
Open Problem Resolved: The "Two" in Existing
Multiprocessor PI-Blocking Bounds is Fundamental
Shareef Ahmed #

University of North Carolina at Chapel Hill, USA

James H. Anderson #

University of North Carolina at Chapel Hill, USA

Abstract
The goal of a real-time locking protocol is to reduce any priority-inversion blocking (pi-blocking) a
task may incur while waiting to access a shared resource. For mutual-exclusion sharing on an m-
processor platform, the best existing lower bound on per-task pi-blocking under suspension-oblivious
analysis is a (trivial) lower bound of (m − 1) request lengths under any job-level fixed-priority
(JLFP) scheduler. Surprisingly, most asymptotically optimal locking protocols achieve a per-task
pi-blocking upper bound of (2m − 1) request lengths under JLFP scheduling, even though a range
of very different mechanisms are used in these protocols. This paper closes the gap between these
existing lower and upper bounds by establishing a lower bound of (2m − 2) request lengths under
global fixed-priority (G-FP) and global earliest-deadline-first (G-EDF) scheduling. This paper also
shows that worst-case per-task pi-blocking can be arbitrarily close to (2m − 1) request lengths for
locking protocols that satisfy a certain property that is met by most (if not all) existing locking
protocols. These results imply that most known asymptotically optimal locking protocols are almost
truly optimal (not just asymptotic) under G-FP and G-EDF scheduling.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Real-Time Systems, Real-Time Synchronization, Multiprocessors

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2024.9

Funding Supported by NSF grants CPS 2038960, CPS 2038855, CNS 2151829, and CPS 2333120.

1 Introduction

A real-time locking protocol is asymptotically optimal if it provides asymptotically optimal
bounds on per-task priority-inversion blocking (pi-blocking). Such a per-task bound upper
bounds pi-blocking for any job (invocation) of said task. For mutual-exclusion (mutex)
sharing, a number of suspension-based multiprocessor real-time locking protocols are known
that are asymptotically optimal under any job-level fixed-priority (JLFP) scheduler [1,3,7,8].
Under the assumption that each job contains one lock request, most of these locking protocols
provide a per-task pi-blocking bound of 2m − 1 request lengths on an m-processor platform
under suspension-oblivious (s-oblivious) schedulability analysis, where suspension time is
analytically treated as computation time [7–9]. The lone exception is a recently presented
protocol that provides a per-task pi-blocking bound of m − 1 request lengths under first-in-
first-out (FIFO) scheduling [1].

In contrast to most protocols, the best existing lower bound under s-oblivious analysis
is a (trivial) lower bound of m − 1 request lengths [7]. This lower bound, which applies to
any job-level fixed-priority (JLFP) scheduler, is obtained by examining the simple scenario
where m lock requests are active on m processors and noting the pi-blocking time of the
last request to be satisfied. Thus, the locking protocol given in [1] is the only known truly
optimal suspension-based locking protocol, and it is optimal only when employed with
FIFO scheduling. Therefore, a gap exists between the existing lower and upper bounds on
s-oblivious pi-blocking under all non-FIFO JLFP schedulers. This raises a natural question:

© Shareef Ahmed and James H. Anderson;
licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shareef@cs.unc.edu
https://orcid.org/0000-0002-9290-4896
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2024.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

is an s-oblivious pi-blocking bound of 2m − 1 request lengths fundamental under any non-FIFO
JLFP scheduler? This question has been an open problem since the discovery of the first
asymptotically optimal suspension-based locking protocol in 2010 [7].

In this paper, we demystify the optimality of suspension-based locking protocols under
s-oblivious analysis by improving upon the existing lower-bound result. In particular, we
show that worst-case per-task s-oblivious pi-blocking is at least 2m − 2 request lengths under
global fixed-priority (G-FP) and global earliest-deadline-first (G-EDF) scheduling, as well as a
broader subset of JLFP schedulers. This result implies that most existing asymptotically
optimal locking protocols are within a single request length of being truly optimal under G-FP
and G-EDF scheduling. We also show that, under G-FP and G-EDF scheduling, worst-case
per-task s-oblivious pi-blocking can be arbitrarily close to 2m − 1 request lengths when the
employed locking protocol satisfies a certain property. This property is satisfied by most (if
not all) existing locking protocols.

When “thinking asymptotically,” a factor of two may seem insignificant. However, use
cases exist where doubling pi-blocking costs in schedulability analysis can have serious
negative consequences. For example, a common approach for predictably sharing a hardware
accelerator such as a graphics processing unit (GPU) is to use a mutex locking protocol to
ensure that each task has exclusive access when performing an accelerator operation. In the
case of a GPU, the corresponding critical sections can be rather large, so doubling pi-blocking
costs in analysis can easily make a system unschedulable.

Pi-blocking under FIFO vs. non-FIFO JLFP scheduling. As mentioned earlier, a recently
proposed locking protocol achieves a pi-blocking bound of m − 1 request lengths under FIFO
scheduling [1]. The key benefit FIFO scheduling offers is that, once a job achieves high enough
priority to be scheduled, it continues to have high enough priority to be scheduled until its
completion. This is not true under any non-FIFO JLFP scheduler. In fact, a job’s priority
can repeatedly switch between being high enough to be scheduled and being too low to be
scheduled until its completion. Our lower-bound proof exploits this phenomenon to show
that a set of jobs can gradually accumulate pi-blocking so that one job in that set must be
pi-blocked for 2m − 2 request lengths.

Contributions. Our contributions are twofold.
First, we give a lower bound of 2m − 2 request lengths on per-task s-oblivious pi-blocking

under G-FP and G-EDF scheduling, as well as a broader subset of JLFP schedulers. In
particular, we show that there exists a task system with a large enough task count where a
job must incur s-oblivious pi-blocking for the duration of at least 2m − 2 request lengths.

Second, we show that, when a locking protocol adheres to certain conditions, which
most protocols would naturally adhere to, worst-case per-task s-oblivious pi-blocking can be
arbitrarily close to 2m − 1 request lengths.

Organization. In the rest of this paper, we provide needed background (Sec. 2), present the
above-mentioned lower-bound results (Secs. 3 and 4), more fully review related work (Sec. 5),
and conclude (Sec. 6).

2 Background

In this section, we provide needed definitions. Tbl. 1 summarizes the notation we use.

S. Ahmed and J. H. Anderson 9:3

Table 1 Notation summary.

Symbol Meaning Symbol Meaning
n Number of tasks ℓ a shared resource
m Number of processors Li Maximum request length for ℓ by τi

τi ith task Lmax max1≤i≤n{Li}
Ji,j jth job of τi R A request
Ti Period of τi ri,j Release time of Ji,j

Ci WCET of τi fi,j Finish time of Ji,j

Di Relative deadline of τi Yi RPP of τi

ui Utilization of τi yi,j PP of Ji,j

Tmin min1≤i≤n{Ti} Tmax max1≤i≤n{Ti}

Task model. We consider a system of n sporadic tasks τ1, τ2, . . . , τn to be scheduled on m

identical processors. Each task τi releases a potentially infinite sequence of jobs Ji,1, Ji,2,
(We omit job indices if they are irrelevant.) The period Ti of task τi is the minimum separation
between the release times of two consecutive jobs of τi. Each task has a relative deadline Di.
We assume that each task τi has an implicit deadline.1 Thus, Di = Ti holds. The maximum
and minimum period among all tasks are denoted by Tmax and Tmin, respectively. Task
τi has a worst-case execution time (WCET) denoted Ci. The utilization of τi is defined as
ui = Ci/Ti. The release time (resp., finish time) of a job Ji,j is given by ri,j (resp., fi,j).
Ji,j is pending at time t if ri,j ≤ t < fi,j . A pending job is either ready (when it can be
scheduled) or suspended (when it cannot be scheduled).

Multiprocessor scheduling. Under job-level fixed-priority (JLFP) scheduling, each job has a
fixed priority throughout its execution, but a task’s priority may change over time. Common
JLFP schedulers include the earliest-deadline-first (EDF), FIFO, and fixed-priority (FP)
scheduling algorithms. In applying such schedulers, a clustered scheduling approach is often
assumed where the m processors are divided into c equal-sized clusters of m/c processors
each. Each task is assigned to a specific cluster and may execute on any processor in that
cluster. Partitioned (c = m) and global (c = 1) scheduling are special cases of clustered
scheduling. The results of this paper pertain to global JLFP schedulers. Under such a
scheduler, the m highest-priority ready jobs (if that many exist) are scheduled at any time.

Global-EDF-like scheduling. Global-EDF-like (GEL) scheduling [12] is a special case of
JLFP scheduling that generalizes both G-EDF and FIFO scheduling. Under GEL scheduling,
each task has a relative priority point (RPP) Yi. The priority point (PP) of a job Ji,k,
denoted by yi,k, is defined as

yi,k = ri,k + Yi. (1)

Under GEL scheduling, a job’s priority is determined by its PP. If yi,k < yj,ℓ, then job
Ji,k has higher priority than job Jj,ℓ. The lower-bound results of this paper apply not only
to G-EDF but also to a subset of non-FIFO GEL scheduler. (They apply to G-FP as well.)

1 The results of this paper do not depend on the choice of deadline constraints. Implicit deadlines are
assumed for simplicity.

ECRTS 2024

9:4 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

Time
J1

J2

J3

0 5 10 15

Release Deadline Completion Execution CS

Suspension and not pi-blocked Suspension and pi-blocked

Figure 1 A schedule illustrating s-oblivious pi-blocking.

Resource model. We consider a system that has a single shared resource ℓ.2 Resource ℓ

has a mutual exclusion (mutex) sharing constraint: ℓ can be held by at most one job at
any time. When a job Ji requires resource ℓ, it issues a request R for ℓ. R is satisfied as
soon as Ji holds ℓ, and completes when Ji releases ℓ. R is active from its issuance to its
completion. Ji must wait until R can be satisfied if it is held by another job. Generally
speaking, it may do so either by busy-waiting (or spinning) in a tight loop, or by being
suspended by the operating system until R is satisfied. However, in this paper, we consider
only suspension-based waiting. We assume that a job Ji must be scheduled on a processor at
any time instant when it holds resource ℓ and has a high-enough priority to be scheduled.3
A resource access is called a critical section (CS).

As only one resource exists in the systems we consider, we implicitly assume that each
job can request or hold at most one resource at a time, i.e., resource requests are non-nested.
To ease calculating pi-blocking across an entire job, we assume that each job includes at
most one request for ℓ. Letting Li denote the maximum length of all requests by τi’s jobs,
we define Lmax = max1≤i≤n{Li}. We assume all Li’s to be constant.

Priority inversions. Priority-inversion blocking (or pi-blocking) occurs when a job’s execution
is delayed and this delay cannot be attributed to the execution of higher-priority jobs. On
multiprocessors, the formal definition of pi-blocking actually depends on how schedulability
analysis is done. Of relevance to suspension-based locks, schedulability analysis may be
either suspension-oblivious (s-oblivious) or suspension-aware (s-aware) [7]. Under s-oblivious
analysis (the focus of this work), pi-blocking is formally defined as follows.

▶ Definition 1 ([7]). Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious
pi-blocking at time t if Ji is pending but not scheduled and fewer than m higher-priority
jobs are pending.

By Def. 1, a job suffers s-oblivious pi-blocking at any time when it is one of the m highest
priority jobs but it is not scheduled. In the rest of the paper, by the term “pi-blocking,” we
will mean s-oblivious pi-blocking unless otherwise specified.

▶ Example 2. Fig. 1 illustrates a G-EDF schedule of three jobs J1, J2, and J3 on two
processors. Job J3 acquires resource ℓ at time 2. Job J2 issues a request for ℓ at time 3, and
it is suspended from time 3 to time 6. Since there is only one job with higher priority than

2 To establish a lower bound, we do not need to consider multiple shared resources. Nonetheless, our
results apply when multiple shared resources are present.

3 This is a common assumption in work on synchronization. It is needed for shared data, but may be
pessimistic for other shared resources such as I/O devices.

S. Ahmed and J. H. Anderson 9:5

Table 2 Asymptotically optimal locking protocols for mutex locks under s-oblivious analysis.

Scheduling Protocol Release blocking Request blocking
Global JLFP OMLP [7] 0 (2m − 1)Lmax

Clustered JLFP C-OMLP [8] mLmax (m − 1)Lmax

Clustered JLFP OMIP [3] 0 (2m − 1)Lmax

Clustered FIFO OLP-F [1] 0 (m − 1)Lmax

J2 during time interval [3, 5), by Def.1, J2 incurs s-oblivious pi-blocking during this time
interval. At time 5, job J1, which has higher priority than both J2 and J3, is released. Since
there are m = 2 jobs with higher-priority than J2 during time interval [5, 6), J2 does not
incur s-oblivious pi-blocking during this time interval. ◀

Request vs. release blocking. Under a given real-time locking protocol, a job may experience
pi-blocking each time it requests a resource—this is called request blocking. Additionally, a
job may suffer pi-blocking upon its release and each time it releases a resource—this is called
release blocking. Release blocking occurs due to the usage of certain progress mechanisms
that ensure that a resource-holding job is sure to be scheduled if it pi-blocks some other job.
Non-preemptive execution is a simple example of such a mechanism. However, more complex
such mechanisms exist. A notable example is priority donation, which avoids problematic
preemptions of resource-holding jobs by carefully manipulating job priorities [8].

Blocking complexity. Request lengths are unavoidable in assessing maximum pi-blocking,
as a request-issuing job may have to wait for the whole duration of a current resource-holder’s
resource access. As a consequence, maximum pi-blocking bounds are usually expressed as
an integer multiple of the maximum request length, i.e., the number of requests that are
satisfied while a resource-requesting job is pi-blocked.

Asymptotically optimal locking protocols. For mutex locks, a lower bound of m−1 request
lengths on per-request s-oblivious pi-blocking under any JLFP scheduler is known [7]. Thus,
under s-oblivious analysis, an asymptotically optimal locking protocol achieves O(m) per-job
pi-blocking (taking the number of resource requests per job as a constant). Locking protocols
such as the OMLP [7], the OMIP [3], and the C-OMLP [8] are asymptotically optimal under
any JLFP scheduling algorithm. The OLP-F [1] achieves per-request pi-blocking of m − 1
request lengths under FIFO scheduling. Thus, the OLP-F is an optimal locking protocol
under FIFO scheduling. Tbl. 2 provides a summary of existing asymptotically optimal locking
protocols. Note that, for the C-OMLP, the pi-blocking bound of 2m − 1 request lengths, as
mentioned in Sec. 1, comes from a combination of release and request blocking. Note also
that global scheduling is a special case of clustered scheduling, so any lower bound obtained
assuming global scheduling is applicable to a protocol designed for clustered scheduling.

3 General Lower Bound On Pi-Blocking

In this section, we give a lower bound of 2m − 2 request lengths on pi-blocking under a set
of JLFP schedulers that includes G-EDF and G-FP scheduling. Specifically, we demonstrate
the existence of a task system and a corresponding release sequence such that a job incurs
pi-blocking for at least 2m − 2 request lengths. In the rest of the section, we first describe
said task system (Sec. 3.1), then show how a job in that system incurs pi-blocking for at least

ECRTS 2024

9:6 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

2m − 2 request lengths assuming a certain assignment of job priorities (Sec. 3.2), and finally
show how that priority assignment can be realized under different schedulers (Sec. 3.3).

3.1 Task System

Let Γ be a set of n tasks that are scheduled on m processors. The tasks in Γ consists of m

disjoint groups of tasks. The first group of tasks consists of 2m − 2 tasks {τ1
1 , τ1

2 , . . . , τ1
2m−2}.

Each of the remaining m − 1 groups of tasks consists of m tasks. We denote the set of
tasks in the ith group (i > 1) by {τ i

1, τ i
2, . . . , τ i

m}. Thus, the total number of tasks is
n = (2m − 2) + (m − 1)m = m2 + m − 2.

Each job of each task issues a request for resource ℓ as soon as the job is released. The
request length of each request is L. Each job completes as soon as its request for resource ℓ

completes. Thus, Ci = L holds. To establish our lower bound, we do not need any specific
assignment of periods to the tasks in Γ, unless a period assignment is required to assign job
priorities (as in G-EDF). We will show how periods can be assigned (if needed) in Sec. 3.3.

Feasibility of Γ. In the following lemma, we show that Γ can be feasibly scheduled under
any JLFP scheduler when the minimum period of all tasks is large enough.

▶ Lemma 3. If Tmin ≥ nL, then there exists a locking protocol under which Γ can be feasibly
scheduled under any JLFP scheduler.

Proof. We show that Γ is schedulable under any JLFP scheduler when lock requests are
satisfied in FIFO order. Assume for a contradiction that Γ is not schedulable in a JLFP
schedule S where lock requests are satisfied in FIFO order. Assume that job release times
are totally ordered by introducing consistent tie-breaking if needed. Let J be the job with
the earliest release time that misses its deadline in S. Let tr be the time instant when J is
released. By the definition of J , no job with a deadline at or before time tr misses its deadline.
Since each task has an implicit deadline, there is at most one pending job per task at time
tr. Thus, there are at most n pending jobs (including J) at time tr. Since requests are
satisfied in FIFO order, J ’s request completes by the time all these n requests are complete.
Since JLFP scheduling is work-conserving, these n requests complete by time tr + nL. Since
each job finishes execution when the request it issues completes, J completes execution by
time tr + nL ≤ tr + Tmin. Thus, J completes execution by its deadline, a contradiction. ◀

Release sequence. We now describe a release sequence Γseq for tasks in Γ. Our lower-bound
proof only requires one job of each task. For ease of notation, we denote the job of τ j

i by Jj
i .

These jobs are released according to the following rules.

R1 Jobs G1 = {J1
1 , J1

2 , . . . , J1
2m−2} are released at time 0.

R2 Let ti be the time instant when the ith-satisfied request is complete. We define t0 = 0.
At time tkm−1, jobs Gk+1 = {Jk+1

1 , Jk+1
2 , . . . , Jk+1

m } are released.
R3 No task releases a new job until all jobs in G1 ∪ G2 ∪ · · · ∪ Gm complete execution.

Note that Rules R1–R3 do not require an unsatisfied request to be satisfied immediately
after a request completion. Thus, at time ti, a locking protocol may insert delay before
satisfying the next request.

S. Ahmed and J. H. Anderson 9:7

Time
J1

1

J1
2

J1
3

J1
4

J1
5

J1
6

J2
1

J2
2

J2
3

J2
4

J3
1

J3
2

J3
3

J3
4

J4
1

J4
2

J4
3

J4
4

0 5 10 15

G1

G2

G3

G4

CS

Suspension and pi-blocked

Suspension and not pi-blocked

Completion

Deadline

Release

pi-blocked for 2m − 2
request lengths

I(0, tm−1)

I(1, t2m−1)

I(2, t3m−1)

I(3, t4m−1)

Figure 2 Release sequence by Rules R1–R3 for m = 4. Job priorities increase from bottom to
top.

Job priorities. We assume job priorities satisfy the following rules. We will later illustrate
how this priority ordering can be achieved under different scheduling algorithms in Sec. 3.3.

P1 For any u > v, job Ju
i has higher priority than job Jv

j , i.e., the jobs in Gu have higher
priority than the jobs in Gv

P2 For any i > j, job Ju
i has higher priority than job Ju

j .

▶ Example 4. Fig. 2 depicts a release sequence according to Rules R1– R3 for m = 4. By
Rule R1, jobs J1

1 –J1
6 are released at time 0. Since the (m − 1)st = 3rd satisfied request (J1

3 ’s
request) completes at time 3, by Rule R2, jobs J2

1 –J2
4 are released at time 3. Similarly, by

Rule R2, jobs J3
1 –J3

4 are released at time 7, as the (2m − 1)st = 7th satisfied request (J2
3 ’s

request) completes then.
In Fig. 2, the time intervals when a job experiences s-oblivious pi-blocking are marked

red. For example, during [0, 1), jobs J1
6 , J1

4 , and J1
3 suffer pi-blocking, as they are among the

ECRTS 2024

9:8 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

top m = 4 jobs by priority during this time interval (by Rule P2). In contrast, a job does
not experience pi-blocking during black-marked intervals. For example, jobs J1

1 and J1
2 are

suspended but not pi-blocked during time interval [0, 1). Note how their suspension time
here is “negated” as pi-blocking time by the presence of m = 4 higher-priority jobs that are
either executing or suspended. ◀

3.2 Lower-Bound Proof
In this section, we prove the following theorem.

▶ Theorem 5. There is a job Jj
i in Γseq that incurs pi-blocking for at least (2m − 2)L time

units when job priorities are determined by Rules P1 and P2.

To prove Theorem 5, our goal is to show that there exists a time instant when m − 1 jobs
are pending with unsatisfied requests and each such job has already incurred pi-blocking of
at least mL time units. If no higher-priority jobs are released at or after such a time instant,
then at least one job must incur pi-blocking for at least an additional (m − 2)L time units
(as any locking protocol must impart some ordering of these requests). To prove this, we
show that an invariant holds at times tm−1, t2m−1, . . . , tm2−1. We first define some notation.

▶ Definition 6. Let B(u, t) denote the number of pending jobs at time t that have incurred
pi-blocking of at least uL time units by time t.

Using B(u, t), we define the following predicate.

I(p, t) ≡
u=1,v=m+p−1∧

u=m,v=p

B(u, t) ≥ min{v, m − 1} (2)

Thus, I(p, t) is true if and only if B(m, t) ≥ min{p, m−1}∧B(m−1, t) ≥ min{p+1, m−
1} ∧ · · · ∧ B(1, t) ≥ min{m + p − 1, m − 1}. This means, at time t, there exist min{p, m − 1}
pending jobs that have incurred at least mL time units of pi-blocking, min{p + 1, m − 1}
pending jobs that have incurred at least (m − 1)L time units of pi-blocking, and so on.

▶ Example 4 (Cont’d). Consider the schedule in Fig. 2. At time 3, the only pending jobs
that were released previously (and thus could have been pi-blocked) are J1

4 , J1
2 , and J1

1 .
These jobs have incurred pi-blocking for 3L, 2L, and L time units, respectively. Thus, there
is one (resp., two, three) job(s) that has (have) incurred pi-blocking for 3L (resp., 2L, L)
time units by time 3 (and none that have experience pi-blocking for 4L time units). Thus,
B(4, 3) = 0, B(3, 3) = 1, B(2, 3) = 2, and B(1, 3) = 3 each hold. Hence, I(0, 3) holds.
Similarly, by time 7, J2

2 , J1
2 , and J1

1 , which were all released previously and are still pending,
have incurred pi-blocking for 4L, 4L, and 2L time units, respectively. Thus, B(4, 7) = 2,
as there are two pending jobs at time 7 that have incurred pi-blocking for at least 4L time
units by time 7. Similarly, B(3, 7) = 2, B(2, 7) = 3, and B(1, 7) = 3 each hold. Thus, we
have B(4, 7) ≥ min{1, 3} ∧ B(3, 7) ≥ min{2, 3} ∧ B(2, 7) ≥ min{3, 3} ∧ B(1, 7) ≥ min{4, 3}.
Since m = 4, by (2), I(1, 7) holds. ◀

To prove Theorem 5, our goal is to show that I(m − 1, t) holds at some time instant
t in Γseq under any suspension-based locking protocol. By (2), this would imply that
B(m, t) ≥ (m − 1) holds. Thus, there exists a time instant when m − 1 pending jobs have
already incurred mL time units of pi-blocking. In the following lemma, we first show that
there exists a time instant t when I(0, t) holds.

S. Ahmed and J. H. Anderson 9:9

▶ Lemma 7. I(0, tm−1) holds.

Proof. Time instant tm−1 = t3 in Fig. 2 illustrates this lemma. By (2), we need to prove
that B(m, tm−1) ≥ 0 ∧ B(m − 1, tm−1) ≥ 1 ∧ · · · ∧ B(1, tm−1) ≥ m − 1 holds. Since no jobs
in G2 ∪ G3 ∪ · · · ∪ Gm are released before time tm−1, only jobs in G1 can incur pi-blocking
before time tm−1. By Rule R2, the first i satisfied requests and their corresponding jobs
complete by time ti. Thus, at time tm−1, there are 2m − 2 − (m − 1) = m − 1 pending jobs
of G1. Let Jhp(i) be the ith highest-priority pending job among the jobs of G1 at time tm−1.
We prove the lemma by first establishing the following claim.

▷ Claim 8. Job Jhp(i) incurs pi-blocking for at least (m − i)L time units by time tm−1.

Proof. We first show that job Jhp(i) is one of the m highest-priority pending jobs during
[ti−1, tm−1). Note that i ≤ m − 1 (hence, i − 1 < m − 1) holds, as there are m − 1 pending
jobs (including Jhp(i)) of G1 at time tm−1. By the definition of Jhp(i), among the m − 1
pending jobs of G at time tm−1, exactly m − 1 − i jobs have lower priority than Jhp(i).

By Rules R1 and R2, no job is released during (0, tm−1). Thus, by the definition of
time instant ti−1, there are 2m − 2 − (i − 1) = 2m − i − 1 pending jobs at time ti−1. Since
Jhp(i) has higher priority than m − i − 1 jobs of G1 at time tm−1, Jhp(i) is among the
2m − i − 1 − (m − i − 1) = m highest-priority pending jobs at time ti−1. Jhp(i) remains one
of the m highest-priority pending jobs during [ti−1, tm−1), as no jobs are released during
[ti−1, tm−1).

During the time interval [ti−1, tm−1), the ith, (i + 1)st, . . . , (m − 1)st satisfied requests are
satisfied and complete. Thus, tm−1 − ti−1 ≥ (m−1− i+1)L = (m− i)L. Note that tm − ti−1
can be greater than (m − i)L if a locking protocol inserts delay between two consecutive
satisfied requests. Since Jhp(i) is pending at time tm−1 and it is among the top-m jobs by
priority during [ti−1, tm−1), it is continuously pi-blocked during [ti−1, tm−1). Thus, Jhp(i)
incurs pi-blocking for at least (m − i)L time units by time tm−1. ◀

Continuing the proof of the lemma, we now show that, for any i < m, B(m − i, tm−1) ≥ i.
Consider the set of jobs {Jhp(1), Jhp(2), . . . , Jhp(i)}. By Claim 8, each job in {Jhp(1), Jhp(2),

. . . , Jhp(i)} incurs at least (m − i)L time units of pi-blocking by time tm−1. Thus, B(m −
i, tm−1) ≥ i holds for each i < m. Moreover, B(m, tm) ≥ 0 holds trivially. Thus, I(0, tm) =
∧u=1,v=m−1

u=m,v=0 B(u, tm−1) ≥ v holds. ◀

In the following three lemmas, we show that each job that is pending but unscheduled
during time intervals [tkm−2, tkm−1) (for any 2 ≤ k ≤ m) incurs pi-blocking during this time
interval. This allows the system to steadily reach a time instant t when I(m − 1, t) holds. In
Fig. 2, the time intervals [tkm−2, tkm−1) refer to time intervals [6, 7), [10, 11), and [14, 15).
Note that, during each of these intervals, exactly m = 4 jobs are pending.

▶ Lemma 9. For any integer 2 ≤ k ≤ m, there are m pending jobs during time interval
[tkm−2, tkm−1).

Proof. By Rule R1, 2m − 2 jobs are released at time 0. By Rule R2, for each time instant
tim−1 with 1 ≤ i ≤ m − 1, m jobs are released. By Rules R1 and R2, at or before time tkm−2,
jobs are released only at time instants 0, tm−1, t2m−1, . . . , t(k−1)m−1. Thus, the number of
jobs that are released at or before time tkm−2 is 2m − 2 + (k − 1)m = (k + 1)m − 2. By the
definition of time instant tkm−2, the first km − 2 satisfied requests are complete and these
request-issuing jobs finish execution by time tkm−2. Thus, the number of pending jobs at
time tkm−2 is (k + 1)m − 2 − km + 2 = m. Since no job is released during [tkm−2, tkm−1),
the lemma follows. ◀

ECRTS 2024

9:10 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

▶ Lemma 10. For any integer 2 ≤ k ≤ m−1, there are m−1 pending jobs of G1∪G2∪· · ·∪Gk

at time tkm−1.

Proof. By Rules R1 and R2, only jobs in G1 ∪ G2 ∪ · · · ∪ Gk are released at or before
time tkm−2. By Lemma 9, there are m pending jobs during time interval [tkm−2, tkm−1). By
the definition of time instants tkm−2 and tkm−1, a request completes and the request-issuing
job finishes execution at time tkm−1. Thus, there are m−1 pending jobs of G1 ∪G2 ∪· · ·∪Gk

at time tkm−1. ◀

▶ Lemma 11. For any integer 2 ≤ k ≤ m, all but one job that is pending at time tkm−2
incurs pi-blocking throughout the time interval [tkm−2, tkm−1).

Proof. By Rule R2, no jobs in Gi with i > k are released at or before time tkm−2. By
Lemma 9, there are m pending jobs during the time interval [tkm−2, tkm−1). Among
these m jobs, the job whose request is complete at time tkm−1 must be scheduled during
[tkm−2, tkm−1) Thus, each of the remaining m−1 pending jobs suffers pi-blocking throughout
[tkm−2, tkm−1). ◀

Using Lemma 11, we can show the following lemma. Informally, since m − 1 jobs incur
pi-blocking during time interval [tkm−2, tkm−1), the number of pending jobs at time tkm−1
that have already incurred L units of pi-blocking is at least m − 1.

▶ Lemma 12. For any integer 2 ≤ k ≤ m, B(1, tkm−1) ≥ m − 1.

Proof. By Lemma 9, there are m pending jobs during [tkm−2, tkm−1). By Lemma 11, m − 1
jobs among these m pending jobs incur pi-blocking throughout [tkm−2, tkm−1). By the
definition of time instants ti, tkm−1 − tkm−2 ≥ L. Thus, there are at least m − 1 pending
jobs at time tkm−1 that have incurred pi-blocking for the duration of at least L time units,
and the lemma follows. ◀

We now show that there exist time instants t such that I(k, t) holds for each k ≤ m−1. In
Fig. 2, these time instants are times 3, 7, 11, and 15 when I(0, 3), I(1, 7), I(2, 11), and I(3, 15)
hold, respectively. Specifically, we show that if I(k − 2, t(k−1)m−1) holds, then I(k − 1, tkm−1)
will also hold.

▶ Lemma 13. For any integer 1 ≤ k ≤ m, I(k − 1, tkm−1) holds.

Proof. We use Fig. 3 to illustrate the proof. By Lemma 7, I(0, tm−1) holds. We thus prove
the lemma for k ≥ 2. Assume for a contradiction that p ≥ 2 is the smallest integer for which
I(p − 1, tpm−1) does not hold. Thus, by the definition of p, we have

I(p − 2, t(p−1)m−1) ∧ ¬I(p − 1, tpm−1). (3)

Since ¬I(p − 1, tpm−1) holds, by (2), we have

u=1,v=m+p−2∨
u=m,v=p−1

B(u, tpm−1) < min{v, m − 1}. (4)

Note that the index u decreases from m to 1 in (4). Assume that m−q (with 0 ≤ q ≤ m−1)
is the largest index u in (4) such that B(u, tpm−1) < min{v, m − 1} holds. In (4), the index
v equals p − 1 when u equals m, and v increases as u decreases. Thus, when u = m − q, we
have v = p − 1 + q. Therefore,

B(m − q, tpm−1) < min{p − 1 + q, m − 1}. (5)

S. Ahmed and J. H. Anderson 9:11

Timet(p−1)m−1 tpm−2 tpm−1

Gold

{(m − 1) jobs}

G′
old

{B(m − q −
1, t(p−1)m−1)

jobs}

Gp

{m jobs}
x jobs in Gp

pending

≥ mL

pi-blocking
(Claim 14)

y jobs in G′
old

pending

Additional
≥ L

pi-blocking
(Claim 15)

Release Completion CS Suspension and pi-blocked

Figure 3 Illustration of the proof of Lemma 13.

To reach a contradiction, we will show that (5) cannot hold by considering the requests
that are satisfied during [t(p−1)m−1, tpm−1). By Rule R2, m jobs of Gp are released at time
t(p−1)m−1 (see Fig. 3). By Lemma 9, there are m pending jobs of G1 ∪G2 ∪· · ·∪ Gp−1 during
[t(p−1)m−2, t(p−1)m−1). By the definition of time instant t(p−1)m−1, one of these m pending
jobs during [t(p−1)m−2, t(p−1)m−1) completes at time t(p−1)m−1. Thus, at time t(p−1)m−1,
there are m − 1 pending jobs of G1 ∪ G2 ∪ · · · ∪ Gp−1. Let Gold be the set of these m − 1 jobs
of G1 ∪ G2 ∪ · · · ∪ Gp−1 that are pending at time t(p−1)m−1 (see Fig. 3). We now consider
two cases depending on the value of m − q.

Case 1. m − q = 1. Replacing q = m − 1 in (5), we have B(1, tpm−1) < min{p −
1 + m − 1, m − 1}. Since p ≥ 2, we have p − 1 + m − 1 ≥ 2 − 1 + m − 1 = m. Thus,
B(1, tpm−1) < min{m, m − 1} = m − 1, contradicting Lemma 12.

Case 2. m−q > 1. Thus, m−q−1 ≥ 1 holds. By Def. 6, there are B(m−q−1, t(p−1)m−1)
pending jobs at time t(p−1)m−1 that have incurred pi-blocking for the duration of (m − q −
1)L ≥ L time units. Thus, each of these B(m − q − 1, t(p−1)m−1) jobs are from Gold, as they
must be released before time t(p−1)m−1. Let G′

old ⊆ Gold be these B(m − q − 1, t(p−1)m−1)
jobs (see Fig. 3).

We now lower bound the number of jobs in Gp ∪ G′
old. Since Gp and G′

old are disjoint, we
have |Gp| + |G′

old| = m + B(m − q − 1, t(p−1)m−1). Thus, to lower bound |Gp| + |G′
old|, we

derive a lower bound on B(m−q−1, t(p−1)m−1) using I(p−2, t(p−1)m−1) (which holds by (3)).
Since m − q − 1 ≥ 1 and I(p − 2, t(p−1)m−1) holds, by (2), we have B(m − q − 1, t(p−1)m−1) ≥
min{p − 2 + q + 1, m − 1}. Using this lower bound on B(m − q − 1, t(p−1)m−1), we get

|Gp| + |G′
old| = m + B(m − q − 1, t(p−1)m−1) ≥ m + min{p + q − 1, m − 1}. (6)

ECRTS 2024

9:12 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

By Lemma 10, there are m − 1 pending jobs of G1 ∪ G2 ∪ · · · ∪ Gp at time tpm−1. Thus,
m − 1 jobs in Gold ∪ Gp are pending at time tpm−1. Assume that, at time tpm−1, among
these m − 1 pending jobs of Gold ∪ Gp, x jobs are from Gp, y jobs are from G′

old, and the
remaining m − 1 − x − y jobs are from Gold \ G′

old (see Fig. 3). Thus, |Gp| − x jobs from Gp,
and |G′

old| − y jobs from G′
old complete execution by time tpm−1. Since (by Rule R2) a total

of m jobs complete execution during [t(p−1)m−1, tpm−1), we have

|Gp| − x + |G′
old| − y ≤ m,

which implies

x + y ≥ |Gp| + |G′
old| − m

≥ {By (6)}
m + min{p + q − 1, m − 1} − m

= min{p + q − 1, m − 1}. (7)

We now show that these x + y pending jobs of Gp ∪ G′
old incur at least (m − q)L time

units of pi-blocking by time tpm−1. By Def. 6 and (7), this implies that B(m − q, tpm−1) ≥
x + y ≥ min{p + q − 1, m − 1}, contradicting (5). The following two claims help to establish
this.

▷ Claim 14. Each of the x jobs of Gp that that are pending at time tpm−1 incurs pi-blocking
for at least mL time units by time tpm−1.

Proof. Let J be one of the x jobs of Gp that are pending at time tpm−1. Since J ∈ Gp and
Gold ⊆ (G1 ∪G2 ∪· · ·∪G(p−1)), by Rule P1, J has higher priority than each job in Gold. Since
only jobs in Gp ∪ Gold are pending during [t(p−1)m−1, tpm−1) and |Gp| = m (by Rule R2), J

is among the top-m pending jobs by priority throughout [t(p−1)m−1, tpm−1). Thus, J incurs
pi-blocking throughout [t(p−1)m−1, tpm−1). During [t(p−1)m−1, tpm−1), m requests complete
execution. Thus, J incurs pi-blocking for at least mL time units. ◀

▷ Claim 15. Each of the y jobs of G′
old that are pending at time tpm−1 incurs pi-blocking

for at least L time units during time interval [t(p−1)m−1, tpm−1).

Proof. By Lemma 11, each of the y jobs of G′
old that are pending at time tpm−1 incurs pi-

blocking throughout the time interval [tpm−2, tpm−1). By the definition of ti, tpm−1 −tpm−2 ≥
L. Thus, the claim holds. ◀

By the definition of G′
old, each of the y pending jobs of G′

old has incurred at least
(m − q − 1)L time units of pi-blocking by time t(p−1)m−1. By Claim 15, each such job incurs
pi-blocking for at least L time units during [t(p−1)m−1, tpm−1). Thus, these y jobs incur pi-
blocking for at least (m−q)L time units by time tpm−1. By Claim 14, each of the x jobs of Gp

that are pending at time tpm−1 incurs at least mL ≥ (m−q)L time units of pi-blocking by time
tpm−1. Thus, at time tpm−1, there are x+y pending jobs that have incurred pi-blocking for at
least (m−q)L time units. Therefore, by (7), B(m−q, tpm−1) ≥ x+y ≥ min{p+q−1, m−1},
contradicting (5).

Thus, in both cases, the lemma holds. ◀

We now prove Theorem 5.

S. Ahmed and J. H. Anderson 9:13

Proof of Theorem 5. By Lemma 13, I(m − 1, tm2−1) holds. Thus, by (2), at time tm2−1,
there are m − 1 pending jobs that have incurred pi-blocking for at least mL time units. By
Lemma 10, there are m − 1 pending jobs of G1 ∪ G2 ∪ · · · ∪ Gm at time tm2−1. By Rule R3,
no new job is released before these m − 1 jobs are complete. Thus, each of these pending jobs
incurs pi-blocking until its request is satisfied. Since any locking protocol must satisfy these
m − 1 pending jobs’ requests in some order, the job whose request is satisfied last incurs at
least an additional (m − 2)L time units of pi-blocking. Therefore, there exists a job that
incurs pi-blocking for at least mL + (m − 2)L = (2m − 2)L time units. ◀

3.3 Job Priority Assignment
In this section, we show how the lower-bound proof in Sec. 3.2 applies under different
schedulers. We do so by showing how jobs can be assigned priorities under these schedulers
so that Rules P1 and P2 hold.

G-FP schedulers. The following theorem shows that the lower-bound proof in Sec. 3.2
applies to any G-FP scheduler.

▶ Theorem 16. A job in Γseq incurs pi-blocking for at least (2m − 2) request lengths under
any G-FP scheduler.

Proof. Consider a G-FP scheduler F . We re-index the tasks in Γ based on the task priority
assignment under F . For each u > v, τu

i has higher priority than τv
j . Also, for each i > j,

τu
i has higher priority than τu

j . Thus, job priorities under F satisfy Rules P1 and P2. The
theorem follows from Theorem 5. ◀

GEL schedulers. We now show that the lower-bound proof in Sec. 3.2 also applies under
a class of GEL schedulers. The GEL schedulers in this class assign RPPs to tasks in Γ as
follows. Task τu

i is assigned an RPP Y u
i that satisfies the following constraints.4

∀τu
m : 2 ≤ u ≤ m − 1 :: Y u

m > Y u+1
1 + m(2m − 2)L (8)

∀τu
i : 2 ≤ u ≤ m − 1 ∧ 1 ≤ i ≤ m − 1 :: Y u

i > Y u
i+1 (9)

Y 1
2m−2 > Y 2

1 + (m − 1)(2m − 2)L (10)

∀τ1
i : 1 ≤ i ≤ 2m − 3 :: Y 1

i > Y 1
i+1 (11)

▶ Theorem 17. A job in Γseq incurs pi-blocking for at least (2m − 2) request lengths under
any GEL scheduler that satisfies (8)–(11).

Proof. Assume that each job in Γseq incurs pi-blocking for less than (2m − 2)L time units
under a GEL scheduler satisfying (8)–(11). We first prove the following claim.

4 We chose constraints (8) and (10) for conciseness. Less restrictive constraints are also applicable by
replacing m(2m − 2) and (m − 1)(2m − 2) with (4m − 4).

ECRTS 2024

9:14 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

▷ Claim 18. For i ≥ 0, ti+1 − ti < (2m − 2)L.

Proof. By the definitions of ti+1 and ti, a request is satisfied and complete during time
interval [ti, ti+1). If ti+1 − ti ≥ (2m − 2)L holds, then a pending job during time interval
[ti, ti+1) incurs pi-blocking for at least (2m − 2)L time units, a contradiction. ◀

Using Claim 18, we show that the jobs in Γseq satisfy Rules P1 and P2. We first show
that P2 holds. Let yu

i denote the PP of job J i
i . Consider two jobs Ju

i and Ju
j with i > j. By

(1) and Rules R1 and R2, we have yu
i = ru

i + Y u
i = ru

j + Y u
i . Since i > j holds, applying (9)

and (11), we have yu
i < ru

j + Y u
j = yu

j . Thus, Ju
i has an earlier PP (hence, higher priority)

than Ju
j , satisfying P2. We now consider PPs of jobs Ju

i and Ju+1
j with 2 ≤ u ≤ m − 1. By

(1), we have

yu+1
j = ru+1

j + Y u+1
j

= {By Rule R2}
tum−1 + Y u+1

j

= tum−1 − t(u−1)m−1 + t(u−1)m−1 + Y u+1
j

< {By Claim 18}
m(2m − 2)L + t(u−1)m−1 + Y u+1

j

≤ {By Rule R2 and (9)}
m(2m − 2)L + ru

i + Y u+1
1

< {By (8)}
m(2m − 2)L + ru

i + Y u
m − m(2m − 2)L

≤ {By (9)}
ru

i + Y u
i

= {By (1)}
yu

i .

Thus, job Ju+1
j has an earlier PP (hence, higher priority) than job Ju

i where 2 ≤ u ≤ m − 1.
Similarly, using (10) and (11) in the above calculation, we can show that J2

j has higher
priority than J1

i . Thus, both Rules P1 and P2 are satisfied. By Theorem 5, there is a job
that is pi-blocked for at least (2m − 2) request lengths, a contradiction. ◀

▶ Corollary 19. A job in Γseq incurs pi-blocking for at least (2m − 2) request lengths under
G-EDF scheduling.

Proof. We let T m
m ≥ (m2 + m − 2)L = nL. We assign periods to each task so that the

constraints (8)–(11) are satisfied. Note that T m
m = Tmin holds. Thus, by Lemma 3, Γ is

feasible. Since Y u
i = T u

i holds under G-EDF, by Theorem 17, the corollary holds. ◀

The case of FIFO scheduling. Our lower-bound proof heavily relies on being able to release
m jobs that have higher-priority than any earlier-released jobs (Rule R2 and P1). The proof
does not apply for any scheduler that prevents higher-priority job releases. FIFO, which is a
GEL scheduler, is one such example as it prioritizes jobs by their release times (a future job
cannot have an earlier release time). This property enabled the design of the OLP-F (see
Tbl. 2) that achieves (m − 1)L pi-blocking bound under FIFO scheduling.

S. Ahmed and J. H. Anderson 9:15

Request vs. release blocking. Recall from Sec. 2 that a job may experience both release
blocking and request blocking under a locking protocol. Also, recall from Tbl. 2 that the
C-OMLP achieves a per-job pi-blocking bound of (2m−1)L time units through a combination
of a request-blocking bound of (m − 1)L time units and a release-blocking bound of mL time
units. By the construction of Γ and Γseq, it may appear that the lower bound of (2m − 2)L
time units of pi-blocking applies only for request blocking (as each job issues a request as
soon as it is released), contradicting the C-OMLP’s request-blocking bound. However, our
bound actually applies for the total per-job pi-blocking (the sum of request and release
blocking). A locking protocol like the C-OMLP may choose to decompose the worst-case
per-job pi-blocking of (2m − 2) request lengths into seperate release blocking and request
blocking terms.

4 Improved Lower Bound Under An Additional Assumption

In this section, we improve the lower bound established in Sec. 3 for a class of locking
protocols that satisfy a certain property. We begin by introducing some terms that we use
to define this class of locking protocols.

▶ Definition 20. Consider a job J that issues a request R at time ta(R) that is satisfied at
time ts(R). Define th(R) as follows: if J ever becomes one of the m highest-priority pending
jobs in [ta(R), ts(R)), then let th(R) denote the first such time; otherwise, let th(R) = ∞.

Using the above definition, we define reorder-bounded locking protocols.

▶ Definition 21. Let Ji and Jj be two jobs that issue request Ri and Rj, respectively. A
reorder-bounded locking protocol decides the order in which Ri and Rj are satisfied (relative
to each other) no later than time max{th(Ri), th(Rj)}.

To the best of our knowledge, most (if not all) existing locking protocols are reorder-
bounded. Such protocols utilize a deterministic queue structure (which can be a hybrid of
different queues). Such a queue structure maintains an order of requests, which typically
depends on the time instant when each request enters into this structure and job-specific
attributes that are fixed. Once a request enters into the queue structure, the order in which
it will be satisfied relative to existing requests in the queue structure becomes fixed. In the
rest of this section, we limit attention to locking protocols that are reorder-bounded.

We now show that there exists a task system and a corresponding release sequence such
that the pi-blocking incurred by a job can be arbitrarily close to (2m − 1) request lengths.
We organize the proof in a similar structure as in Sec. 3.

4.1 Task System
Let Γ = {τ1, τ2, · · · , τn} be a set of n tasks that are scheduled on m processors. Each job
of each task issues a request of length L for a resource ℓ as soon as it is released. Each
job completes as soon as its request for resource ℓ completes. Thus, Ci = L. Let ϵ > 0 be
a constant (which can be arbitrarily close to 0) such that ϵ < L holds. We assume that
n = (2m−1)+(2m−1)L/ϵ. For ease of notation, we assume that (2m−1)L/ϵ is an integer.5
Below, we show that Γ is schedulable under any JLFP scheduler when the minimum period
Tmin is large enough.

5 This assumption can be removed by taking n = (2m − 1) + ⌈(2m − 1)L/ϵ⌉.

ECRTS 2024

9:16 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

▶ Lemma 22. If Tmin ≥ nL, then there exists a suspension-based locking protocol under
which Γ is schedulable under any JLFP scheduler.

Proof. We show that Γ is schedulable under any JLFP scheduler when lock requests are
satisfied in FIFO order. Assume that Γ is not schedulable in a JLFP schedule S where lock
requests are satisfied in FIFO order. Let J be the job with the earliest release time, call
it tr, that misses its deadline in S. By the definition of J , no job with a deadline at or
before time tr misses its deadline. Since each task has an implicit deadline, there is at most
one pending job per task at time tr. Thus, there are at most n pending jobs (including J)
at time tr. Since requests are satisfied in FIFO order, J ’s request is complete by the time
these n requests are complete. Since JLFP scheduling is work-conserving, these n requests
complete by time tr + nL. Since each job finishes execution when its request completes, J

completes execution by time tr + nL ≤ tr + Tmin. Thus, J does not miss its deadline, a
contradiction. ◀

Release sequence for Γ. We now give a release sequence Γseq for Γ. We only give the
release time for one job Ji of each task τi. We denote job Ji’s request by Ri. These jobs are
released according to the following rules. (An example release sequence is given in Fig. 4,
which we cover in detail below.)

S1 Jobs {J1, J2, · · · , Jm} are released at time 0. Without loss of generality, assume that, R1
is the last satisfied request among {R1, R2, · · · , Rm}.

S2 Let tk be the time instant when the kth-satisfied request is satisfied. Job Jm+k is released
at time tk + ϵ if one of the following conditions is met.
S2.1 k = 1 holds.
S2.2 1 < k ≤ n − m holds and Rm+k−1 is ordered (hence, satisfied) before R1.

S3 Let h = min{n − m − k, m − 1}. Jobs {Jm+k+1, Jm+k+2, · · · , Jm+k+h} are released at
time tk + ϵ if Rm+k is ordered (hence, satisfied) after R1.

S4 If some jobs are released by Rule S3, then no task releases a new job until all jobs released
by Rule S3 complete execution.

Note that Rules S2 and S3 require that, when a job Ji with i > m is released, the order in
which the prior job Ji−1’s request will be satisfied with respect to R1 is known. In Lemma 26,
we will show that this ordering has already been finalized when Ji−1 is released under any
reorder-bounded locking protocol. Finally, when a job Jm+k is released whose request is
ordered after R1, h new jobs are instantaneously released at the same time by Rule S3.
For simplicity, we assume such instantaneous releases are possible. This assumption can be
removed by delaying the release of the h new jobs by another ϵ time units.

Job priorities. We assume job priorities satisfy the following rule. In Sec. 4.3, we will
describe how such priorities can be assigned under different schedulers.

Q For any i > j, job Ji has higher priority than job Jj .

▶ Example 23. Fig. 4 depicts a release sequence according to Rules S1–S4 for m = 4, L = 3,
and ϵ = 1. By Rule S1, jobs J1–J4 are released at time 0. At time 0, J2’s request is satisfied.
Thus, t1 = 0 holds. At time t1 + ϵ = 1, by Rule S2, job Jm+1 = J5 is released. t2 = 3 holds
because the second request to be satisfied (J4’s request) is satisfied at time 3. Assuming J5’s
request is ordered before R1, by Rule S2, J6 is released at time t2 + ϵ = 4. At time 7, J7
is released. Job J7’s request is ordered after R1. Thus, by Rule S3, J8–J10 are released at
time 7.

S. Ahmed and J. H. Anderson 9:17

Time
J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

0 5 10 15 20 25 30

Release Completion CS Suspension and not pi-blocked Suspension and pi-blocked

pi-blocked for
(2m − 1)L − ϵ

time units

Ordered after
R1

Ordered before
R1

Figure 4 Release sequence by Rules S1–S4 for m = 4, L = 3, and ϵ = 1.

In Fig. 4, the time intervals when a job experience s-oblivious pi-blocking are marked red.
During time interval [0, 1), J1 is one of the top m = 4 jobs by priority. Thus, it experience
pi-blocking during this interval. However, due to release of J5 and Rule Q, J1 is not one
of the top m = 4 jobs by priority during time interval [2, 3). Thus, it does not experience
pi-blocking during this interval. ◀

4.2 Lower-Bound Proof
In this section, we prove the following theorem.

▶ Theorem 24. Under a reorder-bounded locking protocol, there exists a job in Γseq that
incurs pi-blocking for at least (2m − 1)L − ϵ time units when job priorities satisfy Rule Q.

We prove Theorem 24 using the following two lemmas.

▶ Lemma 25. If no job is released by Rule S3 at or before time ti where 1 ≤ i ≤ n − m + 1,
then there are m pending jobs at time ti.

Proof. We first determine the number of jobs released at or before time ti. By Rule S1, m

jobs are released at time 0. By Rule S2, only job Jm+k−1 is released during [tk−1, tk) for any
2 ≤ k ≤ i. Note that Jm+k−1 is valid because m + k − 1 ≤ m + i − 1 ≤ m + n − m + 1 − 1 = n

holds. Thus, the number of released jobs by time ti is m + i − 1. By the definition of ti

(Rule S2), the ith-satisfied request is satisfied but not complete at time ti. Thus, exactly
i − 1 jobs complete execution by time ti. Therefore, the number of pending jobs at time ti is
m + i − 1 − (i − 1) = m. ◀

▶ Lemma 26. The relative order in which each request Ri (with i > 1) is satisfied with
respect to R1 is determined when Ri is issued.

ECRTS 2024

9:18 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

Proof. By Rule S1, each request Ri with 1 ≤ i ≤ m is issued at time 0 when Ji is one of the
top-m jobs by priority. Thus, th(Ri) = ta(Ri) = 0 ≥ ta(R1) for each 1 ≤ i ≤ m. By Rule Q,
job Ji has higher priority than any job Jj with j < i. By Rules S2 and S3, at most m jobs are
released at any time. Thus, for any job Ji with i > m, th(Ri) = ta(Ri) > 0 = ta(R1) = th(R1)
holds. Therefore, for any i, ta(Ri) = max{th(Ri), th(R1)}. By Def. 21, the relative order in
which Ri is satisfied with respect to R1 is determined at time ta(Ri). ◀

We now prove Theorem 24.

Proof of Theorem 24. For a contradiction, we assume the following.

(A1) Each job in Γseq incurs pi-blocking for less than (2m − 1)L − ϵ time units.

In the following claim, we show that a job must exist whose request is satisfied later than
R1 to satisfy (A1). Consequently, when such a job is released, h new jobs are also released
by Rule S3.

▷ Claim 27. There exists a request Rm+q with 1 ≤ q ≤ n − 2m + 1 that is satisfied after R1.

Proof. Assume that each request Rm+q with 1 ≤ q ≤ n − 2m + 1 is satisfied before R1.
By Rule S1, R1 is the last satisfied request among {R1, R2, · · · , Rm}. Thus, R1 is the last
satisfied request among all requests in {R1, R2, · · · , Rm+n−2m+1}. Hence, by the definition
of time instant ti (Rule S2), R1 is not satisfied before time tm+n−2m+1 = tn−m+1.

Since each request Rm+q with 1 ≤ q ≤ n − 2m + 1 is satisfied before R1, no job Jm+q

with 1 ≤ q ≤ n − 2m + 1 is released by Rule S3. Consider any time instant tq with
1 ≤ q ≤ n − 2m + 1. By Lemma 25, there are m pending jobs at time tq. By Rule S2, no
job is released during (tq, tq + ϵ). Thus, the number of pending jobs throughout [tq, tq + ϵ)
is m. Since R1 is not satisfied before time tn−m+1, J1 is pending and pi-blocked during
all intervals [tq, tq + ϵ) with 1 ≤ q ≤ n − 2m + 1. Thus, J1 incurs pi-blocking for at least
(n − 2m + 1)ϵ = (2m − 1 + (2m − 1)L/ϵ − 2m + 1)ϵ = (2m − 1)L time units, contradicting
(A1). ◀

Let Rm+q be the request with smallest (m+q) value that is ordered after R1 (J7’s request
in Fig. 4). Claim 27 guarantees the existence of such request. Therefore, the following holds.

(A2) Each request Ri with i < m + q and i ̸= 1 is satisfied before R1. (Requests of
jobs J2–J6 in Fig. 4.)

By Rule S3, in addition to Jm+q, min{n−m−q, m−1} new jobs are released at time tq +ϵ.
By Claim 27, q ≤ n − 2m + 1 holds. Thus, n − m − q ≥ n − m − (n − 2m + 1) = m − 1 and
min{n − m − q, m − 1} = m − 1. Therefore, including Jm+q, a total of m − 1 + 1 = m new
jobs are released at time tq+ϵ. Thus, the following holds.

(A3) There are m active requests Ri at time tq + ϵ with i ≥ m + q. (Requests of jobs
J7–J10 in Fig. 4 at time 7.)

Since tq + ϵ is the first time instant when jobs are released by Rule S3, by Lemma 25,
there are m pending jobs Ji with i < m + q at time tq. By the definition of tq, a request from
one of these m jobs is satisfied at time tq. Since ϵ < L, the satisfied request is not complete
by time tq + ϵ. Thus, these m pending jobs with i < m + q are also pending at time tq + ϵ.
Therefore, we have the following.

(A4) There are m active requests Ri at time tq + ϵ with i < m + q. (Requests of jobs
J1, J3, J5, and J6 in Fig. 4 at time 7.)

S. Ahmed and J. H. Anderson 9:19

By (A3) and (A4), there are total 2m pending requests at time tq + ϵ. Let Ri be the last
satisfied request among these 2m requests. By the definition of Rm+q, i ̸= 1 holds, as Rm+q

is ordered after R1. Therefore, by (A2), i ≥ m + q holds. By Rule Q, Ji has higher priority
than each of the m jobs Jj with j < m + q. By Rule S4, no new jobs will be released until
Ri is complete. Thus, Ji experience pi-blocking until it is satisfied, which occurs after the
completion of the other 2m − 1 requests. Since one of these 2m − 1 requests is satisfied at
time tq and Ji is released at time tq + ϵ, Ji incurs pi-blocking for at least (2m − 1)L − ϵ time
units, contradicting (A1). ◀

4.3 Job Priority Assignment
In this section, we show how the lower-bound proof in Sec. 4.2 applies under different
schedulers by demonstrating how jobs can be assigned priorities under these schedulers so
that Rule Q holds.

G-FP schedulers. The following theorem shows that the lower-bound proof in Sec. 4.2 is
valid under any G-FP scheduler.

▶ Theorem 28. Under any reorder-bounded locking protocol, a job in Γseq incurs pi-blocking
for at least (2m − 1)L − ϵ time units under any G-FP scheduler.

Proof. Consider a G-FP scheduler F . We re-index the tasks in Γ based on the task priority
assignment under F . For each i > j, τi has higher priority than τj . Thus, job priorities
under F satisfies Rule Q. The theorem follows from Theorem 24. ◀

GEL schedulers. We now show that the lower-bound proof in Sec. 4.2 also applies under a
class of GEL schedulers. The GEL schedulers in this class assign RPPs to tasks in Γ satisfying
the following constraints.

∀ i : 1 ≤ i ≤ n − 1 :: Yi > Yi+1 + (2m − 1)L (12)

▶ Theorem 29. Under any reorder-bounded locking protocol, a job in Γseq incurs pi-blocking
for at least (2m − 1)L − ϵ time units under any GEL scheduler that satisfies (12).

Proof. Assume that each job in Γseq incurs pi-blocking for less than (2m − 1)L − ϵ time
units under a GEL scheduler that assigns task RPPs according to (12). We first claim that
the following hold.

∀ i ≥ 1 : ti+1 − ti < (2m − 1)L (13)

∀ i ≥ 1 : t1 < (2m − 1)L (14)

If either (13) or (14) does not hold, then a job must incur at least (2m − 1)L time units of
pi-blocking during [ti, ti+1), a contradiction.

We now show that (12) satisfies Rule Q. We show this by considering two consecutive
jobs Ji and Ji+1. We first show that yi+1 − yi < 0 by considering the following three cases.

Case 1. i = m. In this case, by Rules S1 and S2, Ji and Ji+1 are released at times 0
and t1, respectively. By (1), we have yi+1 − yi = ri+1 + Yi+1 − ri − Yi = t1 + Yi+1 − Yi. Thus,
by (12) and (14), we have yi+1 − yi < (2m − 1)L − (2m − 1)L = 0.

ECRTS 2024

9:20 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

Case 2. i < m or Ji+1 is released by Rule S3. In this case, by Rules S1 and S3, both
jobs Ji and Ji+1 are released at the same time, i.e., ri+1 = ri holds. By (1) and (12), we
have yi+1 − yi = ri+1 + Yi+1 − ri − Yi = Yi+1 − Yi < −(2m − 1)L < 0.

Case 3. i > m and Ji+1 is not released by Rule S3. In this case, both jobs Ji

and Ji+1 are released by Rule S2. By Rule S2, Jm+k is released at time tk + ϵ. Thus,
Ji = Jm+(i−m) is released at time ti−m + ϵ. Similarly, Ji = Jm+(i+1−m) is released at
time ti+1−m + ϵ. Thus, ri+1 = ti+1−m + ϵ, and ri = ti−m + ϵ. Hence, by (13), we have
ri+1 − ri = ti−m+1 − ti−m < (2m − 1)L. Now, by (1) and (12), we have yi+1 − yi =
ri+1 + Yi+1 − ri − Yi = ri+1 − ri + Yi+1 − Yi < (2m − 1)L − (2m − 1)L = 0.

In all three cases, yi+1 < yi holds. Therefore, Ji+1 has an earlier PP (hence, higher
priority) than Ji. Hence, Rule Q is satisfied. Thus, by Theorem 24, there is a job that incurs
pi-blocking for at least (2m − 1)L − ϵ time units, a contradiction. ◀

▶ Corollary 30. Under any reorder-bounded locking protocol, a job in Γseq incurs pi-blocking
for at least (2m − 1)L − ϵ time units G-EDF scheduling.

Proof. Let Tn ≥ (2m − 1)L + (2m − 1)L2/ϵ = nL, and for each i < n, let Ti = Ti+1 + 2mL.
Thus, (12) is satisfied, as Yi = Ti holds under G-EDF. Note that Tn = Tmin holds. Thus, by
Lemma 22, Γ is feasible. By Theorem 29, the corollary holds. ◀

5 Related Work

A wealth of work has been done on suspension-based multiprocessor real-time locking
protocols (e.g., [3, 7–11,13–17,19, 20]). Interested readers can find an excellent recent survey
in [6]. Below, we comment further on a few specific relevant protocols.

Locking protocols such as the FMLP [2] and MPCP-VS [14] were presented and considered
under s-oblivious analysis even before the term was formally defined by Brandenburg and
Anderson [7]. The OMLP is the first known asymptotically optimal locking protocol under such
analysis. Later, variants of the OMLP were introduced that are asymptotically optimal under
s-oblivious analysis under clustered (and hence both partitioned and global) scheduling [8].
Later, the OMIP [3] was presented; it is asymptotically optimal under s-oblivious analysis
while maintaining an independence preserving property (which isolates tasks from unrelated
critical sections) under clustered JLFP scheduling. Recently, the OLP-F [1] was proposed,
which achieves optimal s-oblivious pi-blocking under FIFO scheduling.

Many locking protocols have been studied under suspension-aware (s-aware) analysis
where suspension time is treated as time not executing. Many of these protocols (e.g.,
the MPCP [19], the PPCP [11], the PIP [18], etc.) were inspired by classical uniprocessor
locking protocols. Under s-aware analysis, an Ω(n) lower bound on pi-blocking has been
established [7]. The FMLP+ [5] is an extension of the FMLP that achieves asymptotically
optimal s-aware pi-blocking under clustered JLFP scheduling. Later, linear-programming
techniques were shown to improve the s-aware analysis of various protocols, including the
PIP, the PPCP, and the FMLP, under global and partitioned fixed-priority scheduling [4,21].

6 Conclusion

In this paper, we have closed a long-standing open problem concerning pi-blocking optimality.
In particular, we have presented lower-bound results that show that the factor of two
present in the pi-blocking bounds of most real-time multiprocessor mutex protocols that
are asymptotically optimal under s-oblivious analysis is fundamental. In presenting these

S. Ahmed and J. H. Anderson 9:21

results, we have assumed global scheduling. As global scheduling is a special case of clustered
scheduling, our results are applicable to locking protocols that target clustered scheduling
as well. Extensions to our analysis would be required to obtain more refined lower bounds
that take cluster sizes into account. Extensions would also be needed to reach conclusions
about optimal locking under partitioned scheduling. The literature on optimal multiprocessor
synchronization is not limited to mutex sharing. In particular, reader/writer sharing (both
read requests and write requests are supported and only the latter require mutual exclusion)
and k-exclusion sharing (k simultaneous lock holders are allowed) have been considered. A
reader/writer lock can be used to support mutex sharing by considering only writers, and a
k-exclusion lock reduces to a mutex lock when k = 1. Thus, our results have implications for
the design of optimal protocols for reader/writer and k-exclusion sharing as well. However,
as before, it might be possible to obtain more refined lower-bound results by taking into
account the specific nature of these sharing constraints.

References
1 S. Ahmed and J. Anderson. Optimal multiprocessor locking protocols under FIFO scheduling.

In ECRTS’23, pages 16:1–16:21, 2023.
2 A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol

for multiprocessors. In RTCSA’07, pages 47–56, 2007.
3 B. Brandenburg. A fully preemptive multiprocessor semaphore protocol for latency-sensitive

real-time applications. In ECRTS’13, pages 292–302, 2013.
4 B. Brandenburg. Improved analysis and evaluation of real-time semaphore protocols for P-FP

scheduling. In RTAS’13, pages 141–152, 2013.
5 B. Brandenburg. The FMLP+: an asymptotically optimal real-time locking protocol for

suspension-aware analysis. In ECRTS’14, pages 61–71, 2014.
6 B. Brandenburg. Multiprocessor real-time locking protocols. In Handbook of Real-Time

Computing, pages 347–446. Springer, 2022.
7 B. Brandenburg and J. Anderson. Optimality results for multiprocessor real-time locking. In

RTSS’10, pages 49–60, 2010.
8 B. Brandenburg and J. Anderson. Real-time resource-sharing under clustered scheduling:

Mutex, reader-writer, and k-exclusion locks. In EMSOFT’11, pages 69–78, 2011.
9 B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time

locking protocols. Des. Autom. Embed., 17(2):277–342, 2014.
10 C. Chen, S. Tripathi, and A. Blackmore. A resource synchronization protocol for multiprocessor

real-time systems. In ICPP’94, pages 159–162, 1994.
11 A. Easwaran and B. Andersson. Resource sharing in global fixed-priority preemptive multipro-

cessor scheduling. In RTSS’09, pages 377–386, 2009.
12 J. Erickson, J. Anderson, and B. Ward. Fair lateness scheduling: reducing maximum lateness

in G-EDF-like scheduling. Real-Time Syst., 50(1):5–47, 2014.
13 D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and implementation of the multiprocessor

bandwidth inheritance protocol. Real Time Syst., 48(6):789–825, 2012.
14 K. Lakshmanan, D. Niz, and R. Rajkumar. Coordinated task scheduling, allocation and

synchronization on multiprocessors. In RTSS’09, pages 469–478, 2009.
15 F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time systems on multi-

cores with shared resources. In ECRTS’11, pages 251–261, 2011.
16 F. Nemati and T. Nolte. Resource hold times under multiprocessor static-priority global

scheduling. In RTCSA’11, pages 197–206, 2011.
17 F. Nemati and T. Nolte. Resource sharing among real-time components under multiprocessor

clustered scheduling. Real Time Syst., 49(5):580–613, 2013.
18 R. Rajkumar. Synchronization In Real-Time Systems – A Priority Inheritance Approach.

Kluwer Academic Publishers, 1991.

ECRTS 2024

9:22 Open Problem Resolved: The "Two" in PI-Blocking is Fundamental

19 R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols for multiprocessors.
In RTSS’88, pages 259–269, 1988.

20 Z. Tong, S. Ahmed, and J. Anderson. Overrun-resilient multiprocessor real-time locking. In
ECRTS’22, pages 9:1–9:23, 2022.

21 M. Yang, A. Wieder, and B. Brandenburg. Global real-time semaphore protocols: A survey,
unified analysis, and comparison. In RTSS’15, pages 1–12, 2015.

	1 Introduction
	2 Background
	3 General Lower Bound On Pi-Blocking
	3.1 Task System
	3.2 Lower-Bound Proof
	3.3 Job Priority Assignment

	4 Improved Lower Bound Under An Additional Assumption
	4.1 Task System
	4.2 Lower-Bound Proof
	4.3 Job Priority Assignment

	5 Related Work
	6 Conclusion

