatt and
Jayanti [7] also includes multiple atomic instructions within the entry and exit sections of
both reads and writes. We therefore focus our experiments to compare with PF-Ts.

Brandenburg and Anderson also developed suspension-based phase-fair implementa-
tions for clustered-scheduled systems [13].1 Finally, Ward and Anderson applied phase-fair
reasoning to support nested reader/writer locking [28].

3 The PF-L: A New Phase-Fair Lock with Light Reading

Our proposed PF-L is shown in Alg. 1. In this section, we described its motivation, data
structures and how its code works, and analyze its RMR time complexity.

PF-L motivation. Recall from Fig. 1 that PF-T fails to scale for a read-only workload. We
conjectured this was due to overheads, particularly cache-line bouncing and interconnect
traffic triggered by updates to shared lock state. Therefore, we designed the PF-L to isolate,
with respect to caches, lock state where possible, especially among reads on different cores.

1 Clustered scheduling generalizes partitioned and global scheduling.

ECRTS 2021

6:6 Light Reading

 8 7 1 0

unused

PRES
PHID

WBITS

count of issued write requests

Figure 4 Usage of win.

rin rout win wout

win

wout

read_status[0]

read_status[1]

read_status[2]

read_status[3]

PF-T

PF-L

Figure 5 Distribution of locking protocol data structures across cache lines.

Data structures. Like the PF-T, the PF-L uses variables to count the number of write
requests “in” and “out” (i.e., the number issued and completed), win and wout, respectively.
In the lowest-order byte of win, the PF-L maintains two bits indicating if a write request is
present and the current write-phase – each write request is satisfied during either a 0-phase
or a 1-phase. (The alternation of these phases prevents a race condition in which read
requests could otherwise fail to distinguish the end of one write phase from the waiting of
the subsequent active write request.) WBITS refers to these two bits, with PRES being the
writer-present bit and PHID the write-phase bit, as illustrated in Fig. 4. The PF-T uses two
global counters for the number of read reqests issued (rin) and the number of read requests
completed (rout). In contrast, the PF-L uses a per-core variable, read_status, to maintain the
status of any read requests. This difference is illustrated for a four-core system in Fig. 5, in
which all of the variables for the PF-T are stored on the same cache line and each variable for
the PF-L is allocated a separate cache line. Even if rin and rout were separated in the PF-T,
all read requests would require updating those same locations. Instead, in the PF-L, a read
request only updates read_status for its processor, avoiding conflicts with other read requests.
This per-core definition enables isolating the variables to reduce cache interference (described
in depth below). Coordination of read and write phases is achieved by requests updating and
reading these variables. As such, this lock state is essential to ensuring linearizability [19].

Code description. We explain the code in Alg. 1 by walking through part of the example
illustrated in Fig. 2. We describe the execution of the code at several time instants.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:7

Algorithm 1 Phase-Fair with Light Reading (PF-L).

1: type res_state: record // all aligned on different cache lines
2: read_status: array of unsigned integer, each initially COMPLETED ▷ Cache aligned
3: win, wout: unsigned integer, initially 0

4: constant
5: WINC 0x100 // writer increment value
6: WBITS 0x3 // writer bits in win
7: PRES 0x2 // writer-present bit
8: PHID 0x1 // write-phase bit
9: PRESENT 0x3 // reader present indicator

10: COMPLETED 0x4 // reader completed indicator

11: procedure Read_Lock(ℓ: ptr to res_state, k: core index)
12: var w: unsigned int
13: ℓ �read_status[k] := PRESENT
14: w := ℓ�win & WBITS
15: ℓ �read_status[k] := w & PHID ▷ To wait on write phase (w & PHID), if active
16: await (w & PRES = 0) or (w ̸= (ℓ�win & WBITS)) ▷ Satisfied

17: procedure Read_Unlock(ℓ: ptr to res_state, k: core index)
18: ℓ �read_status[k] := COMPLETED

19: procedure Write_Lock(ℓ: ptr to res_state)
20: var wticket, read_waiting: unsigned int
21: wticket := fetch&add(ℓ�win, WINC) and ¬WBITS ▷ In write queue
22: await (wticket = ℓ�wout) ▷ Head of write queue
23: fetch&xor(ℓ�win, 0x3) ▷ Marked present and new phase for reads to see
24: read_waiting := ℓ�win & PHID
25: for k in core numbers do
26: await (read_status[k] = read_waiting) or (read_status[k] = COMPLETED)

27: procedure Write_Unlock(ℓ: ptr to res_state)
28: fetch&and(ℓ�win, 0xFFFFFF01) ▷ Clear PRES, but keep PHID
29: ℓ�wout := ℓ�wout + WINC

Time t = 1. When Rr
3 is issued on P2, it first marks read_status[2] = PRESENT (Line 13).

Then it reads the value in win (Line 14). This is the first request in the system, so w = 0.
Now, read_status[2] = 0, indicating that Rr

3 would wait for a satisfied write request in
Phase 0, if there is one, but none exists, so Rr

3 is satisfied immediately (Line 16).
Just as Rr

3 finishes executing Read_Lock, Rw
2 begins executing Write_Lock. Rw

2
increments win (Line 21), storing wticket = 0 and waits for wticket = wout (Line 22). This
serves as a ticket lock to ensure at most one write request is executing any of the following
lines of Write_Lock. Next, Rw

2 sets the writer-present bit and flips the write-phase bit
(Line 23), resulting in the last two bits of win holding 0b11. This is how the presence and
phase of an active write request is shared with read requests. Rw

2 then computes that a read
waiting for the completion of its write phase would display a read_status value of 1. Rw

2
next checks for active read requests on each core. For P0 and P1, it reads the read_status
as COMPLETED and proceeds. However, for P2, Rw

2 reads read_status[2] = 0. Thus, the read
request on P2 is not waiting for Rw

2 but is satisfied; Rw
2 waits for this request to complete.

Time t = 2. As illustrated in Fig. 2, while Rw
2 waits, Rr

0 is issued. At t = 2, the resource
is in a read phase, but the waiting write request requires Rr

0 to wait until the subsequent
read phase (by Rule PF4). This is accomplished in Read_Lock as follows. Rr

0 sets
read_status[0]=PRESENT, stores w = 3, and sets read_status[0] = 1. It then awaits a change
in the WBITS of win, which will not occur until Rw

2 completes. Note that from the perspective
of Rw

2 , P0 was already checked for active read requests, but the newly issued read request
will safely wait based on the check of win, so no additional checks are required.

ECRTS 2021

6:8 Light Reading

Time t = 4. Once Rr
3 completes, and Rw

2 becomes satisfied by the phase-fair rules.
We now illustrate how that is accomplished in the PF-L. When Rr

3 completes, it marks
read_status[2] = COMPLETED (Line 18). Then Rw

2 sees read_status[2] = COMPLETED and
resumes checking cores. Next, Rw

2 checks P3 and sees read_status[3] = PRESENT, as Rr
4 has

just been issued. However, like Rr
0, Rr

4 soon sets read_status[3] = 1, indicating that the
read request on P3 is waiting for the execution of a write Phase 1 (Rw

2 ’s write phase). Rw
2

proceeds, reads read_status[4] = COMPLETED, and becomes satisfied.

Time t = 7. Once Rw
2 completes, it clears the writer-present bit (Line 28); the last two

bits of win subsequently hold 0b01, indicating that there is not a writer present and that
the prior write phase was Phase 1. The waiting read requests, Rr

0 and Rr
4, observe this

change and are satisfied immediately. Next Rw
2 increments wout (Line 29), prompting Rw

5
to execute the remaining logic of Write_Lock.

RMR time complexity. The remote memory references (RMR) time-complexity measure
was proposed in work on spin-based synchronization algorithms [33]. Under this measure,
only operations that generate an interconnect traversal are counted; other operations are
ignored. In applying this measure, architectural details are dealt with somewhat abstractly.
In this work, we use a refined notion of RMR time complexity that incorporates such details.

Specifically, we assume a write-back, write-invalidate cache coherence protocol [17],
which is consistent with many commodity processors (e.g., x86 Intel and AMD processors).
Abstractly, a write-back cache is one in which a memory write is cached and not written
until later necessary (e.g., due to a cache eviction). In a write-invalidate cache, when a
memory write occurs, if that address is cached on a remote core, it is marked as invalid and
subsequent accesses must be re-read. Any communication among caches is performed over
an interconnect that all caches snoop or listen upon for any events that require updating
their state. This interconnect introduces latency into cache and memory operations. We
refer the reader to [18] for further discussion, but highlight the two most salient properties of
such caches that influence the PF-L’s design:
C1 When a cache block is written it becomes write hot. Any subsequent core-local reads or

writes of that block do not generate interconnect traffic while the block is write hot. The
block stays write hot until it is evicted, or read or written by another core.

C2 A cache block that is read that is not write hot becomes read hot. Any subsequent
core-local reads of that block do not generate interconnect traffic while the block is read
hot. The block stays read hot until it is evicted or modified by any core.

Given this model, we define a local memory reference (LMR) to be one in which no
interconnect traversal is generated from the L1 data cache. For simplicity, we assume that
atomic operations generate interconnect traffic, and are therefore not LMRs. Conversely,
remote memory references (RMRs) are ones that are not local.

When analyzing RMR time complexity, we assume there are no conflict misses, i.e., that
there is sufficient cache space for all lock state to be cached concurrently. Furthermore, we
assume cached lock state persists both during and between critical sections. Finally, we
assume there are no cache evictions due to preemptions or migrations, as such costs are
typically accounted for through separate analyses [6]. While in practice these assumptions
may not always hold, they enable analysis of RMRs inherent to the protocol over a sequence
of lock invocations, rather than on a per-invocation basis. This is relevant in cases where
there is high lock contention, and potentially many requests to the same lock by one task.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:9

RMR time complexity of the PF-L. Assuming the cache behavior defined above, the PF-L
has O(1) amortized RMR time complexity for an arbitrary sequence of r consecutive read
requests on the same core uninterrupted by a write request, instead of Ω(r) as in all prior
phase-fair approaches. Towards establishing this, we define a read interval to be an interval
[t, t′) in which there is no pending or completed write request. Note that read requests from
any and all cores may be issued and satisfied during a read interval. Now consider a read
interval [t, t′) and a sequence of read requests Rr

1, . . . , Rr
r on core P ∗ that are issued after t

and completed before t′. We make no assumption about the initial cache state at time t,
and therefore at Line 16, Rr

1 incurs an RMR to cache win. This leaves win read hot and
read_status[P ∗] write hot on P ∗ when Rr

1 completes. Rr
1 therefore incurs O(1) RMRs.

Continuing inductively, we show that each subsequent read request Rr
j where j ∈

{2, . . . , r}, incurs no RMRs, and leaves the cache in the same state. First, observe that win
is only modified by write requests (Lines 21, 23, and 28), which by definition do not occur in
a read interval. Therefore, win will not be invalidated by Rr

j , and will remain read hot (C2).
Thus, any access to win by Rr

j will be an LMR.
Next, observe that read_status[P ∗] is (i) only modified by read requests on P ∗ (Lines 13,

15, and 18), and (ii) only read by write requests, which by definition do not occur in the read
interval. Thus, the accesses to read_status[P ∗] are writes to a write-hot block, which are
LMRs, and leave read_status[P ∗] write hot (C1). Taken together, this reasoning inductively
proves O(1) amortized RMR time complexity as claimed.

We note that, in the presence of write requests, reads in the PF-L have O(m) RMR time
complexity. In particular, before a read request is satisfied, it spins on win, which may be
updated by at most m − 2 other newly issued write requests. Write requests in the PF-L
clearly have O(m) RMR time complexity. The spinning at Line 22 generates O(m) RMRs
(like any ticket lock), as does the for loop at Lines 25-26.

4 Evaluation of the PF-L

We empirically compared the PF-L to Brandenburg’s PF-T implementation [11]. The results
of this comparison include throughput graphs, including Fig. 1, as well as overhead data
measured as a function of varying workloads. We conducted all experiments on a two-socket,
18-cores-per-socket x86 machine running the Linux 4.9.30 LITMUSRT kernel [2], with two
Intel Xeon E5-2699 v3 CPUs @ 2.30 GHz, 128 GB of RAM, and three levels of cache: per-core
32 KB L1 data and instruction caches, 256 KB L2 caches shared by pairs of cores, and
46,080 KB L3 caches shared by all cores on the same socket. We performed each evaluation
on m ∈ {2, . . . , 36} cores and two sockets. For m ≤ 18, only one socket was used.

Recall that in the PF-L all lock-status variables are aligned to be cached on different
lines. This allows each read_status variable to exist in a core-local L1 cache and never be
invalidated by readers on other cores. Brandenburg’s PF-T variables are all packed into
a single cache line by design to minimize cache-line reloading costs [11]. All subsequent
references to the PF-T are to Brandenburg’s original implementation unless otherwise stated.

In conducting the following experiments, the contents of the cache were not protected.
However, these experiments were conducted in isolation, so the cache behavior can be entirely
attributed to the experiments. We did not conduct experiments in which another workload
was designed to evict cache lines, as our focus was on capturing the overhead of cache
evictions inherent to the execution of the protocol itself. There is prior work on protecting
caches lines in real-time systems [4, 14, 15, 20, 21, 22, 29, 31, 32, 34], and one of these
approaches could be applied to ensure competing workloads in a system do not evict the
data structures of the locking protocol from the cache.

ECRTS 2021

6:10 Light Reading

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

25

50

75

100

125

150
Th

ro
ug

hp
ut

 (1
00

K
op

s/
s) PF-T

PF-T (aligned)
PF-L

(a) 5% inserts, 95% lookups

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

10

15

20

25

30

Th
ro

ug
hp

ut
 (1

00
K

op
s/

s) PF-T
PF-T (aligned)
PF-L

(b) 50% inserts, 50% lookups

Figure 6 Red-black tree throughput.

Throughput. We evaluated throughput using a realistic workload of lookups (reads) and
inserts (writes) in a shared red-black tree, as this was the motivating use case that inspired
this paper. Throughput was measured holistically to include locking overheads, blocking,
and varying critical-section lengths based on whether an operation was a read or write. All
operations were partitioned evenly across cores executing a single task per core. For each
experiment, we averaged the throughput for ten unique random trees, each with a million
nodes. The results for an all-read workload are shown in Fig. 1, which includes a plot for the
same experimental setup with no synchronization. Fig. 6 presents throughput trends for a
read-dominant workload and a workload with evenly distributed reads and writes.

▶ Observation 3. The PF-L exhibited linear scaling with increasing core counts for an
all-read workload.

Fig. 1 highlights the pitfalls of the PF-T for an all-read workload. In comparison,
throughput under the PF-L scaled linearly with the core count as the read_status variable
was maintained write hot in the L1 data cache. Cache behavior enabled better scaling on
one-socket for read-dominant workloads, as shown in Fig. 6a. On two sockets, throughput
decreased with higher core counts due to more expensive interconnect operations. For more
balanced workloads of reads and writes, as shown in Fig. 6b, throughput did not increase for
either the PF-L or PF-T. This is because, with both reads and writes present, the RMR
complexity for all requests in the PF-L is O(m), as shown earlier. However, throughput was
still higher by up to 25% than for the PF-T due to overheads.

After observing the benefits of cache-aligned variables in the PF-L, we tested aligning
each PF-T variable in its own cache line. We discovered this version outperformed the
original PF-T– a useful contribution in its own right. Throughput for the cache-aligned
PF-T is also shown in Fig. 6; the cache-aligned PF-T actually performed similarly to the
PF-L in the evenly distributed workload of reads and writes on high core counts.

Overheads. In measuring overheads, it is necessary to distinguish time spent in operations
inherent to the algorithm (overheads) from those incurred while spinning (blocking). For
overhead-measurement purposes only, we instrumented both the PF-T and the PF-L to
measure overheads and blocking separately. We recorded blocking and overhead times
for 100,000 lock and unlock calls across an increasing number of cores. To simulate high
contention and record worst-case overheads, critical sections were empty. All figures present
the 99th percentile observed overheads to filter outliers due to interrupts and other jitter due
to userspace timing. Fig. 7 shows overhead trends for several different workloads. Overheads
were measured separately for reads and writes, each including both lock and unlock costs.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:11

5 10 15 20 25 30 35
Number of cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ov

er
he

ad
 (m

icr
os

ec
on

ds
)

PF-T reads
PF-L reads

(a) All reads

5 10 15 20 25 30 35
Number of cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ov
er

he
ad

 (m
icr

os
ec

on
ds

)

PF-T reads
PF-L reads
PF-T writes
PF-L writes

(b) 5% writes

5 10 15 20 25 30 35
Number of cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ov
er

he
ad

 (m
icr

os
ec

on
ds

)

PF-T reads
PF-L reads
PF-T writes
PF-L writes

(c) 50% writes

5 10 15 20 25 30 35
Number of cores

0.0

0.2

0.4

0.6

0.8

Ov
er

he
ad

 (m
icr

os
ec

on
ds

)

PF-L 0
PF-L 5
PF-L 10
PF-L 50
PF-L 95

(d) the PF-L with varying write %

Figure 7 Total overheads for lock and unlock operations.

▶ Observation 4. The PF-L exhibited constant overheads for an all-read workload.

Fig. 7a shows that the PF-L exhibited constant lock and unlock overheads of about 0.1µs

across both sockets, while the PF-T overheads were on average 0.4µs on one socket, and up
to 1.3µs on two sockets. This is attributable to the fact that in the PF-L, read lock and
unlock operations only modify a single core-local variable. The PF-T read lock atomically
increments a shared variable, which in turn invalidates other caches and bounces the variable
across cores and sockets, yielding increased overhead.

As write percentages increase, read operations become more costly as read_status variables
are read by writers on other cores and the write-related variables are constantly updated
on all cores with read requests. This behavior also causes an increase in write overheads.
The PF-T experienced higher overheads for read-dominant (Fig. 7b) and evenly distributed
(Fig. 7c) workloads. Since all PF-T variables are on a single cache line, each update invalidates
cache-line values for all other cores, resulting in an RMR for every entry and exit section.

▶ Observation 5. For all workloads with some writes, overheads increased by up to 3× on
two sockets.

All insets in Fig. 7 show higher overheads on two sockets other than the PF-L for an all-read
workload. This is attributable to higher cross-socket RMR latencies for both the PF-T
and the PF-L for mixed workloads. Fig. 7a highlights the case in which reads in the PF-L
generate no RMRs (by design) and does not exhibit increased overheads when executing on
two sockets. This claim is further supported by throughput results in Fig. 6, where execution
on two sockets consistently yielded lower throughput.

▶ Observation 6. Reading under the PF-L incurred less overhead than reading under
the PF-T.

For all tested scenarios across varying write percentages and core counts, read operations
under the PF-L yielded lower overheads than the PF-T. Fig. 7d shows trends in read
overheads with varying write percentages. Beyond 50% writes, overheads were consistent for

ECRTS 2021

6:12 Light Reading

all read operations and at most 0.7µs. The PF-L overheads for write-dominant workloads
did not appreciably increase beyond 50% writes. With more writes, cache-line invalidations
become frequent and cause higher overheads.

5 Schedulability Analysis of Phase-Fair Reader-Writer Locks

Recent work [9] presented an analysis framework for P-EDF built around a prior schedulability
test [5]. Within this framework, each processor is analyzed in turn, incorporating the delays
caused to the execution of tasks on that processor due to waiting for access to shared
resources. In the discussion below, the processor under consideration is denoted P ∗. The
schedulability framework uses a fixed point iteration to bound the length of the analysis
interval on P ∗, which we denote I, by using the concept of an arrival curve (AC) [26] and
processor demand criterion (PDC) [5]. At each iteration, a bound on the delays over I
caused by shared resources is required; this bound is what we must provide. Along with the
original presentation of the analysis framework, an integer linear programming approach to
bounding delays for mutex locks was given [9]. In order to apply this analysis framework to
a system in which shared resources are instead managed by phase-fair reader/writer locks,
we must instead provide bounds for that locking protocol. The schedulability framework
is described in full detail in prior work [9], and the remainder of this section is devoted to
determining a bound on delays under phase-fair reader/writer locks.

We build on the previously presented inflation-free analysis for mutex locks [9] to obtain
such analysis. We begin by describing the types of delay, along with the constants and
variables used in the formulation of our optimization problem. The remainder of the section
is devoted to showing that the constraints we apply hold.

Types of delay. To check schedulability, analysis is required to bound synchronization delay,
which includes delays due to both spinning and non-preemptive execution. Spin delay is the
delay incurred on P ∗ when a task on P ∗ waits for a resource by spinning. Arrival delay is
the delay on P ∗ that is incurred when a job is unable to begin executing due to the non-
preemptive execution of a lower-priority job. Note that the job executing non-preemptively
may be either spinning or executing with a satisfied request. Both types of blocking are
illustrated in Fig. 2.

To constrain the computed arrival blocking, the inflation-free approach [9] leverages two
key observations that are derived from existing schedulability analysis [5], generalized here:

O1: Arrival blocking in an analysis interval I of length t is caused only by tasks with a
relative deadline larger than t.
O2: Only a single blocking request can cause arrival blocking.

In the rest of this section, we describe the creation of the optimization problem that
we define for I to compute the maximum synchronization delay (denoted B(P ∗, t)). This
problem can be solved with a linear-programming solver, such as GLPK [1]. While we build
on an existing framework, the assumptions that informed the construction of the approach
for mutex locks do not all hold for phase-fair locks, which require new reasoning.

We begin by describing the constants and variables of our optimization problem. Then,
we briefly describe the set of constraints that are straightforward modifications of the original
approach; the proofs of these constraints are given in App. A. Finally, we present the
constraints that require new reasoning unique to PF locks.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:13

Constants and variables. We conduct schedulability analysis for each partition separately.
Here, we focus on the analysis for partition P ∗. We denote the set of all partitions by P,
and the set of all tasks by Γ. We refer to the set of tasks partitioned to a remote processor
(any processor other than P ∗) as Γr, and the set of tasks on a given processor Pk as Γ(Pk).
We denote the period of an arbitrary task, τi, by Ti, and its relative deadline by Di. We
reason about an arbitrary resource ℓq in the set of all resources Q. We use constants for
the number of requests each job issues and the duration of requests by type; we denote the
maximum duration of a read (resp., write) request issued by a job of τi for a resource ℓq with
LR

i,q (resp., LW
i,q). A job of τi issues at most NR

i,q (resp., NW
i,q) read (resp., write) requests.

The following variables are used in our optimization problem to bound blocking:
XS,R

i,q is the spin delay caused by read requests issued by τi for ℓq.
XS,W

i,q is the spin delay caused by write requests issued by τi for ℓq.
XA,R

i,q is the arrival blocking caused by read requests issued by τi for ℓq.
XA,W

i,q is the arrival blocking caused by write requests issued by τi for ℓq.
AR

q is an indicator (i.e., binary) variable. AR
q = 1 indicates that arrival blocking is caused

by a read request for ℓq, whereas AR
q = 0 indicates that no arrival blocking is caused by a

read request for ℓq.
AW

q is similarly an indicator of arrival blocking caused by a write request for ℓq.

For the specification of the optimization problem given below, we are applying the PDC.
As such, the number of jobs τj on P ∗ (a local task) that must be considered during the
analysis interval I of length t is nljobs(τj , t) =

⌊
t+Tj−Dj

Tj

⌋
. The number of jobs of a remote

task τj that must be accounted for is nrjobs(τj , t) =
⌈

t+Dj

Tj

⌉
. The modifications described

previously [9] allow for simple changes to the specification of the optimization problem to
instead reason about the AC.

Optimization problem. The optimization problem we seek to solve is formulated to maximize
the computed blocking subject to a set of constraints that limit this blocking by considering
scenarios that cannot occur. This problem is as follows.
maximize B(t) =

∑
∀τi∈Γ

∑
ℓq∈Q[(XS,R

i,q + XA,R
i,q) · LR

i,q + (XS,W
i,q + XA,W

i,q) · LW
i,q]

subject to the constrains in Tbl. 1.

Foundational RW constraints. The first set of constraints builds directly on the inflation-
free analysis presented for mutex locks [9], with the distinction that we instead specify read-
and write-versions of each variable, as detailed above. We describe these constraints briefly
here and present the full versions in App. A.

Constraint (1) limits the computed arrival blocking terms for read and write requests
by comparing the relative deadline of each task to the length of the deadline busy-period.
Constraint (2) enforces that spin delay can be caused only by tasks remote to P ∗. Con-
straints (3) and (4) limit the contribution of each request (read and write requests, resp.) to
delays; each request can contribute to either arrival blocking or spin delay, but not both.

The next five constraints focus on arrival blocking. As arrival blocking can be caused
by only a single request (Observation O2), it can be caused by either a read request or a
write request (not both); this is enforced by Constraint (5). Constraints (6) and (7) leverage
the fact that resources for which there are no read (resp., write) requests cannot cause read
(resp., write) arrival blocking. Finally, Constraints (8) and (9) bound the total number of

ECRTS 2021

6:14 Light Reading

read (resp., write) requests that can cause arrival blocking by the binary variable indicating
if arrival blocking is caused by a read (resp. write) request for that resource.

Helper variables. We introduce four helper variables, XS,R-to-W
i,q , XS,R-to-R

i,q , XS,W-to-W
i,q , and

XS,W-to-R
i,q , to analyze the spin blocking caused by remote requests by cases. For example,

XS,R-to-W
i,q is the number of read requests issued by τi that delay write requests.

Constraints on spin blocking. The following constraints limit the spin blocking that can be
computed based on the possible interactions between read and write requests. These must
account for the access patterns that can occur under phase-fair locks. Constraints (10) and
(11) join the helper variables to those counting total read and write spin delay.

Proof of (10). Each read by a remote task τi can induce spin delay on a read request or
a write request, but not both, on P ∗, as all requests execute non-preemptively. Thus, the
number of read requests of τi for ℓq that cause spin delay (XS,R

i,q) is obtained by summing the
number that delay read requests (XS,R-to-R

i,q) and write requests (XS,R-to-W
i,q), respectively. ◀

Proof of (11). Similar to that of Constraint (10). ◀

Constraints (12) and (13) limit the contribution of write requests to spin delay by
considering the total number of read and write requests on P ∗ during I.

Proof of (12). By Rules PF1 and PF3, a given read request may be delayed by at most one
write phase. There are at most

∑
τi∈Γ(P ∗) nljobs(τi, t)·NR

i,q read requests for ℓq on P ∗ during I.
Thus, that number upper bounds the number of write requests from other processors that can
cause delay to read requests for ℓq on P ∗, which is

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,W-to-R

x,q . ◀

Proof of (13). There are at most
∑

τi∈Γ(P ∗) nljobs(τi, t) · NW
i,q write requests on P ∗ during

I. At most one write request per processor can delay the execution of each write request
on P ∗, because write requests are satisfied in FIFO order (by Rule PF2), requests execute
non-preemptively, and only one write request is satisfied during each write phase (by Rule
PF3). Thus, for each processor Pk, the number of write requests delaying write requests on
P ∗ (

∑
τx∈Γ(Pk) XS,W-to-W

x,q) is bounded by the number of write requests on P ∗ in I. ◀

Constraints (14) and (15) bound the impact of remote read requests on read requests on
P ∗. We use the following lemma and corollary in verifying them.

▶ Lemma 7. A read request Rr
i is blocked by at most one read phase and one write phase.

Proof. If there are no active requests when Rr
i is issued, it will be satisfied immediately.

If instead there are active read requests and no active write requests, Rr
i is satisfied

immediately upon issuance by Rule PF4.
If there are active write requests and no active read requests when Rr

i is issued, it will
be delayed by the current write phase and then satisfied after the currently satisfied write
request completes by Rules PF1 and PF3.

If there is at least one active write request and one active read request when Rr
i is issued,

then either a write request or a read request is currently satisfied. If a write request is
satisfied, then Rr

i will be satisfied upon the completion of that request by Rules PF1 and
PF3. If instead the resource is in a read phase, Rr

i must wait for the completion of this read
phase (by Rule PF4) and the completion of a single write phase (by Rules PF1 and PF3).

Thus, in all cases, Rr
i is blocked by at most one read phase and one write phase. ◀

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:15

Table 1 Linear-program constraints. Constraints (1)–(9) are described in App. A.

Number Constraint Specification
(1) ∀τ ∈ Γ(P ∗)|Di ≤ t, ∀ℓq ∈ Q, XA,R

i,q + XA,W
i,q = 0

(2)
∑

τi∈Γ(P ∗)
∑

ℓq∈Q XS,R
i,q + XS,W

i,q = 0

(3) ∀τi ∈ Γr, ∀ℓq ∈ Q, XS,R
i,q + XA,R

i,q ≤ nrjobs(τi, t) · NR
i,q

(4) ∀τi ∈ Γr, ∀ℓq ∈ Q, XS,W
i,q + XA,W

i,q ≤ nrjobs(τi, t) · NW
i,q

(5)
∑

ℓq∈Q AR
q + AW

q ≤ 1

(6) ∀ℓq ∈ Q, AR
q ≤

∑
τi∈Γ(P ∗)|Di>t NR

i,q

(7) ∀ℓq ∈ Q, AW
q ≤

∑
τi∈Γ(P ∗)|Di>t NW

i,q

(8) ∀ℓq ∈ Q,
∑

∀τi∈Γ(P ∗) XA,R
i,q ≤ AR

q

(9) ∀ℓq ∈ Q,
∑

∀τi∈Γ(P ∗) XA,W
i,q ≤ AW

q Constraints adapted from [9]

(10) ∀τi ∈ Γr, ∀ℓq ∈ Q, XS,R
i,q = XS,R-to-R

i,q + XS,R-to-W
i,q New Constraints

(11) ∀τi ∈ Γr, ∀ℓq ∈ Q, XS,W
i,q = XS,W-to-R

i,q + XS,W-to-W
i,q

(12) ∀ℓq ∈ Q,
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,W-to-R
x,q ≤

∑
τi∈Γ(P ∗) nljobs(τi, t) · NR

i,q

(13) ∀Pk ∈ P, ∀ℓq ∈ Q,
∑

τx∈Γ(Pk) XS,W-to-W
x,q ≤

∑
τi∈Γ(P ∗) nljobs(τi, t) · NW

i,q

(14) ∀ℓq ∈ Q,
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,R-to-R
x,q ≤

∑
τi∈Γ(P ∗) nljobs(τi, t) · NR

i,q

(15) ∀ℓq ∈ Q,
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,R-to-R
x,q ≤

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,W-to-R

i,q

(16) ∀ℓq ∈ Q,
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,R-to-W
x,q

≤
∑

τi∈Γ(P ∗)(nljobs(τi, t) · NW
i,q) +

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,W-to-W

x,q

(17) ∀τx ∈ ΓR, ∀ℓq ∈ Q, XS,W-to-W
x,q ≤ nrjobs(τx, t) ·

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NW

i,q)

(18) ∀τx ∈ ΓR, ∀ℓq ∈ Q, XS,W-to-R
x,q ≤ nrjobs(τx, t) ·

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NR

i,q)

(19) ∀τx ∈ ΓR, ∀ℓq ∈ Q, XS,R-to-R
x,q ≤ nrjobs(τx, t) ·

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NR

i,q)

(20) ∀ℓq ∈ Q, AR
q + AW

q = 0 ⇒
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,R
x,q + XA,W

x,q ≤ 0

(21) ∀ℓq ∈ Q, AR
q = 1 ⇒

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,R

x,q ≤ 1

(22) ∀ℓq ∈ Q, AR
q = 1 ⇒

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,W

x,q ≤ 1

(23) ∀ℓq ∈ Q, AR
q = 1 ⇒

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,R

x,q

≤
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,W
x,q

(24) ∀ℓq ∈ Q, AW
q = 1 ⇒

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,R

x,q

≤ 1 +
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,W
x,q

(25) ∀Pk ̸= P ∗, ∀ℓq ∈ Q, AW
q = 1 ⇒

∑
τx∈Γ(Pk) XA,W

x,q ≤ 1

▶ Corollary 8. If a read request Rr
i is blocked by W write requests, it is blocked by at most

W read phases.

Proof. In the proof of Lemma 7, which enumerated all possible blocking scenarios for a read
request Rr

i , the only scenario in which a request Rr
i is blocked by a read request is when a

write request also blocks Rr
i . ◀

Proof of (14). During I, there are at most
∑

τi∈Γ(P ∗) nljobs(τi, t) · NR
i,q read requests

on P ∗. By Lemma 7, each read requests can be delayed by at most one read phase.
Thus the total number of read requests that cause spin blocking for read requests on P ∗

(
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,R-to-R
x,q) is bounded by the number of read requests on P ∗. ◀

ECRTS 2021

6:16 Light Reading

Proof of (15). By Cor. 8, a read request can be delayed by a read phase only if it is also de-
layed by a write phase. Thus, the total number of read requests causing spin blocking for read
requests on P ∗ (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,R-to-R

x,q) is bounded by the total number of write
requests causing spin blocking for those requests (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,W-to-R

i,q). ◀

We now examine how read requests can delay write requests.

▶ Lemma 9. If W write phases block a write request Rw
i , at most W + 1 read phases block Rw

i .

Proof. By Rule PF1, read phases and write phases alternate. Before each of the W write
phases that block Rw

i , a read phase can occur. Additionally, after the last blocking write
phase and before the satisfaction of Rw

i , an additional read phase can occur. Therefore, at
most W + 1 read phases can block Rw

i . ◀

Constraint (16) limits read-to-write blocking and its proof leverages Lemma 9.

Proof of (16). There are
∑

τi∈Γ(P ∗)(nljobs(τi, t) · NW
i,q) write request to consider on P ∗

during I. For each of these requests individually, if some number W write phases block
the request, up to W + 1 read phases can also block that request, by Lemma 9. In total,∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,W-to-W
x,q write requests can block these write requests, by defini-

tion. As each write request can incur one additional blocking by a read request, an additional∑
τi∈Γ(P ∗)(nljobs(τi, t) ·NW

i,q) read requests can block write requests on P ∗. Thus, in total the
number of read requests that can delay write requests (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,R-to-W

x,q)
is bounded by

∑
τi∈Γ(P ∗)(nljobs(τi, t) · NW

i,q) +
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,W-to-W
x,q . ◀

Finally, we constrain the impact of each remote task on tasks on P ∗ by considering how
jobs may overlap based on their respective periods and deadlines. The next two lemmas are
used in verifying Constraints (17)–(19).

▶ Lemma 10. The requests for ℓq issued by a single job of a remote task τx ∈ Γr overlap
with at most nrjobs(τi, Dx) · Nw

i,q write requests for ℓq issued by jobs of τi ∈ Γ(P ∗).

Proof. The number of jobs of τi that overlap with a single job of τx is at most nrjobs(τi, Dx).
Each job of τi issues up to Nw

i,q write requests. Thus, the requests from a single job of τx ∈ Γr

overlap with at most nrjobs(τi, Dx) · Nw
i,q write requests for ℓq issued by jobs of τi. ◀

▶ Lemma 11. The requests for ℓq issued by a single job of a remote task τx ∈ Γr overlap
with at most nrjobs(τi, Dx) · Nr

i,q read requests for ℓq issued by jobs of τi ∈ Γ(P ∗).

Proof. Follows as above, but for read requests. ◀

Constraint (17) limits blocking caused by write requests.

Proof of (17). By Lemma 10, a single job of a task τx ∈ Γr overlaps with up to nrjobs(τi, Dx)·
Nw

i,q write requests of an arbitrary task τi ∈ Γ(P ∗). Thus, a single job of τx can overlap
with a total of

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NW

i,q) write requests issued on P ∗. Because of the
non-preemptive execution and FIFO satisfaction order of write requests (Rule PF2), each
of these write requests on P ∗ can be delayed by at most one overlapping write request per
job of a remote task. During I, nrjobs(τx, t) jobs of τx must be considered. Thus, the total
number of write requests of τx that can cause spin delay on P ∗ (XS,W-to-W

x,q) is bounded by
nrjobs(τx, t) ·

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NW

i,q). ◀

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:17

Constraints (18) and (19) limit blocking caused to read requests on P ∗.

Proof of (18). Lemma 11 bounds the number of read requests that a job of τx ∈ Γr may
overlap with. By Lemma 7, at most one write phase can delay each read request, implying
that at most one write request per job can delay each read request. Thus, the constraint
follows similarly to Constraint (17). ◀

Proof of (19). Follows similarly to Constraint (18) by instead applying that each read
request can be blocked by at most one read request (by Lemma 7). ◀

Constraints on arrival blocking. A single request on P ∗ can cause arrival blocking by
its non-preemptive blocking and then execution. The duration of this arrival blocking is
impacted by the type of request that causes it.

The following constraints are indicator constraints; if a variable in the optimization
problem holds a specified value, an additional constraint is imposed. Some linear programming
solvers allow the direct specification of indicator constraints. Alternatively, each indicator
constraint can be converted to a set of linear constraints by using Big-M techniques [10].

Constraint (20) accounts for the case in which no requests for ℓq cause arrival blocking.

Proof of (20). If neither a read request nor a write request for ℓq can cause arrival blocking
(AR

q + AW
q = 0), the total number of remote requests that can contribute to arrival blocking

(
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,R
x,q + XA,W

x,q) is 0. ◀

Because any arrival blocking is caused by a single request on P ∗, we apply reasoning
based on request type to eliminate blocking that cannot possibly occur. Constraints (21)–(23)
apply if a read request causes arrival blocking. Recall that a single read request can be
blocked by at most one read request and one write request by Lemma 7.

Proof of (21). If a read request on P ∗ causes arrival blocking (AR
q = 1), at most one read

phase can contribute to its delay by Lemma 7. Thus, the total number of read requests
from remote processors that can cause arrival blocking (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,R

x,q) is
bounded by 1. ◀

Proof of (22). Similarly, the total number of write requests from remote processors that
can cause arrival blocking (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,W

x,q) is bounded by 1. ◀

Proof of (23). If a read request on P ∗ causes arrival blocking (AR
q = 1), then by Cor. 8,

if it is blocked by W write requests, it will be blocked by at most W read requests. Be-
cause of the non-preemptive execution of requests, any requests that contribute to the
blocking of the read on P ∗ that causes arrival blocking are requests issued by tasks on
remote processors. Thus, the total number of write requests that block this read request
(
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,W
x,q) upper bounds the number of read requests that block this

read request (
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,R
x,q). ◀

Constraints (24) and (25) consider arrival blocking that is caused by a write request.

Proof of (24). If a write request on P ∗ causes arrival blocking (AW
q = 1), the number of

read requests that can block it is bounded by one more than the write requests causing delay
(by Lemma 9). Thus, the total number of remote read requests that cause arrival blocking
(
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,R
x,q) is bounded by one more than the number write requests on

remote processors that cause arrival blocking (
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,W
x,q). ◀

ECRTS 2021

6:18 Light Reading

Table 2 Summary of percentage TSA improvement of LP:PF.

Min Q1 Median Q3 Max
Inflation:PF 0.383 10.1 28.5 54.5 158.6

Proof of (25). If a write request on P ∗ causes arrival blocking (AW
q = 1), by Rules PF2 and

PF3 and the non-preemptive execution of requests, at most one write request per remote
processor can delay that write request, as requests execute non-preemptively. Thus, the total
number of write requests that cause arrival blocking issued by tasks on Pk (

∑
τx∈Γ(Pk) XA,W

x,q)
is bounded by 1. ◀

6 Schedulability Evaluation

To explore the benefit of our new approaches we conducted a schedulability study by using
the SchedCAT toolkit [3] and building upon a prior implementation [9].

Schedulability improvements. We begin by comparing our inflation-free analysis for phase-
fair reader-writer locking protocols (labeled “LP:PF”) to the existing per-request inflation-
based PF analysis (labeled “Inflation:PF”). To reduce the time it took to compute schedulab-
ility, we applied our holistic analysis for phase-fair locks only if the per-request inflation-based
approach failed to be schedulable. The line labeled “NOLOCK” shows the computed
schedulability if the delays for resource accesses are ignored.

In this study, we computed schedulability for increasing task counts under different
scenarios, with 216 scenarios total. Each scenario is a different combination of certain system
parameters. We considered a system with eight processors. Task periods were selected from
a log-uniform distribution in [10ms, 100ms] or in [1ms, 1000ms]. Each task’s utilization was
chosen from an exponential distribution with a mean of 0.1. The number of resources (nr)
in a scenario was selected from {4, 8, 16}. For each resource, the probability that a task
requires that resource was chosen from {0.1, 0.25, 0.5}. The number of times a task accesses
a given resource was either 1 or was selected from {1, . . . , 5}. For a given access to be write
access (instead of a read access) was chosen with a probability selected from {0.01, 0.1, 0.5}.
Request durations were either short (selected uniformly from [1µs, 25µs]) or medium (selected
uniformly from [25µs, 100µs]). These parameters closely reflect those on which the original
holistic analysis framework [9] was analyzed.

This study resulted in 216 schedulability graphs (one per scenario), which show the
ratio of schedulable tasks systems out of the 1,000 systems generated for each data point.
Performance is evaluated on the basis of task schedulable area (TSA), the area under a given
curve as computed by a midpoint Riemann sum. In Tbl. 2, we summarize the data on the
percentage TSA improvement of LP:PF, and we highlight some key scenarios in Fig. 8.

▶ Observation 12. The LP:PF approach always resulted in a higher TSA than Inflation:PF.

This is illustrated in Fig. 8. The cases in which LP:PF resulted in the largest percentage
improvement (50.% to 158.6%) were primarily for scenarios with write probability of 0.1 or
0.5; 96.9% of these scenarios had write probability of 0.1 or 0.5.

▶ Observation 13. In some scenarios, the LP:PF resulted in only small increases in
schedulability.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:19

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Inflation:PF
LP:PF

(a) Near Q1 (10.1% improvement)

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Inflation:PF
LP:PF

(b) Near median (28.5% improvement)

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Inflation:PF
LP:PF

(c) Near Q3 (54.5% improvement)

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Inflation:PF
LP:PF

(d) Significant improvements (110%)

Figure 8 Comparisons against Inflation:PF.

This is illustrated in Tbl. 2 and Fig. 8a. For the scenarios with TSA improvements in the
first quartile, in which the LP:PF had a small percentage of improvement, both approaches
tended to yield a TSA close to that of NOLOCK.

Overhead-aware schedulability. We conducted an additional scheduability study in which
we incorporated protocol overheads. We inflated requests by the corresponding overhead
and analyzed the resulting systems with our PF analysis; “LP+PF-T” (resp., “LP+PF-L”)
represents the computed schedulability with the PF-T (resp., PF-L) overheads added. We
measured overheads as described in Sec. 4 with eight cores across two sockets for scenarios
with up to 10% write requests. For the PF-T, this resulted in read (resp., write) overhead of
2.2µs (resp., 1.7µs), and for the PF-L, read (resp., write) overhead of 0.5µs (resp., 0.9µs).

In our study of read-dominated workloads (write probability in {0.01, 0.1}), we observed
moderate differences, with an average TSA improvement for LP+PF-L of 1.01%. In some
scenarios, the overhead was negligible relative to the blocking. In others, generally those with
more resource accesses, the TSA difference was more pronounced. We observed scenarios
with up to a 10.4% improvement, as depicted in Fig. 9a. These results support the following.

▶ Observation 14. For read-dominant workloads, our new PF-L protocol and schedulability
analysis dominated prior state-of-the art approaches.

The schedulability improvements initially seemed modest relative to the impacts of lower
overhead on throughput. However, the task systems considered in Sec. 4 are quite different
(e.g., significant execution time spent in the execution of requests) from those detailed in
the schedulability study just discussed. Therefore, to assess the impact of overheads alone
(without blocking) in a system with significant resource requirements, we conducted an
additional overhead-aware schedulability study that focused on read-only workloads with
a variable number of requests for a single shared resource. Here, we applied overheads
measured from a system with 0% write requests; thus, we applied overheads of 1.2µs for

ECRTS 2021

6:20 Light Reading

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio
NOLOCK
LP+PF-L
LP+PF-T

(a) Periods selected from {1,1000}ms, 16 resources,
0.5 access probability, up to 5 requests per resource,
short request durations, and write probability of
0.01.

20 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Requests

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
LP+PF-L
LP+PF-T

(b) 32 tasks with periods selected from {1,1000}ms,
one resource, access probability of 1.0, and write
probability of 0.

Figure 9 Schedulability with protocol overhead incorporated.

the PF-T and 0.2µs for the PF-L. Fig. 9b gives the schedulability graph that resulted from
this study. These findings are consistent with the throughput experiments (e.g., Fig. 1),
and confirm that small overheads can significantly affect throughput and schedulability for
synchronization-heavy read-dominant workloads.

7 Conclusion

We presented a new phase-fair reader/writer lock implementation and inflation-free PF
schedulability analysis that, taken together, can improve both throughput and schedulability
in comparison to prior alternatives when supporting read-mostly workloads. While this work
was motivated by heavily read-dominant workloads, our findings suggest that the presented
lock implementation may be competitive, if not superior, to previous RW locking protocols
in most applications. We have demonstrated these improvements via experiments on real
hardware and via a schedulability study. In future work, we intend to explore how other
concurrent algorithms can be adapted based on cache coherence and performance properties
to improve scalability similar to that we have demonstrated herein.

References

1 GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/glpk/.
2 LITMUSRT home page. http://www.litmus-rt.org/.
3 SchedCAT: Schedulability test collection and toolkit. https://github.com/brandenburg/

schedcat, 2020. Accessed: 2020-06-21.
4 S. Altmeyer, R. Douma, W. Lunniss, and R. Davis. Evaluation of cache partitioning for hard

real-time systems. In Proceedings of the 26th Euromicro Conference on Real-Time Systems,
2014.

5 S. Baruah. Resource sharing in EDF-scheduled systems: A closer look. In Proceedings of the
27th IEEE International Real-Time Systems Symposium, 2006.

6 A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption and migration delays:
Empirical approximation and impact on schedulability. Proceedings of the 6th Workshop on
Operating Systems Platforms for Embedded Real-Time applications, 2010.

7 V. Bhatt and P. Jayanti. Constant RMR solutions to reader writer synchronization. In
Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, 2010.

https://www.gnu.org/software/glpk/
http://www.litmus-rt.org/
https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:21

8 V. Bhatt and P. Jayanti. Specification and constant RMR algorithm for phase-fair reader-
writer lock. In Proceedings of the 12th International Conference on Distributed Computing
and Networking, 2011.

9 A. Biondi and B. Brandenburg. Lightweight real-time synchronization under P-EDF on
symmetric and asymmetric multiprocessors. In Proceedings of the 28th Euromicro Conference
on Real-Time Systems, 2016.

10 S. Bradley, A. Hax, and T. Magnanti. Applied mathematical programming, Chapter 9
(Addison-Wesley, 1977). http://web.mit.edu/15.053/www/AMP-Chapter-09.pdf, 2021.

11 B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Systems.
PhD thesis, University of North Carolina, Chapel Hill, NC, 2011.

12 B. Brandenburg and J. Anderson. Spin-based reader-writer synchronization for multiprocessor
real-time systems. Real-Time Systems, 46(1):25–87, 2010.

13 B. Brandenburg and J. Anderson. Real-time resource-sharing under clustered scheduling:
Mutex, reader-writer, and k-exclusion locks. In Proceedings of the 9th ACM International
Conference on Embedded Software, 2011.

14 M. Campoy, A.P. Ivars, and J.V. Busquets-Mataix. Static use of locking caches in multitask
preemptive real-time systems. In IEEE/IEE Real-Time Embedded Systems Workshop, 2001.

15 M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and isolation tradeoffs in
multicore mixed-criticality systems. In Proceedings of the 36th IEEE International Real-Time
Systems Symposium, December 2015.

16 P. Courtois, F. Heymans, and D. Parnas. Concurrent control with readers and writers.
Communications of the ACM, 14(10):667–668, 1971.

17 James R Goodman. Using cache memory to reduce processor-memory traffic. In Proceedings
of the 10th Annual International Symposium on Computer Architecture, 1983.

18 J. Hennessy and D. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
19 M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems, 12(3):463–492, 1990.
20 J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A predictable cache-aware

memory allocator. In Proceedings of the 23rd Euromicro Conference on Real-Time Systems,
2011.

21 H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for practical OS-level cache
management in multi-core real-time systems. In Proceedings of the 25th Euromicro Conference
on Real-Time Systems, 2013.

22 D. Kirk and J. Strosnider. SMART (strategic memory allocation for real-time) cache design
using the MIPS R3000. In Proceedings of the 11th Real-Time Systems Symposium, 1990.

23 Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-writer locks. In Proceedings of the
21st Annual Symposium on Parallelism in Algorithms and Architectures, 2009.

24 P. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy-Update Techniques
in Operating System Kernels. PhD thesis, OGI School of Science and Engineering at Oregon
Health and Sciences University, Beaverton, OR, 2004.

25 J. Mellor-Crummey and M. Scott. Scalable reader-writer synchronization for shared-memory
multiprocessors. In Proceedings of the 3rd ACM Symposium on Principles and Practice of
Parallel Programming, 1991.

26 L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time
systems. In Proceedings of the IEEE International Symposium on Circuits and Systems, 2000.

27 B. Ward. Relaxing resource-sharing constraints for improved hardware management and
schedulability. In Proceedings of the 36th International IEEE Real-Time Systems Symposium,
2015.

28 B. Ward and J. Anderson. Multi-resource real-time reader/writer locks for multiprocessors. In
Proceedings of the 28th IEEE International Parallel and Distributed Processing Symposium,
2014.

ECRTS 2021

http://web.mit.edu/15.053/www/AMP-Chapter-09.pdf

6:22 Light Reading

29 B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared caches more predictable on
multicore platforms. In Proceedings of the 25th Euromicro Conference on Real-Time Systems,
2013.

30 A. Wieder and B. Brandenburg. On spin locks in AUTOSAR: Blocking analysis of FIFO,
unordered, and priority-ordered spin locks. In Proceedings of the 34th IEEE International
Real-Time Systems Symposium, 2013.

31 M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. Analysis and implementation of global
preemptive fixed-priority scheduling with dynamic cache allocation. In Proceedings of the 21st
IEEE Real-Time and Embedded Technology and Applications Symposium, 2016.

32 M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. vCAT: Dynamic cache management using
CAT virtualization. In Proceedings of the 22nd IEEE Real-Time and Embedded Technology
and Applications Symposium, 2017.

33 J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed
Computing, 9(1):51–60, August 1995.

34 H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In Proceedings of the 19th IEEE
Real-Time and Embedded Technology and Applications Symposium, 2014.

A Additional Constraints

Constraints (1)-(9), proven here, are similar to constraints in prior inflation-free analysis [9].

Proof of (1). Follows directly from Observation O1. ◀

Proof of (2). In order to cause spin delay, a local task must have a satisfied request while
another request is blocked. However, because tasks spin and execute critical sections non-
preemptively, there can be at most one active request on P ∗ at any given time. Therefore,
tasks on P ∗ cannot cause spin delay; only remote tasks can cause spin delay. ◀

The following lemma can be proven using reasoning on the behavior of the PF lock similar
to that used to prove Lemmas 7 and 9.

▶ Lemma 15. Each remote request Rx can contribute to delaying requests on P ∗ at most
once, and that delay is realized as either arrival blocking or spin delay, but not both.

Proof of (3) and (4). Both follow from Lemma 15. ◀

Constraints (5)–(9) concern arrival blocking.

Proof of (5). Follows from Observation O2; only one request can cause arrival blocking, and
each request is only for a single resource and is either a read request or a write request. ◀

Proof of (6). Recall that AR
q is a binary indicator variable. By Observation O1, arrival

blocking is only caused by tasks with a relative deadline larger than t. If no read request for
ℓq is issued by any task with a deadline greater than t (i.e., the sum on the right-hand side
is 0), then is is not possible to have a read request for ℓq cause arrival blocking. ◀

Proof of (7). Similarly, we constrain arrival blocking due to a write request. ◀

Proof of (8). For each resource ℓq, the number of read requests that can cause arrival blocking
is upper-bounded by AR

q ; at most one request can cause arrival blocking (Observation O2),
and if AR

q = 0, no request for that resource can cause arrival blocking. ◀

Proof of (9). Similarly, the arrival blocking caused by write requests is constrained. ◀

	1 Introduction
	2 Background
	3 The PF-L: A New Phase-Fair Lock with Light Reading
	4 Evaluation of the PF-L
	5 Schedulability Analysis of Phase-Fair Reader-Writer Locks
	6 Schedulability Evaluation
	7 Conclusion
	A Additional Constraints

